EP3963739B1 - Senden von referenzsignalen von einem endgerät - Google Patents

Senden von referenzsignalen von einem endgerät Download PDF

Info

Publication number
EP3963739B1
EP3963739B1 EP19720855.6A EP19720855A EP3963739B1 EP 3963739 B1 EP3963739 B1 EP 3963739B1 EP 19720855 A EP19720855 A EP 19720855A EP 3963739 B1 EP3963739 B1 EP 3963739B1
Authority
EP
European Patent Office
Prior art keywords
physical antenna
terminal device
antenna ports
srs
reference signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19720855.6A
Other languages
English (en)
French (fr)
Other versions
EP3963739A1 (de
Inventor
Sven Petersson
Andreas Nilsson
Fredrik Athley
Roy TIMO
Xinlin ZHANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP3963739A1 publication Critical patent/EP3963739A1/de
Application granted granted Critical
Publication of EP3963739B1 publication Critical patent/EP3963739B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • Embodiments presented herein relate to a method, a terminal device, a computer program, and a computer program product for transmission of reference signals.
  • communications networks there may be a challenge to obtain good performance and capacity for a given communications protocol, its parameters and the physical environment in which the communications network is deployed.
  • multi-antenna techniques can significantly increase the data rates and reliability of a wireless communication system.
  • the performance is in particular improved if both the transmitter and the receiver are equipped with multiple antennas, which results in a multiple-input multiple-output (MIMO) communication channel.
  • MIMO multiple-input multiple-output
  • Such systems and/or related techniques are commonly simply referred to as MIMO.
  • NR New radio
  • support is provided in the uplink (i.e., from served terminal device to serving radio access network node) for MIMO with up to 4 layer spatial multiplexing using at least 4 physical antenna ports with channel dependent precoding.
  • the spatial multiplexing mode is aimed for high data rates in favorable channel conditions.
  • the information carrying symbol vector s is multiplied by an N T - by -r precoder matrix W, which serves to distribute the transmit energy in a subspace of the N T (corresponding to the N T physical antenna ports) dimensional vector space.
  • the precoder matrix is typically selected from a codebook of possible precoder matrices, and is typically indicated by means of a transmit precoder matrix indicator (TPMI), which specifies a unique precoder matrix in the codebook for a given number of symbol streams.
  • TPMI transmit precoder matrix indicator
  • the r symbols in s each correspond to a layer and r is referred to as the transmission rank. In this way, spatial multiplexing is achieved since multiple symbols can be transmitted simultaneously over the same time/frequency resource element (TFRE).
  • the number of symbols r is typically adapted to suit the current channel properties.
  • the radio access network node starts with configuring the terminal device to transmit uplink reference signals according to the number of antenna ports it would like the terminal device to use for uplink transmission to enable channel measurements.
  • the radio access network node transmits, based on the channel measurements of the received uplink reference signals, the TPMI to the terminal device that the terminal device should use on the antenna ports.
  • a single precoder that is supposed to cover a large bandwidth (wideband precoding) may be signaled.
  • TPMI Transmission rank indicator
  • SRIs uplink reference signal resource indicators
  • TRIs transmission rank indicator
  • MCS modulation and coding state
  • MCS modulation and coding state
  • the terminal device is enabled to transmit the same modulation symbol over multiple transmit chains with individual gain and/or phase per transmit chain and in this way forming a beam over the corresponding antenna array.
  • This transmission of a common modulation symbol or signal on multiple antenna elements with controlled phase is referred to as coherent transmission.
  • the support for coherent uplink MIMO transmission in Release 10 of the Long Term Evolution (LTE) suite of telecommunication standards is indicated via a feature group indication for relative transmit phase continuity for uplink spatial multiplexing, wherein a terminal device indicates if it can adequately maintain the relative phase of transmit chains over time in order to support coherent transmission.
  • LTE Long Term Evolution
  • the relative phase of the transmit chains may not be well controlled, and coherent transmission may not be used.
  • the modulation symbols on each transmit chain may form a spatially multiplexed, or MIMO, layer. This class of transmission is referred to as non-coherent transmission.
  • the relative phase of a subset of the transmit chains is well controlled, but not over all transmit chains.
  • phase is well controlled among transmit chains within a panel, but phase between panels is not well controlled. This class of transmission is referred to as partially-coherent.
  • Fig. 1 illustrates three different codebook subsets 10, 20, 30 for rank 1 precoders.
  • Codebook subset 10 is referred to as non-coherent and only consists of antenna selection precoders.
  • Codebook subset 20 is referred to as partial-coherent and only consists of antenna pair selection precoders.
  • the terminal device has a pure digital antenna implementation, with one baseband port, or physical antenna port, per physical antenna (compared to mmWave frequencies where the terminal devices are expected to (at least initially) have antenna panel implementations with analog beamforming within each antenna panel).
  • the antenna element patterns are expected to be more or less directional. For lower frequencies the antenna patterns are typically fairly omnidirectional, but when the carrier frequency increases the antenna element pattern typically becomes more and more directional.
  • each PA can transmit with a maximal output power of 17 dBm for the terminal device to reach the maximum output power of 23 dBm.
  • this requires that the terminal device transmits on all four physical antennas, which in some cases is not optimal, for example if one physical antenna is blocked or pointing in the wrong direction.
  • the terminal device can only use antenna selection precoders 10, which means that if the terminal device transmits single layer transmission, only one physical antenna can be used and hence the maximum possible output power will be 17 dBm.
  • One way to mitigate this is to use one PA with 23 dB maximum output power and having the remaining three PAs with 17 dBm output power. In this way it is still possible to transmit single layer transmission on one physical antenna and reach the maximum allowed output power of 23 dBm, whilst still keeping the cost and energy efficiency of the PA architecture as high as possible.
  • the maximum allowed output power may be reduced due to power scaling when applying port selection precoders.
  • the terminal has one or more PAs configured for a maximum of 23 dBm and has directional antennas
  • the coverage in some cases would be reduced with as much as 6 dB for a terminal device with four physical antenna ports for single layer transmission due to the power scaling. In turn, this might have a negative impact on the performance of uplink transmission of data.
  • WO 2012/053948 A1 relates to the field of antenna devices, and in particular to antenna devices for use with a Multiple-Input Multiple-Output system.
  • An object of embodiments herein is to provide an efficient mechanism that improves the coverage and user throughput for terminal devices in the uplink, not suffering from the above noted issues, or at least where the above issues are mitigated or reduced.
  • a method for transmission of reference signals is performed by a terminal device.
  • the terminal device is configured for codebook based precoding.
  • the terminal device comprises at least two physical antenna ports.
  • the method comprises obtaining an indication of higher path gain being experienced in one of the physical antenna ports than in the remaining physical antenna ports.
  • the method comprises, in response thereto, transmitting, in all physical antenna port, as many uplink reference signals as there are physical antenna ports in total.
  • a terminal device for transmission of reference signals.
  • the terminal device is configured for codebook based precoding.
  • the terminal device comprises at least two physical antenna ports.
  • the terminal device further comprises processing circuitry.
  • the processing circuitry is configured to cause the terminal device to obtain an indication of higher path gain being experienced in one of the physical antenna ports than in the remaining physical antenna ports.
  • the processing circuitry is configured to, in response thereto, cause the terminal device to transmit, in all physical antenna port, as many uplink reference signals as there are physical antenna ports in total.
  • a computer program for transmission of reference signals comprising computer program code which, when run on a terminal device being configured for codebook based precoding and comprising at least two physical antenna ports, causes the terminal device to perform a method according to the first aspect.
  • a computer program product comprising a computer program according to the third aspect and a computer readable storage medium on which the computer program is stored.
  • the computer readable storage medium could be a non-transitory computer readable storage medium.
  • the disclosed transmission of reference signals enables improvements of the coverage and user throughput for the terminal device in the uplink.
  • this might improve the link budget up to 3 dB for a terminal device with two physical antenna ports and with up to 6 dB for a terminal device with four physical antenna ports.
  • Fig. 2 is a schematic diagram illustrating a communication system 100 where embodiments presented herein can be applied.
  • the communications system 100 comprises a radio access network node140 configured to provide network access over one or more radio propagation channels to a terminal device 200 in a radio access network 110.
  • terminal devices 200 are portable wireless devices, mobile stations, mobile phones, handsets, wireless local loop phones, user equipment (UE), smartphones, laptop computers, tablet computers, network equipped sensors, network equipped vehicles, and Internet of Things (IoT) devices.
  • the radio access network node 140 is part of, integrated with, or collocated with a radio base station, base transceiver station, node B, evolved node B, gNB, access point, or the like.
  • the radio access network 110 is operatively connected to a core network 120.
  • the core network 120 is in turn operatively connected to a packet data network 130, such as the Internet.
  • the terminal device 200 is thereby, via the radio access network node 140, enabled to access services of, and exchange data with, the service network 130.
  • Fig. 3 schematically illustrates a terminal device 200 equipped with four physical antennas 260.
  • the terminal device 200 might be equipped with more (or less) physical antennas 260.
  • Each physical antenna 260 has its own power amplifier (PA) 270. That is, each physical antenna port 250 is fed by its own PA 270.
  • Each physical antenna 260 is connected to baseband circuitry 280 via its own physical antenna port 250. Thereby, when the terminal device 200 transmits reference signals, each of the reference signals comes from a respective one of the physical antenna ports 250.
  • the terminal device 200 has four or eight physical antenna ports 250 in total (depending on the number of physical antennas 260).
  • each physical antenna 260 might be implemented as an array of antenna elements. That is, each physical antenna port 250 could be operatively connected to only a single antenna element or an array of at least two antenna elements.
  • the antenna element or array of at least two antenna elements of at least two of the physical antenna ports 250 are arranged at the terminal device 200 to point in at least two mutually different pointing directions 290a, 290b, 290c. Two of the physical antennas 260 point in direction 290a, and a respective one of the physical antennas 260 points in directions 290b and 290c
  • the output power for PUSCH (denoted P PUSCH ) is not only based on the output power (denoted P) defined from the power control loop of the terminal device 200, but it is also scaled with the ratio between the number of antenna ports with a non-zero PUSCH transmission and the number of configured antenna ports.
  • the definition of "antenna port” is different for codebook based and non-codebook based UL transmission.
  • Fig. 4 is a flowchart illustrating embodiments of methods for transmission of reference signals.
  • the methods are performed by the terminal device 200.
  • the terminal device 200 is configured for codebook based precoding.
  • the terminal device 200 comprises at least two physical antenna ports 250.
  • the methods are advantageously provided as computer programs 920.
  • the terminal device 200 For codebook based UL transmission, instead of transmitting one uplink reference signal per physical antenna port the terminal device 200 performs a mapping of the uplink reference signals over the physical antenna ports in a way that enables the terminal device 200 to use full output power for upcoming uplink data transmission using only a single physical antenna port. In order to do so the terminal device 200 transmits all uplink reference signals in all physical antenna ports. That is, the terminal device 200 is configured to perform step S106: S106: The terminal device 200 transmits, in all physical antenna port 250, as many uplink reference signals as there are physical antenna ports 250 in total.
  • the terminal device Since full linear combining precoders are allowed to use all available output power at the terminal device (currently up to a limit of 23 dBm) for power scaling, the terminal device is allowed to perform uplink transmission of data using only a single physical antenna port with full output power.
  • FIG. 5 illustrates at (a) transmission of uplink reference signals SRS1, SRS2, SRS3, SRS4 according to prior art and at (b) transmission of the same uplink reference signals SRS1, SRS2, SRS3, SRS4 according to an embodiment as herein disclosed.
  • SRS1, SRS2, SRS3, SRS4 uplink reference signals
  • At 500a is illustrated an antenna arrangement where each physical antenna port is fed with its own signal. Hence, one respective individual reference signal is transmitted in each physical antenna port 250.
  • 500b is illustrated an antenna arrangement where all reference signals SRS1, SRS2, SRS3, SRS4 are transmitted in all physical antenna ports 250.
  • the terminal device 200 is configured for codebook based precoding.
  • the terminal device 200 is, according to the codebook based precoding, configured to use a codebook comprising antenna selection precoders 10, antenna pair selection precoders 20, and full linear combining precoders 30.
  • each physical antenna port 250 has its own transmit radio chain, and wherein the terminal device 200 is configured to control relative phase of the transmit radio chains.
  • the matrix W could thus be characterized as describing the virtualization between uplink reference signals ports and physical antenna ports. Aspects of how to select the matrix W will now be disclosed.
  • W has all ones in only one single row and in all other rows W has coefficients selected from the set ⁇ - ⁇ , + ⁇ ⁇ . In some examples there are equally many occurring instances of -a and + ⁇ in each of said all other rows.
  • the output power for each uplink reference signal is to be spread unequally over all the antenna ports 250. This corresponds to an embodiment where 0 ⁇ ⁇ ⁇ 1.
  • W when higher path gain is experienced in one of the physical antenna ports 250 than in the remaining physical antenna ports 250, W has coefficients of unit amplitude only in the row corresponding to the physical antenna ports (250) with higher path gain.
  • the matrix W might thus (if needed) be row-wise permuted such that the row with coefficients of unit amplitude corresponds to the physical antenna ports 250 with higher path gain.
  • the terminal device 200 could be different reasons for the terminal device 200 to transmit the uplink reference signals in step S106.
  • the terminal device 200 is triggered by the radio access network node 140 to transmit the uplink reference signals.
  • the terminal device 200 is configured to perform (optional) step S102: S102: The terminal device 200 obtains an indication from a radio access network node 140 for the terminal device 200 to transmit the uplink reference signals. The uplink reference signals are then transmitted in response thereto. That is, the uplink reference signals are transmitted in step S106 in response to the terminal device 200 having obtained the indication in step S102.
  • the terminal device 200 is triggered by an indication of high path gain in one of the physical antenna ports 250 to transmit the uplink reference signals.
  • the terminal device 200 is configured to perform step S104: S104: The terminal device 200 obtains an indication of higher path gain being experienced in one of the physical antenna ports 250 than in the remaining physical antenna ports 250.
  • the uplink reference signals are then transmitted in response thereto. That is, the uplink reference signals are transmitted in step S106 in response to the terminal device 200 having obtained the indication in step S104.
  • uplink data transmission from the terminal device 200 following the transmission of the reference signals will utilize the same physical antenna port 250 for which the higher path gain was experienced.
  • the terminal device 200 is configured to perform (optional) step S108: S108: The terminal device 200 transmits, in only the physical antenna port 250 experiencing the higher path gain, uplink data.
  • the terminal device 200 has two physical antenna ports, denoted AP 1, AP 2, each connected to omnidirectional antennas and that the antennas of one of the physical antenna ports (for illustrative purposes assumed to be AP 2) is blocked and has therefore poor path gain.
  • AP 1 physical antenna ports
  • AP 2 the antennas of one of the physical antenna ports (for illustrative purposes assumed to be AP 2) is blocked and has therefore poor path gain.
  • PA that is capable of highest output power (currently, 23 dBm).
  • uplink data is transmitted on a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • a fully coherent terminal device 200 might thus transmit PUSCH on only one of its physical antenna ports.
  • the uplink reference signals are sounding reference signals (SRS).
  • SRS sounding reference signals
  • the uplink reference signals are transmitted over the 5G NR air interface.
  • the radio access network node 140 triggers the terminal device 200 to transmit the uplink reference signals for upcoming codebook based uplink transmission of data.
  • the terminal device 200 obtains an indication of higher path gain being experienced in one of the physical antenna ports 250 than in the remaining physical antenna ports 250.
  • the terminal device 200 could further check that the PA connected to that physical antenna port is capable of highest output power and that the terminal device 200 is in need of highest output power to enhance its coverage and/or user throughput.
  • S203 The terminal device 200 transmits, in all physical antenna port 250, as many uplink reference signals as there are physical antenna ports 250 in total.
  • the radio access network node 140 upon reception of the uplink reference signals, selects a fully coherent precoder that when applied by the terminal device 200 will result uplink data transmission in only the single physical antenna port with the high path gain (and with the PA capable of highest output power).
  • the decision of the selected precoder is signalled to the terminal device 200 in a TPMI report.
  • S205 The terminal device 200 applies the selected precoder when transmitting the uplink data such that the uplink data is transmitted only in the physical antenna port 250 experiencing the higher path gain.
  • Fig. 7 schematically illustrates, in terms of a number of functional units, the components of a terminal device 200 according to an embodiment.
  • Processing circuitry 210 is provided using any combination of one or more of a suitable central processing unit (CPU), multiprocessor, microcontroller, digital signal processor (DSP), etc., capable of executing software instructions stored in a computer program product 910 (as in Fig. 9 ), e.g. in the form of a storage medium 230.
  • the processing circuitry 210 may further be provided as at least one application specific integrated circuit (ASIC), or field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the processing circuitry 210 is configured to cause the terminal device 200 to perform a set of operations, or steps, as disclosed above.
  • the storage medium 230 may store the set of operations
  • the processing circuitry 210 may be configured to retrieve the set of operations from the storage medium 230 to cause the terminal device 200 to perform the set of operations.
  • the set of operations may be provided as a set of executable instructions.
  • the processing circuitry 210 is thereby arranged to execute methods as herein disclosed.
  • the storage medium 230 may also comprise persistent storage, which, for example, can be any single one or combination of magnetic memory, optical memory, solid state memory or even remotely mounted memory.
  • the terminal device 200 may further comprise a communications interface 220 at least configured for communications with other entities, nodes, functions, and devices of the communication system 100.
  • the communications interface 220 may comprise one or more transmitters and receivers, comprising analogue and digital components.
  • the processing circuitry 210 controls the general operation of the terminal device 200 e.g. by sending data and control signals to the communications interface 220 and the storage medium 230, by receiving data and reports from the communications interface 220, and by retrieving data and instructions from the storage medium 230.
  • Other components, as well as the related functionality, of the terminal device 200 are omitted in order not to obscure the concepts presented herein.
  • Fig. 8 schematically illustrates, in terms of a number of functional modules, the components of a terminal device 200 according to an embodiment.
  • the terminal device 200 of Fig. 8 comprises a transmit module 210c configured to perform step S106.
  • the terminal device 200 of Fig. 8 may further comprise a number of optional functional modules, such as any of an obtain module 210a configured to perform step S102, an obtain module 210b configured to perform step S104, and a transmit module 210d configured to perform step S108.
  • each functional module 210a-210d may in one embodiment be implemented only in hardware and in another embodiment with the help of software, i.e., the latter embodiment having computer program instructions stored on the storage medium 230 which when run on the processing circuitry makes the terminal device 200 perform the corresponding steps mentioned above in conjunction with Fig 8 .
  • the modules correspond to parts of a computer program, they do not need to be separate modules therein, but the way in which they are implemented in software is dependent on the programming language used.
  • one or more or all functional modules 210a-210d may be implemented by the processing circuitry 210, possibly in cooperation with the communications interface 220 and/or the storage medium 230.
  • the processing circuitry 210 may thus be configured to from the storage medium 230 fetch instructions as provided by a functional module 210a-210d and to execute these instructions, thereby performing any steps as disclosed herein.
  • terminal devices 200 Examples of terminal devices 200 have been given above.
  • Fig. 9 shows one example of a computer program product 910 comprising computer readable storage medium 930.
  • a computer program 920 can be stored, which computer program 920 can cause the processing circuitry 210 and thereto operatively coupled entities and devices, such as the communications interface 220 and the storage medium 230, to execute methods according to embodiments described herein.
  • the computer program 920 and/or computer program product 910 may thus provide means for performing any steps as herein disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Radio Transmission System (AREA)

Claims (22)

  1. Verfahren zum Senden von Referenzsignalen, wobei das Verfahren von einem Endgerät (200) durchgeführt wird, wobei das Endgerät (200) für Codebuch-basierte Vorcodierung konfiguriert ist und mindestens zwei physische Antennenanschlüsse (250) umfasst, wobei das Verfahren Folgendes umfasst:
    Erlangen (S104) einer Anzeige, dass in einem der physischen Antennenanschlüsse (250) ein höherer Pfadgewinn auftritt als in den übrigen physischen Antennenanschlüssen (250) und, als Reaktion darauf:
    Senden (S106), in allen physischen Antennenanschlüssen (250), von so vielen Uplink-Referenzsignalen, wie insgesamt physische Antennenanschlüsse (250) vorhanden sind.
  2. Verfahren nach Anspruch 1, wobei das Endgerät (200) gemäß der Codebuch-basierten Vorcodierung dazu konfiguriert ist, ein Codebuch zu verwenden, das Antennen-Auswahl-Vorcodierer (10), Antennenpaar-Auswahl-Vorcodierer (20) und vollständig linear kombinierende Vorcodierer umfasst (30).
  3. Verfahren nach Anspruch 1 oder 2, wobei jeder physische Antennenanschluss (250) seine eigene Sendefunkkette aufweist und wobei das Endgerät (200) dazu konfiguriert ist, die relative Phase der Sendefunkketten zu steuern.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei M > 1 physische Antennenanschlüsse (250) insgesamt vorhanden sind und wobei die Uplink-Referenzsignale SRS 1, SRS 2, ..., SRS M von den physischen Antennenanschlüssen AP 1, AP 2, ..., AP M gemäß: AP 1 AP 2 AP M = W SRS 1 SRS 2 SRS M
    Figure imgb0013
    gesendet werden, wobei W eine M-mal-M-Matrix ist und Koeffizienten mit Einheitsamplitude in nur einer einzigen Zeile aufweist und in allen anderen Zeilen Koeffizienten, die kleiner als die Einheitsamplitude sind, aufweist und wobei die Koeffizienten in jeder der allen anderen Zeilen die gleiche Amplitude aufweisen.
  5. Verfahren nach Anspruch 4, wobei W in nur einer einzigen Zeile Koeffizienten aufweist, die alle Einsen sind, und in allen anderen Zeilen Koeffizienten aufweist, die aus der Menge {-α, +α} ausgewählt sind.
  6. Verfahren nach Anspruch 5, wobei in jeder der allen anderen Zeilen gleich viele vorkommende Instanzen von -α und +α vorhanden sind.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei vier physische Antennenanschlüsse (250) insgesamt vorhanden sind und wobei die Uplink-Referenzsignale SRS 1, SRS 2, SRS 3, SRS 4 von den physischen Antennenanschlüssen AP 1, AP 2, AP 3, AP 4 gemäß: AP 1 AP 2 AP 3 AP 4 = W SRS 1 SRS 2 SRS 3 SRS 4
    Figure imgb0014
    gesendet werden, wobei W = 1 1 1 1 α α α α α α α α α α α α
    Figure imgb0015
    oder beliebige zeilenweise Permutationen davon.
  8. Verfahren nach einem der Ansprüche 1 bis 6, wobei zwei physische Antennenanschlüsse (250) insgesamt vorhanden sind und wobei die Uplink-Referenzsignale SRS 1, SRS 2 von den physischen Antennenanschlüssen AP 1, AP 2 gemäß: AP 1 AP 2 = W SRS 1 SRS 2
    Figure imgb0016
    gesendet werden, wobei W = 1 1 α α
    Figure imgb0017
    oder beliebige zeilenweise Permutationen davon.
  9. Verfahren nach den Ansprüchen 5, 6, 7 oder 8, wobei α = 1.
  10. Verfahren nach den Ansprüchen 5, 6, 7 oder 8, wobei 0 < α < 1.
  11. Verfahren nach einem der Ansprüche 4 bis 10, wobei, wenn in einem der physischen Antennenanschlüsse (250) ein höherer Pfadgewinn auftritt als in den übrigen physischen Antennenanschlüssen (250), W nur in der Zeile, die den physischen Antennenanschlüssen (250) mit höherem Pfadgewinn entspricht, Koeffizienten mit Einheitsamplitude aufweist.
  12. Verfahren nach einem der vorhergehenden Ansprüche, wobei jeder physische Antennenanschluss (250) über seinen eigenen Leistungsverstärker (270) mit nur einem einzigen Antennenelement oder einer Anordnung von mindestens zwei Antennenelementen betriebswirksam verbunden ist.
  13. Verfahren nach Anspruch 12, wobei das Antennenelement oder die Anordnung von mindestens zwei Antennenelementen von mindestens zwei der physischen Antennenanschlüsse (250) am Endgerät (200) derart angeordnet ist, dass es bzw. sie in mindestens zwei voneinander unterschiedliche Zeigerichtungen (290a, 290b, 290c) zeigt.
  14. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend:
    Erlangen (S102) einer Anzeige von einem Funkzugangsnetzknoten (140) für das Endgerät (200), die Uplink-Referenzsignale zu senden, und wobei die Referenzsignale als Reaktion darauf gesendet werden.
  15. Verfahren nach Anspruch 1, ferner umfassend: Senden (S108) von Uplink-Daten nur in dem physischen Antennenanschluss (250), in dem der höhere Pfadgewinn auftritt.
  16. Verfahren nach Anspruch 15, wobei die Uplink-Daten auf einem gemeinsamen physischen Uplink-Kanal, PUSCH-Kanal, gesendet werden.
  17. Verfahren nach Anspruch 15, wobei die Uplink-Referenzsignale über die 5G New-Radio-Luftschnittstelle, NR-Luftschnittstelle, gesendet werden.
  18. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Uplink-Referenzsignale Sondierungsreferenzsignale, SRS, sind.
  19. Endgerät (200) zum Senden von Referenzsignalen, wobei das Endgerät (200) für eine Codebuch-basierte Vorcodierung konfiguriert ist und mindestens zwei physische Antennenanschlüsse (250) umfasst, wobei das Endgerät ferner Verarbeitungsschaltungen (210) umfasst, wobei die Verarbeitungsschaltungen dazu konfiguriert sind, das Endgerät (200) zu Folgendem zu veranlassen:
    Erlangen einer Anzeige, dass in einem der physischen Antennenanschlüsse (250) ein höherer Pfadgewinn auftritt als in den übrigen physischen Antennenanschlüssen (250) und, als Reaktion darauf:
    Senden, in allen physischen Antennenanschlüssen (250), von so vielen Uplink-Referenzsignalen, wie insgesamt physische Antennenanschlüsse (250) vorhanden sind.
  20. Endgerät (200) nach Anspruch 19, das ferner dazu konfiguriert ist, das Verfahren nach einem der Ansprüche 2 bis 18 durchzuführen.
  21. Computerprogramm (920) zum Senden von Referenzsignalen, wobei das Computerprogramm Computercode umfasst, der, wenn er auf einer Verarbeitungsschaltung (210) eines Endgeräts (200), das für Codebuch-basierte Vorcodierung konfiguriert ist und mindestens zwei physische Antennenanschlüsse (250) umfasst, ausgeführt wird, das Endgerät (200) zu Folgendem veranlasst: Erlangen (S104) einer Anzeige, dass in einem der physischen Antennenanschlüsse (250) ein höherer Pfadgewinn auftritt als in den übrigen physischen Antennenanschlüssen (250) und, als Reaktion darauf:
    Senden (S106), in allen physischen Antennenanschlüssen (250), von so vielen Uplink-Referenzsignalen, wie insgesamt physische Antennenanschlüsse (250) vorhanden sind.
  22. Computerprogrammprodukt (910), umfassend ein Computerprogramm (920) nach Anspruch 21 und ein computerlesbares Speichermedium (930), auf dem das Computerprogramm gespeichert ist.
EP19720855.6A 2019-04-29 2019-04-29 Senden von referenzsignalen von einem endgerät Active EP3963739B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/060946 WO2020221424A1 (en) 2019-04-29 2019-04-29 Transmission of reference signals from a terminal device

Publications (2)

Publication Number Publication Date
EP3963739A1 EP3963739A1 (de) 2022-03-09
EP3963739B1 true EP3963739B1 (de) 2024-07-10

Family

ID=66349548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19720855.6A Active EP3963739B1 (de) 2019-04-29 2019-04-29 Senden von referenzsignalen von einem endgerät

Country Status (4)

Country Link
US (1) US11139870B2 (de)
EP (1) EP3963739B1 (de)
BR (1) BR112021020195A2 (de)
WO (1) WO2020221424A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424975B2 (en) * 2019-10-16 2022-08-23 Qualcomm Incorporated Non-coherent waveforms for wireless communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2637070T3 (es) 2010-10-19 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Dispositivo de antena y método para precodificar datos en un sistema de múltiple entrada múltiple salida
KR101806091B1 (ko) 2013-06-04 2017-12-06 후아웨이 테크놀러지 컴퍼니 리미티드 4-안테나 프리코딩 행렬을 전송하기 위한 방법, 사용자 장비 및 기지국
CN112202537B (zh) 2014-11-14 2024-06-07 交互数字专利控股公司 二维天线阵列中的天线虚拟化
WO2018107068A1 (en) 2016-12-09 2018-06-14 Qualcomm Incorporated Uplink transmit diversity and precoding
US10389426B2 (en) 2017-04-25 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for higher rank CSI reporting in advanced wireless communication systems
US10560161B2 (en) 2017-06-29 2020-02-11 Telefonaktiebolaget Lm Ericsson (Publ) High spatial resolution beam space CSI feedback
CN108111283B (zh) 2017-11-03 2021-12-14 中兴通讯股份有限公司 一种参考信号的传输方法及设备
US11546025B2 (en) * 2019-01-09 2023-01-03 Qualcomm Incorporated Precoders for multi-panel uplink transmission

Also Published As

Publication number Publication date
US11139870B2 (en) 2021-10-05
US20210135719A1 (en) 2021-05-06
EP3963739A1 (de) 2022-03-09
WO2020221424A1 (en) 2020-11-05
BR112021020195A2 (pt) 2021-12-21

Similar Documents

Publication Publication Date Title
US9929791B2 (en) Communication method and apparatus using analog and digital hybrid beamforming
EP3520226B1 (de) System und verfahren zur hierarchischen strahlformung und rangadaption für eine hybride antennenarchitektur
US9270351B2 (en) Codebook subset selection
WO2019095182A1 (en) Method and apparatus for mimo transmission
US11855921B2 (en) Transmission of reference signals from a terminal device
US11108452B2 (en) Tailored beam management of beamformed transmission
CN110249546B (zh) 用于选择码本的方法
US10382110B2 (en) Adaptive user-specific beam forming
US12047130B2 (en) Transmission of reference signals from a terminal device
KR20150061560A (ko) 하이브리드 빔포밍 기반 오픈-루프 mimo 전송 방법 및 장치
US11012129B2 (en) Transmission of reference signals from a terminal device
EP3963739B1 (de) Senden von referenzsignalen von einem endgerät
CN115379470B (zh) 波束成形方法及相关装置
US20190335483A1 (en) Millimeter Wave Wireless Broadband Connectivity
WO2024132377A1 (en) Method and network node for transmission of wideband signals towards a wireless device through time domain beamforming

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211101

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019054947

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04B0007060000

Ipc: H04B0007045600

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H04B0007060000

Ipc: H04B0007045600

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/06 20060101ALI20220510BHEP

Ipc: H04B 7/0456 20170101AFI20220510BHEP

17Q First examination report despatched

Effective date: 20220518

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019054947

Country of ref document: DE