EP3956547A1 - Separation nozzle for aeronautic turbomachine - Google Patents

Separation nozzle for aeronautic turbomachine

Info

Publication number
EP3956547A1
EP3956547A1 EP20716855.0A EP20716855A EP3956547A1 EP 3956547 A1 EP3956547 A1 EP 3956547A1 EP 20716855 A EP20716855 A EP 20716855A EP 3956547 A1 EP3956547 A1 EP 3956547A1
Authority
EP
European Patent Office
Prior art keywords
annular wall
spout
radial
cavity
inner annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20716855.0A
Other languages
German (de)
French (fr)
Other versions
EP3956547B1 (en
Inventor
Damien Daniel Sylvain Lourit
Adrien Jacques Philippe Fabre
Pierre Jean-Baptiste METGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3956547A1 publication Critical patent/EP3956547A1/en
Application granted granted Critical
Publication of EP3956547B1 publication Critical patent/EP3956547B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/02De-icing means for engines having icing phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/53Building or constructing in particular ways by integrally manufacturing a component, e.g. by milling from a billet or one piece construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles

Definitions

  • the present invention relates to the field of turbomachines and more particularly to a system for defrosting an aeronautical turbomachine separation nozzle.
  • the flow veins of the primary flow and of the secondary flow are separated downstream of the fan by a separating nozzle.
  • the inlet of the low pressure compressor also commonly called “booster”
  • IGV Inlet Guide Vane
  • icing atmospheric conditions may be encountered by the turbomachine, in particular when the ambient temperature is sufficiently low and in the presence of high humidity. Under these conditions, ice may form on the separation nozzle and the inlet guide vanes. When this occurs, it can lead to partial or total obstruction of the primary vein, and the ingestion of loose ice packs in the primary vein.
  • An obstruction of the primary stream leads to underfeeding of the combustion chamber which can then shut down or prevent the engine from accelerating.
  • ice blocks detaching they can damage the compressor located downstream and also lead to the extinction of the combustion chamber.
  • techniques are known consisting of taking hot air from the primary duct at the level of a compressor and injecting it inside the separation nozzle. The hot air injected into the separation spout can then travel through the spout as far as holes or grooves configured to inject hot air into the primary stream which can also defrost the inlet guide vanes. The flow of hot air required to defrost the separation nozzle is high. This hot air bleed can reduce the performance and operability of the turbomachine.
  • the invention relates to a spout for separating a primary flow and a secondary flow of a bypass turbomachine.
  • the spout has a one-piece structure and comprises an outer annular wall, an inner annular wall, a radial annular wall and an inner annular baffle, defining a first cavity between the outer annular wall and the inner annular baffle, and a second cavity between the wall inner annular, the radial annular wall and the inner annular deflector.
  • the deflector makes it possible to reduce the internal volume of the spout in which the hot air circulates. This arrangement therefore makes it possible to reduce caloric losses and thus reduce the intake of hot air.
  • the baffle helps guide hot air into the spout.
  • the one-piece structure makes it possible to dispense with numerous connecting parts and therefore to reduce the mass of the spout compared to known devices.
  • the mechanically coherent assembly that constitutes the one-piece structure can make it possible to refine all of the walls of the spout and therefore to further reduce their mass.
  • the invention makes it possible to increase the efficiency of the defrosting of the separating nozzle without for all that increasing the intake of hot air from a pressurized part of the turbomachine, without increasing the mass of the nozzle.
  • the outer annular wall may have at a region of junction with the inner annular wall a series of radial holes.
  • the spout may have at least one axial rib between the inner annular wall and the inner annular deflector.
  • the spout may have a plurality of axial ribs each coplanar with an axis of revolution of the spout.
  • the spout may have at least one radial rib between the radial annular wall and the internal annular deflector.
  • the spout may have a plurality of radial ribs each coplanar with an axis of revolution of the spout.
  • the spout may have at least one cell formed at least partially in the radial annular wall.
  • the radial annular wall may have a bore opening into at least one cell.
  • the radial annular wall may have at least one oblong opening adapted to receive a nozzle opening into the second cavity.
  • the invention relates to a rectifier for an aeronautical turbomachine, which has a one-piece structure produced by additive manufacturing, comprising a nozzle having: (i) the one-piece structure comprising an outer annular wall, an inner annular wall, a wall radial annular and an inner annular baffle, (ii) the first cavity between the outer annular wall and the inner annular baffle, (iii) the second cavity between the inner annular wall, the radial annular wall and the inner annular baffle.
  • the invention relates to a method of manufacturing a rectifier of an aeronautical turbomachine having a one-piece structure produced by additive manufacturing and comprising a nozzle having: (i) a one-piece structure comprising an outer annular wall, an annular wall inner, a radial annular wall and an inner annular baffle, (ii) a first cavity between the outer annular wall and the inner annular baffle, (iii) a second cavity between the inner annular wall, the radial annular wall and the inner annular baffle .
  • the method may include a step of manufacturing the spout starting with the radial annular wall.
  • Figure 1 is a partial sectional view of a nozzle and a stator vane
  • Figure 2 is a sectional view of a nozzle according to the invention.
  • Figure 3 is a partial perspective view of a nozzle and a stator vane
  • Figure 4 is a partial perspective view of an annular radial wall.
  • the invention relates to a nozzle 1 for separating a bypass aeronautical turbomachine.
  • the nozzle 1 separates as explained the primary flow from the secondary flow. It is intended to be positioned downstream of a fan (shown partially in section in Figure 1) of the turbomachine to form a separation between annular flow channels (ie veins) of the primary flow and the secondary flow. from the blower.
  • the nozzle 1 is an integral part of a rectifier 10 of the primary flow.
  • the nozzle 1 and the rectifier 10 are parts of revolution.
  • the spout 1 forms a substantially cylindrical element inside which the primary flow passes, and outside (around) which the secondary flow passes.
  • an axis of revolution X of the rectifier 10 (and of the nose 1) is defined, and a radial axis Z, substantially perpendicular to the axis of revolution X, shown in FIGS. 1 and 2.
  • the rectifier 10 In a radial direction Z progressing from the inside (as close as possible to the axis of revolution X) towards the outside (as far from the axis of revolution X), the rectifier 10 successively comprises: an inner shell 101, vanes 102 and nozzle 1.
  • the spout 1 also has a one-piece structure.
  • the nozzle 1 is preferably produced by additive manufacturing.
  • the spout 1 comprises an outer annular wall 12, an inner annular wall 13, a radial annular wall 14 and an internal annular deflector 16.
  • the inner wall 13, the annular deflector is successively encountered.
  • a section of the spout 1 along an XoZ plane (as seen in Figures 1 and 2) has substantially the shape of a right triangle whose sides are the outer annular wall 12, the wall inner annular 13, and the radial annular wall 14, and the outer annular wall 12 of which is the hypotenuse.
  • the inner annular wall 13 and the outer annular wall 12 come together going upstream (i.e. towards the fan) to form the "nozzle" functionally speaking.
  • a region of junction of the outer annular wall 12 and the inner annular wall 13 is defined.
  • the outer annular wall 12 is preferably slightly curvilinear, in particular curved (convex) so as to improve the overall aerodynamics of the spout 1. Between the outer annular wall 12 and the internal annular deflector 16, the spout 1 has a first cavity 17.
  • the spout 1 has a second cavity 18.
  • the spout 1 is substantially divided in two by the internal annular deflector 16, this defining the two cavities 17, 18. It is in fact understood that the spout 1 is substantially hollow (with the exception of an area in the vicinity of the radial annular wall 14, see below).
  • the internal annular deflector 16 therefore extends from the junction region of the outer annular wall 12 and the inner annular wall 13 to a junction region of the outer annular wall 12 and of the radial annular wall 14. It preferably has a bent shape so that the first cavity 17 occupies most of the volume of the spout 1, the second cavity 18 essentially following the radial annular wall 14 and then the inner annular wall 13.
  • the second cavity has a first part 18a between the inner annular wall 13 and the internal annular deflector 16, and a second part 18b between the radial annular wall 14 and the internal annular deflector 16. It is specified that the two parts 18a and 18b of the second cavity 18 communicate with each other and define a single volume.
  • the inner annular wall 13 has at the junction region of the outer annular wall 12 and the inner annular wall 13 a series of holes 20, in particular radial (ie opening in the direction of the longitudinal axis).
  • the radial holes 20 allow the hot air blown into the second cavity 18 at the end of the latter to be optimally discharged, in particular to preheat the air entering the level. blades 102 in the primary vein, so as to defrost the nozzle 1 and the blades 102.
  • the nozzle 1 comprises a series of axial ribs 22 between the inner annular wall 13 and the internal annular deflector 16, extending in the first part 18a of the second cavity 18.
  • the axial ribs 22 are each coplanar with the axis of revolution X, ie along the plane XoZ.
  • the spout 1 comprises a series of radial ribs 24 between the radial annular wall 14 and the internal annular deflector 16, extending into the second part 18b of the second cavity 18. It is specified that the radial ribs 24 are each coplanar with the axis of revolution X, ie again according to the XoZ plane.
  • each axial rib 22 can be coplanar with a radial rib 24. It is understood that the axial and radial ribs 22, 24 define azimuthal partitions (that is to say sectors) of the second cavity 18, but incomplete. (i.e. the ribs 22 and 24 nevertheless remain spaced apart and advantageously do not touch each other), so that at a junction region of the annular wall interior 13 and of the radial annular wall 14 (ie at the junction of the first and second part of the second cavity, etc.) the second cavity 18 is not ribbed, allowing azimuthal communication. Similarly, the axial ribs 22 do not extend to the end of the second cavity, so as to also allow azimuthal communication at the level of the holes 20.
  • the axial 22 and radial 24 ribs have a dual function of mechanical reinforcement and of guiding the flow of hot air.
  • the axial 22 and radial 24 ribs make it possible to stiffen the spout 1, which makes it possible to prevent possible sagging of the spout 1.
  • the axial 22 and radial 24 ribs advantageously make it possible to optimize the mass of the spout 1 by making it possible to refine the thickness of the internal annular deflector 16, of the radial annular wall 14 and of the internal annular wall 13. It is understood that this mass optimization is based on a compromise between the mass contribution of the ribs and the reduction in thickness of the walls and of the deflector that they allow.
  • the axial 22 and radial 24 ribs make it possible to guarantee the good mechanical strength of the nose 1 during manufacture.
  • the axial 22 and radial 24 ribs make it possible to guide the flow of hot air to defrost the spout 1.
  • the spout 1 advantageously has a plurality of cells 28a, 28b, 28c.
  • the spout 1 comprises three cells 28a, 28b and 28c.
  • a first cell 28a may be arranged in a corner region of the outer annular wall 12 and the radial annular wall 14. It is notable that according to the embodiment presented here, the first cell 28a has a kidney-shaped section in the XoZ plane. (ie substantially has a bean-shaped section in the XoZ plane).
  • a second and a third cell 28b and 28c are located in a corner region of the inner annular wall 13 and of the radial annular wall 14.
  • cells 28a, 28b, 28c correspond to regions of lightening material.
  • the cells 28a, 28b, 28c correspond to areas in which no material is deposited because this does not will not present any added value in terms of mechanical resistance (although this would necessarily add mass).
  • the realization of the nozzle 1 in additive manufacturing allows the obtaining of a one-piece structure, but also makes it possible to optimize the geometry of the nozzle 1 to have the best ratio between mass and resistance.
  • the cells 28a, 28b, 28c would be very difficult to achieve other than in additive manufacturing.
  • the radial annular wall 14 may have bores 30 opening into the first and second cells 28a and 28b.
  • the holes 30 advantageously allow part of the powder resulting from the additive manufacturing of the nozzle 1 to be discharged.
  • the radial annular wall 14 may have oblong openings 33 adapted to each accommodate a nozzle opening into the second cavity 18 for blowing hot air therein.
  • the radial wall 14 can have a plurality of fixing holes 35. Manufacturing process
  • the rectifier 10 is manufactured according to an additive manufacturing process.
  • the rectifier 10 is manufactured by successive additions of molten powder layer by layer. As explained above, this manufacturing process makes it possible to obtain a one-piece part having a specific geometry.
  • the rectifier 10 is manufactured starting with the radial annular wall 14 of the spout, in a direction of progression (i.e. adding layers of material) substantially parallel to the axis of revolution X.
  • a nozzle (not shown) can be connected to each oblong opening 33.
  • the nozzles can blow hot air into the second cavity 18.
  • the internal annular deflector 16 makes it possible to reduce the internal volume of the spout 1 by dividing it into two cavities.
  • the volume in which the hot air circulates is reduced, which reduces the heat loss in the spout 1 and makes it possible to reduce hot air being taken off.
  • the internal annular deflector 16 makes it possible to direct the hot air towards the areas of interest to be defrosted.
  • the heat radiation from the hot air inside the nozzle 1 defrosts the nozzle 1.
  • the hot air circulating in the second cavity 18 is then diffused through the radial holes 20 to join the primary stream and defrost the vanes 102.
  • the invention makes it possible to effectively defrost the nozzle without thereby increasing the intake of hot air from a pressurized part of the turbomachine and without increasing the mass of the nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a nozzle (1) for separating a primary flow from a secondary flow in a double-flow turbomachine. The separation nozzle comprises an outer annular wall (12), an inner annular wall (13), a radial annular wall (14) and an inner annular baffle (16), and defines a first cavity (17) between the outer annular wall (12) and the inner annular baffle (16), and a second cavity (18) between the inner annular wall (13), the radial annular wall (14) and the inner annular baffle (16).

Description

BEC DE SEPARATION DE TURBOMACHINE AERONAUTIQUE AERONAUTICAL TURBOMACHINE SEPARATION NOZZLE
DOMAINE DE L'INVENTION ET ETAT DE LA TECHNIQUE FIELD OF THE INVENTION AND STATE OF THE ART
La présente invention concerne, le domaine des turbomachines et plus particulièrement, un système de dégivrage d’un bec de séparation de turbomachine aéronautique. The present invention relates to the field of turbomachines and more particularly to a system for defrosting an aeronautical turbomachine separation nozzle.
Dans une turbomachine aéronautique du type à double corps et double flux, les veines d'écoulement du flux primaire et du flux secondaire sont séparées en aval de la soufflante par un bec de séparation. Au sein de la veine primaire, à l'entrée du compresseur basse pression (aussi couramment appelé « booster »), se trouvent un ensemble d'aubes directrices d'entrée fixes (aussi appelées IGV pour « Inlet Guide Vane »). Dans certaines phases de vol et au sol, des conditions atmosphériques givrantes peuvent être rencontrées par la turbomachine, notamment lorsque la température ambiante est suffisamment basse et en présence d'une humidité élevée. Dans ces conditions, de la glace peut se former sur le bec de séparation et les aubes directrices d'entrée. Lorsque ce phénomène se produit, il peut conduire à l'obstruction partielle ou totale de la veine primaire, et à l'ingestion de blocs de glace détachés dans la veine primaire. Une obstruction de la veine primaire entraîne une sous-alimentation de la chambre de combustion qui peut alors s'éteindre ou empêcher l'accélération du moteur. Dans le cas du détachement de blocs de glace, ces derniers peuvent endommager le compresseur situé à l'aval et conduire également à l'extinction de la chambre de combustion. Pour éviter la formation de glace sur le bec de séparation, on connaît des techniques consistant à venir prélever de l'air chaud dans la veine primaire au niveau d'un compresseur et à l'injecter à l'intérieur du bec de séparation. L'air chaud injecté dans le bec de séparation peut ensuite cheminer dans le bec jusqu'à des perçages ou des rainures configurées pour injecter l'air chaud dans la veine primaire qui peut dégivrer également les aubes directrices d'entrée. Le débit d'air chaud nécessaire pour dégivrer le bec de séparation est important. Ce prélèvement d'air chaud peut réduire les performances et l'opérabilité de la turbomachine. In an aeronautical turbomachine of the double-body and double-flow type, the flow veins of the primary flow and of the secondary flow are separated downstream of the fan by a separating nozzle. Within the primary stream, at the inlet of the low pressure compressor (also commonly called “booster”), there is a set of fixed inlet guide vanes (also called IGV for “Inlet Guide Vane”). In certain phases of flight and on the ground, icing atmospheric conditions may be encountered by the turbomachine, in particular when the ambient temperature is sufficiently low and in the presence of high humidity. Under these conditions, ice may form on the separation nozzle and the inlet guide vanes. When this occurs, it can lead to partial or total obstruction of the primary vein, and the ingestion of loose ice packs in the primary vein. An obstruction of the primary stream leads to underfeeding of the combustion chamber which can then shut down or prevent the engine from accelerating. In the case of ice blocks detaching, they can damage the compressor located downstream and also lead to the extinction of the combustion chamber. To prevent the formation of ice on the separation nozzle, techniques are known consisting of taking hot air from the primary duct at the level of a compressor and injecting it inside the separation nozzle. The hot air injected into the separation spout can then travel through the spout as far as holes or grooves configured to inject hot air into the primary stream which can also defrost the inlet guide vanes. The flow of hot air required to defrost the separation nozzle is high. This hot air bleed can reduce the performance and operability of the turbomachine.
Il est apparu souhaitable de pouvoir augmenter l'efficacité du dégivrage du bec. Une solution connue consiste à réduire le volume à l’intérieur du bec, de sorte à ainsi réduire les pertes de chaleur dans le bec. Il est ainsi connu d’ajouter un déflecteur annulaire dans la cavité du bec. Le déflecteur permet de réduire le volume de la cavité du bec et d’orienter l’air chaud vers les zones d’intérêt à dégivrer. Cependant, l’ajout d’un déflecteur (et de ses divers éléments d’accroche) alourdit le bec, ce qui se traduit par une augmentation de la consommation de la turbine en fonctionnement. It appeared desirable to be able to increase the efficiency of the defrosting of the spout. One known solution consists in reducing the volume inside the spout, so as to reduce heat loss in the spout. It is thus known to add an annular deflector in the cavity of the spout. The deflector makes it possible to reduce the volume of the spout cavity and to direct the hot air towards the areas of interest to be defrosted. However, the addition of a deflector (and its various hooking elements) makes the nozzle heavier, which results in an increase in the consumption of the turbine in operation.
Il serait donc souhaitable de pouvoir augmenter l’efficacité du dégivrage du bec de séparation sans augmenter pour autant le prélèvement d'air chaud dans une partie pressurisée de la turbomachine, sans augmenter la masse du bec. It would therefore be desirable to be able to increase the efficiency of the defrosting of the separation nozzle without thereby increasing the intake of hot air from a pressurized part of the turbomachine, without increasing the mass of the nozzle.
PRESENTATION GENERALE DE L’INVENTION GENERAL PRESENTATION OF THE INVENTION
Selon un premier aspect, l’invention concerne un bec de séparation entre un flux primaire et un flux secondaire d’une turbomachine à double flux. Le bec présente une structure monobloc et comprend une paroi annulaire extérieure, une paroi annulaire intérieure, une paroi annulaire radiale et un déflecteur annulaire interne, définissant une première cavité entre la paroi annulaire extérieure et le déflecteur annulaire interne, et une deuxième cavité entre la paroi annulaire intérieure, la paroi annulaire radiale et le déflecteur annulaire interne. According to a first aspect, the invention relates to a spout for separating a primary flow and a secondary flow of a bypass turbomachine. The spout has a one-piece structure and comprises an outer annular wall, an inner annular wall, a radial annular wall and an inner annular baffle, defining a first cavity between the outer annular wall and the inner annular baffle, and a second cavity between the wall inner annular, the radial annular wall and the inner annular deflector.
D’une manière particulièrement avantageuse, le déflecteur permet de réduire le volume intérieur du bec dans lequel l’air chaud circule. Cette disposition permet donc de diminuer les pertes caloriques et ainsi de réduire le prélèvement d’air chaud. En outre, le déflecteur permet de guider l’air chaud dans le bec. In a particularly advantageous manner, the deflector makes it possible to reduce the internal volume of the spout in which the hot air circulates. This arrangement therefore makes it possible to reduce caloric losses and thus reduce the intake of hot air. In addition, the baffle helps guide hot air into the spout.
En sus, La structure monobloc permet de s’affranchir de nombreuses pièces de liaison et donc de réduire la masse du bec par rapport au dispositifs connus. En outre, l’ensemble mécaniquement cohérent que constitue la structure monobloc peut autoriser d’affiner l’ensemble des parois du bec et donc d’en diminuer encore la masse. Ainsi, l’invention permet augmenter l’efficacité du dégivrage du bec de séparation sans augmenter pour autant le prélèvement d'air chaud dans une partie pressurisée de la turbomachine, sans augmenter la masse du bec. La paroi annulaire extérieure peut présenter au niveau d’une région de jonction avec la paroi annulaire intérieure une série de trous radiaux. In addition, the one-piece structure makes it possible to dispense with numerous connecting parts and therefore to reduce the mass of the spout compared to known devices. In addition, the mechanically coherent assembly that constitutes the one-piece structure can make it possible to refine all of the walls of the spout and therefore to further reduce their mass. Thus, the invention makes it possible to increase the efficiency of the defrosting of the separating nozzle without for all that increasing the intake of hot air from a pressurized part of the turbomachine, without increasing the mass of the nozzle. The outer annular wall may have at a region of junction with the inner annular wall a series of radial holes.
Le bec peut présenter au moins une nervure axiale entre la paroi annulaire intérieure et le déflecteur annulaire interne. The spout may have at least one axial rib between the inner annular wall and the inner annular deflector.
Selon une disposition particulière, le bec peut présenter une pluralité de nervures axiales chacune coplanaire avec un axe de révolution du bec. According to a particular arrangement, the spout may have a plurality of axial ribs each coplanar with an axis of revolution of the spout.
Le bec peut présenter au moins une nervure radiale entre la paroi annulaire radiale et le déflecteur annulaire interne. The spout may have at least one radial rib between the radial annular wall and the internal annular deflector.
Selon une disposition particulière, le bec peut présenter une pluralité de nervures radiales chacune coplanaire avec un axe de révolution du bec. According to a particular arrangement, the spout may have a plurality of radial ribs each coplanar with an axis of revolution of the spout.
Le bec peut présenter au moins une alvéole ménagée au moins partiellement dans la paroi annulaire radiale. The spout may have at least one cell formed at least partially in the radial annular wall.
La paroi annulaire radiale peut présenter un perçage débouchant dans l’au moins une alvéole. The radial annular wall may have a bore opening into at least one cell.
La paroi annulaire radiale peut présenter au moins une ouverture oblongue adaptée pour accueillir une buse débouchant dans la deuxième cavité. The radial annular wall may have at least one oblong opening adapted to receive a nozzle opening into the second cavity.
Selon un deuxième aspect, l’invention concerne un redresseur pour une turbomachine aéronautique, qui présente une structure monobloc réalisée par fabrication additive, comprenant un bec présentant : (i) la structure monobloc comprenant une paroi annulaire extérieure, une paroi annulaire intérieure, une paroi annulaire radiale et un déflecteur annulaire interne, (ii) la première cavité entre la paroi annulaire extérieure et le déflecteur annulaire interne, (iii) la deuxième cavité entre la paroi annulaire intérieure, la paroi annulaire radiale et le déflecteur annulaire interne. According to a second aspect, the invention relates to a rectifier for an aeronautical turbomachine, which has a one-piece structure produced by additive manufacturing, comprising a nozzle having: (i) the one-piece structure comprising an outer annular wall, an inner annular wall, a wall radial annular and an inner annular baffle, (ii) the first cavity between the outer annular wall and the inner annular baffle, (iii) the second cavity between the inner annular wall, the radial annular wall and the inner annular baffle.
Selon une troisième aspect l’invention concerne un procédé de fabrication d’un redresseur d’une turbomachine aéronautique présentant une structure monobloc réalisée par fabrication additive et comprenant un bec présentant : (i) une structure monobloc comprenant une paroi annulaire extérieure, une paroi annulaire intérieure, une paroi annulaire radiale et un déflecteur annulaire interne, (ii) une première cavité entre la paroi annulaire extérieure et le déflecteur annulaire interne, (iii) une deuxième cavité entre la paroi annulaire intérieure, la paroi annulaire radiale et le déflecteur annulaire interne. Le procédé peut comprendre une étape de fabrication du bec en commençant par la paroi annulaire radiale. According to a third aspect, the invention relates to a method of manufacturing a rectifier of an aeronautical turbomachine having a one-piece structure produced by additive manufacturing and comprising a nozzle having: (i) a one-piece structure comprising an outer annular wall, an annular wall inner, a radial annular wall and an inner annular baffle, (ii) a first cavity between the outer annular wall and the inner annular baffle, (iii) a second cavity between the inner annular wall, the radial annular wall and the inner annular baffle . The method may include a step of manufacturing the spout starting with the radial annular wall.
DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES
D’autres caractéristiques et avantages de l’invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées sur lesquelles : Other characteristics and advantages of the invention will emerge from the following description, which is purely illustrative and non-limiting, and should be read with reference to the appended figures in which:
La figure 1 est une vue en coupe partielle d’un bec et d’une aube de redresseur ; Figure 1 is a partial sectional view of a nozzle and a stator vane;
La figure 2 est une vue en coupe d’un bec selon l’invention ; Figure 2 is a sectional view of a nozzle according to the invention;
La figure 3 est une vue en perspective partielle d’un bec et d’une aube de redresseur ; La figure 4 est une vue en perspective partielle d’une paroi radiale annulaire. Figure 3 is a partial perspective view of a nozzle and a stator vane; Figure 4 is a partial perspective view of an annular radial wall.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
Architecture générale General architecture
En référence aux figures 1 à 4, selon un premier aspect, l’invention concerne, un bec 1 de séparation de turbomachine aéronautique à double flux. Le bec 1 sépare comme expliqué le flux primaire du flux secondaire. Il est destiné à être positionné à l’aval d’une soufflante (représentée partiellement en coupe sur la figure 1 ) de la turbomachine pour former une séparation entre des canaux annulaires d’écoulement (i.e. des veines) du flux primaire et du flux secondaire issus de la soufflante. Referring to Figures 1 to 4, according to a first aspect, the invention relates to a nozzle 1 for separating a bypass aeronautical turbomachine. The nozzle 1 separates as explained the primary flow from the secondary flow. It is intended to be positioned downstream of a fan (shown partially in section in Figure 1) of the turbomachine to form a separation between annular flow channels (ie veins) of the primary flow and the secondary flow. from the blower.
Selon le mode de réalisation ici présenté le bec 1 fait partie intégrante d’un redresseur 10 du flux primaire. Le bec 1 et le redresseur 10 sont des pièces de révolution. On comprend ainsi que le bec 1 forme un élément sensiblement cylindrique à l’intérieur duquel passe le flux primaire, et à l’extérieur (autour) duquel passe le flux secondaire. Pour la suite de la description, on définit un axe de révolution X du redresseur 10 (et du bec 1 ), et un axe radial Z, sensiblement perpendiculaire à l’axe de révolution X, représentés sur les figures 1 et 2. Selon une direction radiale Z progressant de l’intérieur (au plus près de l’axe de révolution X) vers l’extérieur (au plus loin de l’axe de révolution X), le redresseur 10 comprend successivement : une virole intérieure 101 , des aubes 102 et le bec 1. According to the embodiment presented here, the nozzle 1 is an integral part of a rectifier 10 of the primary flow. The nozzle 1 and the rectifier 10 are parts of revolution. It is thus understood that the spout 1 forms a substantially cylindrical element inside which the primary flow passes, and outside (around) which the secondary flow passes. For the remainder of the description, an axis of revolution X of the rectifier 10 (and of the nose 1) is defined, and a radial axis Z, substantially perpendicular to the axis of revolution X, shown in FIGS. 1 and 2. In a radial direction Z progressing from the inside (as close as possible to the axis of revolution X) towards the outside (as far from the axis of revolution X), the rectifier 10 successively comprises: an inner shell 101, vanes 102 and nozzle 1.
Bec Beak
D’une manière particulièrement avantageuse, le bec 1 présente également une structure monobloc. Tel que cela sera décrit ci-après, le bec 1 est préférentiellement réalisé en fabrication additive. In a particularly advantageous manner, the spout 1 also has a one-piece structure. As will be described below, the nozzle 1 is preferably produced by additive manufacturing.
Le bec 1 comprend une paroi annulaire extérieure 12, une paroi annulaire intérieure 13, une paroi annulaire radiale 14 et un déflecteur annulaire interne 16. En parcourant le bec 1 selon ladite direction radiale Z, on rencontre successivement la paroi intérieure 13, le déflecteur annulaire interne 16 et la paroi annulaire extérieure 12. Une section du bec 1 selon un plan XoZ (comme l’on voit sur les figures 1 et 2) présente sensiblement une forme de triangle rectangle dont les côtés sont la paroi annulaire extérieure 12, la paroi annulaire intérieure 13, et la paroi annulaire radiale 14, et dont la paroi annulaire extérieure 12 est l’hypoténuse. The spout 1 comprises an outer annular wall 12, an inner annular wall 13, a radial annular wall 14 and an internal annular deflector 16. By traversing the spout 1 in said radial direction Z, the inner wall 13, the annular deflector is successively encountered. internal 16 and the outer annular wall 12. A section of the spout 1 along an XoZ plane (as seen in Figures 1 and 2) has substantially the shape of a right triangle whose sides are the outer annular wall 12, the wall inner annular 13, and the radial annular wall 14, and the outer annular wall 12 of which is the hypotenuse.
La paroi annulaire intérieure 13 et la paroi annulaire extérieure 12 se rejoignent en allant vers l’amont (i.e. vers la soufflante) pour former le « bec » fonctionnellement parlant. On définit une région de jonction de la paroi annulaire extérieure 12 et de la paroi annulaire intérieure 13. The inner annular wall 13 and the outer annular wall 12 come together going upstream (i.e. towards the fan) to form the "nozzle" functionally speaking. A region of junction of the outer annular wall 12 and the inner annular wall 13 is defined.
La paroi annulaire extérieure 12 est préférentiellement légèrement curviligne, en particulier bombée (convexe) de sorte à améliorer l’aérodynamique globale du bec 1. Entre la paroi annulaire extérieure 12 et le déflecteur annulaire interne 16, le bec 1 présente une première cavité 17. The outer annular wall 12 is preferably slightly curvilinear, in particular curved (convex) so as to improve the overall aerodynamics of the spout 1. Between the outer annular wall 12 and the internal annular deflector 16, the spout 1 has a first cavity 17.
Entre la paroi annulaire intérieure 13, la paroi annulaire radiale 14 et le déflecteur annulaire interne 16, le bec 1 présente une deuxième cavité 18. Between the internal annular wall 13, the radial annular wall 14 and the internal annular deflector 16, the spout 1 has a second cavity 18.
En d’autres termes, le bec 1 est sensiblement divisé en deux par le déflecteur annulaire interne 16, cela définissant les deux cavités 17, 18. On comprend en effet que le bec 1 est sensiblement creux (à l’exception d’une zone au voisinage de la paroi annulaire radiale 14, voir plus loin). Le déflecteur annulaire interne 16 s’étend pour cela de la région de jonction de la paroi annulaire extérieure 12 et de la paroi annulaire intérieure 13 à une région de jonction la paroi annulaire extérieure 12 et de la paroi annulaire radiale 14. Il présente préférentiellement une forme coudée de sorte que la première cavité 17 occupe la majeure partie du volume du bec 1 , la seconde cavité 18 suivant essentiellement la paroi annulaire radiale 14 puis la paroi annulaire intérieure 13. La seconde cavité présente une première partie 18a entre la paroi annulaire intérieure 13 et le déflecteur annulaire interne 16, et une seconde partie 18b entre la paroi annulaire radiale 14 et le déflecteur annulaire interne 16. Il est précisé que les deux parties 18a et 18b de la seconde cavité 18 communiquent entre elles et définissent un seul volume. In other words, the spout 1 is substantially divided in two by the internal annular deflector 16, this defining the two cavities 17, 18. It is in fact understood that the spout 1 is substantially hollow (with the exception of an area in the vicinity of the radial annular wall 14, see below). The internal annular deflector 16 therefore extends from the junction region of the outer annular wall 12 and the inner annular wall 13 to a junction region of the outer annular wall 12 and of the radial annular wall 14. It preferably has a bent shape so that the first cavity 17 occupies most of the volume of the spout 1, the second cavity 18 essentially following the radial annular wall 14 and then the inner annular wall 13. The second cavity has a first part 18a between the inner annular wall 13 and the internal annular deflector 16, and a second part 18b between the radial annular wall 14 and the internal annular deflector 16. It is specified that the two parts 18a and 18b of the second cavity 18 communicate with each other and define a single volume.
En référence notamment aux figures 2 et 3, la paroi annulaire intérieure 13 présente au niveau de la région de jonction de la paroi annulaire extérieure 12 et de la paroi annulaire intérieure 13 une série de trous 20, en particulier radiaux (i.e. débouchant en direction de l’axe longitudinal). Tel que cela sera décrit ci-après, les trous radiaux 20 permettent d’évacuer de manière optimale de l’air chaud insufflé dans la deuxième cavité 18 à l’extrémité de celle-ci, en particulier pour préchauffer l’air entrant au niveau des pales 102 dans la veine primaire, de manière à dégivrer le bec 1 et les pales 102. En outre, d’une manière préférentielle, le bec 1 comprend une série de nervures axiales 22 entre la paroi annulaire intérieure 13 et le déflecteur annulaire interne 16, s’étendant dans la première partie 18a de la deuxième cavité 18. Il est précisé que les nervures axiales 22 sont chacune coplanaires avec l’axe de révolution X, i.e. selon le plan XoZ. De même, le bec 1 comprend une série de nervures radiale 24 entre la paroi annulaire radiale 14 et le déflecteur annulaire interne 16, s’étendant dans la deuxième partie 18b de la deuxième cavité 18. Il est précisé que les nervures radiale 24 sont chacune coplanaires avec l’axe de révolution X, i.e. à nouveau selon le plan XoZ. Referring in particular to Figures 2 and 3, the inner annular wall 13 has at the junction region of the outer annular wall 12 and the inner annular wall 13 a series of holes 20, in particular radial (ie opening in the direction of the longitudinal axis). As will be described below, the radial holes 20 allow the hot air blown into the second cavity 18 at the end of the latter to be optimally discharged, in particular to preheat the air entering the level. blades 102 in the primary vein, so as to defrost the nozzle 1 and the blades 102. In addition, preferably, the nozzle 1 comprises a series of axial ribs 22 between the inner annular wall 13 and the internal annular deflector 16, extending in the first part 18a of the second cavity 18. It is specified that the axial ribs 22 are each coplanar with the axis of revolution X, ie along the plane XoZ. Likewise, the spout 1 comprises a series of radial ribs 24 between the radial annular wall 14 and the internal annular deflector 16, extending into the second part 18b of the second cavity 18. It is specified that the radial ribs 24 are each coplanar with the axis of revolution X, ie again according to the XoZ plane.
Ici par « axial » et « radial » on entend simplement leur direction principale d’extension. En sus, chaque nervure axiale 22 peut être coplanaire avec une nervure radiale 24. On comprend que les nervures axiales et radiales 22, 24 définissent des cloisonnement azimutaux (c’est-à-dire des secteurs) de la deuxième cavité 18, mais incomplets (c’est- à-dire que les nervures 22 et 24 restent néanmoins espacées et avantageusement ne se touchent pas), de sorte qu’au niveau d’une région de jonction de la paroi annulaire intérieure 13 et de la paroi annulaire radiale 14 (i.e. à la jonction des première et deuxième partie de la deuxième cavité... ) la deuxième cavité 18 ne soit pas nervurée, permettant une communication azimutale. Similairement, les nervures axiales 22 ne vont pas jusqu’à l’extrémité de la deuxième cavité, de sorte à permettre également au niveau des trous 20 une communication azimutale. Here by “axial” and “radial” is meant simply their main direction of extension. In addition, each axial rib 22 can be coplanar with a radial rib 24. It is understood that the axial and radial ribs 22, 24 define azimuthal partitions (that is to say sectors) of the second cavity 18, but incomplete. (i.e. the ribs 22 and 24 nevertheless remain spaced apart and advantageously do not touch each other), so that at a junction region of the annular wall interior 13 and of the radial annular wall 14 (ie at the junction of the first and second part of the second cavity, etc.) the second cavity 18 is not ribbed, allowing azimuthal communication. Similarly, the axial ribs 22 do not extend to the end of the second cavity, so as to also allow azimuthal communication at the level of the holes 20.
D’une manière particulièrement avantageuse, les nervures axiale 22 et radiales 24 ont une double fonction de renfort mécanique et de guidage du flux d’air chaud. In a particularly advantageous manner, the axial 22 and radial 24 ribs have a dual function of mechanical reinforcement and of guiding the flow of hot air.
En effet, les nervures axiales 22 et radiales 24 permettent de rigidifier le bec 1 , ce qui permet d’éviter un éventuel affaissement du bec 1 . Les nervures axiales 22 et radiales 24 permettent avantageusement d’optimiser la masse du bec 1 en permettant d’affiner l’épaisseur du déflecteur annulaire interne 16, de la paroi annulaire radiale 14 et de la paroi annulaire intérieur 13. Il est entendu que cette optimisation massique repose sur un compromis entre l’apport en masse des nervures et la réduction d’épaisseur des parois et du déflecteur qu’elles permettent. De plus, lors de la fabrication du bec 1 , selon un procédé de fabrication additive, les nervures axiales 22 et radiales 24 permettent de garantir la bonne tenue mécanique du bec 1 en cours de fabrication. In fact, the axial 22 and radial 24 ribs make it possible to stiffen the spout 1, which makes it possible to prevent possible sagging of the spout 1. The axial 22 and radial 24 ribs advantageously make it possible to optimize the mass of the spout 1 by making it possible to refine the thickness of the internal annular deflector 16, of the radial annular wall 14 and of the internal annular wall 13. It is understood that this mass optimization is based on a compromise between the mass contribution of the ribs and the reduction in thickness of the walls and of the deflector that they allow. In addition, during the manufacture of the nose 1, according to an additive manufacturing process, the axial 22 and radial 24 ribs make it possible to guarantee the good mechanical strength of the nose 1 during manufacture.
Tel que cela sera détaillé, en fonctionnement, les nervures axiales 22 et radiales 24 permettent de guider les flux d’air chaud pour dégivrer le bec 1. As will be detailed, in operation, the axial 22 and radial 24 ribs make it possible to guide the flow of hot air to defrost the spout 1.
Par ailleurs, comme on peut l’observer notamment sur la figure 2, le bec 1 présente avantageusement une pluralité d’alvéoles 28a, 28b, 28c. Selon le mode de réalisation ici présenté, le bec 1 comprend trois alvéoles 28a, 28b et 28c. Une première alvéole 28a peut être disposée dans une région d’angle de la paroi annulaire extérieure 12 et la paroi annulaire radiale 14. Il est notable que selon le mode de réalisation ici présenté, la première alvéole 28a présente une section réniforme dans le plan XoZ (i. e. présente sensiblement une section en forme de haricot dans le plan XoZ). Une deuxième et une troisième alvéole 28b et 28c sont situées dans une région d’angle de la paroi annulaire intérieure 13 et de la paroi annulaire radiale 14. Ces alvéoles 28a, 28b, 28c correspondent à des régions d’allégement de matière. En d’autres termes, dans le cadre d’une réalisation en fabrication additive, les alvéoles 28a, 28b, 28c correspondent à des zones dans lesquelles il n’est pas déposé de matière car cela ne présentera pas de plus-value en termes de résistance mécanique (alors que cela ajouterait nécessairement de la masse). Moreover, as can be seen in particular in FIG. 2, the spout 1 advantageously has a plurality of cells 28a, 28b, 28c. According to the embodiment presented here, the spout 1 comprises three cells 28a, 28b and 28c. A first cell 28a may be arranged in a corner region of the outer annular wall 12 and the radial annular wall 14. It is notable that according to the embodiment presented here, the first cell 28a has a kidney-shaped section in the XoZ plane. (ie substantially has a bean-shaped section in the XoZ plane). A second and a third cell 28b and 28c are located in a corner region of the inner annular wall 13 and of the radial annular wall 14. These cells 28a, 28b, 28c correspond to regions of lightening material. In other words, in the context of an additive manufacturing production, the cells 28a, 28b, 28c correspond to areas in which no material is deposited because this does not will not present any added value in terms of mechanical resistance (although this would necessarily add mass).
Ainsi, il est remarquable que la réalisation du bec 1 en fabrication additive permet l’obtention d’une structure monobloc, mais permet aussi d’optimiser la géométrie du bec 1 pour avoir le meilleur rapport entre la masse et la résistance. En l’espèce, les alvéoles 28a, 28b, 28c seraient très difficilement réalisables autrement qu’en fabrication additive. Thus, it is remarkable that the realization of the nozzle 1 in additive manufacturing allows the obtaining of a one-piece structure, but also makes it possible to optimize the geometry of the nozzle 1 to have the best ratio between mass and resistance. In this case, the cells 28a, 28b, 28c would be very difficult to achieve other than in additive manufacturing.
La paroi annulaire radiale 14 peut présenter des perçages 30 débouchant dans les première et deuxième alvéoles 28a et 28b. Les perçages 30 permettent avantageusement d’évacuer une partie de la poudre résultant de la fabrication additive du bec 1. The radial annular wall 14 may have bores 30 opening into the first and second cells 28a and 28b. The holes 30 advantageously allow part of the powder resulting from the additive manufacturing of the nozzle 1 to be discharged.
Tel que représenté sur la figure 4, la paroi annulaire radiale 14 peut présenter des ouvertures oblongues 33 adaptées pour accueillir chacune une buse débouchant dans la deuxième cavité 18 pour y souffler de l’air chaud. As shown in Figure 4, the radial annular wall 14 may have oblong openings 33 adapted to each accommodate a nozzle opening into the second cavity 18 for blowing hot air therein.
De plus, la paroi radiale 14 peut présenter une pluralité de perçages de fixation 35. Procédé de fabrication In addition, the radial wall 14 can have a plurality of fixing holes 35. Manufacturing process
D’une manière particulièrement avantageuse, le redresseur 10 est fabriqué selon un procédé de fabrication additive. In a particularly advantageous manner, the rectifier 10 is manufactured according to an additive manufacturing process.
Ainsi, le redresseur 10 est fabriqué par apports successifs de poudre fondue couche par couche. Comme exposé précédemment, ce procédé de fabrication permet d’obtenir une pièce monobloc présentant une géométrie spécifique. Thus, the rectifier 10 is manufactured by successive additions of molten powder layer by layer. As explained above, this manufacturing process makes it possible to obtain a one-piece part having a specific geometry.
D’une manière préférentielle, le redresseur 10 est fabriqué en commençant par la paroi annulaire radiale 14 du bec, selon une direction de progression (i. e. d’ajout des couches de matière) sensiblement parallèle à l’axe de révolution X. Preferably, the rectifier 10 is manufactured starting with the radial annular wall 14 of the spout, in a direction of progression (i.e. adding layers of material) substantially parallel to the axis of revolution X.
Fonctionnement Operation
Une buse (non représentée) peut être connectée à chaque ouverture oblongue 33. Les buses peuvent insuffler de l’air chaud dans la deuxième cavité 18. D’une manière particulièrement avantageuse, le déflecteur annulaire interne 16 permet de réduire le volume intérieur du bec 1 en le divisant en deux cavités. Ainsi, le volume dans lequel l’air chaud circule est réduit, ce qui diminue les pertes de chaleur dans le bec 1 et permet de réduire prélèvement d’air chaud. En outre, le déflecteur annulaire interne 16 permet d’orienter l’air chaud vers les zones d’intérêt à dégivrer. A nozzle (not shown) can be connected to each oblong opening 33. The nozzles can blow hot air into the second cavity 18. In a particularly advantageous manner, the internal annular deflector 16 makes it possible to reduce the internal volume of the spout 1 by dividing it into two cavities. Thus, the volume in which the hot air circulates is reduced, which reduces the heat loss in the spout 1 and makes it possible to reduce hot air being taken off. In addition, the internal annular deflector 16 makes it possible to direct the hot air towards the areas of interest to be defrosted.
Le rayonnement calorique de l’air chaud à l’intérieur du bec 1 permet de dégivrer le bec 1 . The heat radiation from the hot air inside the nozzle 1 defrosts the nozzle 1.
L’air chaud circulant dans la deuxième cavité 18 est ensuite diffusé par les trous radiaux 20 pour rejoindre la veine primaire et dégivrer les aubes 102. The hot air circulating in the second cavity 18 is then diffused through the radial holes 20 to join the primary stream and defrost the vanes 102.
Ainsi, l’invention permet de dégivrer efficacement le bec sans augmenter pour autant le prélèvement d'air chaud dans une partie pressurisée de la turbomachine et sans augmenter la masse du bec. Thus, the invention makes it possible to effectively defrost the nozzle without thereby increasing the intake of hot air from a pressurized part of the turbomachine and without increasing the mass of the nozzle.

Claims

REVENDICATIONS
1. Bec (1 ) de séparation entre un flux primaire et un flux secondaire d’une turbomachine à double flux, le bec (1 ) étant caractérisé en ce qu’il présente une structure monobloc comprenant une paroi annulaire extérieure (12), une paroi annulaire intérieure (13), une paroi annulaire radiale (14) et un déflecteur annulaire interne (16), définissant une première cavité (17) entre la paroi annulaire extérieure (12) et le déflecteur annulaire interne (16), et une deuxième cavité (18) entre la paroi annulaire intérieure (13), la paroi annulaire radiale (14) et le déflecteur annulaire interne (16). 1. Spout (1) for separating between a primary flow and a secondary flow of a bypass turbomachine, the spout (1) being characterized in that it has a one-piece structure comprising an outer annular wall (12), a inner annular wall (13), a radial annular wall (14) and an inner annular baffle (16), defining a first cavity (17) between the outer annular wall (12) and the inner annular baffle (16), and a second cavity (18) between the inner annular wall (13), the radial annular wall (14) and the inner annular deflector (16).
2. Bec (1 ) selon la revendication 1 , dans lequel la paroi annulaire extérieure (12) présente au niveau d’une région de jonction avec la paroi annulaire intérieure (13) une série de trous radiaux (20). 2. Spout (1) according to claim 1, wherein the outer annular wall (12) has at a junction region with the inner annular wall (13) a series of radial holes (20).
3. Bec (1 ) selon l’une des revendications 1 ou 2, présentant au moins une nervure axiale (22) entre la paroi annulaire intérieure (13) et le déflecteur annulaire interne (16). 3. Spout (1) according to one of claims 1 or 2, having at least one axial rib (22) between the inner annular wall (13) and the inner annular deflector (16).
4. Bec (1 ) selon la revendication 3 présentant une pluralité de nervures axiales (22) chacune coplanaire avec un axe de révolution (X) du bec (1 ). 4. Spout (1) according to claim 3 having a plurality of axial ribs (22) each coplanar with an axis of revolution (X) of the spout (1).
5. Bec (1 ) selon l’une quelconque des revendications 1 à 4, présentant au moins une nervure radiale (24) entre la paroi annulaire radiale (14) et le déflecteur annulaire interne (16). 5. Spout (1) according to any one of claims 1 to 4, having at least one radial rib (24) between the radial annular wall (14) and the internal annular deflector (16).
6. Bec (1 ) selon la revendication 5, présentant une pluralité de nervures radiales (24) chacune coplanaire avec un axe de révolution (X) du bec (1 ). 6. Spout (1) according to claim 5, having a plurality of radial ribs (24) each coplanar with an axis of revolution (X) of the spout (1).
7. Bec (1 ) selon l’une quelconque des revendications 1 à 6, présentant au moins une alvéole (28a, 28b, 28c) ménagée au moins partiellement dans la paroi annulaire radiale (14). 7. Spout (1) according to any one of claims 1 to 6, having at least one cell (28a, 28b, 28c) formed at least partially in the radial annular wall (14).
8. Bec (1 ) selon la revendication 7, dans lequel la paroi annulaire radiale (14) présente un perçage (30) débouchant dans l’au moins une alvéole (28a, 28b). 8. Spout (1) according to claim 7, wherein the radial annular wall (14) has a bore (30) opening into the at least one cell (28a, 28b).
9. Bec (1 ) selon l’une quelconque des revendications 1 à 8, dans lequel la paroi annulaire radiale (14) présente au moins une ouverture oblongue (33) adaptée pour accueillir une buse débouchant dans la deuxième cavité (18). 9. Spout (1) according to any one of claims 1 to 8, wherein the radial annular wall (14) has at least one oblong opening (33) adapted to accommodate a nozzle opening into the second cavity (18).
10. Redresseur (10) pour une turbomachine aéronautique caractérisé en ce qu’il présente une structure monobloc réalisée par fabrication additive, comprenant un bec (1 ) conforme à l’une des revendication précédentes présentant : (i) la structure monobloc comprenant la paroi annulaire extérieure (12), la paroi annulaire intérieure (13), la paroi annulaire radiale (14) et le déflecteur annulaire interne (16), (ii) la première cavité (17) entre la paroi annulaire extérieure (12) et le déflecteur annulaire interne (16), (iii) la deuxième cavité (18) entre la paroi annulaire intérieure (13), la paroi annulaire radiale (14) et le déflecteur annulaire interne (16). 10. Rectifier (10) for an aeronautical turbomachine characterized in that it has a one-piece structure produced by additive manufacturing, comprising a nozzle (1) according to one of the preceding claims having: (i) the one-piece structure comprising the wall outer annular (12), the inner annular wall (13), the radial annular wall (14) and the inner annular deflector (16), (ii) the first cavity (17) between the outer annular wall (12) and the deflector internal annular (16), (iii) the second cavity (18) between the internal annular wall (13), the radial annular wall (14) and the internal annular deflector (16).
11. Procédé de fabrication d’un redresseur (10) d’une turbomachine aéronautique présentant une structure monobloc réalisée par fabrication additive et comprenant un bec (1 ) présentant : (i) une structure monobloc comprenant une paroi annulaire extérieure (12), une paroi annulaire intérieure (13), une paroi annulaire radiale (14) et un déflecteur annulaire interne (16), (ii) une première cavité (17) entre la paroi annulaire extérieure (12) et le déflecteur annulaire interne (16), (iii) une deuxième cavité (18) entre la paroi annulaire intérieure (13), la paroi annulaire radiale (14) et le déflecteur annulaire interne (16). 11. A method of manufacturing a rectifier (10) of an aeronautical turbomachine having a one-piece structure produced by additive manufacturing and comprising a nozzle (1) having: (i) a one-piece structure comprising an outer annular wall (12), a inner annular wall (13), a radial annular wall (14) and an inner annular deflector (16), (ii) a first cavity (17) between the outer annular wall (12) and the inner annular deflector (16), ( iii) a second cavity (18) between the inner annular wall (13), the radial annular wall (14) and the inner annular deflector (16).
12. Procédé selon la revendication 1 1 comprenant une étape de fabrication du bec (1 ) en commençant par la paroi annulaire radiale (14). 12. The method of claim 1 1 comprising a step of manufacturing the spout (1) starting with the radial annular wall (14).
EP20716855.0A 2019-04-16 2020-04-14 Splitter for a turbofan engine Active EP3956547B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904065A FR3095230B1 (en) 2019-04-16 2019-04-16 DEFROST DEVICE
PCT/EP2020/060453 WO2020212344A1 (en) 2019-04-16 2020-04-14 Separation nozzle for aeronautic turbomachine

Publications (2)

Publication Number Publication Date
EP3956547A1 true EP3956547A1 (en) 2022-02-23
EP3956547B1 EP3956547B1 (en) 2023-06-07

Family

ID=67956957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20716855.0A Active EP3956547B1 (en) 2019-04-16 2020-04-14 Splitter for a turbofan engine

Country Status (5)

Country Link
US (1) US11982195B2 (en)
EP (1) EP3956547B1 (en)
CN (1) CN113795650B (en)
FR (1) FR3095230B1 (en)
WO (1) WO2020212344A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3131939B1 (en) 2022-01-18 2024-01-12 Safran Aircraft Engines AXIAL TURBOMACHINE SEPARATION NOZZLE INCLUDING DEFROST AIR FLOW PASSAGE EXTENDING TO THE RECTIFIER

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860534A (en) * 1988-08-24 1989-08-29 General Motors Corporation Inlet particle separator with anti-icing means
US6561760B2 (en) * 2001-08-17 2003-05-13 General Electric Company Booster compressor deicer
US6725645B1 (en) * 2002-10-03 2004-04-27 General Electric Company Turbofan engine internal anti-ice device
US8205426B2 (en) * 2006-07-31 2012-06-26 General Electric Company Method and apparatus for operating gas turbine engines
US9309781B2 (en) * 2011-01-31 2016-04-12 General Electric Company Heated booster splitter plenum
EP2505789B1 (en) * 2011-03-30 2016-12-28 Safran Aero Boosters SA Gaseous flow separator with device for thermal-bridge defrosting
CN104675524B (en) * 2013-11-27 2017-01-18 中航商用航空发动机有限责任公司 Shunting ring, engine anti-icer and turbofan engine
BE1022957B1 (en) * 2015-04-20 2016-10-21 Techspace Aero S.A. AXIAL TURBOMACHINE COMPRESSOR DEGIVERANT SEPARATING SPOUT
BE1023289B1 (en) * 2015-07-17 2017-01-24 Safran Aero Boosters S.A. AXIAL TURBOMACHINE LOW PRESSURE COMPRESSOR SEPARATION SPOUT WITH ANNULAR DEFROST CONDUIT
BE1023354B1 (en) * 2015-08-13 2017-02-13 Safran Aero Boosters S.A. AXIAL TURBOMACHINE COMPRESSOR DEGIVERANT SEPARATING SPOUT
BE1023531B1 (en) * 2015-10-15 2017-04-25 Safran Aero Boosters S.A. AXIAL TURBOMACHINE COMPRESSOR SEPARATION SEPARATION DEVICE DEGIVER DEVICE
FR3051016B1 (en) * 2016-05-09 2020-03-13 Safran Aircraft Engines DEVICE FOR DEFROSTING A SPOUT FOR AERONAUTICAL TURBOMACHINE
BE1024684B1 (en) * 2016-10-21 2018-05-25 Safran Aero Boosters S.A. AXIAL TURBOMACHINE COMPRESSOR DEGIVER
GB201705734D0 (en) * 2017-04-10 2017-05-24 Rolls Royce Plc Flow splitter

Also Published As

Publication number Publication date
WO2020212344A1 (en) 2020-10-22
US20220205366A1 (en) 2022-06-30
FR3095230A1 (en) 2020-10-23
CN113795650A (en) 2021-12-14
CN113795650B (en) 2023-04-07
FR3095230B1 (en) 2021-03-19
EP3956547B1 (en) 2023-06-07
US11982195B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
FR3021699B1 (en) OPTIMIZED COOLING TURBINE BLADE AT ITS LEFT EDGE
EP1612374B1 (en) Turbine guide vane with improved cooling properties
EP3149280A1 (en) Turbine blade with optimised cooling
FR2758855A1 (en) VENTILATION SYSTEM FOR MOBILE VANE PLATFORMS
FR3051219B1 (en) TURBOMACHINE TURBINE, SUCH AS A TURBOREACTOR OR AIRCRAFT TURBOPROPOWER
FR3051016A1 (en) DEVICE FOR DEFROSTING AN AERONAUTICAL TURBOMACHINE SEPARATION SPOUT
CA2581007A1 (en) Moving blade of a turbomachine with a common cavity for the supply of cooling air
FR3057906A1 (en) OPTIMIZED COOLING TURBINE TANK
EP3956547B1 (en) Splitter for a turbofan engine
WO2020217025A1 (en) Nacelle air intake and nacelle comprising such an air intake
EP4107369B1 (en) Turbine blade comprising three types of orifices for cooling the trailing edge
WO2015181482A1 (en) Turbine blade comprising a central cooling duct and two side cavities connected downstream from the central duct
CA2868456C (en) Compressor casing comprising cavities having an optimised upstream shape
FR2983517A1 (en) COLD TURBINE VANE FOR GAS TURBINE ENGINE.
WO2023275459A1 (en) Turbomachine vane provided with a cooling circuit and method for lost-wax manufacturing of such a vane
EP3752420B1 (en) De-icing and acoustic treatment device for an air intake lip of a turbojet engine nacelle
WO2021181038A1 (en) Turbomachine hollow blade
EP3870826B1 (en) Device for de-icing a turbomachine nozzle
FR3131939A1 (en) AXIAL TURBOMACHINE SPLITTER INCLUDING DEFROST AIR FLOW PASSAGE EXTENDING TO RECTIFIER
WO2018215718A1 (en) Blade for a turbomachine turbine, comprising internal passages for circulating cooling air
FR3108364A1 (en) Turbine blade having ribs between cooling outlets with cooling ports
EP3947916A1 (en) Turbine vane of a turbomachine, turbine, turbomachine and associated ceramic core for manufacturing a turbine vane of a turbomachine
WO2021019156A1 (en) Turbomachine moving blade with cooling circuit having a double row of discharge slots
EP3867499A1 (en) Turbine engine blade with improved cooling
FR3079869A1 (en) HIGH PRESSURE TURBINE BLADE COMPRISING A DEAD CAVITY HAVING A SECTION REDUCTION

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020011992

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1575707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020011992

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308