EP3947319A1 - Procede de fabrication d'une piece en cmc - Google Patents

Procede de fabrication d'une piece en cmc

Info

Publication number
EP3947319A1
EP3947319A1 EP20713333.1A EP20713333A EP3947319A1 EP 3947319 A1 EP3947319 A1 EP 3947319A1 EP 20713333 A EP20713333 A EP 20713333A EP 3947319 A1 EP3947319 A1 EP 3947319A1
Authority
EP
European Patent Office
Prior art keywords
interphase
cables
phase
equal
cmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20713333.1A
Other languages
German (de)
English (en)
Inventor
Eric Bouillon
Michael VERRILLI
Eric Philippe
Gildas GARNIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
General Electric Co
Original Assignee
Safran Ceramics SA
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1911064A external-priority patent/FR3101629B1/fr
Application filed by Safran Ceramics SA, General Electric Co filed Critical Safran Ceramics SA
Publication of EP3947319A1 publication Critical patent/EP3947319A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B5/00Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating
    • D06B5/02Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through moving materials of indefinite length
    • D06B5/06Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through moving materials of indefinite length through yarns, threads or filaments

Definitions

  • the present invention relates to ceramic matrix composite (CMC) parts and methods for making such parts.
  • CMC ceramic matrix composite
  • One field of application of the invention lies in the production of parts which are intended to be exposed to high operating temperatures, specifically in the fields of aviation and space, and in particular parts for the parts.
  • hot air turbine engines it being understood that the invention can be applied to other fields, for example to the field of industrial gas turbines.
  • CMC materials exhibit good thermostructural properties, that is, good mechanical properties which make them suitable for the constitution of structural parts, together with the ability to retain these properties at elevated temperatures.
  • CMC materials include a fibrous reinforcement made of cables of ceramic or carbonaceous materials present in a ceramic matrix.
  • the use of CMC materials instead of metallic materials for parts that are exposed to high service temperatures is desirable, especially since these materials exhibit a density that is considerably less than the density of the metallic materials they replace. .
  • a CMC part by means of a technique in which plies of fibers coated with an interphase are impregnated with a resin mixture and then superimposed in the desired orientation so that a preform of the part to be obtained is obtained. get.
  • the resin is pyrolyzed and then densification of the preform is performed by infiltration with molten silicon or a molten silicon alloy to form a ceramic matrix.
  • the inventors have observed that the product thus obtained may not be entirely satisfactory because matrix layers between each ply can lead to a weakness in temperature creep, due to the presence of free silicon.
  • the incorporated matrix phases characterized by low creep resistance, in the form of free silicon in the matrix obtained by melt infiltration, can lead to overloading of the fibers exceeding their creep resistance. and therefore to a reduction in the breaking time.
  • the present invention provides a method of manufacturing a part in CMC, the method comprising at least:
  • a consolidated fiber preform by treatment of the fiber preform by chemical vapor infiltration to form a consolidation phase on the interphase, the consolidation phase comprising silicon carbide and having a Young's modulus greater than or equal at 350 GPa.
  • the Young's modulus of the consolidation phase is measured at 20 ° C.
  • the interphase formed offers in particular a better transfer of charge from fiber to fiber and also avoids the risk of a vitreous bond (“glass linkage”) and of a rupture of bundles of adjacent fibers during an oxidative exposure. .
  • the solution proposed by the present invention therefore provides a part made of CMC having better mechanical properties at high temperatures.
  • the consolidation phase has a Young's modulus greater than or equal to 375 GPa, for example greater than or equal to 400 GPa.
  • This feature further improves the creep resistance of the CMC part.
  • the residual volume porosity of the consolidated fiber preform is in the range of 25% to 45%, for example in the range of 30% to 35%.
  • the method further comprises densifying the consolidated fiber preform by forming a silicon carbide matrix phase over the consolidation phase by infiltration with a molten composition comprising silicon, carbon particles and / or ceramic being present in the porosity of the consolidated preform before infiltration.
  • This characteristic advantageously results in a ceramic matrix having a low porosity, which thus reduces the stress concentrations under mechanical load and improves the resistance of the matrix to cracking.
  • the interphase is formed from at least one layer of the following materials: boron nitride, silicon doped boron nitride, pyrolytic carbon or boron doped carbon.
  • the interphase may be covered with a protective layer of at least one of the following materials: silicon nitride or silicon carbide.
  • the cables comprise silicon carbide fibers having an oxygen content which is less than or equal to 1% atomic percentage.
  • the present invention also provides a part in CMC comprising at least:
  • a 3D woven fiber reinforcement comprising a plurality of cables, the cables having a plurality of fibers which are individually coated with an interphase;
  • This part in CMC can be obtained by implementing the method described above.
  • the consolidation phase has a Young's modulus greater than or equal to 375 GPa, for example greater than or equal to 400 GPa.
  • this feature further improves the creep resistance of the CMC part.
  • the volume fraction of the consolidation phase is in the range from 5% to 30%, for example in the range from 10% to 30%.
  • This characteristic advantageously optimizes the resistance to creep at high temperatures.
  • the part further comprises a silicon carbide matrix phase located on the consolidation phase, said silicon carbide matrix phase having a residual volume porosity less than or equal to 8
  • this characteristic advantageously reduces stress concentrations under mechanical load and improves the resistance of the die to cracking.
  • the interphase is formed from at least one layer of the following materials: boron nitride, silicon doped boron nitride, pyrolytic carbon, and boron doped carbon.
  • the cables comprise silicon carbide fibers having an oxygen content which is less than or equal to 1% atomic percentage.
  • the part can be a turbine engine part.
  • the part can be a turbine ring or a turbine ring sector, a movable blade, a fixed blade, a combustion chamber wall, or a distributor.
  • FIG. 1 is a flowchart of an example of a method according to the invention.
  • FIG. 2 generally illustrates a device for forming
  • the process begins by coating the cables with interphase by means of the implementation of vapor deposition (step S10 in Fig. 1).
  • the cables can comprise ceramic fibers, for example nitride or carbide fibers, for example silicon carbide fibers.
  • the cables can comprise carbon fibers.
  • the cables comprise silicon carbide fibers having an oxygen content which is less than or equal to 1% atomic percentage. Examples of such cables are marketed under the name “Hi-Nicalon-S” by the company NGS, under the name “Tyranno SA3” by the supplier UBE, or under the name “Sylramic i-BN” by the supplier COI Ceramics.
  • a cable comprises a plurality of fibers, for example at least one hundred fibers, typically 500 fibers.
  • the interphase is used to slow down the breaking of cable fibers by cracks that initially start in the matrix.
  • the defragilization interphase may comprise a material of lamellar structure which, for a crack reaching the interphase, is capable of dissipating the cracking energy by localized uncoupling at the atomic scale so that the crack be deviated in the interphase.
  • Interphase is a coating that can consist of a single layer or multiple layers.
  • the interphase may contain one or more layers of: boron nitride BN, boron nitride doped with silicon BN (Si) (having a mass content of silicon in the range of 5% to 40%, the remainder being nitride boron), PyC pyrolytic carbon or boron doped carbon (having an atomic boron content in the range of 5% to 20%, the remainder being carbon) or boron carbide.
  • the thickness of the interphase may be greater than or equal to 10 nanometers (nm), and for example may be in the range from 10 nm to 1000 nm.
  • it may be preferable to carry out a surface treatment on the fibers of the cables before the formation of the interphase in order to remove the size and a surface layer of oxide such as silica S1O2 present. on the fibers.
  • the device 1 comprises a treatment chamber 4 in which a plurality of cables 2 intended to be coated are transported by being driven by a conveying system 6, comprising here first 6a and second 6b sets of pulleys. Each set 6a or 6b comprises one or more pulleys.
  • the conveying system 6 is configured to transport the cables 2 through the processing chamber 4 along a Y conveying axis. In the example shown, the Y conveying axis is parallel to the longitudinal axis X of the device 1.
  • the cables 2 are put under tension between the pulleys 6a and 6b and are put under tension between the input and output ends 5a and 5b.
  • the fibers of the cables 2 move apart, which leads to a more homogeneous filling of the cables 2 and to an individual coating of the fibers.
  • the cables 2 can be transported continuously through the processing chamber 4 during coating with the interphase. In this case, the cables 2 do not stop as they are transported through processing chamber 4.
  • the cables 2 which are to be coated with the interphase may not be linked together (in particular the cables 2 are not woven, knitted, or braided together).
  • the cables 2 may not have been subjected to a textile operation and may not form a fibrous structure during coating with the interphase.
  • the interphase is obtained by injecting a gas phase 10 into the processing chamber through an inlet port 7 to form the interphase on the cables 2.
  • the interphase can be formed by chemical vapor deposition (CVD ).
  • the interphase can be formed in contact with the fibers of the cables.
  • the unreacted gas phase, together with reaction by-products, are pumped out through an outlet 8 (arrow 11).
  • the device 1 also comprises a heating system configured to heat the treatment chamber 4 in order to carry out vapor deposition.
  • the heating system can heat the treatment chamber 4 by inductive or radiant heating.
  • the gas phase 10 can comprise one or more gaseous hydrocarbons, for example selected from methane, ethane, propane and butane.
  • the gas phase 10 can contain a gaseous precursor of a ceramic material, such as a combination of boron trichloride BCI 3 and ammonia NH 3 .
  • a multilayer interphase can be achieved by placing a plurality of such units in series, each comprising a device for injecting a gas phase and a device for removing the residual gas phase.
  • the process continues by performing a three-dimensional weaving of the coated cables to form a fiber preform of the part to be obtained (step S20 in Fig. 1).
  • the fiber preform serves to form the fiber reinforcement of the part to be obtained.
  • the fiber preform is obtained by three-dimensional weaving between a plurality of layers of warp cables and a plurality of layers of warp cables. frame.
  • the fiber preform can be made in one piece by three-dimensional weaving. Three-dimensional weaving can be achieved with weaving
  • interlock that is to say a weaving in which each layer of weft cables binds a plurality of layers of warp cables, with all the cables of a same weft column having the same movement in the plane of armor.
  • the roles of the warps and wefts can be reversed, and this reversal is to be considered also to be covered by the claims.
  • the use of other types of 3D weaving are of course not within the scope of the invention.
  • Various suitable weaving techniques are described in WO 2006/136755.
  • a sizing composition comprising a linear polysiloxane
  • An example of such a sizing composition is disclosed in document US 2017/073854.
  • Another solution to avoid any risk of damage to the interphase is to form the preform using a loom having elements which come into contact with the cables which are made of molybdenum. This type of loom is disclosed in document FR 3045679.
  • a consolidation phase comprising silicon carbide is formed by CVI in the pores of the fiber preform and on the interphase (step S30 in Fig. 1).
  • the consolidation phase can be formed in contact with the interphase.
  • the consolidation phase obtained by CVI does not contain free silicon and has a high Young's modulus, greater than or equal to 350 GPa.
  • the Young's modulus of the consolidation phase can for example be located in the range going from 350 GPa to 450 GPa, for example in the range going from 350 GPa to 420 GPa.
  • this consolidation phase gives the part the desired creep resistance at high temperatures.
  • the consolidation phase comprises silicon carbide, optionally doped with a self-healing material such as boron B or boron carbide B 4 C.
  • the thickness of the consolidation phase may be greater than or equal to 500 nm, for example lying in the range going from 1 micrometer (pm) to 30 pm.
  • the thickness of the consolidation phase is sufficient to consolidate the fiber preform, that is to say to bind together the cables of the blank enough to allow the preform to be handled while retaining its shape without the assistance of a holding tool.
  • the residual volume porosity of the consolidated fiber preform may be less than or equal to 45%, for example may be located in the range from 30% to 35%.
  • the volume fraction of the consolidation phase in the consolidated fiber preform (or in the CMC part) can be greater than or equal to 5%. In one example, this volume fraction of the consolidation phase is in the range from 10% to 30%.
  • an additional densification step can be performed to complete the densification of the preform (step S40).
  • the ceramic matrix phase formed during the additional densification step S40 is formed on the consolidation phase and may be in contact with the consolidation phase.
  • this additional densification step is performed
  • the consolidated prefome can be impregnated with a slip containing the powder suspended in a liquid medium, for example water.
  • the powder can be retained in the preform by filtration, optionally with the assistance of suction or pressure. It is preferable to use a powder consisting of particles having an average size (D50) of 5 ⁇ m or less, or even 2 ⁇ m or less.
  • D50 average size
  • the powder is present in the pores of the consolidated fiber preform.
  • the powder can include particles of silicon carbide.
  • particles of another material for example such as carbon, boron carbide, silicon boride, silicon nitride, may be present in the pores of the fiber preform.
  • the consolidated fiber preform comprising the particles is infiltrated with a molten composition comprising silicon.
  • This composition can correspond to molten silicon alone or to a silicon alloy in the molten state which also contains one or more other elements such as titanium, molybdenum, boron, iron or niobium.
  • the proportion by weight of silicon in the molten composition may be greater than or equal to 50%, for example greater than or equal to 75%, for example greater than or equal to 90%.
  • the additional densification step can be carried out in a known manner by CVI or by a technique of polymer infiltration and pyrolysis (“Polymer Infiltration and Pyrolysis”; “PIP”).
  • the CVI technique used to form the consolidation phase can be continued so as to completely densify the fiber preform.
  • the entire ceramic matrix of the CMC part can be obtained by CVI.
  • the expression "within the range from ... to " should be understood as including the limits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Woven Fabrics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce en CMC, le procédé comprenant au moins : - le revêtement d'une pluralité de câbles (2) avec une interphase par transport des câbles à travers une chambre de traitement (4) dans laquelle une phase gazeuse (10) est injectée, les câbles étant mis sous tension durant leur transport et l'interphase étant formée par dépôt en phase vapeur à partir de la phase gazeuse injectée; - la formation d'une préforme fibreuse par tissage tridimensionnel utilisant les câbles revêtus de l'interphase; et - la formation d'une préforme fibreuse consolidée par traitement de la préforme fibreuse par infiltration chimique en phase vapeur pour former une phase de consolidation sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa. et une pièce en CMC comprenant au moins : - un renfort fibreux tissé 3D comprenant une pluralité de câbles (2), les câbles ayant une pluralité de fibres qui sont revêtues individuellement d'une interphase; et - une phase de consolidation densifiant le renfort fibreux et située sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa, la phase de consolidation ne contenant pas de silicium libre.

Description

Description
Titre de l'invention : Procédé de fabrication d'une pièce en CMC
Domaine Technique
L'invention concerne des pièces en composite à matrice céramique (CMC) et des procédés pour fabriquer de telles pièces.
Un domaine d'application de l'invention réside dans la réalisation de pièces qui sont destinées à être exposées à des températures de service élevées, spécifiquement dans les domaines de l'aviation et de l'espace, et en particulier de pièces pour les parties chaudes des moteurs à turbine d'avion, étant entendu que l'invention peut être appliquée à d'autres domaines, par exemple au domaine des turbines à gaz industrielles.
Technique antérieure
Les matériaux CMC présentent de bonnes propriétés thermostructurales, c'est-à-dire de bonnes propriétés mécaniques qui les rendent adaptés à la constitution de pièces structurales, conjointement avec l'aptitude à conserver ces propriétés à des températures élevées. Les matériaux CMC comprennent un renfort fibreux fait de câbles de matériaux céramiques ou carbonés présents dans une matrice céramique. L'utilisation de matériaux CMC au lieu de matériaux métalliques pour des pièces qui sont exposées à des températures de service élevées est souhaitable, en particulier car ces matériaux présentent une masse volumique qui est considérablement inférieure à la masse volumique des matériaux métalliques qu'ils remplacent.
On sait notamment fabriquer une pièce en CMC au moyen d'une technique dans laquelle des plis de fibres revêtues d'une interphase sont imprégnés par un mélange de résine et ensuite superposés dans l'orientation souhaitée pour que soit obtenue une préforme de la pièce à obtenir. Après la formation de la préforme, la résine est pyrolysée et ensuite une densification de la préforme est effectuée par infiltration avec du silicium fondu ou un alliage de silicium fondu pour former une matrice céramique. Les inventeurs ont observé que le produit ainsi obtenu peut ne pas être entièrement satisfaisant parce que des couches de matrice entre chaque pli peuvent conduire à une faiblesse au fluage à température, due à la présence de silicium libre. Dans ce type de produit, les phases de matrice incorporées, caractérisées par une faible résistance au fluage, sous la forme de silicium libre dans la matrice obtenue par infiltration à l'état fondu, peuvent conduire à une surcharge des fibres dépassant leur résistance au fluage et donc à une diminution du temps de rupture.
Il est donc souhaitable de mettre à disposition des pièces en CMC ayant de meilleures propriétés mécaniques, et en particulier une meilleure résistance au fluage, aux températures élevées.
Exposé de l'invention
La présente invention met à disposition un procédé de fabrication d'une pièce en CMC, le procédé comprenant au moins :
- le revêtement d'une pluralité de câbles avec une interphase par transport des câbles à travers une chambre de traitement dans laquelle une phase gazeuse est injectée, les câbles étant mis sous tension durant leur transport et l'interphase étant formée par dépôt en phase vapeur à partir de la phase gazeuse injectée ;
- la formation d'une préforme fibreuse par tissage tridimensionnel utilisant les câbles revêtus de l'interphase ; et
- la formation d'une préforme fibreuse consolidée par traitement de la préforme fibreuse par infiltration chimique en phase vapeur pour former une phase de consolidation sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa.
Sauf mention contraire, le module de Young de la phase de consolidation est mesuré à 20°C.
La combinaison du renfort obtenu par tissage tridimensionnel et de la phase de consolidation de carbure de silicium obtenue par infiltration chimique en phase vapeur (CVI) avec un module élevé conduit à un réseau 3D interconnecté et rigide sans silicium libre, qui confère au matériau une résistance au fluage élevée à haute température. Les inventeurs ont aussi observé que la formation de l'interphase par dépôt en phase vapeur sur un câble transporté sous tension réalise un revêtement individuel autour de chaque fibre du câble, ainsi qu'un bon remplissage intra-câble, du fait d'un effet avantageux de l'espacement des fibres dans le câble. Le
remplissage du câble est donc plus homogène en comparaison avec la formation de l'interphase par CVI sur les fibres d'une préforme déjà tissée dans laquelle la perméabilité aux gaz des câbles est limitée. Dans l'invention, l'interphase formée offre notamment un meilleur transfert de charge de fibre à fibre et aussi évite le risque d'une liaison vitreuse (« glass linkage ») et d'une rupture de faisceaux de fibres adjacentes durant une exposition oxydante. La solution proposée par la présente invention met donc à disposition une pièce en CMC ayant de meilleures propriétés mécaniques aux températures élevées.
Dans un mode de réalisation, la phase de consolidation a un module de Young supérieur ou égal à 375 GPa, par exemple supérieur ou égal à 400 GPa.
Cette caractéristique améliore davantage encore la résistance au fluage de la pièce en CMC.
Dans un mode de réalisation, la porosité volumique résiduelle de la préforme fibreuse consolidée est située dans la plage allant de 25 % à 45 %, par exemple dans la plage allant de 30 % à 35 %.
Les inventeurs ont observé que cette caractéristique optimise avantageusement la résistance au fluage aux températures élevées.
Dans un mode de réalisation, le procédé comprend en outre la densification de la préforme fibreuse consolidée par formation d'une phase de matrice en carbure de silicium sur la phase de consolidation par infiltration avec une composition fondue comprenant du silicium, des particules de carbone et/ou de céramique étant présentes dans la porosité de la préforme consolidée avant l'infiltration.
Cette caractéristique conduit avantageusement à une matrice en céramique ayant une faible porosité, ce qui réduit ainsi les concentrations de contrainte sous charge mécanique et améliore la résistance de la matrice aux fissurations.
Dans un mode de réalisation, l'interphase est formée d'au moins une couche des matériaux suivants : nitrure de bore, nitrure de bore dopé au silicium, carbone pyrolytique ou carbone dopé au bore. Dans un exemple, l'interphase peut être recouverte d'une couche protectrice d'au moins l'un des matériaux suivants : nitrure de silicium ou carbure de silicium.
Dans un mode de réalisation, les câbles comprennent des fibres de carbure de silicium présentant une teneur en oxygène qui est inférieure ou égale à 1 % en pourcentage atomique. La présente invention met aussi à disposition une pièce en CMC comprenant au moins :
- un renfort fibreux tissé 3D comprenant une pluralité de câbles, les câbles ayant une pluralité de fibres qui sont revêtues individuellement d'une interphase ; et
- une phase de consolidation densifiant le renfort fibreux et située sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa, la phase de consolidation ne contenant pas de silicium libre.
Cette pièce en CMC peut être obtenue par mise en œuvre du procédé décrit ci- dessus.
Dans un mode de réalisation, la phase de consolidation a un module de Young supérieur ou égal à 375 GPa, par exemple supérieur ou égal à 400 GPa.
Comme indiqué ci-dessus, cette caractéristique améliore davantage encore la résistance au fluage de la pièce en CMC.
Dans un mode de réalisation, la fraction volumique de la phase de consolidation est située dans la plage allant de 5 % à 30 %, par exemple dans la plage allant de 10 % à 30 %.
Cette caractéristique optimise avantageusement la résistance au fluage aux températures élevées.
Dans un mode de réalisation, la pièce comprend en outre une phase de matrice en carbure de silicium située sur la phase de consolidation, ladite phase de matrice en carbure de silicium ayant une porosité volumique résiduelle inférieure ou égale à 8
%.
Comme indiqué ci-dessus, cette caractéristique réduit avantageusement les concentrations de contrainte sous charge mécanique et améliore la résistance de la matrice aux fissurations.
Dans un mode de réalisation, l'interphase est formée d'au moins une couche des matériaux suivants : nitrure de bore, nitrure de bore dopé au silicium, carbone pyrolytique, et carbone dopé au bore.
Dans un mode de réalisation, les câbles comprennent des fibres de carbure de silicium présentant une teneur en oxygène qui est inférieure ou égale à 1 % en pourcentage atomique. A titre d'exemple, la pièce peut être une pièce de moteur à turbine. A titre d'exemple, la pièce peut être un anneau de turbine ou un secteur d'anneau de turbine, une aube mobile, une aube fixe, une paroi de chambre de combustion, ou un distributeur.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention apparaîtront à partir de la description qui suit, qui est présentée de manière non limitative et en référence aux dessins joints, dans lesquels :
[Fig. 1] La figure 1 est un ordinogramme d'un exemple d'un procédé selon l'invention ; et
[Fig. 2] La figure 2 illustre d'une façon générale un dispositif pour former
l'interphase sur les câbles alors qu'ils sont transportés à travers une chambre de traitement qui peut être utilisé dans l'invention.
Description des modes de réalisation
Le procédé commence par le revêtement des câbles avec une interphase au moyen de la mise en œuvre d'un dépôt en phase vapeur (étape S10 sur la figure 1).
Les câbles peuvent comprendre des fibres céramiques, par exemple des fibres de nitrure ou de carbure, par exemple des fibres de carbure de silicium. Dans une autre variante, les câbles peuvent comprendre des fibres de carbone. Dans un exemple, les câbles comprennent des fibres de carbure de silicium présentant une teneur en oxygène qui est inférieure ou égale à 1 % en pourcentage atomique. Des exemples de tels câbles sont commercialisés sous le nom "Hi-Nicalon-S" par la société NGS, sous le nom "Tyranno SA3" par le fournisseur UBE, ou sous le nom "Sylramic i-BN" par le fournisseur COI Ceramics. Un câble comprend une pluralité de fibres, par exemple au moins cent fibres, typiquement 500 fibres.
L'interphase sert à ralentir la rupture des fibres des câbles par des fissures qui commencent initialement dans la matrice. A titre d'exemple, l'interphase de défragilisation peut comprendre un matériau de structure lamellaire qui, pour une fissure atteignant l'interphase, est capable de dissiper l'énergie de fissuration par désolidarisation localisée à l'échelle atomique de façon que la fissure soit déviée dans l'interphase. L'interphase est un revêtement qui peut comprendre une seule couche ou plusieurs couches. L'interphase peut contenir une ou plusieurs couches de : nitrure de bore BN, nitrure de bore dopé au silicium BN(Si) (ayant une teneur massique en silicium située dans la plage allant de 5 % à 40 %, le reste étant du nitrure de bore), carbone pyrolytique PyC ou carbone dopé au bore (ayant une teneur atomique en bore située dans la plage allant de 5 % à 20 %, le reste étant du carbone) ou carbure de bore. L'épaisseur de l'interphase peut être supérieure ou égale à 10 nanomètres (nm), et par exemple peut être située dans la plage allant de 10 nm à 1000 nm. D'une manière connue, il peut être préférable d'effectuer un traitement de surface sur les fibres des câbles avant la formation de l'interphase afin d'éliminer l'ensimage et une couche de surface d'oxyde telle que la silice S1O2 présente sur les fibres.
Des procédés et dispositifs pour revêtir les câbles d'une interphase formée par dépôt en phase vapeur alors que ces câbles sont transportés sous tension à travers une chambre de traitement sont connus. Concernant cet aspect, il est par exemple possible de se référer au document FR 3 044 022.
Une brève description d'un exemple d'un dispositif convenable 1 pour former l'interphase sur les câbles 2 est présentée ci-dessous en référence à la Figure 2.
Le dispositif 1 comprend une chambre de traitement 4 dans laquelle une pluralité de câbles 2 destinés à être revêtus sont transportés en étant entraînés par un système de convoyage 6, comprenant ici des premier 6a et deuxième 6b ensembles de poulies. Chaque ensemble 6a ou 6b comprend une ou plusieurs poulies. Durant le revêtement, les câbles 2 sont transportés par le système de convoyage 6 de l'extrémité d'entrée 5a à l'extrémité de sortie 5b. Le système de convoyage 6 est configuré pour transporter les câbles 2 à travers la chambre de traitement 4 le long d'un axe de convoyage Y. Dans l'exemple représenté, l'axe de convoyage Y est parallèle à l'axe longitudinal X du dispositif 1. Les câbles 2 sont mis sous tension entre les poulies 6a et 6b et sont mis sous tension entre les extrémités d'entrée et de sortie 5a et 5b. Du fait de la tension appliquée, les fibres des câbles 2 s'écartent, ce qui conduit à un remplissage plus homogène des câbles 2 et à un revêtement individuel des fibres. Les câbles 2 peuvent être transportés en continu à travers la chambre de traitement 4 durant le revêtement avec l'interphase. Dans ce cas, les câbles 2 ne s'arrêtent pas tandis qu'ils sont transportés à travers la chambre de traitement 4.
Les câbles 2 qui doivent être revêtus de l'interphase peuvent ne pas être liés entre eux (en particulier les câbles 2 ne sont pas tissés, tricotés, ou tressés ensemble). Les câbles 2 peuvent ne pas avoir été soumis à une opération textile et ne peuvent pas former une structure fibreuse durant le revêtement avec l'interphase.
L'interphase est obtenue par injection d'une phase gazeuse 10 dans la chambre de traitement à travers un orifice d'entrée 7 pour former l'interphase sur les câbles 2. L'interphase peut être formée par dépôt chimique en phase vapeur (CVD).
L'interphase peut être formée au contact des fibres des câbles. La phase gazeuse n'ayant pas réagi, conjointement avec des sous-produits de la réaction, sont évacués par pompage via un orifice de sortie 8 (flèche 11). Le dispositif 1 comprend aussi un système chauffant configuré pour chauffer la chambre de traitement 4 afin de réaliser de dépôt en phase vapeur. Le système chauffant peut chauffer la chambre de traitement 4 par chauffage inductif ou radiant. Lorsqu'une interphase de PyC doit être formée, la phase gazeuse 10 peut comprendre un ou plusieurs hydrocarbures gazeux, par exemple choisis parmi le méthane, l'éthane, le propane et le butane. Dans une variante, la phase gazeuse 10 peut contenir un précurseur gazeux d'un matériau céramique, tel qu'une combinaison de trichlorure de bore BCI3 et d'ammoniac NH3. Afin de produire une interphase donnée, la sélection du ou des précurseurs à utiliser conjointement avec les conditions de pression et de
température devant être imposées dans la chambre de traitement 4 font partie des connaissances générales de l'homme du métier.
Une interphase multicouche peut être réalisée par placement d'une pluralité d'unités de ce type en série, comprenant chacune un dispositif pour injecter une phase gazeuse et un dispositif pour éliminer la phase gazeuse résiduelle.
Une fois que les câbles 2 ont été revêtus de l'interphase, le procédé se poursuit en effectuant un tissage tridimensionnel des câbles revêtus pour former une préforme fibreuse de la pièce devant être obtenue (étape S20 sur la figure 1).
La préforme fibreuse sert à former le renfort fibreux de la pièce devant être obtenue. La préforme fibreuse est obtenue par tissage tridimensionnel entre une pluralité de couches de câbles de chaîne et une pluralité de couches de câbles de trame. La préforme fibreuse peut être faite d'une seule pièce par tissage tridimensionnel. Le tissage tridimensionnel peut être réalisé avec un tissage
"interlock", c'est-à-dire un tissage dans lequel chaque couche de câbles de trame lie une pluralité de couches de câbles de chaîne, avec tous les câbles d'une même colonne de trame ayant le même mouvement dans le plan de l'armure. Les rôles des chaînes et trames peuvent être inversés, et cette inversion doit être considérée également comme étant couverte par les revendications. L'utilisation d'autres types de tissage 3D ne sont bien entendu pas du cadre de l'invention. Diverses techniques de tissage convenables sont décrites dans le document WO 2006/136755.
D'une manière connue, il peut être préférable de traiter les câbles revêtus avant le tissage avec une composition d'ensimage comprenant un polysiloxane linéaire, pour éviter tout risque d'endommagement de l'interphase durant le tissage. Un exemple d'une telle composition d'ensimage est divulgué dans le document US 2017/073854. Une autre solution pour éviter tout risque d'endommagement de l'interphase consiste à former la préforme en utilisant un métier à tisser ayant des éléments qui viennent en contact avec les câbles qui sont faits en molybdène. Ce type de métier à tisser est divulgué dans le document FR 3045679.
Après la formation de la préforme tissée 3D, une phase de consolidation comprenant du carbure de silicium est formée par CVI dans les pores de la préforme fibreuse et sur l'interphase (étape S30 sur la figure 1). La phase de consolidation peut être formée en contact avec l'interphase. La phase de consolidation obtenue par CVI ne contient pas de silicium libre et a un module de Young élevé, supérieur ou égal à 350 GPa. Le module de Young de la phase de consolidation peut par exemple être situé dans la plage allant de 350 GPa à 450 GPa, par exemple dans la plage allant de 350 GPa à 420 GPa. Comme mentionné ci-dessus, cette phase de consolidation confère à la pièce la résistance au fluage souhaitée aux températures élevées. La phase de consolidation comprend du carbure de silicium, éventuellement dopé avec un matériau auto-cicatrisant tel que le bore B ou le carbure de bore B4C.
L'épaisseur de la phase de consolidation peut être supérieure ou égale à 500 nm, par exemple située dans la plage allant de 1 micromètre (pm) à 30 pm. L'épaisseur de la phase de consolidation est suffisante pour consolider la préforme fibreuse, c'est-à-dire pour lier ensemble les câbles de l'ébauche suffisamment pour permettre à la préforme d'être manipulée tout en conservant sa forme sans l'assistance d'un outillage de maintien.
Après la formation de la phase de consolidation et avant le début de la densification supplémentaire optionnelle (étape S40 sur la figure 1), la porosité volumique résiduelle de la préforme fibreuse consolidée peut être inférieure ou égale à 45 %, par exemple peut être située dans la plage allant de 30 % à 35 %. La fraction volumique de la phase de consolidation dans la préforme fibreuse consolidée (ou dans la pièce en CMC) peut être supérieure ou égale à 5 %. Dans un exemple, cette fraction volumique de la phase de consolidation est située dans la plage allant de 10 % à 30 %.
Après la formation de la phase de consolidation, une étape de densification supplémentaire peut être réalisée pour terminer la densification de la préforme (étape S40). La phase de matrice céramique formée durant l'étape de densification supplémentaire S40 est formée sur la phase de consolidation et peut être en contact avec la phase de consolidation.
Dans un mode de réalisation, cette étape de densification supplémentaire
correspond à une densification par infiltration par une barbotine (« slurry-cast ») suivie d'une d'infiltration à l'état fondu. Dans ce cas, une poudre de céramique et/ou de carbone peut être introduite dans les pores de la préforme fibreuse consolidée. Pour ce faire, la préfome consolidée peut être imprégnée d'une barbotine contenant la poudre en suspension dans un milieu liquide, par exemple de l'eau. La poudre peut être retenue dans la préforme par filtration, éventuellement avec l'assistance d'une aspiration ou d'une pression. Il est préférable d'utiliser une poudre constituée de particules ayant une taille moyenne (D50) inférieure ou égale à 5 pm, ou même inférieure ou égale à 2 pm. Avant l'infiltration avec la composition fondue, la poudre est présente dans les pores de la préforme fibreuse consolidée. La poudre peut comprendre des particules de carbure de silicium. En remplacement ou en plus des particules de carbure de silicium, des particules d'un autre matériau, par exemple tel que le carbone, le carbure de bore, le borure de silicium, le nitrure de silicium, peuvent être présentes dans les pores de la préforme fibreuse.
Ensuite, la préforme fibreuse consolidée comprenant les particules est infiltrée avec une composition fondue comprenant du silicium. Cette composition peut correspondre à du silicium fondu seul ou à un alliage de silicium à l'état fondu qui contient aussi un ou plusieurs autres éléments tels que le titane, le molybdène, le bore, le fer ou le niobium. La proportion en poids de silicium dans la composition fondue peut être supérieure ou égale à 50 %, par exemple supérieure ou égale à 75 %, par exemple supérieure ou égale à 90 %.
L'utilisation d'autres types de techniques pour l'étape de densification
supplémentaire S40 ne sortent bien entendu pas du cadre de l'invention. Par exemple, l'étape de densification supplémentaire peut être effectuée d'une manière connue par CVI ou par une technique d'infiltration de polymère et de pyrolyse (« Polymer Infiltration and Pyrolysis » ; « PIP »). Dans un exemple, la technique CVI utilisée pour former la phase de consolidation peut être poursuivie de façon à densifier complètement la préforme fibreuse. Dans ce cas, toute la matrice céramique de la pièce en CMC peut être obtenue par CVI. L'expression "situé dans la plage allant de ... à ..." doit être comprise comme incluant les bornes.

Claims

Revendications
[Revendication 1] Procédé de fabrication d'une pièce en CMC, le procédé comprenant au moins :
- le revêtement d'une pluralité de câbles (2) avec une interphase par transport des câbles à travers une chambre de traitement (4) dans laquelle une phase gazeuse (10) est injectée, les câbles étant mis sous tension durant leur transport et l'interphase étant formée par dépôt en phase vapeur à partir de la phase gazeuse injectée ;
- la formation d'une préforme fibreuse par tissage tridimensionnel utilisant les câbles revêtus de l'interphase ; et
- la formation d'une préforme fibreuse consolidée par traitement de la préforme fibreuse par infiltration chimique en phase vapeur pour former une phase de consolidation sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa.
[Revendication 2] Procédé selon la revendication 1, dans lequel la phase de consolidation a un module de Young supérieur ou égal à 375 GPa.
[Revendication 3] Procédé selon la revendication 1 ou la revendication 2, dans lequel la porosité volumique résiduelle de la préforme fibreuse consolidée est située dans la plage allant de 25 % à 45 %.
[Revendication 4] Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le procédé comprend en outre la densification de la préforme fibreuse consolidée par formation d'une phase de matrice en carbure de silicium sur la phase de consolidation par infiltration avec une composition fondue comprenant du silicium, et dans lequel des particules de carbone et/ou de céramique sont présentes dans la porosité de la préforme consolidée avant l'infiltration.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'interphase est formée d'au moins une couche des matériaux suivants :
nitrure de bore, nitrure de bore dopé au silicium, carbone pyrolytique ou carbone dopé au bore.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les câbles (2) comprennent des fibres de carbure de silicium présentant une teneur en oxygène qui est inférieure ou égale à 1 % en pourcentage atomique.
[Revendication 7] Pièce en CMC comprenant au moins :
- un renfort fibreux tissé 3D comprenant une pluralité de câbles (2), les câbles ayant une pluralité de fibres qui sont revêtues individuellement d'une interphase ; et
- une phase de consolidation densifiant le renfort fibreux et située sur l'interphase, la phase de consolidation comprenant du carbure de silicium et ayant un module de Young supérieur ou égal à 350 GPa, la phase de consolidation ne contenant pas de silicium libre.
[Revendication 8] Pièce en CMC selon la revendication 7, dans laquelle la phase de consolidation a un module de Young supérieur ou égal à 375 GPa.
[Revendication 9] Pièce en CMC selon la revendication 7 ou 8, dans laquelle la fraction volumique de la phase de consolidation est située dans la plage allant de 5 % à 30 %.
[Revendication 10] Pièce en CMC selon l'une quelconque des revendications 7 à 9, laquelle pièce comprend en outre une phase de matrice en carbure de silicium située sur la phase de consolidation, ladite phase de matrice en carbure de silicium ayant une porosité volumique résiduelle inférieure ou égale à 8 %.
[Revendication 11] Pièce en CMC selon l'une quelconque des revendications 7 à 10, dans laquelle l'interphase est formée d'au moins une couche des matériaux suivants : nitrure de bore, nitrure de bore dopé au silicium, carbone pyrolytique, et carbone dopé au bore.
[Revendication 12] Pièce en CMC selon l'une quelconque des revendications 7 à 11, dans laquelle les câbles (2) comprennent des fibres de carbure de silicium
présentant une teneur en oxygène qui est inférieure ou égale à 1 % en pourcentage atomique.
EP20713333.1A 2019-04-05 2020-03-30 Procede de fabrication d'une piece en cmc Pending EP3947319A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962829863P 2019-04-05 2019-04-05
FR1911064A FR3101629B1 (fr) 2019-10-07 2019-10-07 Procédé de fabrication d'une pièce en CMC
PCT/EP2020/058929 WO2020201202A1 (fr) 2019-04-05 2020-03-30 Procede de fabrication d'une piece en cmc

Publications (1)

Publication Number Publication Date
EP3947319A1 true EP3947319A1 (fr) 2022-02-09

Family

ID=69941400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20713333.1A Pending EP3947319A1 (fr) 2019-04-05 2020-03-30 Procede de fabrication d'une piece en cmc

Country Status (3)

Country Link
US (1) US20220177374A1 (fr)
EP (1) EP3947319A1 (fr)
WO (1) WO2020201202A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887601B1 (fr) 2005-06-24 2007-10-05 Snecma Moteurs Sa Piece mecanique et procede de fabrication d'une telle piece
FR3018083B1 (fr) 2014-02-28 2016-04-08 Herakles Fil ensime destine a subir une operation textile
FR3044022B1 (fr) * 2015-11-19 2020-12-04 Herakles Dispositif pour le revetement d'un ou plusieurs fils par un procede de depot en phase vapeur
FR3045679B1 (fr) 2015-12-21 2019-05-03 Safran Ceramics Metier a tisser avec element en molybdene
FR3053328B1 (fr) * 2016-06-29 2022-01-21 Herakles Procede de fabrication d'une piece en materiau composite a matrice ceramique

Also Published As

Publication number Publication date
WO2020201202A1 (fr) 2020-10-08
US20220177374A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
EP1851180B1 (fr) Piece en materiau composite a matrice ceramique
EP2785665B1 (fr) Procede de fabrication de piece en materiau cmc
EP2154119B1 (fr) Procédé de fabrication d'une pièce en matériau composite thermostructural et pièce ainsi obtenue
EP2340238B1 (fr) Procede de fabrication de pieces en materiau composite thermostructural.
FR2710635A1 (fr) Procédé de fabrication d'un matériau composite à interphase lamellaire entre fibres de renfort et matrice, et matériau tel qu'obtenu par le procédé.
EP0817762A1 (fr) Materiau composite protege contre l'oxydation par matrice autocicatrisante et son procede de fabrication
EP3024801B1 (fr) Procédé de fabrication de pièces en matériau composite par imprégnation a basse température de fusion
EP3416929B1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
FR2869609A1 (fr) Procede de fabrication d'une piece en materiau composite thermostructural
EP3830056A1 (fr) Procédé de fabrication d'une piece en cmc
FR2852003A1 (fr) Procede de realisation d'une piece multiperforee en materiau composite a matrice ceramique
FR3053329A1 (fr) Procede de revetement d'une piece en materiau composite a matrice ceramique par une barriere environnementale
EP0441700A1 (fr) Procédé de fabrication de matériau composite à renfort à base de fibres de carbone et matrice céramique
EP3455192B1 (fr) Pièce en matériau composite à matrice ceramique
EP3478870B1 (fr) Procédé d'infiltration ou de dépôt chimique en phase vapeur
FR3101629A1 (fr) Procédé de fabrication d'une pièce en CMC
FR3106829A1 (fr) Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
EP3947319A1 (fr) Procede de fabrication d'une piece en cmc
EP3544939B1 (fr) Piece en materiau composite comprenant une couche d'interphase en nitrure de bore dope par de l'aluminium
FR3081156A1 (fr) Procede de fabrication d'une piece cmc revetue
WO2024084153A1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
FR3141171A1 (fr) Procédé de fabrication d’une pièce en matériau composite à matrice céramique
FR3081157A1 (fr) Procede de fabrication d'une piece cmc

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)