EP3965927A1 - Method for preparing catalyst support loaded with a first metal and a second metal - Google Patents

Method for preparing catalyst support loaded with a first metal and a second metal

Info

Publication number
EP3965927A1
EP3965927A1 EP20801860.6A EP20801860A EP3965927A1 EP 3965927 A1 EP3965927 A1 EP 3965927A1 EP 20801860 A EP20801860 A EP 20801860A EP 3965927 A1 EP3965927 A1 EP 3965927A1
Authority
EP
European Patent Office
Prior art keywords
metal
catalyst support
preparing
range
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20801860.6A
Other languages
German (de)
French (fr)
Other versions
EP3965927A4 (en
Inventor
Guang-hui WANG
Zheng-bin TIAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Publication of EP3965927A1 publication Critical patent/EP3965927A1/en
Publication of EP3965927A4 publication Critical patent/EP3965927A4/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates

Definitions

  • the present invention relates to a method for preparing highly dispersed ultrafine bimetallic shaped catalyst support by solid state seeded-growth strategy using metallic nanoclusters loaded on the solid support as the first metal, i.e. crystal seeds, which guide in situ the growth of the second metal element to obtain the supported bimetallic catalyst.
  • Bimetallic catalysts are an important class of heterogeneous catalysts and are widely used in chemical industry such as dehydrogenation reforming, selective hydrogenation, acetoxylation etc.
  • chemical industry such as dehydrogenation reforming, selective hydrogenation, acetoxylation etc.
  • the application of bimetallic catalysts in the field of biomass conversion and electrocatalysis has been further developed.
  • bimetallic catalysts Compared to monometallic catalysts, bimetallic catalysts often exhibit better performance and stability thanks to their unique geometry, electronic structure, and synergetic effect between the two metal elements.
  • bimetallic catalysts of uniform ultrafine sizes supported on inert non-reductive supports such as carbon materials or silicon materials
  • the traditional methods for preparing bimetallic catalysts are mainly impregnation method and sol-immobilization method.
  • the former preparation method is simple and convenient; however, the particle size is not uniform and the particle dispersion is bad.
  • the latter method can provide small-sized catalyst having uniform particle size, however, it is not easy to remove the protective agents on the metal surface and the interaction between the metal and the support is weak, which make the metal fall off the support easily.
  • the above drawbacks influence the activity and stability of the catalysts considerably.
  • the powder catalysts are often required to be processed by extra shaping procedures, such as for example by extrusion molding etc., to endow the catalyst with the required strength.
  • shaping processes inevitably involve binders, resulting in a decrease in the catalyst activity.
  • the inventors provide a highly dispersed ultrafine bimetallic shaped catalyst and the preparation thereof by a method of solid state seeded-growth strategy.
  • Said method mainly comprises two procedures: i.e. directly loading metallic nanoclusters seeds on the solid support and uniformly introducing the second metal.
  • metal particles, metal clusters may be used interchangeable and both refer to the metal nanoparticles and metal clusters loaded on the inventive catalyst support.
  • the present invention provides a method for preparing highly dispersed ultrafine bimetallic shaped catalyst, comprising a) providing an aqueous solution comprising an aromatic compound having at least one N-containing group or a mixture of several said aromatic compounds, at least one surfactant, an aldehyde compound and a salt of a first metal selected from Pd, Au, and Pt; b) heating the aqueous solution obtained in step a) , whereby the polymer support is formed and nanoparticles of the first metal are formed on the polymer support, c) treating the polymer support obtained in step b) with an aqueous solution of a salt of the second metal, wherein the second metal is selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal, and d) separating the polymer support obtained in step c) from the aqueous solution
  • the optional shaping treatment comprises extrusion moulding or tablet pressing or the like. Analyses indicate a strong electronic interaction between the first metal component and the second metal component in the bimetallic catalyst, which is a proof of the bimetallic character of the inventive catalyst support loaded with the first metals component and the second metal component, i.e. the supported catalyst prepared according to the inventive method is a bimetallic catalyst.
  • the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1: 1 to 1000: 1.
  • the salt of the first metal may be selected from one of the salts of palladium nitrate, potassium tetrachloropalladate, palladium (II) acetylacetonate, palladium (II) chloride, chloroplatinic (IV) acid, potassium tetrachloroplatinate, chloroauric (III) acid, potassium tetrachloroaurate (III) .
  • the at least one surfactant may be selected from one or more of Pluronic F127, P123, Tween-80, Polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, Hexadecyl trimethyl ammonium Bromide, sodium dodecyl benzene sulfonate, sodium oleate, amino acids.
  • the aromatic compound having at least one N-containing group may be selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  • the present invention provides directly loading the first metal, i.e. the metal nanoclusters seeds on the solid-state support, which function as anchoring positions, and the second metal ions is introduced uniformly and then forms bimetallic alloy at the anchoring positions; the second metal is added in a molar ratio in the range of 1: 100 to 10: 1 to the first metal.
  • the second metal ion may be selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal.
  • the second metal may be selected from the metal salts such as, for example, palladium nitrate, potassium chloropalladium (II) , palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate (II) , chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate, copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide (III) , potassium hexacyanocobaltate, antimony trichloride, ferric chloride, zinc chloride.
  • the metal salts such as, for example, palladium nitrate, potassium chloropalladium (II) , palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate (II) , chloroauric acid,
  • the shaping treatment may preferably be accomplished by means of tableting pressing using a tablet machine, the pressure may be in the range of 1 to 100 bar.
  • the reduction treatment is usually carried out under a normal pressure of a gaseous mixture of hydrogen and argon, hydrogen and nitrogen or hydrogen and a mixture of argon and nitrogen at a temperature in a range of 150 °C –800 °C, wherein the volume ratio of hydrogen to argon, to nitrogen, or to the mixture of argon and nitrogen is in the range of 0.1%to 20%.
  • the bimetallic catalyst may be prepared by the above-mentioned method.
  • the present invention is directed to a method for preparing a catalyst support loaded with a first metal and loaded with a second metal, comprising the steps of: a) providing an aqueous solution comprising an aromatic compound having at least one N-containing group or a mixture of several said aromatic compounds, at least one surfactant, an aldehyde compound and a salt of the first metal being selected from Pd, Au and Pt,
  • step b) heating the aqueous solution obtained in step a) to a temperature in the range of 40 °C –200 °C, preferably in the range of 60 °C –150 °C, whereby the catalyst support is formed and particles of the first metal are formed on the solid catalyst support, c) treating the catalyst support obtained in step b) with an aqueous solution of a salt of the second metal, wherein the second metal is selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal,
  • step d) separating the polymer support obtained in step c) from the aqueous solution, optionally washing the separated solid catalyst support and subjecting it, after optionally drying, to a reduction treatment whereby the catalyst support loaded with the first metal and loaded with the second metal is obtained.
  • the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1: 1 to 1: 1000.
  • the molar ratio of the aldehyde compound to the aromatic compound having at least one N-containing group is in the range of 0.1: 1 to 10: 1, preferably in the range of 0.5: 1 to 5: 1.
  • the molar ratio of the at least one surfactant to the aromatic compound having at least one N-containing group is in the range of 0.01: 1 to 100: 1, preferably in the range of 0.1: 1 to 10: 1.
  • the aromatic compound in step a) is selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  • the aldehyde compound in step a) of the method, can be an aliphatic aldehyde having 1 to 12 carbon atoms, such as formaldehyde, acetaldehyde, crotonaldehyde, or an aromatic aldehyde such as furfural, or a compound which can be decomposed to release formaldehyde, such as hexamethylenetetramine or paraformaldehyde.
  • the at least one surfactant used in step a) of the method for preparing a catalyst support is selected from the group consisting of Pluronic F127, P123, Tween-80, Polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, hexadecyl trimethyl ammonium Bromide, sodium dodecyl benzene sulfonate, sodium oleate, amino acids or a mixture thereof, preferably the surfactant is selected from Pluronic F127, P123, Tween-80, PEO-b-PS and amino acids, more preferably the surfactant is Pluronic F127, PEO-b-PS.
  • the salt of the first metal used in step a) is selected from the group consisting of palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium (II) chloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, postaasium tetrachloroaurate.
  • the aqueous solution in step b) is heated at a temperature in the range of 40 °C –200 °C, preferably in the range of 60°C –150 °C.
  • step c) the second metal is loaded in an amount that the molar ratio of the second metal to the first metal is in the range of 1: 100 to 10: 1.
  • the second metal is selected from palladium nitrate, potassium chloropalladium, palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate , copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide, potassium hexacyanocobaltate, antimony trichloride, ferric chloride, zinc chloride, with the proviso that the second metal is different from the first metal.
  • step c) the second metal is loaded at a pH in the range of 2 –12.
  • the reduction treatment in step d) is carried out under normal pressure of a gaseous mixture of hydrogen and argon, hydrogen and nitrogen or hydrogen and a mixture of argon and nitrogen at a temperature in a range of 150 °C –800 °C, wherein the volume ratio of hydrogen to argon, to nitrogen, or to the mixture of argon and nitrogen is in the range of 0.1%to 20%.
  • the inventive method for preparing a catalyst support comprises subjecting the catalyst to a shaping treatment.
  • the catalyst is shaped by tablet pressing under a pressure in the range of 1 bar –100 bar.
  • Fig. 1 is a sketch of the preparation of the bimetallic catalyst
  • Fig. 2 shows a STEM image of the supported metal nanocluster seeds prepared in Example 1
  • Fig. 3 shows a TEM image (3a) and XRD analysis (3b) of the shaped bimetallic shaped catalyst Pd 1 Au 0.25 prepared in Example 2
  • Fig. 4 shows a SEM image (4a) and a shaped entity of the shaped of the bimetallic shaped catalyst Pd 1 Au 0.25 prepared in Example 2
  • Fig. 5 shows a TEM image of the shaped bimetallic shaped catalyst Pd 1 Au 0.5 prepared in Example 3
  • Fig. 6 shows a TEM image (6a) and an XRD analysis (6b) of the shaped bimetallic shaped catalyst Pd 1 Ag 0.5 prepared in Example 4
  • Fig. 7 shows a TEM image (7a) and an XRD analysis (7b) of the shaped bimetallic shaped catalyst Pd 1 Cu 0.5 prepared in Example 5
  • Fig. 8 shows a TEM image (8a) and an XRD analysis (8b) of the shaped bimetallic shaped catalyst Pd 1 Ru 0.5 prepared in Example 6
  • an aromatic compound having at least one N-containing group, a surfactant, an aldehyde compound and a first metal salt are mixed to provide an aqueous solution.
  • the polymer support is prepared by means of hydrothermal process, on which the nanoparticles of the first metal are deposited in situ; uniformly introducing the second metal, wherein during the reduction process, the ultrafine nanoparticles of the first metal function as seeds directing the growth of the second metal on the catalyst support by means of Solid State Seeded-Growth Strategy to synthesize the uniform bimetallic catalyst.
  • the aromatic compound having at least one N-containing group may be one selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  • Forming ultrafine metal nanoclusters seeds uniformly on the surface of the support is a crucial issue for the implementation of the inventive method, i.e. the solid state seeded-growth strategy for preparing the supported ultrafine bimetallic nanocluster catalysts. It is the consideration of the inventors that the interaction between the aromatic compound having at least one N-containing group and the first metal is essential. Said interaction ensures the formation of the metal nanoparticle seeds on the support.
  • Uniformly introducing the second metal onto the support is another crucial issue for implementation of the inventive method of solid state seeded growth of the supported ultrafine bimetallic catalyst. The uniformly introducing the second metal may be achieved when an abundant of amino, hydroxyl, or carboxyl functional groups etc. are available in the synthesized support.
  • the aromatic compound having at least one N-containing group is one selected from the group consisting of 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine.
  • the aldehyde compound can be an aliphatic aldehyde having 1 to 12 carbon atoms, such as formaldehyde, paraformaldehyde, furfural, acetaldehyde, crotonaldehyde, or an aromatic aldehyde, or a compound which can be decomposed to release formaldehyde, such as hexamethylenetetramine or paraformaldehyde.
  • the surfactant is used as a pore-forming agent to form a mesoporous structure in the support and as a crosslinking agent to form a coral-like crosslinked structure.
  • Said surfactant is one or more selected from the group consisting of Pluronic F127, P123, Tween-80, and polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, cetyltrimethylammonium bromide, sodium dodecylbenzenesulfonate, sodium oleate and amino acids.
  • the surfactant is selected from Pluronic F127, P123, Tween-80, PEO-b-PS and amino acids, more preferably is Pluronic F127 and PEO-b-PS.
  • the surfactant is used in an amount of 0.01 to 100 times of the weight of the aromatic compound having at least one N-containing group, preferably in an amount of 0.1 to 10 times of the weight of the aromatic compound. If the surfactant is used less than 0.1 times by weight, the support is formed without mesoporous structure; if the surfactant is used more than 100 times, the rate of polymerization and the yield will be too slow, and is economically not favored. Meanwhile, the formation of a cross-linked structure is not favored when the surfactant exceeds the above range.
  • the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1 : 1 to 1000 : 1.
  • the amount of loading of the metal on the support can be adjusted by tuning the ratio of the aromatic compound having at least one N-containing group to the first metal. If the ratio is below 1 : 1, the loading of metal will be too high to control the size of the metal nanocluster seeds; on the other hand, if the molar ratio of the aromatic compound having at least one N-containing group to the first metal is more than 1000: 1, the loading rate of the metal will be too low to form applicable supported metal catalyst.
  • the solution containing the components for preparing the support and the first metal can be heated to form in a single step the polymer support supported metal particles, i.e. the metal nanocluster seeds.
  • the solution is heated at a temperature in the range of 40 –200 °C. If the reaction temperature is lower than 40 °C, the rate of polymerization is two slow and it is difficult to reduce the metal ions to form metal nanoclusters. If the reaction temperature is above 200 °C, the support is formed too fast and the metal ions are reduced too fast. Consequently, the supported catalyst with an uneven distribution of the particle sizes of the metal nanocluster seeds is formed. Therefore, the reaction temperature of the solution is preferably controlled in the range of 60 –150 °C.
  • the first metal ions may be selected from one of Pd, Au, Pt. Salt containing one of the above metal ions is added to the solution, which –on heating the reaction solution –forms particles of the first metal, i.e. the supported first metal nanoparticle seeds.
  • the inventive metal nanoclusters seeds formed herein are extremely small and uniformly distributed on the support (shown in Figure 2) , which is the key to the synthesis of the inventive highly dispersed ultrafine supported bimetallic catalysts.
  • the metal salt containing the first metal ions may be selected from the group consisting of palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium dichloride, chlopllatinic acid, platinum tetrachloride, potassium hexachloroplatinate, chloroauric acid, potassium tetrachloroaurate, preferably potassium tetrachloro palladate.
  • the present invention achieves directly loading metal nanoparticle seeds on the solid support, said metal nanocluster seeds function as anchor positions guiding the loading of the second metal to form therewith the supported bimetallic catalyst.
  • the polymer support loaded with metal nanocluster seeds is dispersed in water, on which the second metal is loaded, wherein the pH value is set to 2-12.
  • Uniformly introducing the second metal is another crucial issue for the synthesis of highly dispersed ultrafine bimetallic shaped catalyst.
  • the functional groups on the support such as for example the nitrogen-containing functional groups act as binding sites for the second metal salts, leading to uniform or even homogeneous dispersion of the second metal on the support.
  • the pH value of the solution may exert an important influence.
  • a base solution such as ammonia solution, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, and an acid such as hydrochloric acid, nitric acid, sulfuric acid, organic acid and carboxylic acid may be used to set the pH value of the solution.
  • the amount of substance of the second metal is added in a molar ratio of 1: 100 to 10: 1 relative to the first metal. Taking the amount of substance of the first metal as 1 equivalent, if the second metal is added in an amount below 1: 100 equivalent, the bimetallic effect is not prominent; if the second metal is added in an amount higher than 10 equivalents, it will result in formation of oversized metal particles or formation of the separate second metallic particles.
  • the second metal may be selected from the group consisting of Pd, Pt, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W.
  • a salt containing one of the above metal ions may be used, such as for example palladium nitrate, potassium tetrachloropalladate, palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate, copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide, potassium hexacyanocobaltate, ruthenium trichloride, ferric chloride, zinc chloride, and the like, with the proviso that the second metal is different from the first metal.
  • the support of the inventive supported bimetallic catalyst has a crosslinked structure.
  • the supported bimetallic catalyst can be shaped by a tablet press machine at a pressure in the range of 1 –100 bar. Furthermore, the mechanical strength will be increased upon maturing during hydrogenation. These reduce the possibility of reduction of the catalytic activity during the post shaping process and lower the production costs.
  • the reduction treatment temperature is usually set in the range of 150 °C –800 °C.
  • the supported bimetallic catalyst can be prepared by the above-described method.
  • the synthesized catalysts may be characterized by transmission electron microscopy (TEM) , scanning electron microscopy (SEM) , X-ray diffraction, and ICP.
  • TEM transmission electron microscopy
  • SEM scanning electron microscopy
  • ICP ICP
  • the inventive bimetallic catalyst obtained by the above-mentioned inventive method has ultrafine metal particles size, uniform particle size distribution.
  • the catalyst can be easily separated and regenerated, and is suitable for studying reaction mechanism.
  • the preparation process of the catalyst is green and energy effective. It is highly recommendable in the fields of catalytic hydrogenation and oxidation.
  • solid state seeded-growth strategy (the inventors name it SSSG) developed for the first time in the present invention can be expanded to other systems, such as silicone oxide, metal oxide supported bimetallic nano-catalyst.
  • SSSG solid state seeded-growth strategy
  • catalyst support loaded with different metals i.e. different kinds of bimetallic catalysts can be prepared by altering the metal ions.
  • the present invention will be illustrated taking the syntheses of PdAu, PdAg, PdCu, PdRu bimetallic catalysts as examples.
  • the first metal component Pd can be put into use in a form of a salt, such as for example palladium nitrate, potassium tetrachloropalldate, palladium acetylacetonate, palladium (II) chloride in an amount of 0.01 mmol to 0.5 mmol.
  • Pluronic F127 is selected as surfactant in an amount of 0.1 to 10 g.
  • 3-Aminophenol is selected to be the aromatic compound in an amount of 0.1 to 5 g.
  • Hexamethylenetetramine which on heating releases formaldehyde serving as monomer for copolymerizing with the 3-aminophenol and at the same time as a reducing agent for the reduction of metal ions, is used in an amount of 0.1-6 g.
  • the above starting materials are dissolved in 40 –1000 mL water to give a homogeneous solution.
  • the second metal component is gold in examples 2 and 3, silver in example 4, copper in example 5 and ruthenium in example 6.
  • the bimetallic catalysts can be synthesized as follows:
  • Said palladium nanocluster seeds supported on nitrogen-containing polymer as obtained in Example 1 was dispersed in 50 ml of water, to which was added 4.53 mg potassium tetrachloroaurate (0.012 mmol) .
  • the reaction mixture was allowed to react under stirring for 2 hours.
  • the product was vacuum-filtered, washed, pressed with a tablet press, and dried, followed by reducing at 360 °C under an reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Au bimetallic catalyst (as shown Fig. 3 and Fig. 4) .
  • Ratio of the metals in the bimetallic catalysts may be adjusted by amount of the second metal added to the nitrogen-containing polymer supported palladium nanocluster seeds.
  • 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 °C.
  • the reaction mixture was vacuum-filtered, washed until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds.
  • Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 9.07 mg chloroauric acid (0.024 mmol) .
  • the mixture was allowed to react for under stirring 2 hours.
  • the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reducing at 360 °C in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Au bimetallic catalyst (as shown in Fig. 5) .
  • Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 4.08 mg silver nitrate (0.024 mmol) . The mixture was allowed to react for 2 hours under stirring. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reduction at 360 °C in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Ag bimetallic catalyst (as shown in Fig. 6) .
  • Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 5.80 mg copper nitrate (0.024 mmol calculated with respect to trihydrate) .
  • the mixture was allowed to react for 2 hours under stirring. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reduction at 360 °C in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Cu bimetallic catalyst (as shown in Fig. 7) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for preparing a highly dispersed ultrafine bimetallic shaped catalyst is provided. Said catalyst is obtainable by a method of solid-state seeded-growth strategy. Said method comprises: mixing an aromatic compound containing at least one N-group, a surfactant, an aldehyde compound and a first metal salt, wherein the first metal is one of Pd, Au, Pt and the like, and preparing a uniform solution; heating the solution to form a support and metal nanocluster seeds loaded on the support; uniformly introducing a second element into the support; during the hydrogenation reduction, the second element grows by taking the first metal nanocluster as a seed to obtain the bimetal-loaded catalyst support. The method can obtain the highly dispersed supported bimetallic catalyst with uniform ultrafine particles. The catalyst is easily shaped, easily separated and regenerated. The preparation process is green and energy-efficient, suitable for promotion, and therefore has a broad scope in the field of catalytic hydrogenation, oxidation and the like.

Description

    Method for preparing catalyst support loaded with a first metal and a second metal Technical Field
  • The present invention relates to a method for preparing highly dispersed ultrafine bimetallic shaped catalyst support by solid state seeded-growth strategy using metallic nanoclusters loaded on the solid support as the first metal, i.e. crystal seeds, which guide in situ the growth of the second metal element to obtain the supported bimetallic catalyst.
  • Background Art
  • Bimetallic catalysts are an important class of heterogeneous catalysts and are widely used in chemical industry such as dehydrogenation reforming, selective hydrogenation, acetoxylation etc. In recent years, the application of bimetallic catalysts in the field of biomass conversion and electrocatalysis has been further developed. Compared to monometallic catalysts, bimetallic catalysts often exhibit better performance and stability thanks to their unique geometry, electronic structure, and synergetic effect between the two metal elements.
  • However, the synthesis of bimetallic catalysts of uniform ultrafine sizes supported on inert non-reductive supports (such as carbon materials or silicon materials) has been challenging in the field of catalyst syntheses. The traditional methods for preparing bimetallic catalysts are mainly impregnation method and sol-immobilization method. The former preparation method is simple and convenient; however, the particle size is not uniform and the particle dispersion is bad. The latter method can provide small-sized catalyst having uniform particle size, however, it is not easy to remove the protective agents on the metal surface and the interaction between the metal and the support is weak, which make the metal fall off the support easily. The above drawbacks influence the activity and stability of the catalysts considerably.
  • In catalytic reactions, the powder catalysts are often required to be processed by extra  shaping procedures, such as for example by extrusion molding etc., to endow the catalyst with the required strength. However, such shaping processes inevitably involve binders, resulting in a decrease in the catalyst activity.
  • Thus, the synthesis of the traditional bimetallic catalyst preparation and the post-shaping techniques thereof are still problematic in industrial application, which makes it appealing to search for a new type of bimetallic catalyst, the synthesis and the post-shaping of which overcomes the drawbacks in the prior art and thus suitable for industrial applications.
  • Brief Description of the Invention
  • To overcome the above-mentioned problems of oversizing of the catalyst particles, the metal particles falling easily off the catalyst support, and the drastic decreasing of the catalytic activity as a result of the post-shaping procedure for the traditional bimetallic catalysts, the inventors provide a highly dispersed ultrafine bimetallic shaped catalyst and the preparation thereof by a method of solid state seeded-growth strategy. Said method mainly comprises two procedures: i.e. directly loading metallic nanoclusters seeds on the solid support and uniformly introducing the second metal.
  • It is to note that in the context of the present invention, the metal particles, metal clusters may be used interchangeable and both refer to the metal nanoparticles and metal clusters loaded on the inventive catalyst support.
  • The present invention provides a method for preparing highly dispersed ultrafine bimetallic shaped catalyst, comprising a) providing an aqueous solution comprising an aromatic compound having at least one N-containing group or a mixture of several said aromatic compounds, at least one surfactant, an aldehyde compound and a salt of a first metal selected from Pd, Au, and Pt; b) heating the aqueous solution obtained in step a) , whereby the polymer support is formed and nanoparticles of the first metal are formed on the polymer support, c) treating the polymer support obtained in step b) with an aqueous  solution of a salt of the second metal, wherein the second metal is selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal, and d) separating the polymer support obtained in step c) from the aqueous solution, optionally washing the separated solid catalyst support and subjecting it, after optionally drying, to a reduction treatment whereby the catalyst support loaded with the first metal and loaded with the second metal, namely the supported bimetallic catalyst is obtained. The optional shaping treatment comprises extrusion moulding or tablet pressing or the like. Analyses indicate a strong electronic interaction between the first metal component and the second metal component in the bimetallic catalyst, which is a proof of the bimetallic character of the inventive catalyst support loaded with the first metals component and the second metal component, i.e. the supported catalyst prepared according to the inventive method is a bimetallic catalyst.
  • Herein, the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1: 1 to 1000: 1.
  • The salt of the first metal may be selected from one of the salts of palladium nitrate, potassium tetrachloropalladate, palladium (II) acetylacetonate, palladium (II) chloride, chloroplatinic (IV) acid, potassium tetrachloroplatinate, chloroauric (III) acid, potassium tetrachloroaurate (III) .
  • The at least one surfactant may be selected from one or more of Pluronic F127, P123, Tween-80, Polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, Hexadecyl trimethyl ammonium Bromide, sodium dodecyl benzene sulfonate, sodium oleate, amino acids.
  • According to the present invention, the aromatic compound having at least one N-containing group may be selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol,  2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  • Furthermore, the present invention provides directly loading the first metal, i.e. the metal nanoclusters seeds on the solid-state support, which function as anchoring positions, and the second metal ions is introduced uniformly and then forms bimetallic alloy at the anchoring positions; the second metal is added in a molar ratio in the range of 1: 100 to 10: 1 to the first metal.
  • The second metal ion may be selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal. The second metal may be selected from the metal salts such as, for example, palladium nitrate, potassium chloropalladium (II) , palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate (II) , chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate, copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide (III) , potassium hexacyanocobaltate, antimony trichloride, ferric chloride, zinc chloride.
  • The shaping treatment may preferably be accomplished by means of tableting pressing using a tablet machine, the pressure may be in the range of 1 to 100 bar.
  • The reduction treatment is usually carried out under a normal pressure of a gaseous mixture of hydrogen and argon, hydrogen and nitrogen or hydrogen and a mixture of argon and nitrogen at a temperature in a range of 150 ℃ –800 ℃, wherein the volume ratio of hydrogen to argon, to nitrogen, or to the mixture of argon and nitrogen is in the range of 0.1%to 20%.
  • The bimetallic catalyst may be prepared by the above-mentioned method.
  • Thus, the present invention is directed to a method for preparing a catalyst support loaded with a first metal and loaded with a second metal, comprising the steps of: a) providing an aqueous solution comprising an aromatic compound having at least one N-containing group or a mixture of several said aromatic compounds, at least one surfactant, an aldehyde compound and a salt of the first metal being selected from Pd, Au and Pt,
  • b) heating the aqueous solution obtained in step a) to a temperature in the range of 40 ℃ –200 ℃, preferably in the range of 60 ℃ –150 ℃, whereby the catalyst support is formed and particles of the first metal are formed on the solid catalyst support, c) treating the catalyst support obtained in step b) with an aqueous solution of a salt of the second metal, wherein the second metal is selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal,
  • d) separating the polymer support obtained in step c) from the aqueous solution, optionally washing the separated solid catalyst support and subjecting it, after optionally drying, to a reduction treatment whereby the catalyst support loaded with the first metal and loaded with the second metal is obtained.
  • In an embodiment of the inventive method for preparing a catalyst support, in step a) the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1: 1 to 1: 1000.
  • In a further embodiment of the inventive method for preparing a catalyst support, in step a) the molar ratio of the aldehyde compound to the aromatic compound having at least one N-containing group is in the range of 0.1: 1 to 10: 1, preferably in the range of 0.5: 1 to 5: 1.
  • In a further embodiment of the inventive method for preparing a catalyst support, in step a) the molar ratio of the at least one surfactant to the aromatic compound having at least one N-containing group is in the range of 0.01: 1 to 100: 1, preferably in the range of 0.1: 1 to 10: 1.
  • In an even further embodiment of the inventive method for preparing a catalyst support, the aromatic compound in step a) is selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  • According to the inventive method for preparing a catalyst support, in step a) of the method, the aldehyde compound can be an aliphatic aldehyde having 1 to 12 carbon atoms, such as formaldehyde, acetaldehyde, crotonaldehyde, or an aromatic aldehyde such as furfural, or a compound which can be decomposed to release formaldehyde, such as hexamethylenetetramine or paraformaldehyde.
  • Preferably, the at least one surfactant used in step a) of the method for preparing a catalyst support is selected from the group consisting of Pluronic F127, P123, Tween-80, Polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, hexadecyl trimethyl ammonium Bromide, sodium dodecyl benzene sulfonate, sodium oleate, amino acids or a mixture thereof, preferably the surfactant is selected from Pluronic F127, P123, Tween-80, PEO-b-PS and amino acids, more preferably the surfactant is Pluronic F127, PEO-b-PS.
  • In a further embodiment of the inventive method for preparing a catalyst support the salt of the first metal used in step a) is selected from the group consisting of palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium (II) chloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, postaasium tetrachloroaurate.
  • In an embodiment of the inventive method for preparing a catalyst support, the aqueous solution in step b) is heated at a temperature in the range of 40 ℃ –200 ℃, preferably in the range of 60℃ –150 ℃.
  • According to a further embodiment of the method for preparing a catalyst support, in step c) the second metal is loaded in an amount that the molar ratio of the second metal to the first metal is in the range of 1: 100 to 10: 1.
  • According to an even further embodiment of the inventive method for preparing a catalyst support, in step c) the second metal is selected from palladium nitrate, potassium chloropalladium, palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate , copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide, potassium hexacyanocobaltate, antimony trichloride, ferric chloride, zinc chloride, with the proviso that the second metal is different from the first metal.
  • In a further embodiment of the inventive method for preparing a catalyst support, in step c) the second metal is loaded at a pH in the range of 2 –12.
  • According to the inventive method for preparing a catalyst support, the reduction treatment in step d) is carried out under normal pressure of a gaseous mixture of hydrogen and argon, hydrogen and nitrogen or hydrogen and a mixture of argon and nitrogen at a temperature in a range of 150 ℃ –800 ℃, wherein the volume ratio of hydrogen to argon, to nitrogen, or to the mixture of argon and nitrogen is in the range of 0.1%to 20%.
  • Preferably, the inventive method for preparing a catalyst support comprises subjecting the catalyst to a shaping treatment.
  • According to a further embodiment of the method for preparing a catalyst support, the catalyst is shaped by tablet pressing under a pressure in the range of 1 bar –100 bar.
  • The extra aspects and advantages of the invention are illustrated in the following description, some of the contents are obvious from the description or may be obtained during the operation.
  • Brief Description of the Figures
  • Fig. 1 is a sketch of the preparation of the bimetallic catalyst
  • Fig. 2 shows a STEM image of the supported metal nanocluster seeds prepared in Example 1
  • Fig. 3 shows a TEM image (3a) and XRD analysis (3b) of the shaped bimetallic shaped catalyst Pd 1Au 0.25 prepared in Example 2
  • Fig. 4 shows a SEM image (4a) and a shaped entity of the shaped of the bimetallic shaped catalyst Pd 1Au 0.25 prepared in Example 2
  • Fig. 5 shows a TEM image of the shaped bimetallic shaped catalyst Pd 1Au 0.5 prepared in Example 3
  • Fig. 6 shows a TEM image (6a) and an XRD analysis (6b) of the shaped bimetallic shaped catalyst Pd 1Ag 0.5 prepared in Example 4
  • Fig. 7 shows a TEM image (7a) and an XRD analysis (7b) of the shaped bimetallic shaped catalyst Pd 1Cu 0.5 prepared in Example 5
  • Fig. 8 shows a TEM image (8a) and an XRD analysis (8b) of the shaped bimetallic shaped catalyst Pd 1Ru 0.5 prepared in Example 6
  • Detailed Description of the Invention
  • The method according to the present invention for preparing bimetallic catalysts and the bimetallic catalysts prepared thereby are described as follows in detail.
  • For the inventive method, at first an aromatic compound having at least one N-containing group, a surfactant, an aldehyde compound and a first metal salt are mixed to provide an aqueous solution. In said solution the polymer support is prepared by means of hydrothermal process, on which the nanoparticles of the first metal are deposited in situ; uniformly introducing the second metal, wherein during the reduction process, the  ultrafine nanoparticles of the first metal function as seeds directing the growth of the second metal on the catalyst support by means of Solid State Seeded-Growth Strategy to synthesize the uniform bimetallic catalyst.
  • Herein, the aromatic compound having at least one N-containing group may be one selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof. Forming ultrafine metal nanoclusters seeds uniformly on the surface of the support is a crucial issue for the implementation of the inventive method, i.e. the solid state seeded-growth strategy for preparing the supported ultrafine bimetallic nanocluster catalysts. It is the consideration of the inventors that the interaction between the aromatic compound having at least one N-containing group and the first metal is essential. Said interaction ensures the formation of the metal nanoparticle seeds on the support. Uniformly introducing the second metal onto the support is another crucial issue for implementation of the inventive method of solid state seeded growth of the supported ultrafine bimetallic catalyst. The uniformly introducing the second metal may be achieved when an abundant of amino, hydroxyl, or carboxyl functional groups etc. are available in the synthesized support. Thus, the aromatic compound having at least one N-containing group is one selected from the group consisting of 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine.
  • The aldehyde compound can be an aliphatic aldehyde having 1 to 12 carbon atoms, such as formaldehyde, paraformaldehyde, furfural, acetaldehyde, crotonaldehyde, or an aromatic aldehyde, or a compound which can be decomposed to release formaldehyde,  such as hexamethylenetetramine or paraformaldehyde.
  • The surfactant is used as a pore-forming agent to form a mesoporous structure in the support and as a crosslinking agent to form a coral-like crosslinked structure. Said surfactant is one or more selected from the group consisting of Pluronic F127, P123, Tween-80, and polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, cetyltrimethylammonium bromide, sodium dodecylbenzenesulfonate, sodium oleate and amino acids. Preferably, the surfactant is selected from Pluronic F127, P123, Tween-80, PEO-b-PS and amino acids, more preferably is Pluronic F127 and PEO-b-PS.
  • The surfactant is used in an amount of 0.01 to 100 times of the weight of the aromatic compound having at least one N-containing group, preferably in an amount of 0.1 to 10 times of the weight of the aromatic compound. If the surfactant is used less than 0.1 times by weight, the support is formed without mesoporous structure; if the surfactant is used more than 100 times, the rate of polymerization and the yield will be too slow, and is economically not favored. Meanwhile, the formation of a cross-linked structure is not favored when the surfactant exceeds the above range.
  • The molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1 : 1 to 1000 : 1. The amount of loading of the metal on the support can be adjusted by tuning the ratio of the aromatic compound having at least one N-containing group to the first metal. If the ratio is below 1 : 1, the loading of metal will be too high to control the size of the metal nanocluster seeds; on the other hand, if the molar ratio of the aromatic compound having at least one N-containing group to the first metal is more than 1000: 1, the loading rate of the metal will be too low to form applicable supported metal catalyst.
  • Once the solution containing the components for preparing the support and the first metal is prepared, it can be heated to form in a single step the polymer support supported metal particles, i.e. the metal nanocluster seeds. The solution is heated at a  temperature in the range of 40 –200 ℃. If the reaction temperature is lower than 40 ℃, the rate of polymerization is two slow and it is difficult to reduce the metal ions to form metal nanoclusters. If the reaction temperature is above 200 ℃, the support is formed too fast and the metal ions are reduced too fast. Consequently, the supported catalyst with an uneven distribution of the particle sizes of the metal nanocluster seeds is formed. Therefore, the reaction temperature of the solution is preferably controlled in the range of 60 –150 ℃.
  • The first metal ions may be selected from one of Pd, Au, Pt. Salt containing one of the above metal ions is added to the solution, which –on heating the reaction solution –forms particles of the first metal, i.e. the supported first metal nanoparticle seeds. The inventive metal nanoclusters seeds formed herein are extremely small and uniformly distributed on the support (shown in Figure 2) , which is the key to the synthesis of the inventive highly dispersed ultrafine supported bimetallic catalysts.
  • The metal salt containing the first metal ions may be selected from the group consisting of palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium dichloride, chlopllatinic acid, platinum tetrachloride, potassium hexachloroplatinate, chloroauric acid, potassium tetrachloroaurate, preferably potassium tetrachloro palladate.
  • Furthermore, the present invention achieves directly loading metal nanoparticle seeds on the solid support, said metal nanocluster seeds function as anchor positions guiding the loading of the second metal to form therewith the supported bimetallic catalyst.
  • The polymer support loaded with metal nanocluster seeds is dispersed in water, on which the second metal is loaded, wherein the pH value is set to 2-12. Uniformly introducing the second metal is another crucial issue for the synthesis of highly dispersed ultrafine bimetallic shaped catalyst. In this concern, the functional groups on the support such as for example the nitrogen-containing functional groups act as binding  sites for the second metal salts, leading to uniform or even homogeneous dispersion of the second metal on the support. Besides the functional groups on the surface of the support, the pH value of the solution may exert an important influence. A base solution such as ammonia solution, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, and an acid such as hydrochloric acid, nitric acid, sulfuric acid, organic acid and carboxylic acid may be used to set the pH value of the solution.
  • The amount of substance of the second metal is added in a molar ratio of 1: 100 to 10: 1 relative to the first metal. Taking the amount of substance of the first metal as 1 equivalent, if the second metal is added in an amount below 1: 100 equivalent, the bimetallic effect is not prominent; if the second metal is added in an amount higher than 10 equivalents, it will result in formation of oversized metal particles or formation of the separate second metallic particles.
  • The second metal may be selected from the group consisting of Pd, Pt, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W. Correspondingly, a salt containing one of the above metal ions may be used, such as for example palladium nitrate, potassium tetrachloropalladate, palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate, copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide, potassium hexacyanocobaltate, ruthenium trichloride, ferric chloride, zinc chloride, and the like, with the proviso that the second metal is different from the first metal.
  • The support of the inventive supported bimetallic catalyst has a crosslinked structure. The supported bimetallic catalyst can be shaped by a tablet press machine at a pressure in the range of 1 –100 bar. Furthermore, the mechanical strength will be increased upon maturing during hydrogenation. These reduce the possibility of reduction of the catalytic activity during the post shaping process and lower the production costs.
  • The reduction treatment temperature is usually set in the range of 150 ℃ –800 ℃.
  • The supported bimetallic catalyst can be prepared by the above-described method.
  • The synthesized catalysts may be characterized by transmission electron microscopy (TEM) , scanning electron microscopy (SEM) , X-ray diffraction, and ICP.
  • The inventive bimetallic catalyst obtained by the above-mentioned inventive method has ultrafine metal particles size, uniform particle size distribution. The catalyst can be easily separated and regenerated, and is suitable for studying reaction mechanism. The preparation process of the catalyst is green and energy effective. It is highly recommendable in the fields of catalytic hydrogenation and oxidation.
  • Furthermore, the solid state seeded-growth strategy (the inventors name it SSSG) developed for the first time in the present invention can be expanded to other systems, such as silicone oxide, metal oxide supported bimetallic nano-catalyst. The technical solutions of the present invention will be described in detail in the following with respect to the specific embodiments, which serve solely the purpose of illustrating the invention and not limiting the scope of the present invention.
  • According to the present invention, catalyst support loaded with different metals, i.e. different kinds of bimetallic catalysts can be prepared by altering the metal ions. The present invention will be illustrated taking the syntheses of PdAu, PdAg, PdCu, PdRu bimetallic catalysts as examples. The first metal component Pd can be put into use in a form of a salt, such as for example palladium nitrate, potassium tetrachloropalldate, palladium acetylacetonate, palladium (II) chloride in an amount of 0.01 mmol to 0.5 mmol. Pluronic F127 is selected as surfactant in an amount of 0.1 to 10 g. 3-Aminophenol is selected to be the aromatic compound in an amount of 0.1 to 5 g. Hexamethylenetetramine, which on heating releases formaldehyde serving as monomer  for copolymerizing with the 3-aminophenol and at the same time as a reducing agent for the reduction of metal ions, is used in an amount of 0.1-6 g. The above starting materials are dissolved in 40 –1000 mL water to give a homogeneous solution. The second metal component is gold in examples 2 and 3, silver in example 4, copper in example 5 and ruthenium in example 6. The bimetallic catalysts can be synthesized as follows:
  • Example 1
  • Preparation of the supported metal nanocluster seeds: 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After the reaction, the reaction mixture was vacuum-filtered, washed until it was neutral to provide the nitrogen-containing polymer supported Pd nanocluster seeds (as shown Fig. 2) .
  • Example 2
  • Preparation of Pd 1Au 0.25 catalyst: 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After reaction, the reaction mixture was vacuum-filtered, washed until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds. Said palladium nanocluster seeds supported on nitrogen-containing polymer as obtained in Example 1 was dispersed in 50 ml of water, to which was added 4.53 mg potassium tetrachloroaurate (0.012 mmol) . The reaction mixture was allowed to react under stirring for 2 hours. After reaction, the product was vacuum-filtered, washed, pressed with a tablet press, and dried, followed by reducing at 360 ℃ under an reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Au bimetallic catalyst (as shown Fig. 3 and Fig. 4) .
  • Example 3
  • Preparation of Pd 1Au 0.5 catalyst: Ratio of the metals in the bimetallic catalysts may be adjusted by amount of the second metal added to the nitrogen-containing polymer supported palladium nanocluster seeds. 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After reaction, the reaction mixture was vacuum-filtered, washed until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds. Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 9.07 mg chloroauric acid (0.024 mmol) . The mixture was allowed to react for under stirring 2 hours. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reducing at 360 ℃ in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Au bimetallic catalyst (as shown in Fig. 5) .
  • Example 4
  • Preparation of Pd 1Ag 0.5 catalyst: 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After reaction, the reaction mixture was vacuum-filtered, washing until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds. Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 4.08 mg silver nitrate (0.024 mmol) . The mixture was allowed to react for 2 hours under stirring. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reduction at 360 ℃ in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Ag bimetallic catalyst (as shown in Fig. 6) .
  • Example 5
  • Preparation of Pd 1Cu 0.5 catalyst: 0.36 g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After reaction, the reaction mixture was vacuum-filtered, washed until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds. Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 5.80 mg copper nitrate (0.024 mmol calculated with respect to trihydrate) . The mixture was allowed to react for 2 hours under stirring. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reduction at 360 ℃ in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Cu bimetallic catalyst (as shown in Fig. 7) .
  • Example 6
  • Preparation of Pd 1Ru 0.5 catalyst: 0.36g 3-Aminophenol (3.3 mmol) , 0.28 g hexamethylenetetramine (2.0 mmol) , 0.16 g Pluronic F127 and 15.7 mg potassium tetrachloropalladate (II) (0.048 mmol) were dissolved in 80 ml of water to give a clear solution. Said solution was allowed to react for 24 hours at 80 ℃. After reaction, the reaction mixture was vacuum filtered, washed until it was neutral to provide the nitrogen-containing polymer supported palladium nanocluster seeds. Said nitrogen-containing polymer supported palladium nanocluster seeds was dispersed in 50 ml water, to which was added 4.98 mg ruthenium (III) chloride (0.024 mmol) . The mixture was allowed to react for 2 hours under stirring. After reaction, the reaction mixture was vacuum-filtered, washed, pressed with a tablet press, dried, followed by reduction at 360 ℃ in a reductive atmosphere for 2 hours to provide the polymer supported highly dispersed ultrafine Pd-Ru bimetallic catalyst (as shown in Fig. 8) .
  • A person of ordinary skill should keep in mind that the above embodiments serve merely the purpose of illustrating the present invention, while not limiting the same. Within the  essence of the present invention, any variation and modification should be considered to fall into the scope of the present invention.

Claims (15)

  1. A method for preparing a catalyst support loaded with a first metal and loaded with a second metal, comprising the steps of:
    a) providing an aqueous solution comprising an aromatic compound having at least one N-containing group or a mixture of several said aromatic compounds, at least one surfactant, an aldehyde compound and a salt of the first metal being selected from Pd, Au and Pt,
    b) heating the aqueous solution obtained in step a) to a temperature in the range of 40 ℃ –200 ℃, preferably in the range of 60 ℃ –150 ℃, whereby the catalyst support is formed and particles of the first metal are formed on the catalyst support,
    c) treating the catalyst support obtained in step b) with an aqueous solution of a salt of the second metal, wherein the second metal is selected from the group consisting of Pd, Pt, Au, Ag, Ni, Cu, Fe, Zn, Co, Ru, Rh, Ir, Os, Sb, Bi, W with the proviso that the second metal is different from the first metal,
    d) separating the polymer catalyst support obtained in step c) from the aqueous solution, optionally washing the separated solid catalyst support and subjecting it, after optionally drying, to a reduction treatment whereby the catalyst support loaded with the first metal and loaded with the second metal is obtained.
  2. The method for preparing a catalyst support according to claim 1, wherein in step a) the molar ratio of the aromatic compound having at least one N-containing group to the first metal is in the range of 1: 1 to 1: 1000.
  3. The method for preparing a catalyst support according to claim 1 or 2, wherein in step a) the molar ratio of the aldehyde compound to the aromatic compound having at least one N-containing group is in the range of 0.1: 1 to 10: 1, preferably in the range of 0.5: 1 to 5: 1.
  4. The method for preparing a catalyst support according to any one of claims 1-3, wherein in step a) the molar ratio of the at least one surfactant to the aromatic compound having at least one N-containing group is in the range of 0.01: 1 to 100: 1, preferably in the range of 0.1: 1 to 10: 1.
  5. The method for preparing a catalyst support according to any one of claims 1-4, wherein in step a) the aromatic compound is selected from 2-aminophenol, 3-aminophenol, 4-aminophenol, 3-amino-1, 2-benzendiol, 4-aminocatechol, 2-amino-1, 3-benzenediol, 4-amino-1, 3-benzenediol, 5-amino-1, 3-benzenediol, 2-amino-1, 4-benzenediol, 2, 3-diaminophenol, 3, 4-diaminophenol, 2, 4-diamino-phenol, 3, 5-diaminophenol, 2, 5-diaminophenol, pyrrole, aniline, diaminopyridine, dopamine or a mixture thereof.
  6. The method for preparing a catalyst support according to any one of claims 1-5, wherein in step a) the aldehyde compound is an aliphatic aldehyde having 1 to 12 carbons, such as formaldehyde, acetaldehyde, crotonaldehyde, or an aromatic aldehyde such as furfural, or a compound which can release formaldehyde, such as hexamethylenetetramine or paraformaldehyde.
  7. The method for preparing a catalyst support according to any one of claims 1-6, wherein in step a) the at least one surfactant is selected from the group consisting of Pluronic F127, P123, Tween-80, Polyvinylpyrrolidone (PVP) , Brij-58, PEO-b-PS, hexadecyl trimethyl ammonium Bromide, sodium dodecyl benzene sulfonate, sodium oleate, amino acids or a mixture thereof, preferably Pluronic F127, P123, Tween-80, PEO-b-PS and amino acids, more preferably Pluronic F127, PEO-b-PS.
  8. The method for preparing a catalyst support according to any one of claims 1-7, wherein in step a) the salt of the first metal is selected from the group consisting of palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium (II) chloride, chloroplatinic acid, potassium tetrachloroplatinate,  chloroauric acid, postaasium tetrachloroaurate.
  9. The method for preparing a catalyst support according to any one of claims 1-8, wherein in step b) the aqueous solution is heated at a temperature in the range of 40 ℃ –200 ℃, preferably in the range of 60 ℃ –150 ℃..
  10. The method for preparing a catalyst support according to any one of claims 1-9, wherein in step c) the second metal is loaded in an amount that the molar ratio of the second metal to the first metal is in the range of 1: 100 to 10: 1.
  11. The method for preparing a catalyst support according to any one of claims 1-10, wherein in step c) the second metal component is selected from palladium nitrate, potassium tetrachloropalladate (II) , palladium acetylacetonate, palladium dichloride, chloroplatinic acid, potassium tetrachloroplatinate, chloroauric acid, potassium tetrachloroaurate, silver nitrate, nickel nitrate , copper nitrate, iron nitrate, zinc nitrate, cobalt nitrate, potassium ferricyanide, potassium hexacyanocobaltate, antimony trichloride, ferric chloride, zinc chloride, with the proviso that the second metal is different from the first metal.
  12. The method for preparing a catalyst support according to any one of claims 1-11, wherein in step c) the second metal is loaded at a pH in the range of 2 –12.
  13. The method for preparing a catalyst support according to any one of claims 1-12, wherein in step d) the reduction treatment is carried out under a normal pressure of a gaseous mixture of hydrogen and argon, hydrogen and nitrogen or hydrogen and a mixture of argon and nitrogen at a temperature in a range of 150 ℃ –800 ℃, wherein the volume ratio of hydrogen to argon, to nitrogen, or to the mixture of argon and nitrogen is in the range of 0.1%to 20%.
  14. The method for preparing a catalyst support according to any one of claims 1-13,  wherein the catalyst support is subjected to a shaping treatment.
  15. The method for preparing a catalyst support according to claim 14, wherein the catalyst is shaped by tablet pressing under a pressure in the range of 1 bar –100 bar.
EP20801860.6A 2019-05-05 2020-04-28 Method for preparing catalyst support loaded with a first metal and a second metal Pending EP3965927A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910369858.8A CN111889136B (en) 2019-05-05 2019-05-05 Method for preparing catalyst carrier loaded with first metal and second metal
PCT/CN2020/087419 WO2020224483A1 (en) 2019-05-05 2020-04-28 Method for preparing catalyst support loaded with a first metal and a second metal

Publications (2)

Publication Number Publication Date
EP3965927A1 true EP3965927A1 (en) 2022-03-16
EP3965927A4 EP3965927A4 (en) 2023-01-18

Family

ID=73050564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20801860.6A Pending EP3965927A4 (en) 2019-05-05 2020-04-28 Method for preparing catalyst support loaded with a first metal and a second metal

Country Status (3)

Country Link
EP (1) EP3965927A4 (en)
CN (1) CN111889136B (en)
WO (1) WO2020224483A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618467A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Carbon sphere and preparation method and application of bimetallic catalyst loaded by carbon sphere
CN113426460A (en) * 2021-06-23 2021-09-24 中国科学技术大学 The structure is carbon-loaded PdCu3Intermetallic compound and preparation method and application thereof
CN114361487B (en) * 2021-12-20 2024-03-15 三峡大学 Fuel cell PdAG/AgCl alloy electrocatalyst and application
CN114717583B (en) * 2022-04-19 2023-06-09 浙江师范大学 Preparation method and application of bismuth nanosheet supported palladium bimetallic catalyst
CN115044039A (en) * 2022-05-23 2022-09-13 复旦大学 Multifunctional nanowire with adjustable surface groups and components and super-assembly preparation method thereof
CN115043390A (en) * 2022-05-23 2022-09-13 复旦大学 One-dimensional soft interface nanowire and super-assembly preparation method thereof
CN116041192B (en) * 2023-03-30 2023-06-20 甘肃农业大学 Method for rapid catalytic reduction of 4-nitrophenol by Pt-Fe bimetallic nano material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017696A1 (en) * 2006-04-15 2007-10-18 Bayer Technology Services Gmbh Process for the production of metal particles, metal particles produced therefrom and their use
CN102463352B (en) * 2010-11-11 2013-08-21 西北师范大学 Method for synthesizing bimetallic Pd-Au core-shell hexahedron
CN102553582B (en) * 2011-12-01 2015-01-28 昆明理工大学 Method for preparing carbon supported Au-Pt or Au-Pd catalyst
CN106540690A (en) * 2016-10-24 2017-03-29 厦门大学 A kind of load type palladium ruthenium bimetallic catalyst and preparation method thereof
CN106824067A (en) * 2017-01-03 2017-06-13 北京理工大学 A kind of preparation method of multi-functional mesoporous noble metal and metal oxide/carbon composite
KR101896617B1 (en) * 2017-01-26 2018-09-07 한국과학기술연구원 Catalytic electrode for electrochemical CO2 reduction and manufacturing method thereof
EP3363538A1 (en) * 2017-02-20 2018-08-22 Technische Universität Berlin A method of preparing a mesoporous carbon composite material comprising metal nanoparticles and use thereof as catalyst
CN109087814B (en) * 2018-08-06 2020-01-31 武汉理工大学 In-situ nitrogen-doped porous carbon nanofiber electrode material and macro preparation method and application thereof
CN109622005B (en) * 2018-09-26 2020-07-14 同济大学 Preparation method and electrochemical application of porous carbon supported nitrogen-containing bimetallic catalyst
CN109560297A (en) * 2018-11-26 2019-04-02 新疆大学 A kind of solvent-free method for preparing template of porous carbon coating nano metal particles

Also Published As

Publication number Publication date
CN111889136B (en) 2022-02-01
EP3965927A4 (en) 2023-01-18
WO2020224483A1 (en) 2020-11-12
CN111889136A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2020224483A1 (en) Method for preparing catalyst support loaded with a first metal and a second metal
CN110721721B (en) Preparation method of nitrogen-doped hierarchical porous carbon-loaded nano Pd catalyst, product and application thereof
CN109433242B (en) Nitrogen-doped porous carbon-loaded molybdenum carbide catalyst and preparation method and application thereof
US9463444B2 (en) Preparation process of nanocatalysts with (111) crystal facet exposed and process for vapour-phase CO oxidative coupling to oxalate
CN102553579B (en) Preparation method of high-dispersity supported nano metal catalyst
CN109482177B (en) Preparation method of nano noble metal catalyst
US7563742B2 (en) Supported nickel catalysts having high nickel loading and high metal dispersion and methods of making same
CN109759133B (en) Atom dispersed composite material, preparation method and application thereof
CN114829004B (en) Method for preparing Ni-X-based oxide catalyst and application of Ni-X-based oxide catalyst in transfer hydrogenation
JPS6111130A (en) Novel minute aggregate of metal being not noble metal and its production
CN112871167B (en) MOFs (metal-organic frameworks) -packaged ultrafine alloy nanoparticles as well as preparation method and application thereof
CN103724174B (en) A kind of method preparing pimelinketone
CN105148939B (en) A kind of high-dispersion loading type PtCo nanometer alloy catalysts and its preparation method and application
CN114713838A (en) Preparation method of high-tap small-particle-size sphere-like silver powder for LTCC inner electrode
CN113351214B (en) Carbon-doped silicon dioxide-loaded nickel-copper alloy and preparation method and application thereof
JP6453735B2 (en) Method for producing noble metal powder
EP0226234B1 (en) A process for preparing a silver-on-carrier catalyst
US4021371A (en) Process for the preparation of metal oxide catalysts and metal oxide supported catalysts
CN110876935B (en) Protective agent for methanol synthesis catalyst and preparation method thereof
JP2012224885A (en) Method for producing metal porous body
CN107552053B (en) Preparation method of P25 loaded molecular cobalt/nickel and other active site materials
CN111470949A (en) Synthesis method of cyclohexanol compound
CN104741120A (en) Preparation method of Cu/Mg/Al/Zr high-dispersion copper-based dehydrogenation catalyst
JP2004100040A (en) Production method for colloidal solution, and support having colloidal particle fixed on surface thereof
JP2013040358A (en) Method for manufacturing metal porous body

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20221216

RIC1 Information provided on ipc code assigned before grant

Ipc: C07C 211/46 20060101ALI20221213BHEP

Ipc: B01J 31/06 20060101AFI20221213BHEP