EP3963184A1 - Ensemble d'anneau de turbine monté sur entretoise - Google Patents

Ensemble d'anneau de turbine monté sur entretoise

Info

Publication number
EP3963184A1
EP3963184A1 EP20715092.1A EP20715092A EP3963184A1 EP 3963184 A1 EP3963184 A1 EP 3963184A1 EP 20715092 A EP20715092 A EP 20715092A EP 3963184 A1 EP3963184 A1 EP 3963184A1
Authority
EP
European Patent Office
Prior art keywords
ring
upstream
support structure
flange
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20715092.1A
Other languages
German (de)
English (en)
Inventor
Lucien Henri Jacques QUENNEHEN
Antoine Claude Michel Etienne Danis
Clément Jean Pierre DUFFAU
Clément Jarrossay
Nicolas Paul TABLEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3963184A1 publication Critical patent/EP3963184A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a turbine ring assembly for a turbomachine in which the assembly comprises a plurality of angular ring sectors placed end to end to form a turbine ring of ceramic matrix composite material.
  • One field of application of the invention is in particular that of gas turbine aero engines.
  • Ceramic matrix composite materials are known to retain their mechanical properties at high temperatures, which makes them suitable for forming hot structural elements.
  • a metal turbine ring assembly deforms under the influence of heat flows, which changes the clearances in the flow stream and, consequently, the performance of the turbine.
  • the production of turbine ring sectors in a single piece in CMC is described in particular in document US 2012/0027572.
  • the ring sectors comprise an annular base, the internal face of which defines the internal face of the turbine ring and an external face from which extend radially two legs, the ends of which are held between the two flanges of a structure. metal ring holder.
  • CMC ring sectors thus significantly reduces the ventilation required to cool the turbine ring.
  • the CMC having a different mechanical behavior from a metallic material, its integration as well as the way of positioning it within the turbine had to be rethought.
  • CMC does not support shrink-wrapped assemblies (usually used for metal rings) and its thermal expansion is lower than that of a metallic material.
  • CMC ring sectors increase the number of parts necessary for its integration on the turbine housing, which increases the cost and weight of the assembly and requires complex assembly operations (shrinking of bushings, pin assembly, etc.).
  • the main object of the present invention is therefore to provide a turbine ring assembly which does not have the aforementioned drawbacks.
  • a turbine ring assembly extending around an axis, comprising a plurality of ring sectors made of ceramic matrix composite material forming a turbine ring and a ring support structure maintained.
  • each ring sector comprising a base from which extend radially outward an upstream lug and a downstream lug spaced axially from one another, the ring support structure comprising a spacer having a flange against which the downstream lug of the ring sectors is held, a first upstream flange against which the upstream lug of the ring sectors is held, and, upstream of the first flange upstream, a second upstream load-absorbing flange against which the first upstream flange is held.
  • the turbine ring assembly according to the invention is remarkable in particular in that the CMC ring is held directly on the turbine housing by means of a ring support structure without resorting to a pressure housing. ring holder.
  • the assembly according to the invention does not have a ring support housing and the radial pins allowing the ring support structure to be held on this housing are omitted.
  • the ring support structure is made of several separate and independent parts, which allows this structure to be mounted in angular sectors and no longer in a ring.
  • the assembly of the turbine ring assembly is simplified and requires no tools.
  • the manufacturing tolerances are less severe, the spacers making it possible to make up for the gaps between the ring sectors, which a 360 ° flange cannot do.
  • the removal of radial pins decreases the machining operations of the parts of the ring support structure. The result is a saving in parts, and therefore a reduction in the weight and cost of the assembly.
  • the ring support structure further comprises an air diffuser for diffusing cooling air on an outer face of the base of the ring sectors.
  • the air diffuser of the ring support structure may include a flange held between the spacer and the first upstream flange.
  • the ring support structure further comprises a plurality of fixing means screwed into the spacer and passing through from upstream to downstream to fix the first upstream flange, the second upstream flange and the diffuser flange between them. 'air.
  • the assembly further comprises upstream axial pins intended to hold the first upstream flange of the ring support structure against the upstream tab of the ring sectors.
  • the assembly preferably further comprises downstream axial pins intended to hold the flange. of the spacer of the ring support structure against the downstream leg of the ring sectors.
  • the ring support structure spacer may include an upstream hook for mounting said ring support structure to the turbine housing.
  • the first flange upstream of the ring support structure may include a hook for mounting said ring support structure on the turbine housing.
  • the spacer of the ring support structure may further include a downstream hook for holding a low-pressure turbine manifold positioned downstream of the turbine assembly.
  • the subject of the invention is also a turbomachine comprising an assembly as defined above.
  • Figure 1 is a longitudinal sectional view of a turbine ring assembly according to the invention.
  • Figure 2 is a schematic perspective view of the turbine assembly of Figure 1.
  • Figure 1 shows, in longitudinal section, a turbine ring assembly 2 according to the invention.
  • This assembly 2 comprises in particular a turbine ring 4 made of ceramic matrix composite material (CMC) centered on a longitudinal axis XX and a metal ring support structure 6.
  • the turbine ring 4 surrounds a set of turbine blades.
  • the turbine ring 4 is formed from a plurality of angular ring sectors 10 which are placed end to end circumferentially to form a ring.
  • the arrow DA indicates the axial direction of the turbine ring while the arrow DR indicates the radial direction of the turbine ring.
  • Each angular sector of ring 10 has a section substantially in the form of an inverted Pi (or TT) with a base 12 provided with an internal face 12a which defines a angular portion of the internal face of the turbine ring and which is typically provided with an abradable coating layer 14 also acting as a thermal and environmental barrier.
  • Two legs - namely an upstream leg 16 and a downstream leg 18 - extend radially from the outer face 12b of the base 12 opposite the inner face 12a. These tabs 16, 18 extend over the entire width of the ring sector 10 (in the circumferential direction).
  • the ring support structure 6 is produced by assembling a plurality of parts which are distinct (i.e. independent) from each other.
  • these parts include in particular a spacer 20, a first upstream flange 22, a second upstream flange 24 for absorbing forces, and an air diffuser 26.
  • the spacer 20 comprises a flange 20a against which the downstream leg 18 of the ring sectors 10 is held by means of a plurality of downstream axial pins 28 regularly distributed around the longitudinal axis X-X of the ring.
  • the spacer 20 also includes an upstream hook 20b which is intended to engage with a downstream hook 30 of a turbine housing 32 to allow mounting of the ring support structure directly on the turbine housing.
  • the spacer 20 also comprises a downstream hook 20c which is intended to engage in a corresponding hook (not shown in the figures) of a low-pressure turbine distributor 34 located downstream of the ring assembly 2. turbine in order to maintain it.
  • the spacer 20 may be a part of revolution (that is to say 360 °) or be produced by an assembly of a plurality of spacer sectors placed end to end.
  • the upstream tab 16 of the ring sectors 10 is held against the first upstream flange 22.
  • the first upstream flange 22 also comprises a hook 22a which is intended to engage in an upstream hook 36 of the turbine casing 32 in order to allow the ring support structure to be mounted directly on the turbine casing.
  • the first upstream flange 22 may be a part of revolution (that is to say of 360 °) or else be produced by an assembly of two half-flanges of 180 ° each.
  • the first upstream flange 22 is held upstream against a second upstream flange 24 for absorbing forces.
  • the latter is intended to take up the forces of a high-pressure turbine distributor 38 which is positioned upstream of the turbine ring assembly.
  • This front flange 24 may be a part of revolution (that is to say of 360 °) or be a sectored part.
  • the air diffuser 26 is intended to diffuse cooling air on the outer face 12b of the base 12 of the ring sectors. To this end, it comprises a cavity 26a positioned around the base 12 of the ring sectors, supplied with cooling air taken from a stage of the compressor of the turbomachine and opening out towards the outer face of the base of the ring sectors by through a multi-perforation of its walls (not shown in the figures).
  • the air diffuser 26 also includes a flange 26b coming directly into axial abutment against the upstream lug 16 of the ring sectors 10.
  • the ring support structure 6 further comprises a plurality of fixing means 40 (for example bolted connections) which are screwed into the spacer 20 and pass from upstream to downstream to fix the first upstream flange 22 between them, the second upstream flange 24 for absorbing forces and the flange 26b of the air diffuser 26.
  • fixing means 40 for example bolted connections
  • the turbine ring assembly 2 further comprises upstream axial pins 42 which are intended to hold the first upstream flange 22 of the ring support structure against the upstream lug 16 of the ring sectors 10. These upstream pins 42 are regularly distributed around the longitudinal axis XX of the ring.
  • control of the clearance at the top of the turbine blades 8 can be achieved by varying the thicknesses of the turbine casing 32 or by providing the latter with pilot bosses (not shown in the figures).

Abstract

L'invention concerne un ensemble (2) d'anneau de turbine s'étendant autour d'une axe (X-X), comprenant une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (4) et une structure de support d'anneau (6) maintenue par un carter de turbine (32), chaque secteur d'anneau (10) comprenant une base (12) à partir de laquelle s'étendent radialement vers l'extérieur une patte amont (16) et une patte aval (18) espacées axialement l'une de l'autre, la structure de support d'anneau (6) comprenant une entretoise (20) ayant une bride (20a) contre laquelle la patte aval (18) des secteurs d'anneau (10) est maintenue, un premier flasque amont (22) contre lequel la patte amont des secteurs d'anneau est maintenue, et en amont du premier flasque amont, un second flasque amont (24) de reprise d'efforts contre lequel le premier flasque amont est maintenu.

Description

Description
Titre de l'invention : ENSEMBLE D'ANNEAU DE TURBINE MONTÉ SUR
ENTRETOISE
Domaine Technique
L’invention concerne un ensemble d’anneau de turbine pour une turbomachine dans lequel l’ensemble comprend une pluralité de secteurs angulaires d’anneau mis bout à bout pour former un anneau de turbine en matériau composite à matrice céramique.
Un domaine d’application de l’invention est notamment celui des moteurs aéronautiques à turbine à gaz.
Technique antérieure
Les matériaux composites à matrice céramique, ou CMC, sont connus pour conserver leurs propriétés mécaniques à des températures élevées, ce qui les rend aptes à constituer des éléments de structure chaude.
Dans des moteurs aéronautiques à turbine à gaz, l'amélioration du rendement et la réduction de certaines émissions polluantes conduisent à rechercher un fonctionnement à des températures toujours plus élevées. Dans le cas d’ensembles d’anneau de turbine entièrement métalliques, il est nécessaire de refroidir tous les éléments de l’ensemble et en particulier l’anneau de turbine qui est soumis à des flux très chauds, typiquement supérieurs à la température supportable par le matériau métallique. Ce refroidissement a un impact significatif sur la performance du moteur puisque le flux de refroidissement utilisé est prélevé sur le flux principal du moteur. En outre, l’utilisation de métal pour l’anneau de turbine limite les possibilités d’augmenter la température au niveau de la turbine, ce qui permettrait pourtant d’améliorer les performances des moteurs aéronautiques.
Par ailleurs, un ensemble d’anneau de turbine métallique se déforme sous l’effet des flux thermiques, ce qui modifie les jeux au niveau de la veine d’écoulement et, par conséquent, les performances de la turbine.
C’est pourquoi l'utilisation de CMC pour différentes parties chaudes des moteurs a déjà été envisagée, d'autant que les CMC présentent comme avantage complémentaire une masse volumique inférieure à celle de métaux réfractaires traditionnellement utilisés.
Ainsi, la réalisation de secteurs d'anneau de turbine en une seule pièce en CMC est notamment décrite dans le document US 2012/0027572. Les secteurs d'anneau comportent une base annulaire dont la face interne définit la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent radialement deux pattes dont les extrémités sont maintenues entre les deux brides d'une structure métallique de support d'anneau.
L’utilisation de secteurs d’anneau en CMC permet ainsi de réduire significativement la ventilation nécessaire au refroidissement de l’anneau de turbine. Toutefois, le CMC ayant un comportement mécanique différent d’un matériau métallique, son intégration ainsi que la manière de le positionner au sein de la turbine ont dû être repensés. En effet, le CMC ne supporte pas les montages frettés (usuellement employés pour les anneaux métalliques) et sa dilation thermique est plus faible qu’un matériau métallique.
De plus, l’utilisation de secteurs d’anneau en CMC accroît le nombre de pièces nécessaires pour son intégration sur le carter de turbine, ce qui augmente le coût et le poids de l’ensemble et nécessite des opérations de montage complexes (frettage de douilles, montage de goupilles, etc.).
Exposé de l’invention
La présente invention a donc pour but principal de proposer un ensemble d’anneau de turbine qui ne présente pas les inconvénients précités.
Ce but est atteint grâce à un ensemble d’anneau de turbine s’étendant autour d’une axe, comprenant une pluralité de secteurs d’anneau en matériau composite à matrice céramique formant un anneau de turbine et une structure de support d’anneau maintenue par un carter de turbine, chaque secteur d’anneau comprenant une base à partir de laquelle s’étendent radialement vers l’extérieur une patte amont et une patte aval espacées axialement l’une de l’autre, la structure de support d’anneau comprenant une entretoise ayant une bride contre laquelle la patte aval des secteurs d’anneau est maintenue, un premier flasque amont contre laquelle la patte amont des secteurs d’anneau est maintenue, et, en amont du premier flasque amont, un second flasque amont de reprise d’efforts contre lequel le premier flasque amont est maintenu.
L’ensemble d’anneau de turbine selon l’invention est remarquable notamment en ce que l’anneau en CMC est maintenu directement sur le carter de turbine par l’intermédiaire d’une structure de support d’anneau sans recourir à un carter de support d’anneau. En particulier, par rapport à l’art antérieur, l’ensemble selon l’invention est dépourvu de carter de support d’anneau et les pions radiaux permettant un maintien de la structure de support d’anneau sur ce carter sont supprimés.
De plus, la structure de support d’anneau est réalisée en plusieurs pièces distinctes et indépendantes les unes des autres, ce qui permet un montage de cette structure par secteurs angulaires et non plus en couronne. Le montage de l’ensemble d’anneau de turbine s’en trouve simplifié et ne nécessite pas d’outillage. Par ailleurs, les tolérances de fabrication sont moins sévères, les entretoises permettant de rattraper les écarts entre les secteurs d’anneau, ce qu’un flasque à 360° ne peut pas faire. En outre, la suppression de pions radiaux diminue les opérations d’usinage des pièces de la structure de support d’anneau. Il en résulte un gain de pièces, et donc une diminution du poids et du coût de l’ensemble.
De façon avantageuse, la structure de support d’anneau comprend en outre un diffuseur d’air destiné à diffuser de l’air de refroidissement sur une face externe de la base des secteurs d’anneau. Dans ce cas, le diffuseur d’air de la structure de support d’anneau peut comprendre une bride maintenue entre l’entretoise et le premier flasque amont.
De préférence, la structure de support d’anneau comprend en outre une pluralité de moyens de fixation vissés dan l’entretoise et traversant d’amont en aval pour fixer entre eux le premier flasque amont, le second flasque amont et la bride du diffuseur d’air.
De façon avantageuse également, l’ensemble comprend en outre des pions axiaux amont destinés à maintenir le premier flasque amont de la structure de support d’anneau contre la patte amont des secteurs d’anneau. De même, l’ensemble comprend de préférence en outre des pions axiaux aval destinés à maintenir la bride de l’entretoise de la structure de support d’anneau contre la patte aval des secteurs d’anneau.
L’entretoise de la structure de support d’anneau peut comprendre un crochet amont pour le montage de ladite structure de support d’anneau sur le carter de turbine. De même, le premier flasque amont de la structure de support d’anneau peut comprendre un crochet pour le montage de ladite structure de support d’anneau sur le carter de turbine.
De plus, l’entretoise de la structure de support d’anneau peut comprendre en outre un crochet aval pour le maintien d’un distributeur de turbine basse-pression positionné en aval de l’ensemble de turbine.
L’invention a également pour objet une turbomachine comprenant un ensemble tel que défini précédemment.
Brève description des dessins
[Fig. 1 ] La figure 1 est une vue en coupe longitudinale d’un ensemble d’anneau de turbine selon l’invention.
[Fig. 2] La figure 2 représente une vue schématique et en perspective de l’ensemble de turbine de la figure 1.
Description des modes de réalisation
La figure 1 représente, en coupe longitudinale, un ensemble 2 d’anneau de turbine selon l’invention.
Cet ensemble 2 comprend notamment un anneau de turbine 4 en matériau composite à matrice céramique (CMC) centré sur un axe longitudinal X-X et une structure métallique de support d'anneau 6. L'anneau de turbine 4 entoure un ensemble d’aubes de turbine 8.
Par ailleurs, l'anneau de turbine 4 est formé d'une pluralité de secteurs angulaires d'anneau 10 qui sont mis bout à bout circonférentiellement pour former un anneau. Sur la figure 1 , la flèche DA indique la direction axiale de l’anneau de turbine tandis que la flèche DR indique la direction radiale de l’anneau de turbine.
Chaque secteur angulaire d’anneau 10 présente une section sensiblement en forme de Pi (ou TT) inversé avec une base 12 munie d’une face interne 12a qui définit une portion angulaire de la face interne de l’anneau de turbine et qui est typiquement munie d’une couche de revêtement abradable 14 faisant également office de barrière thermique et environnementale.
Deux pattes - à savoir une patte amont 16 et une patte aval 18 - s’étendent radialement à partir de la face externe 12b de la base 12 opposée à la face interne 12a. Ces pattes 16, 18 s’étendent sur toute la largeur du secteur d’anneau 10 (dans le sens circonférentiel).
Selon l’invention, la structure de support d'anneau 6 est réalisée par l’assemblage d’une pluralité de pièces distinctes (i.e. indépendantes) les unes des autres.
Comme plus précisément représenté sur la figure 2, ces pièces comprennent notamment une entretoise 20, un premier flasque amont 22, un second flasque amont 24 de reprise d’efforts, et un diffuseur d’air 26.
L’entretoise 20 comprend une bride 20a contre laquelle la patte aval 18 des secteurs d’anneau 10 est maintenue par l’intermédiaire d’une pluralité de pions axiaux aval 28 régulièrement répartis autour de l’axe longitudinal X-X de l’anneau.
L’entretoise 20 comprend également un crochet amont 20b qui est destiné à venir s’engager dans un crochet aval 30 d’un carter de turbine 32 afin de permettre le montage de la structure de support d’anneau directement sur le carter de turbine.
L’entretoise 20 comprend également un crochet aval 20c qui est destiné à venir s’engager dans un crochet correspondant (non représenté sur les figures) d’un distributeur de turbine basse-pression 34 situé en aval de l’ensemble 2 d’anneau de turbine afin d’en permettre le maintien.
On notera que l’entretoise 20 peut être une pièce de révolution (c’est-à-dire de 360°) ou bien être réalisée par un assemblage d’une pluralité de secteurs d’entretoise mis bout à bout.
La patte amont 16 des secteurs d’anneau 10 est maintenue contre le premier flasque amont 22.
Le premier flasque amont 22 comprend également un crochet 22a qui est destiné à venir s’engager dans un crochet amont 36 du carter de turbine 32 afin de permettre le montage de la structure de support d’anneau directement sur le carter de turbine. Le premier flasque amont 22 peut être une pièce de révolution (c’est-à-dire de 360°) ou bien être réalisée par un assemblage de deux demi-flasques de 180° chacun.
Le premier flasque amont 22 est maintenu en amont contre un second flasque amont 24 de reprise d’efforts. Ce dernier est destiné à reprendre les efforts d’un distributeur de turbine haute-pression 38 qui est positionné en amont de l’ensemble d’anneau de turbine.
Ce flasque avant 24 peut être une pièce de révolution (c’est-à-dire de 360°) ou être une pièce sectorisée.
Enfin, le diffuseur d’air 26 est destiné à diffuser de l’air de refroidissement sur la face externe 12b de la base 12 des secteurs d’anneau. A cet effet, il comprend une cavité 26a positionnée autour de la base 12 des secteurs d’anneau, alimentée en air de refroidissement prélevé depuis un étage du compresseur de la turbomachine et débouchant vers la face externe de la base des secteurs d’anneau par l’intermédiaire d’une multi perforation de ses parois (non représentée sur les figures).
Le diffuseur d’air 26 comprend également une bride 26b venant directement en appui axial contre la patte amont 16 des secteurs d’anneau 10.
La structure de support d’anneau 6 comprend en outre une pluralité de moyens de fixation 40 (par exemple des liaisons boulonnées) qui sont vissées dans l’entretoise 20 et traversent d’amont en aval pour fixer entre eux le premier flasque amont 22, le second flasque amont 24 de reprise d’efforts et la bride 26b du diffuseur d’air 26.
L’ensemble 2 d’anneau de turbine comprend en outre des pions axiaux amont 42 qui sont destinés à maintenir le premier flasque amont 22 de la structure de support d’anneau contre la patte amont 16 des secteurs d’anneau 10. Ces pions amont 42 sont régulièrement répartis autour de l’axe longitudinal X-X de l’anneau.
De la sorte, les pattes amont et aval 16, 18 des secteurs d’anneau 10 sont maintenues entre le premier flasque amont 22 et la bride 20a de l’entretoise 20 de la structure de support d’anneau 6.
On notera que le pilotage du jeu en sommet des aubes de turbine 8 peut être réalisé en jouant sur les épaisseurs du carter de turbine 32 ou en munissant celui-ci de bossages de pilotage (non représenté sur les figures).

Claims

Revendications
[Revendication 1] Ensemble (2) d'anneau de turbine s'étendant autour
d'une axe (X-X), comprenant une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (4) et une structure de support d'anneau (6) maintenue par un carter de turbine (32), chaque secteur d'anneau (10) comprenant une base (12) à partir de laquelle s'étendent radialement vers l'extérieur une patte amont (16) et une patte aval (18) espacées axialement l'une de l'autre, la structure de support d'anneau (6) comprenant une entretoise (20) ayant une bride (20a) contre laquelle la patte aval (18) des secteurs d'anneau (10) est maintenue, un premier flasque amont (22) contre lequel la patte amont des secteurs d'anneau est maintenue, et en amont du premier flasque amont (22), un second flasque amont (24) de reprise d'efforts contre lequel le premier flasque amont (22) est maintenu.
[Revendication 2] Ensemble selon la revendication 1, dans lequel la
structure de support d'anneau (6) comprend en outre un diffuseur d'air (26) destiné à diffuser de l'air de refroidissement sur une face externe (12b) de la base (12) des secteurs d'anneau (10).
[Revendication 3] Ensemble selon la revendication 2, dans lequel le
diffuseur d'air (26) de la structure de support d'anneau (6) comprend une bride (26b) maintenue entre l'entretoise (20) et le premier flasque amont (22).
[Revendication 4] Ensemble selon la revendication 3, dans lequel la
structure de support d'anneau (6) comprend en outre une pluralité de moyens de fixation (40) vissés dans l'entretoise (20) et traversant d'amont en aval pour fixer entre eux le premier flasque amont (22), le second flasque amont (24) et la bride (26b) du diffuseur d'air (26).
[Revendication 5] Ensemble selon l'une quelconque des revendications 1 à
4, comprenant en outre des pions axiaux amont (42) destinés à maintenir le premier flasque amont (22) de la structure de support d'anneau contre la patte amont (16) des secteurs d'anneau (10).
[Revendication 6] Ensemble selon l'une quelconque des revendications 1 à
5, comprenant en outre des pions axiaux aval (28) destinés à maintenir la bride (20a) de l'entretoise (20) de la structure de support d'anneau (6) contre la patte aval (18) des secteurs d'anneau (10).
[Revendication 7] Ensemble selon l'une quelconque des revendications 1 à
6, dans lequel l'entretoise (20) de la structure de support d'anneau (6) comprend un crochet amont (20b) pour le montage de ladite structure de support d'anneau (6) sur le carter de turbine (32).
[Revendication 8] Ensemble selon l'une quelconque des revendications 1 à
7, dans lequel le premier flasque amont (22) de la structure de support d'anneau (6) comprend un crochet (22a) pour le montage de ladite structure de support d'anneau (6) sur le carter de turbine (32).
[Revendication 9] Ensemble selon l'une quelconque des revendications 1 à 7, dans lequel l'entretoise (20) de la structure de support d'anneau (6) comprend en outre un crochet aval (20c) pour le maintien d'un distributeur de turbine basse-pression (34) positionné en aval de l'ensemble de turbine.
[Revendication 10] Turbomachine comprenant un ensemble (2) selon l'une quelconque des revendications 1 à 9.
EP20715092.1A 2019-05-03 2020-04-03 Ensemble d'anneau de turbine monté sur entretoise Pending EP3963184A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904663A FR3095668B1 (fr) 2019-05-03 2019-05-03 Ensemble d’anneau de turbine monté sur entretoise
PCT/EP2020/059592 WO2020224891A1 (fr) 2019-05-03 2020-04-03 Ensemble d'anneau de turbine monté sur entretoise

Publications (1)

Publication Number Publication Date
EP3963184A1 true EP3963184A1 (fr) 2022-03-09

Family

ID=67742735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20715092.1A Pending EP3963184A1 (fr) 2019-05-03 2020-04-03 Ensemble d'anneau de turbine monté sur entretoise

Country Status (6)

Country Link
US (1) US20220195894A1 (fr)
EP (1) EP3963184A1 (fr)
JP (1) JP2022531385A (fr)
CN (1) CN113811670A (fr)
FR (1) FR3095668B1 (fr)
WO (1) WO2020224891A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629607B2 (en) * 2021-05-25 2023-04-18 Rolls-Royce Corporation Turbine shroud assembly with radially and axially biased ceramic matrix composite shroud segments
FR3139292A1 (fr) * 2022-09-01 2024-03-08 Safran Aircraft Engines Ensemble d’anneau de turbine à rattrapage de jeux intégré

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169287A (en) * 1991-05-20 1992-12-08 General Electric Company Shroud cooling assembly for gas turbine engine
WO2010103213A1 (fr) 2009-03-09 2010-09-16 Snecma Ensemble d'anneau de turbine
CA2806401A1 (fr) * 2012-02-22 2013-08-22 General Electric Company Enveloppe de turbine a faible ductilite
CA2955121C (fr) * 2014-06-12 2019-10-01 General Electric Company Ensemble dispositif de suspension de carenage
FR3041993B1 (fr) * 2015-10-05 2019-06-21 Safran Aircraft Engines Ensemble d'anneau de turbine avec maintien axial
US9988936B2 (en) * 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
FR3045715B1 (fr) * 2015-12-18 2018-01-26 Safran Aircraft Engines Ensemble d'anneau de turbine avec maintien a froid et a chaud
FR3055147B1 (fr) * 2016-08-19 2020-05-29 Safran Aircraft Engines Ensemble d'anneau de turbine
FR3056637B1 (fr) * 2016-09-27 2018-10-19 Safran Aircraft Engines Ensemble d'anneau de turbine avec calage a froid
FR3056632B1 (fr) * 2016-09-27 2020-06-05 Safran Aircraft Engines Ensemble d'anneau turbine comprenant un element de repartition de l'air de refroidissement
FR3064022B1 (fr) * 2017-03-16 2019-09-13 Safran Aircraft Engines Ensemble d'anneau de turbine
GB201800375D0 (en) * 2018-01-10 2018-02-21 Rolls Royce Plc A test specimen for a gas turbine engine
US10907501B2 (en) * 2018-08-21 2021-02-02 General Electric Company Shroud hanger assembly cooling
US10822985B2 (en) * 2018-08-29 2020-11-03 Raytheon Technologies Corporation Internal cooling circuit for blade outer air seal formed of laminate
US11021990B2 (en) * 2018-12-19 2021-06-01 General Electric Company Shroud sealing for a gas turbine engine

Also Published As

Publication number Publication date
JP2022531385A (ja) 2022-07-06
CN113811670A (zh) 2021-12-17
US20220195894A1 (en) 2022-06-23
WO2020224891A1 (fr) 2020-11-12
FR3095668B1 (fr) 2021-04-09
FR3095668A1 (fr) 2020-11-06

Similar Documents

Publication Publication Date Title
EP3433471B1 (fr) Ensemble d'anneau de turbine avec maintien spécifique à froid
EP3390782B1 (fr) Ensemble d'anneau de turbine avec maintien élastique a froid.
CA2979474C (fr) Ensemble d'anneau de turbine comprenant une pluralite de secteurs d'anneau en materiau composite a matrice ceramique
EP3596315B1 (fr) Ensemble d'anneau de turbine
WO2017103451A1 (fr) Ensemble d'anneau de turbine avec maintien a froid et a chaud
FR3056637A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR3036435A1 (fr) Ensemble d'anneau de turbine
WO2020224891A1 (fr) Ensemble d'anneau de turbine monté sur entretoise
FR3080146A1 (fr) Distributeur en cmc avec reprise d'effort
EP4121635A1 (fr) Ensemble de turbine et moteur à turbine à gaz muni d'un tel ensemble
WO2017194860A1 (fr) Ensemble d'anneau de turbine avec calage a froid
EP3857030B1 (fr) Ensemble pour une turbine de turbomachine et turbomachine associée
EP4326972A1 (fr) Ensemble d'anneau de turbine monté sur entretoise
EP4127413B1 (fr) Ensemble d'anneau de turbine
FR3123943A1 (fr) Ensemble d’anneau de turbine monté sur entretoise
FR3118891A1 (fr) Fabrication d’un injecteur de turbine par fusion laser sur lit de poudre
FR3141207A1 (fr) Anneau d’étanchéité pour turbine démontable par l’amont
FR3121469A1 (fr) Ensemble d’anneau de turbine pour une turbomachine
WO2023209290A1 (fr) Ensemble pour turbomachine
FR3111964A1 (fr) Assemblage d’une pièce de chambre de combustion par recouvrement par une autre pièce
FR3137415A1 (fr) Ensemble d’étanchéité pour stator de turbine basse pression et anneau de turbine basse pression comportant un tel ensemble d’étanchéité
FR3135109A1 (fr) Anneau pour turbine de turbomachine
FR3137721A1 (fr) Ensemble de turbine de turbomachine
FR3122697A1 (fr) Turbine de turbomachine à distributeur en CMC avec maintien en position radiale
FR3139292A1 (fr) Ensemble d’anneau de turbine à rattrapage de jeux intégré

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231023