EP3945218B1 - Centrifugal pump - Google Patents
Centrifugal pump Download PDFInfo
- Publication number
- EP3945218B1 EP3945218B1 EP21187851.7A EP21187851A EP3945218B1 EP 3945218 B1 EP3945218 B1 EP 3945218B1 EP 21187851 A EP21187851 A EP 21187851A EP 3945218 B1 EP3945218 B1 EP 3945218B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling jacket
- chamber
- pump
- centrifugal pump
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 156
- 239000012530 fluid Substances 0.000 claims description 40
- 239000002351 wastewater Substances 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000007787 solid Substances 0.000 description 15
- 239000002826 coolant Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 239000010865 sewage Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- -1 dirt Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
- F04D13/086—Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
Definitions
- the invention relates to a centrifugal pump with a motor housing with a drive motor arranged in the motor housing and a pump housing arranged on the motor housing forming a pump chamber with an impeller arranged in the pump chamber and drivable by the drive motor for conveying a fluid, wherein the motor housing is coaxially surrounded on the outside by a cooling jacket forming a cooling jacket chamber, which cooling jacket chamber has a cooling jacket inlet opening out of the pump chamber into the cooling jacket chamber, through which fluid conveyed by the impeller can flow into the cooling jacket chamber.
- the invention further relates to a use of the centrifugal pump as a dirty water and/or waste water submersible pump or in a lifting system.
- Waterproof submersible motors are used in particular in dirty water and/or sewage submersible pumps or in lifting systems.
- waterproof submersible motors of this type do not have simple active cooling using an air flow.
- the power loss of the submersible motor is usually dissipated by passive cooling via the surrounding medium. Installing the submersible motor in air therefore requires short operating times or power outputs or a relatively high use of active materials such as copper or iron.
- oil-filled motors, oil-filled motors with internal cooling or dry motors with external, closed circulation cooling or open sheath flow cooling are used.
- jacket flow cooling With jacket flow cooling, the entire volume flow or only a partial volume flow is introduced into the cooling jacket to cool the motor, but this can lead to problems and in particular to a reduction in operational reliability. This is because solids conveyed through the cooling jacket space can lead to sedimentation in the cooling jacket space over time, particularly in the case of waste water pumps.
- the CN 105 673 574 A describes a liquid-cooled low-noise multistage centrifugal pump.
- the liquid-cooled low-noise multistage centrifugal pump includes a pump body, a liquid-cooled motor, a pump shaft encased with a shaft sleeve and a spacer ring, a journal bearing connected outside the shaft sleeve in an encasement mode, a coupling connected to the pump shaft, a motor that drives the pump shaft to rotate through the coupling, an impeller connected on the pump shaft in an insert mode, and a plurality of guide vanes fixed by steel bands and matched in a mutual cascade connection mode.
- the EN 10 2005 034 341 A1 describes a submersible motor pump with a pump housing, an impeller arranged therein and an electric drive motor connected to it, on the motor housing of which a cooling jacket is arranged, whereby a fluid conveyed by an impeller flows through the cooling jacket.
- the impeller is provided with a known relief device in the form of a pressure-side throttle gap arranged on a smaller impeller diameter and pressure relief of the relief space enclosed by the throttle gap takes place via the space of the cooling jacket.
- the JP 2001 304 197 A describes a submersible pump which can prevent a reduction in cooling efficiency by ensuring a good passage of the coolant by preventing deposition of small solid foreign matters such as sand mixed with a natural water such as rainwater and a muddy water serving as a cooling medium on a hollow coolant passage part.
- a hollow coolant passage is provided so as to surround a motor frame on a motor casing, with an inlet for the coolant opened at an upper portion of the hollow coolant passage and an outlet for the coolant opened at a lower end.
- the inlet of the coolant is communicated with a rear space of an impeller via a coolant supply pipe provided on the outside of the hollow coolant passage and a coolant supply passage provided on a casing cover.
- An essential point of the invention is therefore that the fluid after flowing through the cooling jacket space after cooling the drive motor does not flow into the pump space, for example not into a space behind the impeller and/or an edge side space of the impeller as known from the prior art, but outside the pump space.
- a cooling jacket return flow therefore takes place back in front of a suction mouth of the centrifugal pump, for example into a suction basket of the centrifugal pump in front of the pump space.
- the proposed return of the fluid as a cooling volume flow from the pump space effectively minimizes the entry of solids into the edge side space and thus significantly increases the operational reliability of the centrifugal pump, since blocking of the impeller is reduced in this way.
- sedimentation of the cooling jacket space over time is reduced or even completely avoided, since solids conveyed through the cooling jacket space can be conveyed through the cooling jacket outlet, in particular into the suction mouth of the centrifugal pump.
- a centrifugal pump is generally a fluid machine that uses rotary motion and dynamic forces to pump liquids, primarily as a fluid.
- centrifugal force occurring in radial flow is used for pumping, so that centrifugal pumps are also called centrifugal pumps.
- the motor housing is preferably arranged above the pump housing, fixed to it and/or designed as a single piece.
- the fluid preferably comprises water or another liquid medium such as waste water.
- the fluid can comprise solids such as contaminants of any kind, in particular feces, sediment, dirt, sand, or even smaller pieces of wood, brushwood, textiles or rags or the like.
- the impeller is preferably arranged completely in the pump chamber.
- the motor housing and/or the cooling jacket can have a cylindrical shape which can taper away from the pump housing.
- the motor housing and/or the cooling jacket space is preferably made of metal, in particular of stainless steel, and/or the pump housing is made of plastic.
- the cooling jacket space preferably surrounds the motor housing at least partially and in particular completely, particularly preferably along a jacket surface of the motor housing.
- the cooling jacket inlet is preferably arranged in a pressure outlet of the pump housing and/or in the pump housing in such a way that a rotational movement of the impeller allows fluid to flow into the cooling jacket space and/or pumps it.
- the cooling jacket space is preferably closed in a fluid-tight manner except for the cooling jacket inlet and the cooling jacket outlet.
- the cooling jacket outlet opens into an intake area of the impeller in front of the pump chamber and/or the cooling jacket outlet opens on the upstream side in front of the pump chamber.
- the fluid is therefore not returned behind the impeller as in the designs known from the prior art, but in any case outside of the pump chamber having the impeller, in particular as proposed by the further development in front of the pump chamber, which eliminates or at least noticeably reduces the risk of the fluid flow breaking off.
- the cooling jacket inlet is arranged in an overpressure area of the pump chamber and/or the cooling jacket outlet is arranged in a negative pressure area of the pump housing.
- the overpressure area is preferably provided behind the impeller in the so-called edge side space of the pump chamber.
- the negative pressure area is preferably provided in an intake area of the pump housing in front of the pump chamber. Due to a differential pressure between the cooling jacket inlet, at which overpressure is created due to the rotational movement of the impeller, and the cooling jacket outlet, with a lower negative pressure, fluid flows through the cooling jacket from the cooling jacket inlet to the cooling jacket outlet to cool the drive motor.
- the pump housing has a suction basket provided on the upstream side in front of the pump chamber, wherein the cooling jacket outlet is covered by the suction basket.
- the suction basket can be designed as a grid-like design and be provided below a base plate of the pump housing, be part of the base plate and/or the pump housing and/or be designed in one piece with them. In this way, the suction basket is located in the suction area and/or vacuum area of the centrifugal pump.
- the centrifugal pump has a pipe provided in the cooling jacket space, which on the one hand opens into the cooling jacket outlet at a first end of the cooling jacket space, extends axially parallel to an axis of the impeller to a second end of the cooling jacket space opposite the first end, and on the other hand opens into the cooling jacket space at the second end.
- the pipe is preferably bent at the second end to form a circular flow, for example with a radius of 28 mm over 15, 30 or 45 degrees or more.
- the pipe is preferably made of metal, in particular stainless steel.
- the first end preferably forms the cooling jacket outlet.
- the pipe preferably has a diameter of 8, 10 or 12 mm.
- the first end preferably faces the motor housing at a lower edge of the cooling jacket and the second end preferably faces away from the motor housing at an upper edge of the cooling jacket.
- the cooling jacket outlet and pipe can be formed as one piece.
- the cooling jacket outlet can also be inserted into the pump housing, for example by milling, into which the pipe can be inserted.
- a cooling jacket inlet pipe can be provided in the cooling jacket space, which on the one hand opens into the cooling jacket inlet at a first end of the cooling jacket space, extends axially parallel to an axis of the impeller to a second end of the cooling jacket space opposite the first end, and on the other hand opens into the cooling jacket space at the second end.
- the cooling jacket inlet and cooling jacket inlet pipe can be formed as one piece.
- the cooling jacket inlet can also be inserted into the pump housing, for example by milling, into which the cooling jacket inlet pipe can be inserted.
- the pipe has a first vent opening at the first end in the cooling jacket space. Solids of greater density and/or weight can be discharged through the first vent opening.
- the operational reliability of the centrifugal pump is improved by the first vent opening, since air cannot suddenly escape into the pump housing due to the first vent opening.
- the first vent opening preferably has a diameter of 3, 4, 5, 6, 7 or 8 mm.
- the tube further preferably has two first vent openings provided opposite one another at the first end.
- the first vent opening can be designed as a transverse bore.
- the pipe is bent at the second end, extends parallel to the axis back to the first end and opens into the cooling jacket space at the first end.
- the pipe is preferably bent at the second end by 180 degrees or approximately 180 degrees.
- the pipe is preferably bent to form a circular flow, for example with a radius of 28 mm over 15, 30, 45 or 60 degrees.
- the pipe can also extend approximately parallel to the axis, for example pivoted by a few degrees, back to the first end.
- a second vent opening is provided in the curved area. Solids of lower density and/or weight can be removed through the second vent opening. Furthermore, the cooling jacket can be reliably vented through the second vent opening and it can be prevented that the cooling jacket is not sucked dry via the cooling jacket outlet when the fluid level in the cooling jacket drops.
- the second vent opening preferably has a diameter of 3, 4, 5, 6, 7 or 8 mm.
- the second vent opening can be designed as a transverse bore.
- the tube also preferably has two second vent openings provided opposite one another.
- the centrifugal pump has a second pipe provided in the cooling jacket space, which opens into the cooling jacket outlet on the one hand and into the cooling jacket space on the other hand at the first end of the cooling jacket space.
- the second pipe is preferably designed as one piece with the cooling jacket outlet.
- two cooling jacket outlets can be provided, which can be arranged next to one another.
- the second pipe can also be designed so that it can be inserted into the cooling jacket outlet.
- the second pipe can be used to remove particles of greater density in the lower region of the cooling jacket.
- the second pipe also improves the operational reliability of the centrifugal pump, since the second pipe prevents air from suddenly escaping into the pump housing.
- the second pipe is preferably designed to be shorter than the first pipe.
- the second pipe preferably has a diameter of 8, 10 or 12 mm.
- the centrifugal pump is designed as a submersible pump or as a lifting system.
- a submersible pump is understood to be a portable or stationary centrifugal pump that is immersed in the liquid to be pumped as a fluid.
- Submersible pumps are used in particular in water supply and wastewater disposal. Submersible pumps are used, among other things, to pump heavily contaminated fluids, such as wastewater or dirty water in particular, but also for other fluid media with a high solids content such as stones, rubble and the like.
- the impeller shapes used in particular are free-flow impellers, single-channel impellers, multi-channel impellers, diagonal impellers, helical impellers and propeller impellers.
- Lifting systems are understood to be automatically operating systems that drain wastewater that accumulates below a backflow level in a backflow-safe manner or pump it to a higher level.
- the wastewater lifting system is usually installed at the lowest point in a basement, either freely or in a pit, or in a shaft, a so-called pump sump.
- the object of the invention is further achieved by using a centrifugal pump as described above as a dirty water and/or waste water submersible pump or in a lifting system.
- the centrifugal pump can also be used for a drinking water system or other fluid-conveying applications, whereby types of systems not mentioned here may be included.
- Dirty water and/or sewage submersible pumps are used in particular for pumping out dirty water, for example from floods, in flooded construction pits, in laundry rooms, in muddy pits, in biotopes and/or from garden ponds, from drainage shafts and in cellars, and in particular for pumping fluids such as water with various degrees of contamination such as stones, mud or rubble.
- the entry of stones as solids into the edge side space can lead to frequent blocking of the impeller in dirty water pumps known from the state of the art and significantly reduce operational reliability.
- the proposed use ensures a high level of efficiency of the dirty water and/or waste water submersible pump in the long term, as the aforementioned problem is eliminated, as is the case with a lifting system.
- the proposed solution makes it possible to dispense with the vent lines known from the state of the art outside the cooling jacket and to vent the cooling jacket using the proposed solution.
- Fig.1 shows a schematic partially opened side view in the transverse direction of a centrifugal pump as a dirty water pump according to a preferred embodiment of the invention.
- the centrifugal pump has a motor housing 1 made of stainless steel, which is placed on a pump housing 2 made of plastic.
- a drive motor 3 in Fig. 3 shown, which has a Fig. 3
- the vertical shaft shown drives an impeller 5 provided in a pump chamber 4 formed by the pump housing 2 for conveying water as a fluid.
- the cylindrical motor housing 1 is coaxially surrounded on the outside of its jacket surface by a cylindrical cooling jacket 7 forming a cooling jacket chamber 6.
- the cooling jacket 7 is shown open in the middle of the drawing plane in order to allow a partial view into the cooling jacket chamber 6.
- a tubular cooling jacket inlet 8 is provided in the cooling jacket chamber 6, which opens from the pump chamber 4 into the cooling jacket chamber 6.
- the cooling jacket inlet 8 opens into a so-called edge side chamber 9 in the pump chamber 4 in an overpressure area of the pump chamber 4, so that the impeller pumps fluid through the cooling jacket inlet 8 into the cooling jacket chamber 6 when it rotates.
- the tubular cooling jacket inlet 8 continues via a stainless steel pipe 10 from the pump chamber 4, initially vertically upwards in the plane of the drawing into the pump chamber 4, and bends in the cooling jacket chamber 6 towards its end with a radius of 28 mm, bent over 60°, to form a circular flow.
- a cooling jacket outlet 11 is provided for returning the fluid thus conveyed into the cooling jacket chamber 6, which extends in the cooling jacket chamber 6 parallel to the stainless steel pipe 10 or the tubular cooling jacket inlet 8.
- the cooling jacket outlet 11 opens inside the pump housing 2 but outside the pump chamber 4, namely in a suction area of the impeller 4 on the upstream side and thus in a negative pressure area in front of the pump chamber 4.
- a suction basket 12 provided on the upstream side in front of the pump chamber 4 covers the cooling jacket outlet 11, as can also be seen from the a sectional view in the longitudinal direction of a lower part of the centrifugal pump according to Fig.1 showing Fig.2 is evident.
- a pipe 13 also made of stainless steel, is provided in the cooling jacket space 6, which opens into the cooling jacket outlet 11 at a first end of the cooling jacket space 6 or continues from the cooling jacket outlet 11 into the cooling jacket space 6.
- the pipe 13 extends in the cooling jacket space 6 axially parallel to an axis of the impeller 4 in the plane of the drawing vertically upwards to a second end of the cooling jacket space 6 opposite the first end and opens into the cooling jacket space 6 at the second end.
- the pipe 13 also bends at the second end with a radius of 28 mm over 60 degrees.
- the pipe 13 has a first vent opening 14 with a diameter of 6 mm for removing solids of greater density and/or weight.
- Fig.3 shows on the left a schematic, partially transparent centrifugal pump as part of a lifting system and on the right a sectional view of the centrifugal pump as a lifting system according to another preferred embodiment of the invention.
- the pipe 13 is bent by 180 degrees at the second end and extends parallel to the axis back to the first end.
- the pipe 13 opens into the cooling jacket space 6 and again bends over 60 degrees with a radius of 28 mm.
- a second vent opening 15 is provided in the bent area for removing solids of low density and/or weight.
- Fig.4 a sectional view of a lower part of a centrifugal pump as a waste water pump according to a further preferred embodiment of the invention.
- a second pipe 16 is provided in the cooling jacket space, which opens at the first end of the cooling jacket space 6 on the one hand into the cooling jacket outlet 11 and on the other hand into the cooling jacket space 6.
- the second pipe 16 extends parallel to the pipe 13, but is shorter.
- a respective cooling jacket outlet 11 is provided for the pipe 13 and the second pipe 16.
- Sufficient fluid is pumped back into the pump housing 2 through the shorter second pipe 16, so that the risk of a sudden interruption of the fluid flow in the pump space 4 is averted.
- the stainless steel pipe, the pipe 13 and the second pipe 16 each have a diameter of 8 mm.
- the described return of the fluid from the pump chamber 4 reduces the entry of solids into the edge side chamber 6, which improves the operational reliability of the centrifugal pump, since blocking of the impeller 5 by solids that would otherwise be conveyed towards the impeller 5 is reduced.
- sedimentation of the cooling jacket chamber 6 over time is reduced or even completely avoided, since solids conveyed through the cooling jacket chamber 6 can be conveyed through the cooling jacket outlet 11, in particular into a suction mouth of the centrifugal pump.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Kreiselpumpe mit einem Motorgehäuse mit einem in dem Motorgehäuse angeordneten Antriebsmotor und einem an dem Motorgehäuse angeordneten einen Pumpenraum ausbildenden Pumpengehäuse mit einem in dem Pumpenraum angeordneten und von dem Antriebsmotor antreibbaren Laufrad zum Fördern eines Fluids, wobei das Motorgehäuse koaxial außen von einem einen Kühlmantelraum ausbildenden Kühlmantel umgeben ist, welcher Kühlmantelraum einen aus dem Pumpenraum in den Kühlmantelraum mündenden Kühlmanteleinlass aufweist, durch welchen von dem Laufrad gefördertes Fluid in den Kühlmantelraum einströmbar ist. Die Erfindung betrifft ferner eine Verwendung der Kreiselpumpe als Schmutzwasser und/oder Abwasser-Tauchpumpe oder in einer Hebeanlage.The invention relates to a centrifugal pump with a motor housing with a drive motor arranged in the motor housing and a pump housing arranged on the motor housing forming a pump chamber with an impeller arranged in the pump chamber and drivable by the drive motor for conveying a fluid, wherein the motor housing is coaxially surrounded on the outside by a cooling jacket forming a cooling jacket chamber, which cooling jacket chamber has a cooling jacket inlet opening out of the pump chamber into the cooling jacket chamber, through which fluid conveyed by the impeller can flow into the cooling jacket chamber. The invention further relates to a use of the centrifugal pump as a dirty water and/or waste water submersible pump or in a lifting system.
Wasserdichtgekapselte Tauchmotoren finden insbesondere in Schmutzwasser und/oder Abwasser-Tauchpumpen oder in Hebeanlagen Verwendung. Gegenüber Normmotoren besitzen solche wasserdichtgekapselten Tauchmotoren keine einfache aktive Kühlung mittels eines Luftstroms. Üblicherweise wird die Verlustleistung des Tauchmotors durch passive Kühlung über das ihn umgebende Medium abgeführt. Eine Aufstellung des Tauchmotors in Luft bedingt insofern geringe Betriebszeiten oder Leistungsausbeuten bzw. einen relativ hohen Einsatz aktiver Materialien wie Kupfer oder Eisen. Um unter diesen Aspekten wirtschaftliche Lösungen zu generieren, kommen ölgefüllte Motoren, ölgefüllte Motoren mit interner Kühlung oder trockene Motoren mit externer, geschlossener Umlaufkühlung oder offener Mantelstromkühlung zum Einsatz.Waterproof submersible motors are used in particular in dirty water and/or sewage submersible pumps or in lifting systems. In contrast to standard motors, waterproof submersible motors of this type do not have simple active cooling using an air flow. The power loss of the submersible motor is usually dissipated by passive cooling via the surrounding medium. Installing the submersible motor in air therefore requires short operating times or power outputs or a relatively high use of active materials such as copper or iron. In order to generate economical solutions under these aspects, oil-filled motors, oil-filled motors with internal cooling or dry motors with external, closed circulation cooling or open sheath flow cooling are used.
Bei der Mantelstromkühlung wird der Gesamtvolumenstrom bzw. nur ein Teilvolumenstrom zum Kühlen des Motors in den Kühlmantel eingeleitet, was jedoch zu Problemen und insbesondere zur Reduzierung der Betriebssicherheit führen kann. Denn durch den Kühlmantelraum geförderte Feststoffe können über die Zeit zur Sedimentation des Kühlmantelraums insbesondere bei Abwasserpumpen führen.With jacket flow cooling, the entire volume flow or only a partial volume flow is introduced into the cooling jacket to cool the motor, but this can lead to problems and in particular to a reduction in operational reliability. This is because solids conveyed through the cooling jacket space can lead to sedimentation in the cooling jacket space over time, particularly in the case of waste water pumps.
Die
Die
Die
Ausgehend von dieser Situation ist es eine Aufgabe der vorliegenden Erfindung, eine Kreiselpumpe anzugeben, die durch eine verbesserte Betriebssicherheit gekennzeichnet ist.Based on this situation, it is an object of the present invention to provide a centrifugal pump which is characterized by improved operational reliability.
Die Aufgabe der Erfindung wird durch die Merkmale des unabhängigen Anspruchs gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.The object of the invention is solved by the features of the independent claim. Advantageous embodiments are specified in the subclaims.
Demnach wird die Aufgabe gelöst durch eine Kreiselpumpe mit einem Motorgehäuse mit einem in dem Motorgehäuse angeordneten Antriebsmotor und einem an dem Motorgehäuse angeordneten einen Pumpenraum ausbildenden Pumpengehäuse mit einem in dem Pumpenraum angeordneten und von dem Antriebsmotor antreibbaren Laufrad zum Fördern eines Fluids, wobei
- das Motorgehäuse koaxial außen von einem einen Kühlmantelraum ausbildenden Kühlmantel umgeben ist, welcher Kühlmantelraum einen aus dem Pumpenraum in den Kühlmantelraum mündenden Kühlmanteleinlass aufweist, durch welchen von dem Laufrad gefördertes Fluid in den Kühlmantelraum einströmbar ist, und
- der Kühlmantelraum einen innerhalb des Pumpengehäuses und außerhalb des Pumpenraums mündenden Kühlmantelauslass aufweist, durch welchen das Fluid aus dem Kühlmantelraum ausströmbar ist.
- the motor housing is coaxially surrounded on the outside by a cooling jacket forming a cooling jacket chamber, which cooling jacket chamber has a cooling jacket inlet opening from the pump chamber into the cooling jacket chamber, through which fluid conveyed by the impeller can flow into the cooling jacket chamber, and
- the cooling jacket chamber has a cooling jacket outlet opening inside the pump housing and outside the pump chamber, through which the fluid can flow out of the cooling jacket chamber.
Ein wesentlicher Punkt der Erfindung ist demnach, dass das Fluid nach Durchströmen des Kühlmantelraums nach Kühlen des Antriebsmotors nicht in den Pumpenraum, beispielsweise nicht in einem Raum hinter dem Laufrad und/oder einem Randseitenraum des Laufrads wie aus dem Stand der Technik bekannt, sondern außerhalb des Pumpenraums ausströmt. Eine Kühlmantelrückströmung erfolgt also zurück vor einen Saugmund der Kreiselpumpe beispielsweise in einen Saugkorb der Kreiselpumpe vor dem Pumpenraum. Durch die vorgeschlagene Rückführung des Fluids als Kühlvolumenstrom aus dem Pumpenraum hinaus wird ein Eintrag von Feststoffen in den Randseitenraum wirksam minimiert und somit die Betriebssicherheit der Kreiselpumpe deutlich gesteigert, da derart ein Blockieren des Laufrades reduziert wird. Gleichsam wird eine Sedimentation des Kühlmantelraums über die Zeit verringert oder sogar vollständig vermieden, da durch den Kühlmantelraum geförderte Feststoffe durch den Kühlmantelauslass insbesondere in den Saugmund der Kreiselpumpe förderbar sind.An essential point of the invention is therefore that the fluid after flowing through the cooling jacket space after cooling the drive motor does not flow into the pump space, for example not into a space behind the impeller and/or an edge side space of the impeller as known from the prior art, but outside the pump space. A cooling jacket return flow therefore takes place back in front of a suction mouth of the centrifugal pump, for example into a suction basket of the centrifugal pump in front of the pump space. The proposed return of the fluid as a cooling volume flow from the pump space effectively minimizes the entry of solids into the edge side space and thus significantly increases the operational reliability of the centrifugal pump, since blocking of the impeller is reduced in this way. At the same time, sedimentation of the cooling jacket space over time is reduced or even completely avoided, since solids conveyed through the cooling jacket space can be conveyed through the cooling jacket outlet, in particular into the suction mouth of the centrifugal pump.
Gerade bei Abwasserpumpen ist ein sicherer Betrieb mit einer Kühlmantelraumkühlung nur gewährleistet, wenn in den Pumpenraum immer ein Luftwassergemisch zurückgeführt wird. Sofern die Rückführung des Fluids als Kühlmediums konstruktiv so ausgeführt wird, dass nach einem Einschalten des Antriebsmotors zuerst nur Luft in den Pumpenraum gedrückt wird, kann es zum Abreißen eines Fluidförderstroms kommen. Das Abreißen geschieht insbesondere dann, wenn die im Kühlmantel befindliche Luft durch das zuströmende Fluid komprimiert wird und in der Folge schlagartig in den Pumpenraum entweicht. Bei der vorgeschlagenen Lösung wird dieses Problem dadurch eliminiert, dass das Fluid aus dem Kühlmantel nicht in den Pumpenraum sondern außerhalb diesen entweicht. Mit anderen Worten ist ein Rücklauf des Fluids so gestaltet, dass das Laufrad stets mit genügendem Fluid beaufschlagt ist und ein plötzlicher Eintrag von Luft vermieden wird.Especially in the case of sewage pumps, safe operation with a cooling jacket chamber cooling system is only guaranteed if an air-water mixture is always returned to the pump chamber. If the return of the fluid as a cooling medium is designed in such a way that only air is initially pressed into the pump chamber after the drive motor is switched on, a fluid flow can break off. This break off occurs particularly when the air in the cooling jacket is compressed by the incoming fluid and then suddenly escapes into the pump chamber. The proposed solution eliminates this problem by ensuring that the fluid from the cooling jacket does not escape into the pump chamber but rather outside it. In other words, the fluid return is designed in such a way that the impeller is always supplied with sufficient fluid and a sudden ingress of air is avoided.
Als Kreiselpumpe wird im Allgemeinen eine Strömungsmaschine bezeichnet, die eine Drehbewegung und dynamische Kräfte zur Förderung überwiegend von Flüssigkeiten als Fluid nutzt. Neben einer tangentialen Beschleunigung des Fluids, auch Medium genannt, wird in radialer Strömung auftretende Fliehkraft zur Förderung genutzt, so dass Kreiselpumpen ebenso als Zentrifugalpumpen bezeichnet werden. Im regulären Betrieb der Kreiselpumpe ist das Motorgehäuse bevorzugt oberhalb des Pumpengehäuses angeordnet, mit diesem ortsfest verbunden und/oder einteilig gestaltet. Das Fluid umfasst bevorzugt Wasser oder ein sonstiges flüssiges Medium wie beispielsweise Abwasser. Das Fluid kann Feststoffe wie beispielsweise Verunreinigungen jeglicher Art, insbesondere Fäkalien, Sedimente, Dreck, Sand, oder auch kleinere Holz-, Gestrüpp-, Textilien- oder Lappenteile oder dergleichen umfassen. Das Laufrad ist bevorzugt vollständig in dem Pumpenraum angeordnet.A centrifugal pump is generally a fluid machine that uses rotary motion and dynamic forces to pump liquids, primarily as a fluid. In addition to a tangential acceleration of the fluid, also called the medium, centrifugal force occurring in radial flow is used for pumping, so that centrifugal pumps are also called centrifugal pumps. During regular operation of the centrifugal pump, the motor housing is preferably arranged above the pump housing, fixed to it and/or designed as a single piece. The fluid preferably comprises water or another liquid medium such as waste water. The fluid can comprise solids such as contaminants of any kind, in particular feces, sediment, dirt, sand, or even smaller pieces of wood, brushwood, textiles or rags or the like. The impeller is preferably arranged completely in the pump chamber.
Das Motorgehäuse und/oder der Kühlmantel kann eine zylinderartige Form umfassen, welche konisch weg vom Pumpengehäuse zulaufen kann. Bevorzugt ist das Motorgehäuse und/oder der Kühlmantelraum aus Metall, insbesondere aus Edelstahl, und/oder das Pumpengehäuse aus Kunststoff gestaltet. Bevorzugt umgibt der Kühlmantelraum das Motorgehäuse wenigstens zum Teil und insbesondere vollständig, besonders bevorzugt entlang einer Mantelfläche des Motorgehäuses. Der Kühlmanteleinlass ist bevorzugt in einem Druckabgang des Pumpengehäuses und/oder derart in dem Pumpengehäuse angeordnet, dass eine Rotationsbewegung des Laufrads Fluid in den Kühlmantelraum einströmen lässt und/oder pumpt. Der Kühlmantelraum ist bevorzugt bis auf den Kühlmanteleinlass und den Kühlmantelauslass fluiddicht geschlossen.The motor housing and/or the cooling jacket can have a cylindrical shape which can taper away from the pump housing. The motor housing and/or the cooling jacket space is preferably made of metal, in particular of stainless steel, and/or the pump housing is made of plastic. The cooling jacket space preferably surrounds the motor housing at least partially and in particular completely, particularly preferably along a jacket surface of the motor housing. The cooling jacket inlet is preferably arranged in a pressure outlet of the pump housing and/or in the pump housing in such a way that a rotational movement of the impeller allows fluid to flow into the cooling jacket space and/or pumps it. The cooling jacket space is preferably closed in a fluid-tight manner except for the cooling jacket inlet and the cooling jacket outlet.
Nach einer bevorzugten Weiterbildung mündet der Kühlmantelauslass in einem Ansaugbereich des Laufrades vor dem Pumpenraum und/oder mündet der Kühlmantelauslass anströmseitig vor dem Pumpenraum. Eine Rückführung des Fluids erfolgt also nicht hinter das Laufrad wie bei den aus dem Stand der Technik bekannten Ausgestaltungen, sondern in jedem Fall außerhalb des das Laufrad aufweisenden Pumpenraums, insbesondere wie durch die Weiterbildung vorgeschlagen vor den Pumpenraum, was eine Gefahr des Abreißens des Fluidförderstroms eliminiert oder zumindest merklich reduziert.According to a preferred development, the cooling jacket outlet opens into an intake area of the impeller in front of the pump chamber and/or the cooling jacket outlet opens on the upstream side in front of the pump chamber. The fluid is therefore not returned behind the impeller as in the designs known from the prior art, but in any case outside of the pump chamber having the impeller, in particular as proposed by the further development in front of the pump chamber, which eliminates or at least noticeably reduces the risk of the fluid flow breaking off.
Gemäß einer anderen bevorzugten Weiterbildung ist der Kühlmanteleinlass in einem Überdruckbereich des Pumpenraums angeordnet und/oder ist der Kühlmantelauslass in einem Unterdruckbereich des Pumpengehäuses angeordnet. Der Überdruckbereich ist bevorzugt hinter dem Laufrad in dem sogenannten Randseitenraum des Pumpenraums vorgesehen. Der Unterdruckbereich ist bevorzugt in einem Ansaugbereich des Pumpengehäuses vor dem Pumpenraum vorgesehen. Durch einen Differenzdruck zwischen Kühlmanteleinlass, an dem aufgrund der Rotationsbewegung des Laufrads Überdruck entsteht, und Kühlmantelauslass, mit demgegenüber geringerem Unterdruck, strömt Fluid durch den Kühlmantel vom Kühlmanteleinlass zum Kühlmantelauslass zum Kühlen des Antriebsmotors.According to another preferred development, the cooling jacket inlet is arranged in an overpressure area of the pump chamber and/or the cooling jacket outlet is arranged in a negative pressure area of the pump housing. The overpressure area is preferably provided behind the impeller in the so-called edge side space of the pump chamber. The negative pressure area is preferably provided in an intake area of the pump housing in front of the pump chamber. Due to a differential pressure between the cooling jacket inlet, at which overpressure is created due to the rotational movement of the impeller, and the cooling jacket outlet, with a lower negative pressure, fluid flows through the cooling jacket from the cooling jacket inlet to the cooling jacket outlet to cool the drive motor.
Nach einer weiteren bevorzugten Ausgestaltung weist das Pumpengehäuse einen anströmseitig vor dem Pumpenraum vorgesehenen Saugkorb auf, wobei der Kühlmantelauslass von dem Saugkorb verdeckt ist. Der Saugkorb kann als eine gitterartige Ausgestaltung gestaltet sein und unterhalb einer Bodenplatte des Pumpengehäuses vorgesehen sein, Teil der Bodenplatte und/oder des Pumpengehäuses sein und/oder einstückig mit diesen gestaltet sein. Derart befindet sich der Saugkorb in dem Ansaugbereich und/oder Unterdruckbereich der Kreiselpumpe.According to a further preferred embodiment, the pump housing has a suction basket provided on the upstream side in front of the pump chamber, wherein the cooling jacket outlet is covered by the suction basket. The suction basket can be designed as a grid-like design and be provided below a base plate of the pump housing, be part of the base plate and/or the pump housing and/or be designed in one piece with them. In this way, the suction basket is located in the suction area and/or vacuum area of the centrifugal pump.
Gemäß einer anderen bevorzugten Weiterbildung weist die Kreiselpumpe ein in dem Kühlmantelraum vorgesehenes Rohr auf, welches einerseits an einem ersten Ende des Kühlmantelraums in den Kühlmantelauslass mündet, sich achsparallel zu einer Achse des Laufrades bis hin zu einem zu dem ersten Ende entgegengesetzten zweiten Ende des Kühlmantelraums erstreckt und andererseits an dem zweiten Ende in den Kühlmantelraum mündet. Bevorzugt ist das Rohr an dem zweiten Ende zum Ausbilden einer zirkularen Strömung gebogen, beispielsweise mit einem Radius von 28 mm über 15, 30 oder 45 Grad oder mehr Grad. Das Rohr ist bevorzugt aus Metall, insbesondere aus Edelstahl ausgeführt. Bevorzugt bildet das erste Ende den Kühlmantelauslass aus. Das Rohr weist bevorzugt einen Durchmesser von 8, 10 oder 12 mm auf. Im regulären Betrieb ist das erste Ende bevorzugt an einem unteren Rand des Kühlmantels dem Motorgehäuse zugewandt und das zweite Ende bevorzugt an einem oberen Rand des Kühlmantels dem Motorgehäuse abgewandt Kühlmantelauslass und Rohr können einstückig ausgebildet sein. Ebenso kann der Kühlmantelauslass in das Pumpengehäuse eingefügt sein, beispielsweise durch Fräsen, in welches das Rohr einsteckbar ist.According to another preferred development, the centrifugal pump has a pipe provided in the cooling jacket space, which on the one hand opens into the cooling jacket outlet at a first end of the cooling jacket space, extends axially parallel to an axis of the impeller to a second end of the cooling jacket space opposite the first end, and on the other hand opens into the cooling jacket space at the second end. The pipe is preferably bent at the second end to form a circular flow, for example with a radius of 28 mm over 15, 30 or 45 degrees or more. The pipe is preferably made of metal, in particular stainless steel. The first end preferably forms the cooling jacket outlet. The pipe preferably has a diameter of 8, 10 or 12 mm. In regular operation, the first end preferably faces the motor housing at a lower edge of the cooling jacket and the second end preferably faces away from the motor housing at an upper edge of the cooling jacket. The cooling jacket outlet and pipe can be formed as one piece. The cooling jacket outlet can also be inserted into the pump housing, for example by milling, into which the pipe can be inserted.
Ferner kann ein in dem Kühlmantelraum vorgesehenes Kühlmanteleinlassrohr vorgesehen sein, welches einerseits an einem ersten Ende des Kühlmantelraums in den Kühlmanteleinlass mündet, sich achsparallel zu einer Achse des Laufrades bis hin zu einem zu dem ersten Ende entgegengesetzten zweiten Ende des Kühlmantelraums erstreckt und andererseits an dem zweiten Ende in den Kühlmantelraum mündet. Kühlmanteleinlass und Kühlmanteleinlassrohr können einstückig ausgebildet sein. Ebenso kann der Kühlmanteleinlass in das Pumpengehäuse eingefügt sein, beispielsweise durch Fräsen, in welches das Kühlmanteleinlassrohr einsteckbar ist. Nach einer weiteren bevorzugten Ausgestaltung weist das Rohr an dem ersten Ende in dem Kühlmantelraum eine erste Entlüftungsöffnung auf. Durch die erste Entlüftungsöffnung können Feststoffe größerer Dichte und/oder Gewicht abgeführt werden. Ferner wird durch die erste Entlüftungsöffnung die Betriebssicherheit der Kreiselpumpe verbessert, da aufgrund der ersten Entlüftungsöffnung Luft nicht schlagartig in das Pumpengehäuse entweichen kann. Die erste Entlüftungsöffnung weist bevorzugt einen Durchmesser von 3, 4, 5, 6, 7 oder 8 mm auf. Weiter bevorzugt weist das Rohr an dem ersten Ende zwei gegenüberliegend vorgesehene erste Entlüftungsöffnungen auf. Die erste Entlüftungsöffnung kann als Querbohrung gestaltet sein.Furthermore, a cooling jacket inlet pipe can be provided in the cooling jacket space, which on the one hand opens into the cooling jacket inlet at a first end of the cooling jacket space, extends axially parallel to an axis of the impeller to a second end of the cooling jacket space opposite the first end, and on the other hand opens into the cooling jacket space at the second end. The cooling jacket inlet and cooling jacket inlet pipe can be formed as one piece. The cooling jacket inlet can also be inserted into the pump housing, for example by milling, into which the cooling jacket inlet pipe can be inserted. According to a further preferred embodiment, the pipe has a first vent opening at the first end in the cooling jacket space. Solids of greater density and/or weight can be discharged through the first vent opening. Furthermore, the operational reliability of the centrifugal pump is improved by the first vent opening, since air cannot suddenly escape into the pump housing due to the first vent opening. The first vent opening preferably has a diameter of 3, 4, 5, 6, 7 or 8 mm. The tube further preferably has two first vent openings provided opposite one another at the first end. The first vent opening can be designed as a transverse bore.
Erfindugsgemäß ist das Rohr an dem zweiten Ende gebogen, erstreckt sich achsparallel bis hin zu dem ersten Ende zurück und mündet anderseits an dem ersten Ende in den Kühlmantelraum. Das Rohr ist an dem zweiten Ende bevorzugt um 180 Grad oder annähernd um 180 Grad gebogen. An dem ersten Ende ist das Rohr zum Ausbilden einer zirkularen Strömung bevorzugt gebogen, beispielsweise mit einem Radius von 28 mm über 15, 30, 45 oder 60 Grad. Das Rohr kann sich ebenso annähernd achsparallel, beispielsweise um einige Grad verschwenkt, bis hin zu dem ersten Ende zurückerstrecken.According to the invention, the pipe is bent at the second end, extends parallel to the axis back to the first end and opens into the cooling jacket space at the first end. The pipe is preferably bent at the second end by 180 degrees or approximately 180 degrees. At the first end, the pipe is preferably bent to form a circular flow, for example with a radius of 28 mm over 15, 30, 45 or 60 degrees. The pipe can also extend approximately parallel to the axis, for example pivoted by a few degrees, back to the first end.
Nach einer weiteren bevorzugten Ausgestaltung ist in dem gebogenen Bereich eine zweite Entlüftungsöffnung vorgesehen. Durch die zweite Entlüftungsöffnung können Feststoffe geringerer Dichte und/oder Gewicht abgeführt werden. Ferner kann durch die zweite Entlüftungsöffnung der Kühlmantel prozesssicher entlüftet werden und es kann verhindert werden, dass der Kühlmantel bei in dem Kühlmantel absinkendem Fluidniveau nicht über den Kühlmantelauslass leer gesaugt wird. Die zweite Entlüftungsöffnung weist bevorzugt einen Durchmesser von 3, 4, 5, 6, 7 oder 8 mm auf. Die zweite Entlüftungsöffnung kann als Querbohrung gestaltet sein. Weiter bevorzugt weist das Rohr zwei gegenüberliegend vorgesehene zweite Entlüftungsöffnungen auf.According to a further preferred embodiment, a second vent opening is provided in the curved area. Solids of lower density and/or weight can be removed through the second vent opening. Furthermore, the cooling jacket can be reliably vented through the second vent opening and it can be prevented that the cooling jacket is not sucked dry via the cooling jacket outlet when the fluid level in the cooling jacket drops. The second vent opening preferably has a diameter of 3, 4, 5, 6, 7 or 8 mm. The second vent opening can be designed as a transverse bore. The tube also preferably has two second vent openings provided opposite one another.
Gemäß einer anderen bevorzugten Weiterbildung weist die Kreiselpumpe ein zweites in dem Kühlmantelraum vorgesehenes Rohr auf, welches an dem ersten Ende des Kühlmantelraums einerseits in den Kühlmantelauslass und andererseits in den Kühlmantelraum mündet. Bevorzugt ist das zweite Rohr einstückig mit dem Kühlmantelauslass gestaltet. Zu diesem Zweck können zwei Kühlmantelauslässe vorgesehen sein, welche nebeneinander benachbart angeordnet sein können. Ebenso kann das zweite Rohr in den Kühlmantelausass einsteckbar gestaltet sein. Durch das zweite Rohr können Partikel größerer Dichte im unteren Bereich des Kühlmantels abgeführt werden. Ferner wird durch das zweite Rohr die Betriebssicherheit der Kreiselpumpe verbessert, da aufgrund des zweiten Rohrs Luft nicht schlagartig in das Pumpengehäuse entweichen kann. Das zweite Rohr ist bevorzugt kürzer als das erste Rohr gestaltet. Das zweite Rohr weist bevorzugt einen Durchmesser von 8, 10 oder 12 mm auf.According to another preferred development, the centrifugal pump has a second pipe provided in the cooling jacket space, which opens into the cooling jacket outlet on the one hand and into the cooling jacket space on the other hand at the first end of the cooling jacket space. The second pipe is preferably designed as one piece with the cooling jacket outlet. For this purpose, two cooling jacket outlets can be provided, which can be arranged next to one another. The second pipe can also be designed so that it can be inserted into the cooling jacket outlet. The second pipe can be used to remove particles of greater density in the lower region of the cooling jacket. The second pipe also improves the operational reliability of the centrifugal pump, since the second pipe prevents air from suddenly escaping into the pump housing. The second pipe is preferably designed to be shorter than the first pipe. The second pipe preferably has a diameter of 8, 10 or 12 mm.
Nach einer bevorzugten Weiterbildung ist die Kreiselpumpe als Tauchpumpe oder als Hebeanlage ausgeführt. Als Tauchpumpe wird eine transportable oder stationär eingebaute Kreiselpumpe verstanden, die in die zu fördernde Flüssigkeit als Fluid eingetaucht wird. Tauchpumpen finden insbesondere in der Wasserversorgung und in der Abwasserentsorgung Verwendung. Tauchpumpen dienen unter Anderem zum Fördern grob verunreinigten Fluids, wie insbesondere Abwasser oder Schmutzwasser aber auch für andere fluide Medien, mit einem hohem Feststoffanteil wie beispielsweise Steinen, Geröll und Ähnlichem. Als Laufradformen finden insbesondere Freistromrad, Einkanalrad, Mehrkanalrad, Diagonalrad, Schraubenrad und Propellerrad Verwendung. Als Hebeanlagen werden automatisch arbeitende Anlagen verstanden, die Abwasser, das unter einer Rückstauebene anfällt, rückstausicher ableiten oder auf ein höherliegendes Niveau pumpen. Die Abwasserhebeanlage wird in der Regel an einem tiefsten Punkt in einem Keller entweder frei oder in einer Grube aufgebaut, oder in einem Schacht, einem sogenannten Pumpensumpf, untergebracht.According to a preferred development, the centrifugal pump is designed as a submersible pump or as a lifting system. A submersible pump is understood to be a portable or stationary centrifugal pump that is immersed in the liquid to be pumped as a fluid. Submersible pumps are used in particular in water supply and wastewater disposal. Submersible pumps are used, among other things, to pump heavily contaminated fluids, such as wastewater or dirty water in particular, but also for other fluid media with a high solids content such as stones, rubble and the like. The impeller shapes used in particular are free-flow impellers, single-channel impellers, multi-channel impellers, diagonal impellers, helical impellers and propeller impellers. Lifting systems are understood to be automatically operating systems that drain wastewater that accumulates below a backflow level in a backflow-safe manner or pump it to a higher level. The wastewater lifting system is usually installed at the lowest point in a basement, either freely or in a pit, or in a shaft, a so-called pump sump.
Die Aufgabe der Erfindung wird weiterhin gelöst durch eine Verwendung einer Kreiselpumpe wie zuvor beschrieben als Schmutzwasser und/oder Abwasser-Tauchpumpe oder in einer Hebeanlage. Darüber hinaus lässt sich die Kreiselpumpe auch für eine Trinkwasseranlage oder sonstige Fluid-fördernde Anwendungen verwenden, wobei hier nicht genannte Anlagenarten umfasst sein können. Schmutzwasser- und/oder Abwasser-Tauchpumpen dienen insbesondere zum Abpumpen von verdrecktem Wasser beispielsweise von Hochwasser, in überfluteten Baugruben, in Waschküchen, in schlammigen Gruben, in Biotopen und/oder von Gartenteichen, von Sickerschächten sowie in Kellern, uns insbesondere zum Pumpen von Fluiden wie Wasser mit verschiedenen Verunreinigungsgraden wie beispielsweise Steine, Schlamm oder Geröll.The object of the invention is further achieved by using a centrifugal pump as described above as a dirty water and/or waste water submersible pump or in a lifting system. In addition, the centrifugal pump can also be used for a drinking water system or other fluid-conveying applications, whereby types of systems not mentioned here may be included. Dirty water and/or sewage submersible pumps are used in particular for pumping out dirty water, for example from floods, in flooded construction pits, in laundry rooms, in muddy pits, in biotopes and/or from garden ponds, from drainage shafts and in cellars, and in particular for pumping fluids such as water with various degrees of contamination such as stones, mud or rubble.
Insbesondere der Eintrag von Steinchen als Feststoffe in den Randseitenraum kann bei aus dem Stand der Technik bekannten Schmutzwasserpumpen zu häufigem Blockieren des Laufrads führen und die Betriebssicherheit deutlich herabsetzen. Durch die vorgeschlagene Verwendung lässt sich langfristig ein hoher Wirkungsgrad der Schmutzwasser- und/oder Abwasser-Tauchpumpe sicherstellen, da das vorgenannte Problem wie ebenso bei einer Hebeanlage eliminiert wird. Bei einer Hebeanlage lässt sich bei der vorgeschlagenen Lösung auf aus dem Stand der Technik bekannten Entlüftungsleitungen außerhalb des Kühlmantels verzichten und die Entlüftung des Kühlmantels durch die vorgeschlagene Lösung bewerkstelligen.In particular, the entry of stones as solids into the edge side space can lead to frequent blocking of the impeller in dirty water pumps known from the state of the art and significantly reduce operational reliability. The proposed use ensures a high level of efficiency of the dirty water and/or waste water submersible pump in the long term, as the aforementioned problem is eliminated, as is the case with a lifting system. In a lifting system, the proposed solution makes it possible to dispense with the vent lines known from the state of the art outside the cooling jacket and to vent the cooling jacket using the proposed solution.
Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen anhand bevorzugter Ausführungsbeispiele näher erläutert.The invention is explained in more detail below with reference to the accompanying drawings using preferred embodiments.
In den Zeichnungen zeigen
-
Fig. 1 eine schematische teilgeöffnete Seitansicht einer Kreiselpumpe als Schmutzwasserpumpe gemäß einem bevorzugten Ausführungsbeispiel der Erfindung, -
Fig. 2 eine Schnittansicht eines unteren Teils der Kreiselpumpe gemäßFig. 1 , -
Fig. 3 links eine schematische teildursichtige Kreiselpumpe als Teil einer Hebeanlage sowie rechts eine Schnittansicht der Kreiselpumpe als Teil einer Hebeanlage gemäß einem weiteren bevorzugten Ausführungsbeispiel der Erfindung, und -
Fig. 4 eine Schnittansicht eines unteren Teils einer Kreiselpumpe als Abwasserpumpe gemäß einem weiteren bevorzugten Ausführungsbeispiel der Erfindung.
-
Fig.1 a schematic partially opened side view of a centrifugal pump as a dirty water pump according to a preferred embodiment of the invention, -
Fig.2 a sectional view of a lower part of the centrifugal pump according toFig.1 , -
Fig.3 on the left a schematic partially transparent centrifugal pump as part of a lifting system and on the right a sectional view of the centrifugal pump as part of a lifting system according to a further preferred embodiment of the invention, and -
Fig.4 a sectional view of a lower part of a centrifugal pump as a sewage pump according to another preferred embodiment of the invention.
Die Kreiselpumpe weist ein Motorgehäuse 1 aus Edelstahl auf, welches auf einem Pumpengehäuse 2 aus Kunststoff aufgesetzt ist. In dem Motorgehäuse 1 ist ein Antriebsmotor 3, in
In dem Kühlmantelraum 6 ist einerseits ein rohrartiger Kühlmanteleinlass 8 vorgesehen, der aus dem Pumpenraum 4 in den Kühlmantelraum 6 mündet. Der Kühlmanteleinlass 8 mündet in dem Pumpenraum 4 in einem Überdruckbereich des Pumpenraums 4 in einen sogenannten Randseitenraum 9, so dass das Laufrad beim Rotieren Fluid durch den Kühlmanteleinlass 8 in den Kühlmantelraum 6 hineinfördert. Der rohrartige Kühlmanteleinlass 8 setzt sich über ein Edelstahlrohr 10 von dem Pumpenraum 4 zunächst in der Zeichnungsebene vertikal nach oben in den Pumpenraum 4 fort und knickt in dem Kühlmantelraum 6 zum Ausbilden einer zirkularen Strömung zu seinem Ende hin mit einem Radius von 28 mm über 60° gebogen ab.On the one hand, a tubular
Zum Rückführen des derart in den Kühlmantelraum 6 geförderten Fluids ist andererseits ein Kühlmantelauslass 11 vorgesehen, der sich in dem Kühlmantelraum 6 parallel zu dem Edelstahlrohr 10 bzw. dem rohrartigen Kühlmanteleinlass 8 erstreckt. Der Kühlmantelauslass 11 mündet innerhalb des Pumpengehäuses 2 jedoch außerhalb des Pumpenraums 4, nämlich in einem Ansaugbereich des Laufrades 4 anströmseitig und derart in einem Unterdruckbereich vor dem Pumpenraum 4. Ein anströmseitig vor dem Pumpenraum 4 vorgesehener Saugkorb 12 verdeckt den Kühlmantelauslass 11 , wie auch aus der eine Schnittansicht in Längsrichtung eines unteren Teils der Kreiselpumpe gemäß
Wie insbesondere auf
Schließlich zeigt
Durch die beschriebene Rückführung des Fluids aus dem Pumpenraum 4 hinaus wird ein Eintrag von Feststoffen in den Randseitenraum 6 reduziert, wodurch sich die Betriebssicherheit der Kreiselpumpe verbessert, da derart ein Blockieren des Laufrades 5 durch ansonsten hin zum Laufrad 5 hin geförderte Feststoffe reduziert wird. Gleichsam wird eine Sedimentation des Kühlmantelraums 6 über die Zeit verringert oder sogar vollständig vermieden, da durch den Kühlmantelraum 6 geförderte Feststoffe durch den Kühlmantelauslass 11 insbesondere in einen Saugmund der Kreiselpumpe förderbar sind.The described return of the fluid from the
- MotorgehäuseEngine housing
- 11
- PumpengehäusePump housing
- 22
- AntriebsmotorDrive motor
- 33
- PumpenraumPump room
- 44
- LaufradWheel
- 55
- KühlmantelraumCooling jacket space
- 66
- KühlmantelCooling jacket
- 77
- KühlmanteleinlassCooling jacket inlet
- 88th
- RandseitenraumMarginal side space
- 99
- EdelstahlrohrStainless steel pipe
- 1010
- KühlmantelauslassCooling jacket outlet
- 1111
- SaugkorbSuction basket
- 1212
- RohrPipe
- 1313
- Erste EntlüftungsöffnungFirst vent opening
- 1414
- Zweite EntlüftungsöffnungSecond vent opening
- 1515
- Zweiten RohrSecond pipe
- 1616
Claims (9)
- A centrifugal pump with a motor housing (1) having a drive motor (3) arranged in the motor housing (1) and a pump housing (2) arranged on the motor housing (1) and forming a pump chamber (4) with an impeller (5) arranged in the pump chamber (4) and drivable by the drive motor (3) for conveying a fluid, whereinthe motor housing (1) is coaxially surrounded on the outside by a cooling jacket (7) forming a cooling jacket chamber (6),the cooling jacket chamber (6) has a cooling jacket inlet (8) opening from the pump chamber (4) into the cooling jacket chamber (6), through which fluid conveyed by the impeller (5) can flow into the cooling jacket chamber (6), andthe cooling jacket chamber (6) has a cooling jacket outlet (11) which opens inside the pump housing (2) and outside the pump chamber (4) and through which the fluid can flow out of the cooling jacket chamber (6), whereinthe centrifugal pump has a pipe (13) provided in the cooling jacket chamber (6), which pipe opens on the one hand at a first end of the cooling jacket chamber (6) into the cooling jacket outlet (11), extends axially parallel to an axis of the impeller (5) as far as a second end of the cooling jacket chamber (6) opposite the first end, the pipe (13) is bent at the second end, extends axially parallel back to the first end and opens into the cooling jacket chamber (6) in the region of the first end.
- The centrifugal pump according to the preceding claim, wherein the cooling jacket outlet (11) opens in a suction region of the impeller (5) upstream of the pump chamber (4) and/or the cooling jacket outlet (11) opens upstream of the pump chamber (4).
- The centrifugal pump according to any one of the preceding claims, wherein the cooling jacket inlet (8) is arranged in an overpressurized region of the pump chamber (4) and/or the cooling jacket outlet (11) is arranged in a negative pressurized region of the pump housing (2).
- The centrifugal pump according to any one of the preceding claims, wherein the pump housing (2) has a suction strainer (12) provided upstream of the pump chamber (4) and the cooling jacket outlet (11) is covered by the suction strainer (12).
- The centrifugal pump according to any one of the preceding claims, wherein the pipe (13) has a first vent opening (14) at the first end of the cooling jacket chamber (6).
- The centrifugal pump according to any one of the preceding claims, wherein in a second vent opening (15) is provided in the bent region.
- The centrifugal pump according to any one of the preceding claims, with a second pipe (16) provided in the cooling jacket chamber (6), which pipe opens at the first end of the cooling jacket chamber (6) into the cooling jacket outlet (11) on the one hand and into the cooling jacket chamber (6) on the other hand.
- The centrifugal pump according to any one of the preceding claims, wherein the centrifugal pump is configured as a submersible pump or as a lifting system.
- Use of a centrifugal pump according to any one of the preceding centrifugal pump claims as waste water and/or waste water submersible pump or in a lifting system.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU101956A LU101956B1 (en) | 2020-07-27 | 2020-07-27 | centrifugal pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3945218A1 EP3945218A1 (en) | 2022-02-02 |
EP3945218B1 true EP3945218B1 (en) | 2024-05-22 |
Family
ID=72474355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21187851.7A Active EP3945218B1 (en) | 2020-07-27 | 2021-07-27 | Centrifugal pump |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3945218B1 (en) |
LU (1) | LU101956B1 (en) |
PL (1) | PL3945218T3 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51154703U (en) * | 1975-05-31 | 1976-12-09 | ||
SE467752B (en) * | 1991-09-03 | 1992-09-07 | Flygt Ab Itt | DEVICE FOR ASTADCOMMATING BY COOLING A CHEATED CHEATED ELECTRICAL ENGINE |
DE4319619A1 (en) * | 1993-06-14 | 1994-12-15 | Wilo Gmbh | Submersible pump |
JP2001304197A (en) * | 2000-04-28 | 2001-10-31 | Kubota Corp | Submerged pump |
DE102005034341A1 (en) * | 2005-07-22 | 2007-01-25 | Ksb Aktiengesellschaft | Submerged motor pump has cooling sleeve for drive motor supplied with fluid from pumping wheel with flow throttling gap to discharge chamber |
DE102007036240A1 (en) * | 2007-08-02 | 2009-02-05 | Continental Automotive Gmbh | liquid pump |
CN105673574B (en) * | 2016-03-18 | 2018-06-29 | 池泉 | Low noise centrifugal multistage pump multiple centrifugal pump |
-
2020
- 2020-07-27 LU LU101956A patent/LU101956B1/en active IP Right Grant
-
2021
- 2021-07-27 EP EP21187851.7A patent/EP3945218B1/en active Active
- 2021-07-27 PL PL21187851.7T patent/PL3945218T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
LU101956B1 (en) | 2022-01-27 |
EP3945218A1 (en) | 2022-02-02 |
PL3945218T3 (en) | 2024-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69005510T2 (en) | Pump to separate gas from a liquid to be pumped. | |
DE69206082T2 (en) | Engine cooling device. | |
DE69520343T2 (en) | Lateral flow pump | |
DE102005034341A1 (en) | Submerged motor pump has cooling sleeve for drive motor supplied with fluid from pumping wheel with flow throttling gap to discharge chamber | |
EP2348220B1 (en) | Immersion pump | |
DE69026045T2 (en) | Liquid degassing pump | |
EP3945218B1 (en) | Centrifugal pump | |
DE4039712C2 (en) | Peripheral pump | |
EP2766608B1 (en) | Centrifugal pump for fluid containing solid particles with sealing of a gap | |
EP3405677B1 (en) | Venting device for pump in a container | |
DE3011380C2 (en) | Impeller bearing on a condensate pump | |
DE69607779T2 (en) | Variable level suction device | |
DE102007025402B4 (en) | Pump for a household appliance | |
DE202011000193U1 (en) | submersible pump | |
DE69414344T2 (en) | Lateral flow pump | |
EP3839260A1 (en) | Centrifugal pump with automatic valve | |
EP1353074A2 (en) | Centrifugal pump with integrated magnetic filter | |
DE3538050A1 (en) | CENTRIFUGAL PUMP | |
CH667891A5 (en) | WASTEWATER DEVICE. | |
DE102005005142A1 (en) | Horizontally/vertically operating centrifugal processing machine for conveying gas/ fluid in float, has housing segment connecting cells over part of rotor surrounded by section, with fluid, for energy exchange between fluid and cells | |
EP0599204A1 (en) | Submersible pump assembly | |
EP3405681B1 (en) | Venting device for pump in a container | |
DE3539883A1 (en) | Self-priming centrifugal pump | |
DE102007025403B4 (en) | End shield for bearing a shaft | |
DE3823214C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220705 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003771 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240627 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240723 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |