EP3964352B1 - Bride de longeron légère avec une structure concave pour une pale d'éolienne et procédé de fabrication pour celle-ci - Google Patents

Bride de longeron légère avec une structure concave pour une pale d'éolienne et procédé de fabrication pour celle-ci Download PDF

Info

Publication number
EP3964352B1
EP3964352B1 EP21786313.3A EP21786313A EP3964352B1 EP 3964352 B1 EP3964352 B1 EP 3964352B1 EP 21786313 A EP21786313 A EP 21786313A EP 3964352 B1 EP3964352 B1 EP 3964352B1
Authority
EP
European Patent Office
Prior art keywords
lightweight
spar cap
wind turbine
web
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21786313.3A
Other languages
German (de)
English (en)
Other versions
EP3964352A4 (fr
EP3964352C0 (fr
EP3964352A1 (fr
Inventor
Jun Yang
Chaoyi PENG
Xuebin FENG
Binbin HOU
Hang Deng
Jiehua HU
Pengcheng LIANG
Jiangang Zhao
Manchuang ZHANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou Times New Material Technology Co Ltd
Original Assignee
Zhuzhou Times New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou Times New Material Technology Co Ltd filed Critical Zhuzhou Times New Material Technology Co Ltd
Publication of EP3964352A1 publication Critical patent/EP3964352A1/fr
Publication of EP3964352A4 publication Critical patent/EP3964352A4/fr
Application granted granted Critical
Publication of EP3964352C0 publication Critical patent/EP3964352C0/fr
Publication of EP3964352B1 publication Critical patent/EP3964352B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7805Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features
    • B29C65/7808Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of holes or slots
    • B29C65/7811Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of holes or slots for centring purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/302Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • B29C70/76Moulding on edges or extremities of the preformed part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced

Definitions

  • the present disclosure belongs to the technical field of wind power generation, and in particular relates to a lightweight spar cap with a concave structure for a wind turbine blade and a manufacturing method thereof.
  • the wind turbine mainly relies on the blade to capture wind energy.
  • the length of the blade directly affects the ability of the wind turbine to capture wind energy and the output power of the wind turbine.
  • the blade is increasingly long due to the performance improvement requirement.
  • the weight increases exponentially, and the center of gravity shifts to the tip of the blade, resulting in a significant increase in gravity fatigue load and centrifugal load, reducing the reliability of the blade and the wind turbine, and increasing the cost. Therefore, the promotion of the blade extension design technology requires a lightweight blade.
  • the rotor blade generally includes an upper shell member having an upper spar cap configured on an internal surface thereof and a lower shell member having a lower spar cap configured on an internal surface thereof.
  • the shear web extends between the spar caps along a longitudinal length of the blade.
  • the shear web includes first and second outer pultruded layers at least partially encompassing a core material, wherein end portions of the first and second outer pultruded layers form compressed flanges at opposing ends of the shear web.
  • Document CN112912235B discloses a spar cap having a profile for guiding and receiving a shear web for wind turbine blade. Particularly, this disclosure provides a pultruded spar cap having a bond gap feature to maintain a uniform space for distribution of bonding paste between the spar cap and shear web. Also, the spar cap is formed with locating features which guide and receive placement of the shear web.
  • Document CN102889169B discloses a wind turbine blade having upper and lower shell members with a respective spar cap configured on an internal face of the shell members.
  • a shear web extends between the spar caps along a longitudinal length of the blade.
  • a connection assembly is configured between the transverse ends of the shear web and the spar caps.
  • the connection assembly includes a spacer member configured on the spar cap.
  • a male/female engagement interface is defined between transverse end of the shear web and the spacer member, and includes an axial extension length to accommodate for variances in shear web length.
  • Document CN101825057B discloses a blade of a wind turbine having an improved spar cap.
  • the spar cap includes at least one trench extending in a substantially span-wise direction in at least a portion of the spar cap.
  • At least one shear web is connected to the spar cap. At least a portion of the shear web is positioned within the trench of the spar cap.
  • Document CN112512784B discloses a wind turbine blade mould extending longitudinally in a spanwise direction and transversely in a chordwise direction and a spar cap placed in the mould.
  • the spar cap comprises a plurality of strips extending longitudinally in the spanwise direction and arranged side-by-side in the chordwise direction, said strips comprising one or more intermediate strips arranged between peripheral strips which are inclined relative to the intermediate strips.
  • a shear web comprising a flange extending longitudinally in the spanwise direction is provided, the flange comprising a base defining a primary bonding surface.
  • a chordwise width of the primary bonding surface corresponds substantially to a chordwise width of the intermediate strips of the spar cap.
  • the primary bonding surface of the flange is bonded to the one or more intermediate strips of the spar cap.
  • Document CN111868374A discloses a method for assembling a shear web assembly of a wind turbine including providing at least one spar cap. The method also includes forming a spar connecting member of a thermoplastic material via additive manufacturing. Further, the method includes securing the spar connecting member to the spar cap. Moreover, the method includes providing a shear web, forming a web connecting member of a thermoplastic material via additive manufacturing, and securing the web connecting member at a first end of the shear web. In addition, the method includes interconnecting the web connecting member and the spar connecting member at a joint. Thus, the method further includes heating the joint to secure the web connecting member and the spar connecting member together.
  • the traditional blade has the following disadvantages.
  • the spar cap structure is rectangular, and the material utilization of the rectangular spar cap under the same bending rigidity cannot be maximized.
  • the lightning protection system includes a copper wire, a glass fiber cloth for fixing the copper wire, a copper base, a glass fiber reinforced plastic support, an air termination device and an adhesive glue, etc., which has a complex structure and a large weight.
  • the present disclosure provides a lightweight spar cap with a concave structure for a wind turbine blade and a manufacturing method thereof.
  • a cross section of the intermediate connecting portion may be in a trapezoidal shape; a reinforcing body of the cross section may be formed by sequentially superimposing multiple layers of reinforcing fiber cloth from an upper base to a lower base of a trapezoid; the cross section of the reinforcing body formed by superimposing the reinforcing fiber cloths may present a trapezoidal shape.
  • the reinforcing body formed by superimposing the reinforcing fiber cloths provides rigidity and strength for the concave spar cap.
  • the intermediate connecting portion serving as the main bearing structure is a trapezoidal structure, which provides rigidity and strength for the lightweight spar cap.
  • the lightweight spar cap Compared with a rectangular spar cap, the lightweight spar cap has a larger area moment. Under the same bending rigidity, the lightweight spar cap is lighter than the rectangular spar cap, which can achieve the purpose of reducing the weight of the blade.
  • the reinforcing fiber cloth may be a carbon fiber cloth layer
  • the reinforcing body may be made of carbon fiber cloths with equal widths in staggered layers to form a trapezoidal cross section.
  • the intermediate connecting portion made of carbon fiber cloth layers with equal widths is tidier, making the processing easier.
  • a thickness of the supporting portion may be greater than that of the intermediate connecting portion, and the supporting portion may wrap a lateral side of the intermediate connecting portion into an inverted trapezoidal groove.
  • the structure of the supporting portion is designed according to the intermediate connecting portion, which is helpful for the combination of the internal structure of the spar cap, improves the stability of the lightweight spar cap, and facilitates the formation of a concave groove to locate the web.
  • an inclined surface may be provided at an outer corner of the supporting portion, and the inclined surface may be kept substantially parallel to the trapezoidal lateral side of the intermediate connecting portion.
  • the inclined surface at the corner facilitates a smooth transition with the adjacent structure, and avoids the formation of thickness steps, which cause stress concentration of the blade.
  • the supporting portion, the intermediate connecting portion and the adjacent structure are integrated by resin bonding.
  • the supporting portion may adopt a reinforcing material composed of one or more from the group consisting of balsa, polyvinyl chloride (PVC), polyethylene terephthalate (PET) and high-density polyethylene (HPE); the supporting portion and the intermediate connecting portion may be integrally molded by resin infusion.
  • a reinforcing material composed of one or more from the group consisting of balsa, polyvinyl chloride (PVC), polyethylene terephthalate (PET) and high-density polyethylene (HPE); the supporting portion and the intermediate connecting portion may be integrally molded by resin infusion.
  • the supporting portion and the intermediate connecting portion are connected through resin infusion, which avoids the need to use an additional glue and to reserve a bonding gap, and achieves simple molding and convenient operation.
  • the commonly used materials for the intermediate connecting portion and the supporting portion include a resin. On this basis, through resin infusion molding, the adhesion between the resin and the core material and the reinforcing layer is improved, thereby enhancing the strength of the lightweight spar cap.
  • the present disclosure further provides a method for manufacturing the lightweight spar cap with a concave structure for a wind turbine blade.
  • the method includes the following steps:
  • the laying the reinforcing material of the intermediate connecting portion may specifically include: laying carbon fiber cloth layers with equal widths in a staggered manner, where each carbon fiber cloth layer may have a size of L; a first layer may have a distance of D from a left end of the spar cap mold, a second layer may have a distance of D+L from the left end of the spar cap mold, and so on, until an (N+1)-th layer may have a distance of D from a right end of the spar cap mold.
  • the width of the carbon fiber cloth is denoted as A.
  • the spar cap mold is provided with a diversion system and an air extraction system, and it is continuously heated during the production process.
  • the diversion system and the air extraction system are designed to facilitate the introduction of the resin, and the air extraction system exerts a vacuum pressure to pump the resin into the spar cap mold.
  • the heating temperature is program-controlled, which is helpful for the curing and shaping of the intermediate connecting portion, the supporting portion and the resin.
  • the present disclosure further provides a lightweight spar cap structure combination for a wind turbine blade.
  • the lightweight spar cap structure combination includes a web and two lightweight spar caps for the wind turbine blade, where the lightweight spar caps for the wind turbine blade are concave spar caps, and the two concave spar caps include a pressure surface lightweight spar cap and a suction surface lightweight spar cap; a positioning structure is provided on one side of each of the pressure surface lightweight spar cap and the suction surface lightweight spar cap; double ends of the web are respectively connected with the positioning structures of the pressure surface lightweight spar cap and the suction surface lightweight spar cap through a positioning matching structure, and are fixedly connected with the pressure surface lightweight spar cap and the suction surface lightweight spar cap as a whole.
  • the positioning structure and the positioning matching structure may adopt a groove matching positioning mode; one of the positioning structure and the positioning matching structure may be configured as a positioning groove, and the other thereof may be configured as an insert that fits with the positioning groove.
  • the groove matching positioning mode may be any one of the following:
  • the web may be in an I-shape, and may include an upper base plate and a lower base plate located at upper and lower ends and matched with the trapezoidal groove.
  • the pressure surface lightweight spar cap and the suction surface lightweight spar cap may be respectively groove-shaped, and may include supporting portions located on two wings of the lightweight spar cap and an intermediate connecting portion connecting the two supporting portions;
  • the present disclosure further provides a lightweight wind turbine blade.
  • the lightweight wind turbine blade includes an upper shell, a lower shell and the lightweight spar cap structure combination, where one end of the lightweight spar cap structure combination for the wind turbine blade is connected with the upper shell, and the other end thereof is connected with the lower shell; the lightweight spar cap structure combination for the wind turbine blade is fixedly connected with the upper shell and the lower shell as a whole; double ends of the upper shell and the lower shell are correspondingly connected to form a leading edge and a trailing edge respectively.
  • a trailing edge web may be provided in a trailing edge chamber defined by the web and the trailing edge.
  • a starting point of the trailing edge web along a length direction of the blade may be provided in a region that contributes 12% to 15% to a total length of the blade from a blade root, and an end point of the trailing edge web along the length direction of the blade may be provided in a region that contributes 57% to 60% to the total length of the blade from the blade root; a height of the trailing edge web may be smaller than that of the web, and the trailing edge web is substantially parallel to the web.
  • the upper shell and the lower shell may be made of a compressive and shear resistant composite material;
  • the composite material may include a core material and glass fiber fabrics adhered on upper and lower surfaces of the core material;
  • the core material may use a sandwich panel as a support; a path may be formed in the sandwich panel to place a fiber bundle;
  • a vertical fiber column, a diagonal fiber column, a longitudinal fiber rib and a transverse fiber rib may be formed in the sandwich panel by a dipping process;
  • the diagonal fiber column, the longitudinal fiber rib and the transverse fiber rib may form a lattice type fence that is vertically and horizontally interwoven and integrally bonded in the sandwich panel;
  • the glass fiber fabrics adhered on the upper and lower surfaces of the sandwich panel may be bonded with the vertical fiber column and the lattice type fence to form an integral structure.
  • the core material of the overall structure constructed by the glass fiber fabric, the vertical fiber column and the lattice type fence has strong compressive and shear resistant properties, which improves
  • the compressive and shear resistant core material may be able to withstand multi-directional pressure and shear force;
  • the sandwich panel may be made of any one or more from the group consisting of balsa, PVC, PET and HPE;
  • the shell of the wind turbine blade may adopt a carbon fiber-glass fiber composite material, which may be a hybrid design of carbon fiber and glass fiber in a mass ratio of (10-90):(10-90).
  • the lightweight wind turbine blade may further include a lightning protection system;
  • the lightning protection system may include a carbon fiber cloth layer wrapping a surface of the upper shell and/or the lower shell, at least one layer of metal belt and a down conductor that may be connected with a wind turbine lightning protection system;
  • the carbon fiber cloth layer may conduct a lightning current to the metal belt;
  • the metal belt may be connected with the down conductor through a wire.
  • the present disclosure applies the carbon fiber cloth layer to the lightning protection system.
  • the carbon fiber cloth is laid on the surface of the blade and connected to the root wire of the lightning protection system through the down conductor.
  • the carbon fiber cloth can bear the structural load, and can also conduct the lightning current to the down conductor, thereby assuming the dual role of conductor and load-bearing structure in the blade lightning protection system. It can effectively reduce the weight of the blade lightning protection system, increase the range of air termination, and improve the air termination efficiency of the blade, thereby effectively protecting the blade.
  • the carbon fiber cloth layer may conduct the lightning current to the at least one layer of metal belt through at least one additional carbon fiber cloth layer; a width of the carbon fiber cloth layer may depend on a lightning current carrying capacity of a carbon fiber material, and a minimum requirement may be that the lightning current passes through the carbon fiber cloth layer without damaging the carbon fiber cloth layer.
  • Additional carbon fiber cloth layers and metal belts are arranged between the carbon fiber cloth layer and the down conductor, and the additional carbon fiber cloth layers alternately superimposed with the carbon fiber cloth layers and the metal belts to reduce the sudden change of resistance from the carbon fiber cloth layers to the metal belts.
  • this design reduces the damage of the lightning current to the carbon fiber near the carbon fiber cloth layer, and reduces the damage to the wind turbine blade using the carbon fiber cloth lightning protection system.
  • each additional carbon fiber cloth layer may be the same, and each additional carbon fiber cloth layer completely covers the metal belt.
  • the ability of the superimposed carbon fiber cloth layers to pass current reaches a lightning current standard of 200 KA.
  • the carbon fiber cloth layer may be laid from a blade tip to the blade root; a connection point of the metal belt and the carbon fiber cloth along the length direction of the blade may be located in a region that contributes 30% to the total length of the wind turbine blade from the blade root; the carbon fiber cloth layer and the metal belt may be connected with the blade by integral infusion.
  • the wind turbine lightning protection system is mostly provided in the blade root.
  • the down conductor and the wire are connected with the metal belt, and the connection point of the metal belt and the carbon fiber cloth is close to the blade root, so as to approach the lightning protection system, which can save the consumption of the down conductor and the wire, thereby reducing the overall weight of the lightning protection system.
  • the wind turbine blade is narrow in the tip and wide in the root.
  • the connection point of the metal belt and the carbon fiber cloth is provided close to the blade root, which provides a large operation space for mounting and for the arrangement of the additional carbon fiber layer, thereby facilitating the operation of the staff.
  • the metal belt may pass through the blade shell and extend into the blade chamber to be twisted into a strand, and may be connected with the wire through a doubling device; upper and lower wires may be connected with the down conductor through a wire doubling device; the down conductor may be connected with the wind turbine lightning protection system at the blade root.
  • the carbon fiber cloth layer is laid on the surface of the shell through infusion for air termination. It expands the air termination area, improves the air termination efficiency, and guides the lightning to the down conductor at the blade root. Meanwhile, the gap reserved in the shell for the metal belt and the wire to pass through is filled by the integral infusion, so as to achieve a waterproof effect.
  • the present disclosure further provides a method for manufacturing a lightweight wind turbine blade.
  • the method includes the following steps:
  • the various raw materials, reagents, instruments and devices used in the present disclosure may be purchased from the market or may be manufactured by using existing methods.
  • the present disclosure provides a lightweight spar cap for a wind turbine blade.
  • the lightweight spar cap is groove-shaped as a whole, and includes supporting portions 32 located on two wings of lightweight spar cap and an intermediate connecting portion 36 connecting the two supporting portions 32.
  • One splicing surface formed by connecting supporting portion 32 and the intermediate connecting portion 36 is an integral plane.
  • the shape of the integral plane is configured to be consistent with an inner side of an upper shell 1 or a lower shell 2 of the wind turbine blade for abutting.
  • the other splicing surface formed by connecting supporting portion 32 and the intermediate connecting portion 36 is a groove-shaped discontinuous plane.
  • a positioning groove 34 formed by the groove-shaped discontinuous plane is configured to be consistent with an end of a web 5 of the wind turbine blade for abutting and nesting.
  • a cross section of the intermediate connecting portion 36 is in a trapezoidal shape.
  • a reinforcing body of the intermediate connecting portion is formed by sequentially superimposing multiple layers of reinforcing fiber cloths from a trapezoidal upper base to a lower base.
  • the cross section of the reinforcing body formed by superimposing the reinforcing fiber cloths finally presents a trapezoidal shape.
  • the reinforcing fiber cloth is a carbon fiber cloth layer, and the carbon fiber cloth layers with equal widths are laid in a staggered manner to form the trapezoidal reinforcing body (shown in FIG. 3 ).
  • the supporting portion 32 adopts a reinforcing material composed of one or more from the group consisting of balsa, polyvinyl chloride (PVC), polyethylene terephthalate (PET) and high-density polyethylene (HPE).
  • a thickness of the supporting portion is greater than that of the intermediate connecting portion 36, and the supporting portion wraps a lateral side of the intermediate connecting portion 36 into an inverted trapezoidal groove (i.e. a positioning groove 34).
  • the supporting portion 32 and the intermediate connecting portion 36 are integrally molded by resin infusion.
  • An inclined surface 37 is provided at an outer corner of the supporting portion 32, and the inclined surface 37 is kept substantially parallel to the trapezoidal lateral side of the intermediate connecting portion 36.
  • the inclined surface can form a smooth transition with the core material structure of the blade shell beside the spar cap in the height direction so as to avoid the formation of thickness steps.
  • a method for manufacturing the lightweight spar cap for a wind turbine blade includes:
  • a lightweight spar cap structure combination for a wind turbine blade includes a web 5 and two lightweight spar caps for the wind turbine blade.
  • the lightweight spar caps for the wind turbine blade are concave spar caps, and the two concave spar caps include a pressure surface lightweight spar cap 3 and a suction surface lightweight spar cap 4.
  • a longitudinal positioning structure is provided on one side of each of the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4. Double ends of the web 5 are respectively connected with the positioning structures of the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4 through a positioning matching structure, and are fixedly connected with the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4 as a whole.
  • the positioning structure and the positioning matching structure adopt a groove matching positioning mode.
  • the positioning structure is configured as a positioning groove 34
  • the positioning matching structure is configured as an insert that fits with the positioning groove 34.
  • the positioning groove 34 is a trapezoidal groove respectively provided on the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4, and the insert is a base plate.
  • the base plate includes the upper base plate 51 and the lower base plate 52 which are respectively provided at double ends of the web 5.
  • the web 5 is I-shaped, and includes the upper base plate 51 and the lower base plate 52 that are located on upper and lower ends and matched with the trapezoidal groove.
  • the pressure surface lightweight spar cap 3 is provided with an upper positioning groove 31, and the suction surface lightweight spar cap is provided with a lower positioning groove 41.
  • An inner shaped surface of the upper positioning groove 31 and an inner shaped surface of the lower positioning groove 41 are matched with shaped surfaces of the upper base plate 51 and the lower base plate 52 respectively.
  • the upper base plate 51 and the lower base plate 52 are respectively located in the upper positioning groove 31 of the pressure surface lightweight spar cap 3 and the lower positioning groove 41 of the suction surface lightweight spar cap 4.
  • the present disclosure further provides a lightweight wind turbine blade.
  • the lightweight wind turbine blade includes an upper shell 1, a lower shell 2 and the lightweight spar cap structure combination.
  • One end of the lightweight spar cap structure combination for the wind turbine blade is connected with the upper shell 1, and the other end thereof is connected with the lower shell 2.
  • the lightweight spar cap structure combination for the wind turbine blade is fixedly connected with the upper shell 1 and the lower shell 2 as a whole.
  • the lightweight spar cap structure combination of the wind turbine blade in this embodiment is substantially the same as that of Embodiment 1, except that there are two lightweight spar cap structure combinations provided in this embodiment. Specifically, as shown in FIG. 11 , butt joints on both sides of the upper shell 1 and the lower shell 2 respectively form the leading edge 6 and the trailing edge 7 of the wind turbine blade.
  • one lightweight spar cap structure combination for the wind turbine blade is exactly the same as that in Embodiment 1, which includes a web 5 and two lightweight spar caps described in Embodiment 1; a trailing edge web 8 is further provided in a trailing edge chamber formed by the web 5 and the trailing edge 7.
  • the structure and composition of the trailing edge web 8 are substantially the same as the lightweight spar cap structure combination for the wind turbine blade in Embodiment 1, except that the height and shape are slightly different. As shown in FIG.
  • a starting point 61 of the trailing edge web 8 along a length direction of the blade is provided in a region that contributes 12% to 15% to a total length of the blade from a blade root 63
  • an end point 62 of the trailing edge web 8 along the length direction of the blade is provided in a region that contributes 57% to 60% to the total length of the blade from the blade root 63.
  • a height of the trailing edge web is smaller than that of the web 5, and the trailing edge web is substantially parallel to the web 5.
  • the present disclosure provides another lightweight spar cap for a wind turbine blade.
  • the overall structure, material and manufacturing method of the lightweight spar cap are the same as those in Embodiments 1 and 2, except that the lightweight spar cap is provided with a V-shaped groove.
  • a lightweight spar cap structure combination includes a web 5 and two lightweight spar caps as described in the above embodiment.
  • the lightweight spar caps for the wind turbine blade are concave spar caps, and the two concave spar caps include a pressure surface lightweight spar cap 3 and a suction surface lightweight spar cap 4.
  • a longitudinal positioning structure is provided on one side of each of the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4. Double ends of the web 5 are respectively connected with the positioning structures of the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4 through a positioning matching structure, and are fixedly connected with the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4 as a whole.
  • the positioning structure and the positioning matching structure adopt a groove matching positioning mode.
  • the positioning structure is configured as a positioning groove 34
  • the positioning matching structure is configured as an insert that fits with the positioning groove 34.
  • the positioning groove 34 is a V-shaped groove respectively provided on the pressure surface lightweight spar cap 3 and the suction surface lightweight spar cap 4, and the insert is a positioning rib respectively provided at double ends of the web 5.
  • the web 5 is I-shaped, and includes the upper base plate 51 and the lower base plate 52 that are located on upper and lower ends and matched with the trapezoidal groove.
  • the upper base plate 51 and the lower base plate 52 are respectively provided with a positioning rib.
  • An upper top surface of the upper base plate 51 and a lower bottom surface of the lower base plate 52 are respectively provided with a longitudinal upper positioning rib 53 and a lower positioning rib 54.
  • An inner shaped surface of the upper positioning groove 31 and an inner shaped surface of the lower positioning groove 41 are matched with outer shaped surfaces of the upper positioning rib 53 and the lower positioning rib 54 respectively.
  • the upper positioning rib 53 of the upper base plate 51 of the I-shaped web 5 is provided in the upper positioning groove 31 of the pressure surface lightweight spar cap 3.
  • the lower positioning rib 54 of the lower base plate 52 of the I-shaped web 5 is provided in the lower positioning groove 41 of the suction surface lightweight spar cap 4.
  • the present disclosure further provides a lightweight wind turbine blade.
  • the lightweight wind turbine blade includes an upper shell 1, a lower shell 2 and the lightweight spar cap structure combination as described in the above embodiment.
  • One end of the lightweight spar cap structure combination for the wind turbine blade is connected with the upper shell 1, and the other end thereof is connected with the lower shell 2.
  • the lightweight spar cap structure combination for the wind turbine blade is fixedly connected with the upper shell 1 and the lower shell 2 as a whole.
  • the manufacturing method of the lightweight spar cap for the wind turbine blade in this embodiment is substantially the same as that of Embodiment 1, except that the shape of the groove is slightly different.
  • the upper shell 1 and the lower shell 2 of the wind turbine blade use a compressive and shear resistant composite material that is able to withstand multi-directional pressure and shear force.
  • the composite material includes a core material and glass fiber fabrics 86 adhered on upper and lower surfaces of the core material.
  • the core material uses a sandwich panel 9 as a support. A path is formed in the sandwich panel to place a fiber bundle.
  • a vertical fiber column 81, a diagonal fiber column 82, a longitudinal fiber rib 83 and a transverse fiber rib 84 are formed in the sandwich panel 9 by a dipping process.
  • the diagonal fiber column 82, the longitudinal fiber rib 83 and the transverse fiber rib 84 form a lattice type fence 85 that is vertically and horizontally interwoven and integrally bonded in the sandwich panel 9.
  • the glass fiber fabrics 86 are adhered on the upper and lower surfaces of the sandwich panel 9 before dipping, and the glass fiber fabrics 86 are bonded with the vertical fiber column 81 and the lattice type fence 85 to form an integral structure.
  • the vertical fiber column 81 directly resists a positive pressure exerted on the sandwich panel 9 in the structure.
  • the pressure exerted on the panel also includes other pressure in various directions. Therefore, the diagonal fiber column 82 is provided in the structure.
  • the longitudinal fiber rib 83 and the transverse fiber rib 84 bond with all the diagonal fiber columns 82 to an integral frame through a glue. They enhance the stability of each diagonal fiber column 82 in case of pressure, and significantly enhance the compressive performance of the sandwich panel 9 against pressure in all directions.
  • the longitudinal fiber rib 83 and the transverse fiber rib 84 also significantly enhance the tensile performance of the sandwich panel 9 in the horizontal direction.
  • the lattice type fence 85 is actually only a description of a part of the mechanical overall structure constructed in the sandwich panel 9.
  • the diagonal fiber column 82, the longitudinal fiber rib 83 and the transverse fiber rib 84 form a lattice type fence 85 that is vertically and horizontally interwoven and integrally bonded in the sandwich panel 9. That is, two transversely adjacent diagonal fiber columns 82 in the sandwich panel 9 are bonded to two sides of the longitudinal fiber rib 83 in an X shape, and two longitudinally adjacent diagonal fiber columns 82 in the sandwich panel 9 are bonded to two sides of the transverse fiber rib 84 in an X shape. Meanwhile, the adjacent longitudinal fiber rib 83 and transverse fiber rib 84 are bonded together.
  • multiple orthogonal longitudinal slits and transverse slits are equally spaced on the sandwich panel, and the sandwich panel is divided into a number of sandwich squares connected at the bottom.
  • a vertical hole is drilled downward on the sandwich square, and diagonal holes are drilled downward along front, left, back and right sides of the sandwich square respectively.
  • the sandwich panel 9 used is composed of any one or more of balsa, PVC, PET and HPE. These materials are easy to cut and perforate, and various frames may be built in the panel for support. In addition, these materials are light in weight, and after being constructed into a compressive integral structure, they are sufficient to become qualified sandwich materials for the root region of the wind turbine blade shell.
  • the glass fiber fabric is made of a carbon fiber-glass fiber composite material, which is a hybrid design of a carbon fiber and a glass fiber in a mass ratio of (10-90):(10-90).
  • the vertical fiber column 81, the diagonal fiber column 82, the longitudinal fiber rib 83 and the transverse fiber rib 84 are formed in the panel.
  • the diagonal fiber column 82, the longitudinal fiber rib 83 and the transverse fiber rib 84 form a lattice type fence 85 that is vertically and horizontally interwoven and integrally bonded in the sandwich panel.
  • the glass fiber fabrics 86 on the upper and lower surfaces are bonded with the vertical fiber column 81 and the lattice type fence 85 to form an integral frame. All of the above processes are completed by one-time dipping. Specifically, holes and slits are provided in the sandwich panel 9 to place the fiber bundles, adhere the glass fiber fabrics 86 and implement dipping and curing to form the integral structure.
  • the wind turbine blade of the above embodiments further includes a lightweight lightning protection system.
  • the lightning protection system adopts a carbon fiber cloth layer.
  • the lightning protection system is composed of a carbon fiber cloth layer 91 wrapping a surface of the upper shell 1 and the lower shell 2, a metal belt 93, a down conductor 96 that is connected with a wind turbine lightning protection system, a doubling device 95 and a wire doubling device 94.
  • the carbon fiber cloth layer 91 conducts a lightning current to the metal belt 93.
  • the metal belt 93 is connected with the down conductor 96 through a wire.
  • the upper shell 1 and the lower shell 2 are provided with the wind turbine blade lightning protection system of this embodiment.
  • the carbon fiber cloth layer 91 covers outer surfaces of the upper shell 1 and the lower shell 2, and is laid from a blade tip to a blade root.
  • a width of the carbon fiber cloth layer 91 depends on a lightning current carrying capacity of a carbon fiber material, and a minimum requirement is that the lightning current passes through the carbon fiber cloth layer 91 without damaging the carbon fiber cloth layer.
  • the carbon fiber cloth layer 91 plays a dual role of structural bearing and lightning current conduction in the wind turbine blade of this embodiment.
  • the carbon fiber cloth layer 91 and the metal belt 93 are connected with the blade by integral infusion.
  • a connection point of the metal belt and the carbon fiber cloth along the length direction of the blade is located in a region that contributes 30% to the total length of the wind turbine blade from the blade root.
  • the carbon fiber cloth layer 91 conducts the lightning current to two layers of metal belts 93 through two additional carbon fiber cloth layers 92.
  • the carbon fiber cloth layer 91 is superimposed with an additional carbon fiber cloth layer 92.
  • Each carbon fiber cloth layer 92 is alternately superimposed with each layer of metal belt 93, with the same superimposed area at each layer.
  • the carbon fiber cloth layer 91 and the additional carbon fiber cloth layer 92 completely cover the metal belt 93.
  • the ability of the superimposed carbon fiber cloth layers to pass current reaches a lightning current standard of 200 KA.
  • the lightning is dispersed to the multiple layers of metal belts 93 through the multiple additional carbon fiber cloth layer 92 and is finally conducted to the down conductor 96.
  • the multilayer alternate superimposed design of the additional carbon fiber cloth layers 92 and metal belts 93 reduces the sudden change of resistance from the carbon fiber cloth layers 91 to the metal belts 93.
  • this design reduces the damage of the lightning current to the carbon fiber near the carbon fiber cloth layer.
  • the carbon fiber cloth layer 91 is connected to the surface of the blade shell by integral infusion. During the infusion process, the carbon fiber cloth layer 91 is laid on the mold, and the resin is then infused, such that the resin and the inner side of the carbon fiber cloth layer 91 form an integral structure. The outer side of the carbon fiber cloth layer 91 is not wrapped with the resin, and is exposed to conduct lightning.
  • the metal belt 93 passes through the upper shell 1 and the lower shell 2 and extends into the blade chamber to be twisted into a strand, and is connected with the wire through a doubling device 95.
  • Upper and lower wires are connected with the down conductor 96 through a wire doubling device 94.
  • the down conductor 96 is connected with the wind turbine lightning protection system at the blade root.
  • the carbon fiber cloth layer is laid on the surface of the shell through infusion for air termination. It expands the air termination area, improves the air termination efficiency, and guides the lightning to the down conductor at the blade root.
  • a method for manufacturing the lightweight wind turbine blade includes: assemble the upper shell 1, the lower shell 2, the pressure surface lightweight spar cap 3, the suction surface lightweight spar cap 4 and the web 5 as a whole. Specifically:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Claims (14)

  1. Une bride de longeron légère avec une structure concave pour une pale d'éolienne, dans laquelle la bride de longeron légère est globalement en forme de rainure et comprend des parties (32) de support situées sur deux ailes de la bride de longeron légère et une partie (36) de connexion intermédiaire, reliant les deux parties (32) de support;
    une surface de raccordement formée en reliant la partie (32) de support et la partie (36) de connexion intermédiaire est un plan intégral; la forme du plan intégral est configurée pour être cohérente avec un côté interne d'une coque (1) supérieure ou une coque (2) inférieure de la pale d'éolienne pour venir en butée;
    une autre surface de raccordement formée en reliant la partie (32) de support et la partie (36) de connexion intermédiaire est un plan discontinu en forme de rainure; une rainure (34) de positionnement formée par le plan discontinu en forme de rainure est configurée pour être cohérente avec une extrémité d'une bande (5) de la pale d'éolienne pour venir en butée et s'emboîter;
    caractérisée en ce que
    une section transversale de la partie (36) de connexion intermédiaire a une forme trapézoïdale; un corps de renfort de la partie de connexion intermédiaire est formé par superposition séquentielle de multiples couches des tissus de fibres de renfort entre une base supérieure et une base inférieure du trapèze; une section transversale du corps de renfort formé par superposition des tissus de fibres de renfort présente une forme trapézoïdale.
  2. La bride de longeron légère avec une structure concave pour une pale d'éolienne selon la revendication 1, dans laquelle les tissus de fibres de renfort sont des tissus de fibres de carbone, et le corps de renfort est formé en posant les tissus de fibres de carbone de largeurs égales en couches situées en quinconce de manière à présenter la section transversale trapézoïdale.
  3. La bride de longeron légère avec une structure concave pour une pale d'éolienne selon la revendication 1, dans laquelle l'épaisseur de la partie (32) de support est supérieure à celle de la partie (36) de connexion intermédiaire, et la partie de support enveloppe un côté latéral de la partie (36) de connexion intermédiaire dans une rainure trapézoïdale inversée.
  4. La bride de longeron légère avec une structure concave pour une pale d'éolienne selon la revendication 1, dans laquelle une surface (37) inclinée est prévue au niveau d'un coin externe de la partie (32) de support.
  5. La bride de longeron légère avec une structure concave pour une pale d'éolienne selon l'une quelconque des revendications 1 à 4, dans laquelle la partie (32) de support adopte un matériau de renfort composé d'un ou plusieurs du groupe constitué du balsa, du chlorure de polyvinyle (PVC ), du polyéthylène téréphtalate (PET) et du polyéthylène haute densité (HPE); la partie (32) de support et la partie (36) de connexion intermédiaire sont moulées intégralement par infusion de résine.
  6. Une pale d'éolienne légère, comprenant une coque (1) supérieure, une une coque (2) inférieure, une bande (5) et deux brides de longeron légères pour la pale d'éolienne, dans laquelle les brides de longeron légères pour la pale d'éolienne sont les brides de longeron concaves selon la revendication 1 et les deux brides de longeron concaves comprennent une bride (3) de longeron légère avec une surface de pression et une bride (4) de longeron légère avec une surface d'aspiration:
    une structure de positionnement longitudinale est disposée sur un côté de chacune de la bride (3) de longeron légère avec une surface de pression et la bride (4) de longeron légère avec une surface d'aspiration; les extrémités doubles de la bande (5) sont respectivement reliées aux structures de positionnement de la bride (3) de longeron légère avec une surface de pression et la bride (4) de longeron légère avec une surface d'aspiration par l'intermédiaire d'une structure d'adaptation de positionnement, et sont reliées de manière fixe à la bride (3) de longeron légère avec une surface de pression et la bride (4) de longeron légère avec une surface d'aspiration dans leur ensemble, pour former une combinaison de structure des brides de longeron légères; et
    une extrémité de la combinaison de structure des brides de longeron légères pour la pale d'éolienne est reliée à la coque (1) supérieure, et son autre extrémité est reliée à la coque (2) inférieure; la combinaison de structure des brides de longeron légères pour la pale d'éolienne est reliée de manière fixe à la coque (1) supérieure et à la coque (2) inférieure dans leur ensemble; les extrémités doubles de la coque (1) supérieure et de la coque (2) inférieure sont reliées de manière correspondante pour former respectivement un bord (6) antérieur et un bord (7) postérieur.
  7. La pale d'éolienne légère selon la revendication 6, dans laquelle la structure de positionnement et la structure d'adaptation de positionnement adoptent un mode de positionnement d'adaptation de rainure; l'une de la structure de positionnement et de la structure d'adaptation de positionnement est configurée sous la forme d'une rainure (34) de positionnement, et l'autre de celles-ci est configurée sous la forme d'un insert qui s'adapte à la rainure (34) de positionnement; et le mode de positionnement d'adaptation de rainure est l'un des suivants:
    la rainure (34) de positionnement est une rainure trapézoïdale prévue respectivement sur la bride (3) de longeron légère avec une surface de pression et la bride (4) de longeron légère avec une surface d'aspiration, et l'insert est une plaque (51) de la base supérieure et une plaque (52) de la base inférieure qui sont respectivement prévues aux extrémités doubles de la bande (5) et adaptées à la rainure trapézoïdale; ou
    la rainure (34) de positionnement est une rainure en forme de V prévue respectivement sur la bride (3) de longeron légère avec une surface de pression et la bride (4) de longeron légère avec une surface d'aspiration, et l'insert est une nervure de positionnement respectivement prévue aux extrémités doubles de la bande (5).
  8. La pale d'éolienne légère selon la revendication 6, dans laquelle une bande (8) du bord postérieur est disposée dans une chambre du bord postérieur définie par la bande (5) et le bord (7) postérieur; un point (61) de départ de la bande (8) du bord postérieur le long d'une direction longitudinale de la pale est prévu dans une région qui contribue de 12 % à 15 % à une longueur totale de la pale à partir d'un pied (63) de pale, et un point (62) d'achèvement de la bande (8) du bord postérieur le long d'une direction longitudinale de la pale est prévu dans une région qui contribue de 57 % à 60 % à une longueur totale de la pale à partir d'un pied (63) de pale; une hauteur de la bande (8) du bord postérieur est inférieure à celle de la bande (5), et la bande du bord postérieur est sensiblement parallèle à la la bande (5).
  9. La pale d'éolienne légère selon l'une quelconque des revendications 6, 8, dans laquelle la pale d'éolienne légère comprend en outre un système de protection contre la foudre; le système de protection contre la foudre comprend une couche (91) de tissu en fibres de carbone enveloppant une surface de la coque (1) supérieure et/ou de la coque (2) inférieure, au moins une couche de ceinture (93) métallique et un conducteur (96) de descente qui est relié à un système de protection contre la foudre d'une éolienne; la couche (91) de tissu en fibres de carbone conduit le courant de foudre vers la ceinture (93) métallique; la ceinture (93) métallique est reliée au conducteur (96) de descente par l'intermédiaire d'un fil.
  10. La pale d'éolienne légère selon la revendication 9, dans laquelle la couche (91) de tissu en fibres de carbone conduit le courant de foudre vers la ou les couches de ceinture (93) métallique à travers au moins une couche (92) supplémentaire de tissu en fibres de carbone; une largeur de la couche (91) de tissu en fibres de carbone dépend de la capacité de transport du courant de foudre d'un matériau de fibres de carbone, et une exigence minimale est que le courant de foudre traverse la couche (91) de tissu en fibres de carbone sans endommager la couche (91) de tissu en fibres de carbone; et la couche (91) de tissu en fibres de carbone est posée à partir de la pointe de pale au pied (63) de pale; un point de connexion de la ceinture (93) métallique et de la couche (91) de tissu en fibres de carbone le long d'une direction longitudinale de la pale est prévu dans une région qui contribue à 30 % à une longueur totale de la pale d'éolienne à partir d'un pied (63) de pale, et est relié à la pale par infusion intégrale.
  11. La pale d'éolienne légère selon la revendication 10, dans laquelle il y a de multiples couches (92) supplémentaires de tissu en fibres de carbone et de multiples couches de ceintures (93) métalliques; les multiples couches (92) supplémentaires de tissu en fibres de carbone et les multiples couches de ceintures (93) métalliques sont disposées en alternance, de telle sorte que la foudre est dispersée vers les multiples couches de ceintures (93) métalliques à travers les multiples couches (92) supplémentaires de tissu en fibres de carbone et est finalement conduite au conducteur (96) de descente; une zone superposée de chaque couche (92) supplémentaire de tissu en fibres de carbone est la même, et chaque couche (92) supplémentaire de tissu en fibres de carbone enveloppe complètement la ceinture (93) métallique, les couches étant disposées en alternance, de telle sorte que la foudre soit dispersée vers les multiples couches de ceintures (93) métalliques à travers les multiples couches (92) supplémentaires de tissu en fibres de carbone et soit finalement conduite au conducteur (96) de descente; une zone superposée de chaque couche (92) supplémentaire de tissu en fibres de carbone est la même, et chaque couche (92) supplémentaire de tissu en fibres de carbone recouvre complètement la ceinture (93) métallique; et la ceinture (93) métallique traverse la coque de la pale et s'étend dans la chambre de la pale pour être torsadée en un toron, et est reliée au fil par l'intermédiaire d'un dispositif (95) de doublement; les fils supérieur et inférieur sont connectés au conducteur (96) de descente par l'intermédiaire d'un dispositif (94) de doublement de fil; le conducteur (96) de descente est relié au système de protection contre la foudre de l'éolienne au niveau du pied (63) de pale.
  12. Un procédé de fabrication d'une bride de longeron légère avec une structure concave pour une pale d'éolienne, comprenant les étapes suivantes:
    étape 1: la pose d'un matériau de renfort d'une partie (36) de connexion intermédiaire sur un moule de la bride de longeron, de telle sorte qu'un corps de renfort de la partie (36) de connexion intermédiaire présente une forme trapézoïdale, et qu'une base inférieure du corps de renfort trapézoïdal vient en butée contre une surface du moule de la bride de longeron;
    étape 2: l'emplacement d'un matériau de renfort d'une partie (32) de support des deux côtés du corps de renfort de la partie (36) de connexion intermédiaire, de telle sorte que le matériau de renfort de la partie (32) de support enveloppe un côté latéral trapézoïdal du corps de renfort pour former une rainure (34) de positionnement qui est capable de s'adapter à une extrémité d'une bande (5) d'une pale d'éolienne, obtenant ainsi un corps composite de matériaux de renfort; et
    étape 3: l'exposition du corps composite de matériaux de renfort obtenu à l'étape ci-dessus à un processus d'infusion de résine intégrale, pour finalement obtenir la bride de longeron légère pour la pale d'éolienne.
  13. Le procédé de fabrication d'une bride de longeron légère avec une structure concave pour une pale d'éolienne selon la revendication 12, dans laquelle la pose d'un matériau de renfort d'une partie (36) de connexion intermédiaire comprend spécifiquement: la pose de couches (91) de tissu en fibres de carbone de largeurs égales en quinconce, chaque couche de tissu en fibres de carbone ayant une taille L; une première couche ayant une distance D à partir d'une extrémité (33) gauche du moule de la bride de longeron, une deuxième couche ayant une distance D+L à partir de l'extrémité (33) gauche du moule de la bride de longeron, et ainsi de suite, jusqu'une N-ième couche ayant une distance de D à partir d'une extrémité (35) droite du moule de la bride de longeron.
  14. Un procédé de fabrication d'une pale d'éolienne légère comprenant les brides de longeron légères obtenus par le procédé selon la revendication 12, comprenant en outre les étapes suivantes:
    étape 1: l'accouplement respectivement de manière fixe d'une bride (3) de longeron légère avec une surface de pression et d'une bride (4) de longeron légère avec une surface d'aspiration, qui sont respectivement pourvus d'une rainure (34) de positionnement, à une coque (1) supérieure et une coque (2) inférieure dans leur ensemble;
    étape 2: l'emplacement d'une bride (4) de longeron légère avec une surface d'aspiration accouplée de manière fixe à la coque (2) inférieure dans leur ensemble vers le haut, et l'application d'une colle structurelle sur la rainure (34) de positionnement de la coque (2) inférieure; le soulèvement d'une bande (5) sur la bride (4) de longeron légère avec une surface d'aspiration, et l'insertion d'une plaque (52) de la base inférieure de la bande (5) dans la rainure (34) de positionnement recouverte de colle structurelle pour réaliser le positionnement et la fixation de la bande (5) sur la bride (4) de longeron légère avec une surface d'aspiration; et
    étape 3: l'application d'une colle structurelle sur une surface externe d'une plaque (51) de la base supérieure de la bande (5), le soulèvement de la coque (1) supérieure conjointement avec la bride (3) de longeron légère avec une surface de pression fixée à la coque (1) supérieure au-dessus de la bande (5), l'abaissement de la coque (1) supérieure et la bride (3) de longeron légère avec une surface de pression, l'insertion d'une plaque (51) de la base supérieure de la bande (5) dans la rainure (34) de positionnement de la bride (3) de longeron légère avec une surface de pression, et la fixation de la bande (5) sur la bride (3) de longeron légère avec une surface de pression par l'intermédiaire de la colle structurelle appliquée.
EP21786313.3A 2020-07-07 2021-06-17 Bride de longeron légère avec une structure concave pour une pale d'éolienne et procédé de fabrication pour celle-ci Active EP3964352B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010643973.2A CN111775456A (zh) 2020-07-07 2020-07-07 一种凹形主梁风电叶片的制作方法及凹形主梁风电叶片
CN202110614148.4A CN113263732B (zh) 2020-07-07 2021-06-02 一种带凹型结构的风电叶片用轻量化主梁及制作、主梁结构组合、风电叶片及其制作方法
PCT/CN2021/100667 WO2022007610A1 (fr) 2020-07-07 2021-06-17 Poutre maîtresse légère pour pale d'éolienne à structure et fabrication concaves, combinaison de structure de poutre maîtresse et pale d'éolienne et procédé de fabrication pour celle-ci

Publications (4)

Publication Number Publication Date
EP3964352A1 EP3964352A1 (fr) 2022-03-09
EP3964352A4 EP3964352A4 (fr) 2022-11-09
EP3964352C0 EP3964352C0 (fr) 2024-02-14
EP3964352B1 true EP3964352B1 (fr) 2024-02-14

Family

ID=72757929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21786313.3A Active EP3964352B1 (fr) 2020-07-07 2021-06-17 Bride de longeron légère avec une structure concave pour une pale d'éolienne et procédé de fabrication pour celle-ci

Country Status (6)

Country Link
US (1) US20220186708A1 (fr)
EP (1) EP3964352B1 (fr)
CN (2) CN111775456A (fr)
BR (1) BR112021021927A2 (fr)
MX (1) MX2021012722A (fr)
WO (1) WO2022007610A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111775456A (zh) * 2020-07-07 2020-10-16 株洲时代新材料科技股份有限公司 一种凹形主梁风电叶片的制作方法及凹形主梁风电叶片
CN113374628A (zh) * 2021-06-02 2021-09-10 株洲时代新材料科技股份有限公司 一种风电叶片用轻量化主梁、主梁制作方法、风电叶片及其制作方法
CN113787658B (zh) * 2021-09-10 2022-06-14 常州市宏发纵横新材料科技股份有限公司 模块化风电叶片及其制造方法
CN114571714A (zh) * 2022-02-07 2022-06-03 常州市新创智能科技有限公司 一种芯材组合式复合材料风电叶片及其制造方法
CN114962134A (zh) * 2022-03-31 2022-08-30 振石集团华智研究院(浙江)有限公司 一种风电叶片用结构增强件及风电叶片

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK173460B2 (da) * 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
US7037568B1 (en) * 2003-07-15 2006-05-02 Rogers Terry W Joining member for mechanically joining a skin to a supporting rib
DK176298B1 (da) * 2003-09-15 2007-06-18 Lm Glasfiber As Metode til lynsikring af en vinge til et vindenergianlæg, en lynsikret vinge samt et vindenergianlæg med en sådan vinge
US7258828B2 (en) * 2004-09-03 2007-08-21 Lockheed Martin Corporation Infusion joining of composite structures
ES2255454B1 (es) * 2004-12-15 2007-07-01 Gamesa Eolica, S.A. Sistema pararrayos para pala de aerogenerador.
JP4699255B2 (ja) * 2006-03-24 2011-06-08 三菱重工業株式会社 風車翼
US7841835B2 (en) * 2009-02-20 2010-11-30 General Electric Company Spar cap for wind turbine blades
DE102009031947A1 (de) * 2009-07-07 2011-01-13 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage und Verfahren zu dessen Herstellung
CN101704300A (zh) * 2009-11-12 2010-05-12 江苏九鼎新材料股份有限公司 一种风电叶片整体一次成型工艺
CN102029721B (zh) * 2010-10-26 2013-04-24 昆山华风风电科技有限公司 胶剪合模一体化成型工艺
US8393871B2 (en) * 2011-07-19 2013-03-12 General Electric Company Wind turbine blade shear web connection assembly
US8235671B2 (en) * 2011-07-19 2012-08-07 General Electric Company Wind turbine blade shear web connection assembly
CN104981338B (zh) * 2012-12-18 2018-03-23 Lm Wp 专利控股有限公司 包括带有凹部和预制梁帽的空气动力学叶片壳体的风力涡轮机叶片
GB2519331A (en) * 2013-10-17 2015-04-22 Vestas Wind Sys As Improvements relating to lightning protection systems for wind turbine blades
GB201507519D0 (en) * 2015-05-01 2015-06-17 Vestas Wind Sys As Reinforcing Structure for a Wind Turbine Blade
CA2986076A1 (fr) * 2015-05-28 2016-12-01 Lm Wp Patent Holding A/S Pale d'eolienne dotee d'une section d'espacement de bord de fuite
KR101954775B1 (ko) * 2016-11-30 2019-05-17 두산중공업 주식회사 멀티 다운 컨덕터가 적용된 풍력 발전기용 카본 블레이드.
US10830206B2 (en) * 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10519927B2 (en) * 2017-02-20 2019-12-31 General Electric Company Shear web for a wind turbine rotor blade
MX2020002438A (es) * 2017-09-04 2020-07-13 Lm Wind Power Int Tech Ii Aps Un aspa de turbina eolica y un metodo para fabricar el aspa de turbina eolica.
US10688737B2 (en) * 2017-09-14 2020-06-23 General Electric Company Method for forming fiber-reinforced polymer components
US11035339B2 (en) * 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components
CN112512784B (zh) * 2018-06-11 2022-05-24 维斯塔斯风力系统有限公司 风力涡轮机叶片翼梁结构及其制造方法
DK3581796T3 (da) * 2018-06-14 2022-04-04 Siemens Gamesa Renewable Energy As Grænseflade med trinvis ledeevne
MX2021002823A (es) * 2018-09-11 2021-08-11 Tpi Composites Inc Perfiles de posicionamiento para pultrusiones en tapas de larguero de aspa eolica.
WO2020091783A1 (fr) * 2018-11-01 2020-05-07 General Electric Company Raccordement en biseau pour une pale de rotor d'éolienne
CN113316683B (zh) * 2018-11-20 2023-08-11 维斯塔斯风力系统有限公司 风力涡轮机转子叶片的等电位结合
CN110219784A (zh) * 2019-06-24 2019-09-10 洛阳双瑞风电叶片有限公司 一种风电叶片的防雷系统
CN111775456A (zh) * 2020-07-07 2020-10-16 株洲时代新材料科技股份有限公司 一种凹形主梁风电叶片的制作方法及凹形主梁风电叶片

Also Published As

Publication number Publication date
EP3964352A4 (fr) 2022-11-09
CN113263732B (zh) 2022-05-20
WO2022007610A1 (fr) 2022-01-13
EP3964352C0 (fr) 2024-02-14
MX2021012722A (es) 2022-04-18
EP3964352A1 (fr) 2022-03-09
BR112021021927A2 (pt) 2022-02-08
US20220186708A1 (en) 2022-06-16
CN113263732A (zh) 2021-08-17
CN111775456A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
EP3964352B1 (fr) Bride de longeron légère avec une structure concave pour une pale d'éolienne et procédé de fabrication pour celle-ci
US11752709B2 (en) Reinforcing structure for a wind turbine blade
EP3155258B1 (fr) Système d'extrémité de pale d'une turbine éolienne
CN107708982B (zh) 用于风轮机叶片的加强结构
EP2922690B1 (fr) Pales pour éoliennes et leur procédé de fabrication
EP2788176B1 (fr) Procédé de fabrication d'une pale de turbine éolienne et pale de turbine éolienne
US20140271217A1 (en) Efficient wind turbine blade design and associated manufacturing methods using rectangular spars and segmented shear web
US8777578B2 (en) Method of manufacturing a spar for a wind turbine from elements having geometrically well-defined joint surface portions
US8899936B2 (en) Method of manufacturing a spar for a wind turbine from elements having end portions extending transversely to an intermediate portion
US8777579B2 (en) Method of manufacturing a spar for a wind turbine from elements comprising different materials
CN210859042U (zh) 一种主梁帽拼接结构及风机转子叶片
WO2009153344A1 (fr) Outil d’assemblage pour un longeron d’éolienne
EP3155159A1 (fr) Procédé de production d'une couche de renfort de fibres continues à partir de mats de fibres individuels
US11760041B2 (en) Wind turbine blade manufacture
US11761422B2 (en) Relating to wind turbine blade manufacture
CN115485126A (zh) 用于风力涡轮机叶片的翼梁帽的优化夹层
CN109822935A (zh) 一种制造用于风轮机叶片的梁帽的方法
WO2018224106A1 (fr) Pales d'éolienne modulaires
CN113374628A (zh) 一种风电叶片用轻量化主梁、主梁制作方法、风电叶片及其制作方法
CN118369506A (zh) 用于预制翼梁帽的损伤容限覆盖片材

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20221010

RIC1 Information provided on ipc code assigned before grant

Ipc: B29L 31/08 20060101ALI20221004BHEP

Ipc: F03D 1/06 20060101ALI20221004BHEP

Ipc: B29C 65/78 20060101ALI20221004BHEP

Ipc: B29C 65/48 20060101AFI20221004BHEP

REG Reference to a national code

Ref document number: 602021009453

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B29C0065480000

Ipc: F03D0001060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B29D 99/00 20100101ALI20230807BHEP

Ipc: B29C 70/86 20060101ALI20230807BHEP

Ipc: B29C 70/84 20060101ALI20230807BHEP

Ipc: B29C 70/76 20060101ALI20230807BHEP

Ipc: B29C 70/44 20060101ALI20230807BHEP

Ipc: B29C 70/30 20060101ALI20230807BHEP

Ipc: B29L 31/08 20060101ALI20230807BHEP

Ipc: F03D 1/06 20060101AFI20230807BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021009453

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240229

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240325

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214