EP3948972A1 - Battery module - Google Patents

Battery module

Info

Publication number
EP3948972A1
EP3948972A1 EP20703369.7A EP20703369A EP3948972A1 EP 3948972 A1 EP3948972 A1 EP 3948972A1 EP 20703369 A EP20703369 A EP 20703369A EP 3948972 A1 EP3948972 A1 EP 3948972A1
Authority
EP
European Patent Office
Prior art keywords
battery
burst protection
battery cells
battery cell
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20703369.7A
Other languages
German (de)
French (fr)
Inventor
Helmut Kastler
Philipp KREISEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Deere Electric Powertrain LLC
Original Assignee
Raiffeisenlandesbank Oberoesterreich AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raiffeisenlandesbank Oberoesterreich AG filed Critical Raiffeisenlandesbank Oberoesterreich AG
Publication of EP3948972A1 publication Critical patent/EP3948972A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery module with a base body for receiving individual battery cells arranged in parallel with respect to a joining axis, which forms a flow channel running transversely to the joining axis for a temperature control fluid flowing directly onto the cell jackets of the battery cells.
  • the object of the invention is not only to reduce the risk of thermal damage to individual battery cells during peak loads, but also to avoid the spread of a chain reaction in the event of a thermal runaway failure.
  • the invention solves the problem in that the flow channel in the direction of the joining axis for each battery cell is preceded and followed by a burst protection sleeve that surrounds the battery cell with play, the flow channel extending over a height of 28-60% of the battery cell and each burst protection sleeve for extend over a flea of 20-36% of the battery cell.
  • the bursting of cylinder-shaped battery cells in the area of the cell jacket can be prevented not only in the case of a sleeve extending over the entire cell jacket height in favor of outgassing via the pole-side valves provided for this purpose, but also when two pole-side sections of each 20 - 36% of the fleas in the battery cell are enclosed in a burst protection sleeve.
  • the burst protection sleeves can each enclose a section of 28-30% of the fleas in the battery cell. It is not necessary that the burst protection sleeves connect directly to the cell poles.
  • the burst protection sleeves enclose the battery cells with play, i.e.
  • a group of burst protection sleeves form a burst protection which is separate from the base body.
  • the burst protection sleeves can be connected via a support structure to form a burst protection, or the burst protection can, for example, be shaped out in the form of passage openings that form individual burst protection sleeves.
  • Base body separate burst protection are pushed onto the end sections of the battery cells protruding from the base body.
  • the relative position of the base body and burst protection can be specified, two, preferably three centering lugs can be used in a burst protection sleeve to align the battery cell be provided within the burst protection sleeve.
  • Such centering lugs also offer the advantage that mechanical loads on the battery module or the individual battery cells cannot be absorbed via any seals of the base body that are in contact with the battery cells, but rather via the mechanically more stable centering lugs.
  • the electrical contacting of the individual battery cells can be made in different ways, particularly advantageous conditions result when the parallel plate has contact tongues protruding into the air gap of at least one anti-bursting sleeve for frictional contacting of the battery cell enclosed by the anti-bursting sleeve.
  • the resilient contact tongues protruding into the air gap are not only supported against the burst protection sleeves while improving the contact pressure and thus the electrical contacting, but also enable the battery cells to be aligned within the burst protection sleeves, so that at least on the side of the parallel plate any Centering lugs in the burst protection sleeves can be omitted.
  • a flow of hot gas into the flow channel is not only prevented by a possible seal between the flow channel and the burst protection sleeves, but also by the fact that the battery cell, which expands on the shell side before degassing, fills the air gap to the surrounding burst protection sleeve and thus seals it.
  • the hot gas duct can be curved by about 90 ° so that the hot gas is laterally deflected and diverted transversely to the direction of assembly of the battery cell.
  • the individual pole attachments form a common discharge channel into which the hot gas channels open with their end sections opposite the battery cell poles.
  • a discharge duct extending over all pole attachments with a comparatively large cross-section can prevent the occurrence of local pressure peaks, with the individual hot gas ducts of smaller cross-section opening into the discharge duct reducing the risk of undamaged battery cells flowing against them.
  • the individual hot gas ducts can be sealed off from the discharge duct with fire protection which, in the event of a fault, is only breached due to pressure when a battery cell is degassing.
  • the storage of the battery cells in the battery module is subject to certain variations due to the manufacturing tolerances and designs of the battery cells, which is compensated for by the enclosure of the battery cells with play.
  • this makes a mechanically flexible connection in series with the pole contact switched battery cells are necessary.
  • This can be achieved in that the Po trays each have two recesses for receiving two battery cells to be contacted in series.
  • a constant electrical connection can be guaranteed, since if the battery cells incline in the air gap of the burst protection sleeve, the contact through the pole attachments remains.
  • the assembly of the burst protection sleeves with the pole attachments can be carried out more reliably if the burst protection sleeves form recesses for receiving the pole attachments. This not only increases the mechanical stability of the battery module, but also prevents the electrical connection between two serially connected battery cells, caused by relative movements.
  • Fig. 1 is a perspective view of a battery module according to the invention.
  • FIG. 2 shows a section along the line II-II in FIG. 1 on a larger scale, with a battery cell having been removed for better illustration.
  • a battery module according to the invention comprises a base body 1, which has opposite passage openings 3 with respect to each joining axis 2, through which individual battery cells 4 arranged in parallel with respect to the joining axis 2.
  • the base body 1 is sealed in the area of the passage openings 3 from the battery cells 4 by means of O-rings 5, so that a closed flow channel 6 is formed, within which the cell jackets of the Battery cells 4 directly, that is, a temperature control fluid flows directly against whoever can.
  • the flow channel 6 extends over a height of 28-60% of the height of the battery cells 4, preferably and as shown in FIG. 2 over a height of 40-44% of the height of the battery cells 4 extends, burst protection sleeves 7, 8 on both sides.
  • burst protection sleeves 7, 8 extend over a height of 20-36% of the height of the battery cells 4, preferably over a height of 28-30% of the height of the battery cells 4.
  • the burst protection sleeves 7 extend with respect to the joining axis 2 from the base body 1 to the cell poles 9. Between the burst protection sleeves 7, 8 and the battery cells 4 bil det in a normal operating state ever from an air gap 10, which allows a slight expansion of the battery cells 4 in normal operation.
  • a parallel plate 13 can be provided, which is provided between the base body 1 and at least one of the burst protectors 12.
  • the parallel plate 13 can have contact tongues 14 for non-positive contacting.
  • the centering lugs 11 can be omitted in the burst protection sleeves 8, as explained above.
  • the storage of the battery cells 4 resulting from the configuration according to the invention enables the cell poles 9 to move freely transversely to a limited extent to the joining axis 2.
  • pole attachments 15 are proposed, each of which have two recesses 16 for receiving two battery cells 4 to be contacted serially.
  • pole sets 15 can have hot gas ducts 17 emerging from an outgassing valve located in the area of the cell poles 9, which ducts open into a common discharge duct 18 in a particularly preferred embodiment.
  • the burst protection sleeves 7, 8 can have recesses 19 for receiving the pole attachments 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A battery module is described with a main part (1) for receiving individual battery cells (4) arranged in parallel with respect to a joining axis (2), which main part forms a flow channel (6), extending transversely to the joining axis (2), for a temperature-control fluid flowing directly against the cell shells of the battery cells (4). In order not only to reduce the risk of thermal damage to individual battery cells (4) during peak loads, but also to prevent the spread of a chain reaction in the event of a thermal runaway failure, according to the invention, for each battery cell (4), a burst protection sleeve (7, 8) which surrounds the battery cell (4) circumferentially with a clearance, forming an air gap (10), is mounted upstream and downstream of the flow channel (6) in the direction of the joining axis (2), the flow channel (6) extending over a height of 28 - 60% of the battery cell (4) and each burst protection sleeve (7, 8) extending over a height of 20 - 36% of the battery cell (4).

Description

Batteriemodul Battery module
Technisches Gebiet Technical area
Die Erfindung bezieht sich auf ein Batteriemodul mit einem Grundkörper zur Auf nahme einzelner, bezüglich einer Fügeachse parallel angeordneter Batteriezellen, der einen quer zur Fügeachse verlaufenden Strömungskanal für ein die Zellen mäntel der Batteriezellen direkt anströmendes Temperierfluid bildet. The invention relates to a battery module with a base body for receiving individual battery cells arranged in parallel with respect to a joining axis, which forms a flow channel running transversely to the joining axis for a temperature control fluid flowing directly onto the cell jackets of the battery cells.
Stand der Technik State of the art
Aus dem Stand der Technik sind Batteriemodule bekannt, bei denen die einzelnen Batteriezellen direkt von einem Temperierfluid angeströmt werden From the prior art, battery modules are known in which the individual battery cells are directly exposed to a temperature control fluid
(WO2017067923). Im Falle der Beschädigung einzelner Batteriezellen, insbeson dere im Falle eines thermal runaway besteht allerdings das Problem, dass die Bat teriezellen entlang Ihres Mantels bersten. Aufgrund der direkten Anströmung durch ein Temperierfluid und der unmittelbar benachbarten Batteriezellen inner halb des Fluidströmungskanales wird dabei die Gefahr einer Kettenreaktion noch verstärkt. (WO2017067923). In the event of damage to individual battery cells, especially in the event of thermal runaway, however, there is the problem that the battery cells burst along their casing. Due to the direct flow through a temperature control fluid and the immediately adjacent battery cells within the fluid flow channel, the risk of a chain reaction is increased.
Zur Vermeidung von Kettenreaktionen bei nicht direkt angeströmten Batteriezellen wurde bereits vorgeschlagen (CN108574073A), die einzelnen Zellen mit druckfes ten Flülsen zu umgeben, um ein Bersten im Bereich der Zellenpole zu erzwingen. Nachteilig ist daran allerdings, dass sich durch die Hülsen eine trägere Tempera- turregelung der Batteriezellen ergibt, sodass auf kurzfristige Belastungsspitzen oder thermische Ungleichgewichte im Batteriemodul nicht oder nur zeitverzögert reagiert werden kann, was die Gefahr einer Beschädigung der Batteriezellen ent gegen der Aufgabenstellung erhöht. To avoid chain reactions in the case of battery cells that are not directly exposed to the flow, it has already been proposed (CN108574073A) to enclose the individual cells with pressure-tight sleeves in order to force them to burst in the area of the cell poles. The disadvantage of this, however, is that the sleeves result in slower temperature control of the battery cells, so that short-term load peaks or thermal imbalances in the battery module cannot be responded to or only with a delay, which increases the risk of damage to the battery cells contrary to the task at hand.
Darstellung der Erfindung Ausgehend von einem Batteriemodul der eingangs beschriebenen Art liegt die Aufgabe der Erfindung somit darin, nicht nur die Gefahr thermische Beschädigung einzelner Batteriezellen bei Spitzenbelastungen zu verringern, sondern auch die Ausbreitung einer Kettenreaktion im Fehlerfall eines thermal runaway zu vermei den. Presentation of the invention Starting from a battery module of the type described at the outset, the object of the invention is not only to reduce the risk of thermal damage to individual battery cells during peak loads, but also to avoid the spread of a chain reaction in the event of a thermal runaway failure.
Die Erfindung löst die gestellte Aufgabe dadurch, dass dem Strömungskanal in Richtung der Fügeachse je Batteriezelle jeweils eine die Batteriezelle umfangseitig mit Spiel umschließende Berstschutzhülse vor- und nachgelagert ist, wobei sich der Strömungskanal über eine Flöhe von 28 - 60% der Batteriezelle und jede Berstschutzhülse für sich über eine Flöhe von 20 - 36% der Batteriezelle erstre cken. Überraschenderweise hat sich gezeigt, dass das Bersten von zylinderförmi gen Batteriezellen im Bereich des Zellenmantels nicht nur bei einer sich über die gesamte Zellenmantelhöhe erstreckenden Flülse zugunsten einer Ausgasung über die hierfür vorgesehenen polseitigen Ventile verhindert werden kann, sondern auch dann, wenn zwei polseitige Abschnitte von jeweils 20 - 36% der Flöhe der Batteriezelle von einer Berstschutzhülse umschlossen werden. In einer besonders bevorzugten Ausführungsform können die Berstschutzhülsen jeweils einen Ab schnitt von 28-30% der Flöhe der Batteriezelle umschließen. Es ist dabei nicht er forderlich, dass die Berstschutzhülsen unmittelbar an die Zellenpole anschließen. Obwohl sich zufolge dieser Maßnahme der für einen Strömungskanal eines Tem perierfluides nutzbare Bereich auf eine Flöhe von 28 - 60%, vorzugsweise 40 - 44% der Batteriezelle verringert, kann die verkleinerte direkte Kontaktfläche zwi schen dem Temperierfluid, bei dem es sich beispielsweise um Luft oder eine Flüs sigkeit handeln kann, durch einen höheren Volumenstrom ausgeglichen werden. Darüber hinaus wird das dynamische Regelverhalten verbessert, weil das zu durchströmende Gesamtvolumen verringert wird. Um eine mechanische Überbe stimmung und somit einen Bruch der Abdichtung des Strömungskanals nicht nur in Anbetracht der Fertigungstoleranzen von Batteriezellen, sondern auch im Feh lerfall zu vermeiden, wird erfindungsgemäß vorgeschlagen, dass die Berstschutz hülsen die Batteriezellen mit Spiel umschließen, also derart, dass zwischen der Berstschutzhülse und dem Mantel der umschlossenen Batteriezelle ein Luftspalt verbleibt. Die mögliche Ausdehnung der Batteriezelle im Bereich dieses Luftspal- tes begünstigt das mechanische Verhalten im Falle eines thermal runaway, weil unkritische Dehnungen der Batterie möglich bleiben und nicht bereits zu einer Be schädigung der Berstschutzhülsen und in weiterer Folge des gesamten Batte- riemodules führen. The invention solves the problem in that the flow channel in the direction of the joining axis for each battery cell is preceded and followed by a burst protection sleeve that surrounds the battery cell with play, the flow channel extending over a height of 28-60% of the battery cell and each burst protection sleeve for extend over a flea of 20-36% of the battery cell. Surprisingly, it has been shown that the bursting of cylinder-shaped battery cells in the area of the cell jacket can be prevented not only in the case of a sleeve extending over the entire cell jacket height in favor of outgassing via the pole-side valves provided for this purpose, but also when two pole-side sections of each 20 - 36% of the fleas in the battery cell are enclosed in a burst protection sleeve. In a particularly preferred embodiment, the burst protection sleeves can each enclose a section of 28-30% of the fleas in the battery cell. It is not necessary that the burst protection sleeves connect directly to the cell poles. Although this measure reduces the area usable for a flow channel of a temperature control fluid to a level of 28-60%, preferably 40-44% of the battery cell, the reduced direct contact area between the temperature control fluid, which is, for example, air or a liquid can act, can be compensated by a higher volume flow. In addition, the dynamic control behavior is improved because the total volume to be flowed through is reduced. In order to avoid mechanical over-determination and thus a break in the seal of the flow channel not only in view of the manufacturing tolerances of battery cells, but also in the event of an error, it is proposed according to the invention that the burst protection sleeves enclose the battery cells with play, i.e. in such a way that between the Burst protection sleeve and the jacket of the enclosed battery cell remains an air gap. The possible expansion of the battery cell in the area of this air gap tes favors the mechanical behavior in the event of a thermal runaway, because uncritical expansion of the battery remains possible and does not already lead to damage to the burst protection sleeves and subsequently to the entire battery module.
Um die Fertigung der erfindungsgemäßen Vorrichtung zu erleichtern und eine Ab dichtung des Strömungskanales zu verbessern, wird vorgeschlagen, dass eine Gruppe von Berstschutzhülsen einen vom Grundkörper getrennten Berstschutz bildet. Die Berstschutzhülsen können dabei über eine Stützkonstruktion zu einem Berstschutz verbunden sein oder aber der Berstschutz kann beispielsweise in Form von Durchtrittsöffnungen, die einzelnen Berstschutzhülsen ausbilden, ausge formt sein. Diese Maßnahmen haben den Vorteil, dass die einzelnen Batteriezel len zunächst in den Grundkörper eingesetzt werden können, wobei die Abdichtung des Strömungskanales weder durch eine mechanische Überbelastung noch durch eine Beschädigung von Dichtungen zufolge der Berstschutzhülsen behindert wird. Erst in einem nachfolgenden Schritt können die Berstschutzhülsen als vom In order to facilitate the manufacture of the device according to the invention and to improve a seal from the flow channel, it is proposed that a group of burst protection sleeves form a burst protection which is separate from the base body. The burst protection sleeves can be connected via a support structure to form a burst protection, or the burst protection can, for example, be shaped out in the form of passage openings that form individual burst protection sleeves. These measures have the advantage that the individual battery cells can initially be inserted into the base body, the sealing of the flow channel being hindered neither by mechanical overload nor by damage to seals due to the burst protection sleeves. Only in a subsequent step can the burst protection sleeves as from
Grundkörper getrennter Berstschutz auf die aus dem Grundkörper vorragenden Endabschnitte der Batteriezellen aufgeschoben werden. Base body separate burst protection are pushed onto the end sections of the battery cells protruding from the base body.
Damit die erfindungsgemäß vorgesehenen Luftspalte zwischen den Berstschutz hülsen und den Batteriezellen gleichmäßig ausgebildet werden und im Falle eines vom Grundkörper getrennten Berstschutzes die relative Lage von Grundkörper und Berstschutz zueinander vorgegeben werden kann, können in einer Berst schutzhülse zwei, vorzugsweise drei Zentriernasen zur Ausrichtung der Batterie zelle innerhalb der Berstschutzhülse vorgesehen sein. Solche Zentriernasen bie ten darüber hinaus den Vorteil, dass mechanische Belastungen des Batteriemo- dules bzw. der einzelnen Batteriezellen nicht über etwaige an den Batteriezellen anliegenden Dichtungen des Grundkörpers, sondern über die mechanisch stabile ren Zentriernasen aufgenommen werden können. Dies ist insbesondere dann der Fall, wenn die Berstschutzhülsen einstückig mit dem Grundkörper ausgebildet sind oder, wenn der Berstschutz und der Grundkörper in ihrer relativen Lage zueinan der festgelegt sind. Eine platzsparende Parallelschaltung der einzelnen Batteriezellen unabhängig von ihrer Polkontaktierung kann auf einfache Weise ermöglicht werden, wenn zwi schen dem Grundkörper und den bezüglich der Fügeachse auf einer Seite des Grundkörpers liegenden Berstschutzhülsen ein elektrisch leitendes Parallelblech zum Parallelschalten der Batteriezellen vorgesehen ist. Ein solches Parallelblech, dessen exakte Positionierung entlang der Fügeachse der Batteriezellen je nach Ausführungsform der Erfindung unterschiedlich sein kann, stellt nicht nur den elektrischen Kontakt zur Parallelschaltung der einzelnen Batteriezellen her, son dern erfüllt darüber hinaus noch eine mechanisch stabilisierende Aufgabe. Den noch bleiben zufolge der Luftspalte in den Berstschutzhülsen die einzelnen Batte riezellen im Bereich ihrer Pole quer zur Fügeachse in einem beschränkten Umfang frei beweglich, sodass die Kontaktierung und mechanische Verbindung mehrerer Batteriemodule erleichtert werden kann. So that the air gaps provided according to the invention between the burst protection sleeves and the battery cells are uniformly formed and in the case of a burst protection separated from the base body, the relative position of the base body and burst protection can be specified, two, preferably three centering lugs can be used in a burst protection sleeve to align the battery cell be provided within the burst protection sleeve. Such centering lugs also offer the advantage that mechanical loads on the battery module or the individual battery cells cannot be absorbed via any seals of the base body that are in contact with the battery cells, but rather via the mechanically more stable centering lugs. This is especially the case when the anti-burst sleeves are formed in one piece with the base body or when the anti-burst protection and the base body are fixed in their relative position to one another. A space-saving parallel connection of the individual battery cells regardless of their pole contact can be made possible in a simple manner if an electrically conductive parallel plate is provided for connecting the battery cells in parallel between the base body and the anti-burst sleeves located on one side of the base body with respect to the joint axis. Such a parallel sheet, the exact positioning of which along the joining axis of the battery cells can vary depending on the embodiment of the invention, not only makes the electrical contact for connecting the individual battery cells in parallel, but also fulfills a mechanically stabilizing task. According to the air gaps in the burst protection sleeves, the individual battery cells remain freely movable to a limited extent in the area of their poles across the joining axis, so that the contacting and mechanical connection of several battery modules can be facilitated.
Obwohl die elektrische Kontaktierung der einzelnen Batteriezellen auf unterschied liche Art erfolgen kann, ergeben sich besonders vorteilhafte Bedingungen, wenn das Parallelblech in den Luftspalt wenigstens einer Berstschutzhülse ragende Kontaktzungen zur kraftschlüssigen Kontaktierung der von der Berstschutzhülse umschlossenen Batteriezelle aufweist. Die in den Luftspalt ragenden, federnd ausgebildeten Kontaktzungen werden dabei nicht nur unter Verbesserung der An presskraft und damit der elektrischen Kontaktierung gegen die Berstschutzhülsen abgestützt, sondern ermöglichen gleichzeitig auch eine Ausrichtung der Batterie zellen innerhalb der Berstschutzhülsen, sodass zumindest auf der Seite der Paral lelbleches etwaige Zentriernasen in den Berstschutzhülsen entfallen können. Although the electrical contacting of the individual battery cells can be made in different ways, particularly advantageous conditions result when the parallel plate has contact tongues protruding into the air gap of at least one anti-bursting sleeve for frictional contacting of the battery cell enclosed by the anti-bursting sleeve. The resilient contact tongues protruding into the air gap are not only supported against the burst protection sleeves while improving the contact pressure and thus the electrical contacting, but also enable the battery cells to be aligned within the burst protection sleeves, so that at least on the side of the parallel plate any Centering lugs in the burst protection sleeves can be omitted.
Eine mechanisch flexible Kontaktierung der Batteriezellen, die gleichzeitig eine Ausbreitung eines Einzelbatteriezellenfehlers durch Entgasung verhindert, erhält man, indem man Polaufsätze zur elektrischen Kontaktierung einzelner Batteriezel len vorsieht, die jeweils einen in den Bereich des Batteriezellenpoles einmünden den Heißgaskanal zur Ableitung von aus der Batteriezelle austretendem Heißgas aufweisen. Durch das erfindungsgemäße Zusammenspiel der Berstschutzhülsen und der Polaufsätze wird im Falle eines thermal runaway oder ähnlicher Effekte austretendes Heißgas polseitig, also im Bereich des hierfür vorgesehenen Entga- sungsventiles von der beschädigten Batteriezelle so abgeführt, dass umliegende Batteriezellen im Bereich des Zellenmantels nicht beschädigt werden. Ein Ein strömen von Heißgas in den Strömungskanal wird nämlich nicht nur durch eine etwaige Abdichtung zwischen dem Strömungskanal und den Berstschutzhülsen verhindert, sondern auch dadurch, dass die sich vor dem Entgasen mantelseitig ausdehnende Batteriezelle den Luftspalt zur umliegenden Berstschutzhülse aus füllt und damit abdichtet. Um ein Anströmen von dem Pol der ausgasenden Batte riezelle gegenüberliegenden anschließenden Batteriezellen zu verhindern, kann der Heißgaskanal um etwa 90° gekrümmt ausgebildet sein, dass das Heißgas la teral, das bedeutet quer zur Fügerichtung der Batteriezelle umgelenkt und abgelei tet wird. Mechanically flexible contacting of the battery cells, which at the same time prevents an individual battery cell fault from spreading through degassing, is obtained by providing pole attachments for electrical contacting of individual battery cells, each of which opens into the area of the battery cell pole and the hot gas duct for discharging hot gas emerging from the battery cell exhibit. Due to the interaction of the anti-burst sleeves according to the invention and in the event of a thermal runaway or similar effects, hot gas escaping from the pole attachments is discharged from the damaged battery cell on the pole side, ie in the area of the vent valve provided for this, so that surrounding battery cells in the area of the cell jacket are not damaged. A flow of hot gas into the flow channel is not only prevented by a possible seal between the flow channel and the burst protection sleeves, but also by the fact that the battery cell, which expands on the shell side before degassing, fills the air gap to the surrounding burst protection sleeve and thus seals it. In order to prevent a flow of adjoining battery cells opposite the pole of the outgassing battery cell, the hot gas duct can be curved by about 90 ° so that the hot gas is laterally deflected and diverted transversely to the direction of assembly of the battery cell.
Neben einer Ableitung der großen Heißgasmengen von der beschädigten Batte riezelle weg ist auch ein Abführen dieser Heißgasmengen aus dem Batteriemodul sicherheitsrelevant, zumal etwaige Druckspitzen auch zu einer strukturellen Be schädigung des Batteriemodules führen können. Es wird daher vorgeschlagen, dass die einzelnen Polaufsätze einen gemeinsamen Ableitungskanal bilden, in den die Heißgaskanäle mit ihren den Batteriezellenpolen gegenüberliegenden Endabschnitten einmünden. Zufolge dieser Maßnahmen kann ein sich über alle Polaufsätze erstreckender Ableitungskanal mit vergleichsweise großem Quer schnitt das Auftreten lokaler Druckspitzen verhindern, wobei die einzelnen, in den Ableitungskanal einmündenden Heißgaskanäle geringeren Querschnittes die Ge fahr eines Anströmens von unbeschädigten Batteriezellen reduzieren. Um diese Gefahr weiter zu reduzieren, können die einzelnen Heißgaskanäle gegenüber dem Ableitungskanal mit einem Feuerschutz abgedichtet werden, der im Fehlerfall nur bei einer ausgasenden Batteriezelle druckbedingt durchbrochen wird. In addition to diverting the large amounts of hot gas away from the damaged battery, discharging these amounts of hot gas from the battery module is also relevant to safety, especially since any pressure peaks can also lead to structural damage to the battery module. It is therefore proposed that the individual pole attachments form a common discharge channel into which the hot gas channels open with their end sections opposite the battery cell poles. As a result of these measures, a discharge duct extending over all pole attachments with a comparatively large cross-section can prevent the occurrence of local pressure peaks, with the individual hot gas ducts of smaller cross-section opening into the discharge duct reducing the risk of undamaged battery cells flowing against them. In order to further reduce this risk, the individual hot gas ducts can be sealed off from the discharge duct with fire protection which, in the event of a fault, is only breached due to pressure when a battery cell is degassing.
Die Lagerung der Batteriezellen im Batteriemodul unterliegt aufgrund der Ferti gungstoleranzen und Ausführungen der Batteriezellen gewissen Variationen, wel che durch die Umfassung der Batteriezellen mit Spiel ausgeglichen wird. Dies macht jedoch bei der Polkontaktierung eine mechanisch flexible Verbindung seriell geschalteter Batteriezellen notwendig. Diese kann realisiert werden, indem die Po laufsätze je zwei Ausnehmungen zur Aufnahme zweier seriell zu kontaktierender Batteriezellen aufweisen. Hierbei kann, selbst wenn es zu Relativbewegungen der Batteriezellen relativ zum Batteriemodul und zum Stack kommt, eine konstante elektrische Verbindung gewährleistet bleiben, da bei einer Neigung der Batterie zellen im Luftspalt der Berstschutzhülse der Kontakt durch die Polaufsätze erhal ten bleibt. The storage of the battery cells in the battery module is subject to certain variations due to the manufacturing tolerances and designs of the battery cells, which is compensated for by the enclosure of the battery cells with play. However, this makes a mechanically flexible connection in series with the pole contact switched battery cells are necessary. This can be achieved in that the Po trays each have two recesses for receiving two battery cells to be contacted in series. Here, even if there is relative movement of the battery cells relative to the battery module and the stack, a constant electrical connection can be guaranteed, since if the battery cells incline in the air gap of the burst protection sleeve, the contact through the pole attachments remains.
Das Zusammenfügen der Berstschutzhülsen mit den Polaufsätzen lässt sich zu verlässiger ausführen, wenn die Berstschutzhülsen Ausnehmungen zur Aufnahme der Polaufsätze ausbilden. Hierdurch wird nicht nur die mechanische Stabilität des Batteriemoduls erhöht, sondern einer Lösung der elektrischen Verbindung zwi schen zwei seriell geschalteten Batteriezellen, hervorgerufen durch Relativbewe gungen, vorgebeugt. The assembly of the burst protection sleeves with the pole attachments can be carried out more reliably if the burst protection sleeves form recesses for receiving the pole attachments. This not only increases the mechanical stability of the battery module, but also prevents the electrical connection between two serially connected battery cells, caused by relative movements.
Kurze Beschreibung der Erfindung Brief description of the invention
In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zei gen The subject matter of the invention is shown in the drawing, for example. Show it
Fig. 1 eine perspektivische Darstellung eines erfindungsgemäßen Batteriemoduls und Fig. 1 is a perspective view of a battery module according to the invention and
Fig. 2 einen Schnitt entlang der Linie ll-ll der Fig. 1 in einem größeren Maßstab, wobei eine Batteriezelle zur besseren Veranschaulichung entfernt wurde. FIG. 2 shows a section along the line II-II in FIG. 1 on a larger scale, with a battery cell having been removed for better illustration.
Wege zur Ausführung der Erfindung Ways of Carrying Out the Invention
Ein erfindungsgemäßes Batteriemodul umfasst einen Grundkörper 1 , der bezüg lich je einer Fügeachse 2 gegenüberliegende Durchtrittsöffnungen 3 aufweist, die von einzelnen, bezüglich der Fügeachse 2 parallel angeordneten Batteriezellen 4 durchsetzt werden. Der Grundkörper 1 ist im Bereich der Durchtrittsöffnungen 3 gegenüber den Batteriezellen 4 über 0 - Ringe 5 abgedichtet, sodass sich ein ge schlossener Strömungskanal 6 ausbildet, innerhalb dessen die Zellenmäntel der Batteriezellen 4 direkt, d.h. unmittelbar von einem Temperierfluid angeströmt wer den können. A battery module according to the invention comprises a base body 1, which has opposite passage openings 3 with respect to each joining axis 2, through which individual battery cells 4 arranged in parallel with respect to the joining axis 2. The base body 1 is sealed in the area of the passage openings 3 from the battery cells 4 by means of O-rings 5, so that a closed flow channel 6 is formed, within which the cell jackets of the Battery cells 4 directly, that is, a temperature control fluid flows directly against whoever can.
Bezüglich der Fügeachse 2 schließen an den Grundkörper 1 , dessen Strömungs kanal 6 sich über eine Höhe von 28 - 60% der Höhe der Batteriezellen 4, vor zugsweise und wie in der Fig. 2 dargestellt über eine Höhe von 40 - 44% der der Höhe der Batteriezellen 4 erstreckt, beidseits Berstschutzhülsen 7, 8 an. Diese Berstschutzhülsen 7, 8 erstrecken sich über eine Höhe von 20 - 36% der Höhe der Batteriezellen 4, vorzugsweise über eine Höhe von 28-30% der Höhe der Bat teriezellen 4. Obwohl dies nicht zwingend erforderlich ist, erstrecken sich die Berstschutzhülsen 7 bezüglich der Fügeachse 2 vom Grundkörper 1 bis zu den Zellenpolen 9. Zwischen den Berstschutzhülsen 7, 8 und den Batteriezellen 4 bil det sich in einem normalen Betriebszustand je ein Luftspalt 10 aus, der eine ge ringfügige Ausdehnung der Batteriezellen 4 im normalen Betrieb ermöglicht. With regard to the joining axis 2 close to the base body 1, the flow channel 6 extends over a height of 28-60% of the height of the battery cells 4, preferably and as shown in FIG. 2 over a height of 40-44% of the height of the battery cells 4 extends, burst protection sleeves 7, 8 on both sides. These burst protection sleeves 7, 8 extend over a height of 20-36% of the height of the battery cells 4, preferably over a height of 28-30% of the height of the battery cells 4. Although this is not absolutely necessary, the burst protection sleeves 7 extend with respect to the joining axis 2 from the base body 1 to the cell poles 9. Between the burst protection sleeves 7, 8 and the battery cells 4 bil det in a normal operating state ever from an air gap 10, which allows a slight expansion of the battery cells 4 in normal operation.
Um die Batteriezellen 4 trotz dieses Luftspaltes 10 gegenüber den Berstschutzhül sen 7, 8 in einer definierten Lage ausrichten zu können, können je Berstschutzhül se 7, 8 zwei, vorzugsweise drei Zentriernasen 1 1 vorgesehen sein. In order to be able to align the battery cells 4 in a defined position with respect to the burst protection sleeves 7, 8 in spite of this air gap 10, two, preferably three centering lugs 1 1 can be provided for each burst protection sleeve 7, 8.
Besonders günstige Konstruktionsbedingungen ergeben sich, wenn wenigstens eine Gruppe der Berstschutzhülsen 7, 8 einen gemeinsamen Berstschutz 12 bil den, der gegenüber dem Grundkörper 1 als getrenntes Bauelement ausgeführt ist. Particularly favorable construction conditions arise when at least one group of the burst protection sleeves 7, 8 bil the burst protection 12, which is designed as a separate component from the base body 1.
Um bei der dargestellten Ausführungsform eine besonders platzsparende parallele Kontaktierung der Batteriezellen vornehmen zu können, kann ein Parallelblech 13 vorgesehen sein, das zwischen dem Grundkörper 1 und wenigstens einer der Berstschutze 12 vorgesehen ist. Zur elektrischen Kontaktierung der Batteriezellen 4 mit dem Parallelblech 13 und zur Zentrierung der Batteriezellen 4 innerhalb der Berstschutzhülsen 8 kann das Parallelblech 13 Kontaktzungen 14 zur kraftschlüs sigen Kontaktierung aufweisen. Dadurch können die Zentriernasen 1 1 bei den Berstschutzhülsen 8 wie oben erläutert entfallen. Die sich zufolge der erfindungsgemäßen Ausgestaltung ergebende Lagerung der Batteriezellen 4 ermöglicht eine quer zur Fügeachse 2 beschränkt freie Beweg lichkeit der Zellenpole 9. Um diesen Vorteil im Rahmen mehrerer, in Serie ge schalteter Batteriemodule nützen zu können, werden Polaufsätze 15 vorgeschla- gen, die jeweils zwei Ausnehmungen 16 zur Aufnahme zweier seriell zu kontaktie render Batteriezellen 4 aufweisen. In order to be able to make parallel contacting of the battery cells in a particularly space-saving manner in the embodiment shown, a parallel plate 13 can be provided, which is provided between the base body 1 and at least one of the burst protectors 12. To make electrical contact between the battery cells 4 and the parallel plate 13 and to center the battery cells 4 within the burst protection sleeves 8, the parallel plate 13 can have contact tongues 14 for non-positive contacting. As a result, the centering lugs 11 can be omitted in the burst protection sleeves 8, as explained above. The storage of the battery cells 4 resulting from the configuration according to the invention enables the cell poles 9 to move freely transversely to a limited extent to the joining axis 2. In order to be able to use this advantage in the context of several battery modules connected in series, pole attachments 15 are proposed, each of which have two recesses 16 for receiving two battery cells 4 to be contacted serially.
Diese Polausätze 15 können zur Ableitung von aus einem im Bereich der Zellen pole 9 liegenden Ausgasungsventil austretenden Heißgas Heißgaskanäle 17 auf weisen, die in einer besonders bevorzugten Ausführungsform in einen gemeinsa- men Ableitungskanal 18 münden. These pole sets 15 can have hot gas ducts 17 emerging from an outgassing valve located in the area of the cell poles 9, which ducts open into a common discharge duct 18 in a particularly preferred embodiment.
Um eine Vorausrichtung der Polaufsätze 15 gegenüber den Berstschutzhülsen 7, 8 vornehmen zu können, können die Berstschutzhülsen 7, 8 Ausnehmungen 19 zur Aufnahme der Polaufsätze 15 aufweisen. In order to be able to pre-align the pole attachments 15 with respect to the burst protection sleeves 7, 8, the burst protection sleeves 7, 8 can have recesses 19 for receiving the pole attachments 15.

Claims

Patentansprüche Claims
1 . Batteriemodul mit einem Grundkörper (1 ) zur Aufnahme einzelner, bezüg lich einer Fügeachse (2) parallel angeordneter Batteriezellen (4), der einen quer zur Fügeachse (2) verlaufenden Strömungskanal (6) für ein die Zellenmäntel der Batteriezellen (4) direkt anströmendes Temperierfluid bildet, dadurch gekenn zeichnet, dass dem Strömungskanal (6) in Richtung der Fügeachse (2) je Batte riezelle (4) jeweils eine die Batteriezelle (4) umfangseitig mit Spiel unter Ausbil dung eines Luftspaltes (10) umschließende Berstschutzhülse (7, 8) vor- und nach gelagert ist, wobei sich der Strömungskanal (6) über eine Höhe von 28 - 60% der Batteriezelle (4) und jede Berstschutzhülse (7, 8) für sich über eine Höhe von 20 - 36% der Batteriezelle (4) erstrecken. 1 . Battery module with a base body (1) for receiving individual battery cells (4) arranged in parallel with a joining axis (2), which has a flow channel (6) running transversely to the joining axis (2) for a temperature control fluid flowing directly onto the cell jackets of the battery cells (4) , characterized in that the flow channel (6) in the direction of the joining axis (2) for each battery cell (4) has a burst protection sleeve (7, 8) surrounding the battery cell (4) with play on the circumference, forming an air gap (10) is stored upstream and downstream, with the flow channel (6) extending over a height of 28-60% of the battery cell (4) and each burst protection sleeve (7, 8) over a height of 20-36% of the battery cell (4) extend.
2. Batteriemodul nach Anspruch 1 , dadurch gekennzeichnet, dass eine Grup pe von Berstschutzhülsen (7, 8) einen vom Grundkörper (1 ) getrennten Berst schutz (12) bildet. 2. Battery module according to claim 1, characterized in that a group of burst protection sleeves (7, 8) forms a burst protection (12) which is separate from the base body (1).
3. Batteriemodul nach einem der Ansprüche 1 oder 2, dadurch gekennzeich net, dass in einer Berstschutzhülse (7, 8) zwei Zentriernasen (1 1 ) zur Ausrichtung der Batteriezelle (4) innerhalb der Berstschutzhülse (7, 8) vorgesehen ist. 3. Battery module according to one of claims 1 or 2, characterized in that in a burst protection sleeve (7, 8) two centering lugs (1 1) for aligning the battery cell (4) within the burst protection sleeve (7, 8) is provided.
4. Batteriemodul nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen dem Grundkörper (1 ) und den bezüglich der Fügeachse (2) auf ei ner Seite des Grundkörpers (1 ) liegenden Berstschutzhülsen (7, 8) ein elektrisch leitendes Parallelblech (13) zum Parallelschalten der Batteriezellen (4) vorgese hen ist. 4. Battery module according to one of claims 1 to 3, characterized in that between the base body (1) and with respect to the joining axis (2) on egg ner side of the base body (1) lying burst protection sleeves (7, 8) an electrically conductive parallel plate ( 13) is provided for connecting the battery cells (4) in parallel.
5. Batteriemodul nach Anspruch 4, dadurch gekennzeichnet, dass das Paral lelblech (13) in den Luftspalt (10) wenigstens einer Berstschutzhülse (7, 8) ragen de Kontaktzungen (14) zur kraftschlüssigen Kontaktierung der von der Berst schutzhülse (7, 8) umschlossenen Batteriezelle (4) aufweist. 5. Battery module according to claim 4, characterized in that the Paral lelblech (13) in the air gap (10) at least one burst protection sleeve (7, 8) protrude de contact tongues (14) for frictional contacting of the burst protection sleeve (7, 8) having enclosed battery cell (4).
6. Batteriemodul nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Polaufsätze (15) zur elektrischen Kontaktierung einzelner Batteriezellen (4) vorgesehen sind, die jeweils einen in den Bereich des Batteriezellenpoles (9) ein mündenden Heißgaskanal (17) zur Ableitung von aus der Batteriezelle (4) austre- tendem Heißgas aufweisen. 6. Battery module according to one of claims 1 to 5, characterized in that pole attachments (15) for the electrical contacting of individual battery cells (4) are provided, each one in the area of the battery cell pole (9) an opening hot gas channel (17) for the discharge of have hot gas escaping from the battery cell (4).
7. Batteriemodul nach Anspruch 6, dadurch gekennzeichnet, dass die einzel nen Polaufsätze (15) einen gemeinsamen Ableitungskanal (18) bilden, in den die Heißgaskanäle (17) mit ihren den Batteriezellenpolen (9) gegenüberliegenden Endabschnitten einmünden. 7. Battery module according to claim 6, characterized in that the individual NEN pole attachments (15) form a common discharge channel (18) into which the hot gas channels (17) open with their end sections opposite the battery cell poles (9).
8. Batteriemodul nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die8. Battery module according to claim 6 or 7, characterized in that the
Polaufsätze (15) je zwei Ausnehmungen zur Aufnahme zweier seriell zu kontaktie render Batteriezellen (19) aufweisen. Pole attachments (15) each have two recesses for receiving two serially to kontaktie render battery cells (19).
9. Batteriemodul nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Berstschutzhülsen (7, 8) Ausnehmungen (19) zur Aufnahme der Polauf- Sätze besitzen. 9. Battery module according to one of claims 6 to 8, characterized in that the burst protection sleeves (7, 8) have recesses (19) for receiving the pole sets.
EP20703369.7A 2019-03-26 2020-01-21 Battery module Pending EP3948972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50259/2019A AT521705B1 (en) 2019-03-26 2019-03-26 Battery module
PCT/AT2020/060014 WO2020191419A1 (en) 2019-03-26 2020-01-21 Battery module

Publications (1)

Publication Number Publication Date
EP3948972A1 true EP3948972A1 (en) 2022-02-09

Family

ID=69467269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20703369.7A Pending EP3948972A1 (en) 2019-03-26 2020-01-21 Battery module

Country Status (6)

Country Link
US (1) US12095064B2 (en)
EP (1) EP3948972A1 (en)
JP (1) JP7495946B2 (en)
CN (1) CN113614988A (en)
AT (1) AT521705B1 (en)
WO (1) WO2020191419A1 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669048B2 (en) * 1995-04-18 2005-07-06 日本電池株式会社 Assembled battery
US6528206B2 (en) * 2001-01-22 2003-03-04 SOCIEDAD ESPAñOLA DEL ACUMULADOR TUDOR, S.A. Electric accumulator battery
US7189473B2 (en) * 2003-06-03 2007-03-13 Eastway Fair Company Limited Battery venting system
DE102005017648B4 (en) * 2005-04-15 2008-01-10 Daimlerchrysler Ag Liquid cooled battery and method of operating such
WO2011007534A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Battery module and battery pack using the same
US8996876B2 (en) 2010-03-02 2015-03-31 Liberty Plugins, Inc. Method and system for using a smart phone for electrical vehicle charging
JP2012221801A (en) * 2011-04-11 2012-11-12 Toyota Industries Corp Battery pack
EP2738833B1 (en) 2011-07-29 2018-09-05 Panasonic Intellectual Property Management Co., Ltd. Battery retainment block and battery module
JP5741415B2 (en) * 2011-12-07 2015-07-01 株式会社デンソー Assembled battery
CN105684212B (en) * 2013-10-30 2021-01-05 胡斯华纳有限公司 Flexible battery cell holder
DE102014213916A1 (en) * 2014-07-17 2016-01-21 Robert Bosch Gmbh Battery system with improved degassing system
DE102014112624A1 (en) * 2014-09-02 2016-03-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft battery module
JP6476915B2 (en) * 2015-01-27 2019-03-06 株式会社デンソー Battery pack
DE202015009624U1 (en) 2015-10-18 2018-09-11 Sasr Alpha Zehnte Betelligungsverwaltung Gmbh Temperature control device for a battery system
CN205028986U (en) * 2015-10-23 2016-02-10 深圳市德塔电动汽车科技有限公司 Compound heat conduction structure and explosion -proof power supply device
US10038941B2 (en) 2015-12-07 2018-07-31 Caavo Inc Network-based control of a media device
KR20170069003A (en) * 2015-12-10 2017-06-20 삼성에스디아이 주식회사 Battery Module
KR102390607B1 (en) * 2016-04-20 2022-04-25 코버스 에너지 인코포레이티드 Method and apparatus for managing thermal runaway gases in battery systems
ITUA20164736A1 (en) * 2016-06-29 2017-12-29 Ferrari Spa BATTERY MODULE FOR AN ELECTRICITY ACCUMULATION SYSTEM FOR A VEHICLE WITH ELECTRIC PROPULSION
US10700335B2 (en) * 2016-09-07 2020-06-30 Thunder Power New Energy Vehicle Development Company Limited Battery system housing with internal busbar
CN108574073A (en) 2018-06-11 2018-09-25 美创兴国际有限公司 A kind of high-energy density liquid cooling battery modules

Also Published As

Publication number Publication date
US12095064B2 (en) 2024-09-17
CN113614988A (en) 2021-11-05
JP2022526294A (en) 2022-05-24
JP7495946B2 (en) 2024-06-05
AT521705A4 (en) 2020-04-15
AT521705B1 (en) 2020-04-15
WO2020191419A1 (en) 2020-10-01
US20220181717A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
EP3080863B1 (en) Battery module
EP2497145B1 (en) Energy store device
DE102008059956B4 (en) Battery, in particular vehicle battery
DE102007002286B4 (en) Fuel cell system and method for its production
DE112018002536T5 (en) COUNTERFLOW HEAT EXCHANGER WITH SIDE INLET FITTINGS
DE102014106954A1 (en) Device for heating and cooling a battery pack
EP2742547B1 (en) Battery for a vehicle and method for manufacturing such a battery
DE102008059972A1 (en) Battery i.e. lithium ion battery, for e.g. hybrid vehicle, has set of supporting elements extending into free space and arranged between and/or below cells that are interconnected in series and/or parallel
DE102015104741A1 (en) Battery block, and method of making a battery pack
EP3235049B1 (en) A battery with cooling plate as mounting plate
DE102013021312A1 (en) battery
DE102021123314A1 (en) electric vehicle
DE102014206654A1 (en) BATTERY MODULE
WO2020216516A1 (en) Battery housing assembly with heat transfer device, and traction battery with battery housing assembly
EP1870951A1 (en) Fuel cell stack
DE10334130B4 (en) Fuel cell assembly and apparatus for mounting a fuel cell assembly to a housing
EP3804001A1 (en) Temperature-control device for individual battery cells which are combined into a module
EP3948972A1 (en) Battery module
DE102016112745A1 (en) A fuel cell assembly
AT521581B1 (en) Contacting device for battery cells assembled into a module
DE102004060526A1 (en) Fuel cell stack for motor vehicles has number of individual fuel cells with liquid and gas as operating medium and fuel cell stack has end plates on both sides with connection elements whereby liquid or gas is supplied and discharged
AT523635A4 (en) Temperature control device for battery cells combined to form a module
DE112006002953B4 (en) Tubular fuel cell
WO1998025318A1 (en) Fuel cell module with a gas supply device
DE102022201948B4 (en) System for monitoring and increasing the safety of a battery system, in particular a battery system of a motor vehicle that serves as a drive energy storage device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KREISEL ELECTRIC GMBH & CO KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHN DEERE ELECTRIC POWERTRAIN LLC