EP3945154A1 - Fibrous material with manganese oxide coating - Google Patents
Fibrous material with manganese oxide coating Download PDFInfo
- Publication number
- EP3945154A1 EP3945154A1 EP20188829.4A EP20188829A EP3945154A1 EP 3945154 A1 EP3945154 A1 EP 3945154A1 EP 20188829 A EP20188829 A EP 20188829A EP 3945154 A1 EP3945154 A1 EP 3945154A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- manganese
- oxide
- manganese oxide
- fiber material
- fibrous material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/48—Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
- D06M11/485—Oxides or hydroxides of manganese; Manganates
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/05—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
- A41D13/11—Protective face masks, e.g. for surgical use, or for use in foul atmospheres
- A41D13/1192—Protective face masks, e.g. for surgical use, or for use in foul atmospheres with antimicrobial agent
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/30—Antimicrobial, e.g. antibacterial
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/02—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
- D06M10/025—Corona discharge or low temperature plasma
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/04—Physical treatment combined with treatment with chemical compounds or elements
- D06M10/06—Inorganic compounds or elements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
Definitions
- the invention relates to a method for coating a fiber material, in particular a fleece, with manganese oxide, a method for producing an antiviral and antibacterial layer and a fiber material with manganese oxide.
- Fibrous materials in particular fleece materials, which consist of plastics such as polypropylene or polyamide fibers or also of cellulose-based materials, are provided with an antibacterial or antiviral layer for use in respirator masks.
- fleece materials which consist of plastics such as polypropylene or polyamide fibers or also of cellulose-based materials
- an antibacterial or antiviral layer for use in respirator masks.
- the proportion of manganese (IV) oxide can be increased to 80% by an annealing process at over 400°C in the presence of oxygen. These high temperatures are particularly Synthetic fiber materials, eg non-woven materials, are not possible as they would be thermally damaged or even decomposed.
- the invention is based on the object of specifying a method which makes it possible to increase the proportion of manganese(IV) oxide without damaging the fiber material. Furthermore, the object of the invention is to specify a fiber material with an increased proportion of manganese(IV) oxide.
- the manganese oxide precipitate usually comprises manganese oxides in different oxidation states, which are oxidized with the present method to a high quality manganese (IV) oxide layer.
- the annealing process known from the prior art at 400° C. or above is replaced by another energy-transferring process.
- the manganese oxide precipitate is applied wet-chemically, in particular from potassium permanganate and manganese(II) salts.
- the manganese oxide precipitate can, for example, be sprayed onto the fiber material via nozzles as a potassium permanganate solution and as a manganese(II) salt solution (possible salts here are, for example, nitrate or acetate).
- a mixture of manganese oxides of different oxidation states precipitates.
- the precipitate is preferably dried by a heating system, in particular to remove water. 110°C has proven to be advantageous here.
- the manganese oxide precipitate is oxidized by an oxygen plasma.
- Oxidation by means of oxygen plasma has the advantage that, at relatively low temperatures, in particular below 200° C., a high oxidation rate of the various manganese oxides to form manganese(IV) oxide is possible. This further improves the properties of the fiber material.
- the fiber material can be placed in a vacuum system and treated with oxygen plasma, e.g . B. be treated via a hollow cathode plasma source.
- the method includes removing hydroxyl groups from the manganese(IV) oxide layer.
- the removal of the hydroxyl groups can be carried out particularly advantageously in one step with the oxidation under oxygen plasma.
- the negative oxygen ions react with the manganese(II) oxide and the manganese(III) oxide to form the bactericidal manganese(IV) oxide and at the same time the hydroxyl groups and water molecules adhering to the manganese oxide mixture are released as water vapor via a Removed turbopump on a vacuum chamber.
- the method comprises applying silver to the fiber material which has been provided with manganese(IV) oxide according to the method according to the invention. This step is advantageously carried out after the manganese (IV) oxide has been applied. This forms an antibacterial and antiviral layer with a very good effect.
- the silver is applied as a silver nitrate solution and reduced to silver by means of a reducing agent. This can be done with jet-coated silver nitrate solution and hypophosphorous acid as a reducing agent for the silver nitrate.
- the fiber material is dried under a protective gas atmosphere.
- the fleece is dried under a protective gas atmosphere (nitrogen or argon).
- a protective gas atmosphere nitrogen or argon
- 110°C has proven advantageous for drying, also to remove residual water.
- the protective gas atmosphere is advantageous so that the silver does not oxidize.
- the order in which the bactericidal active substances are deposited is also advantageous in this process, since the manganese(IV) oxide is applied first and then the silver because of the risk of oxidation of the silver. This results in improved chemical contact between the silver and the manganese oxide.
- the object is also achieved by a fiber material which has a manganese oxide coating which has at least 70% by weight of manganese(IV) oxide based on the manganese oxide coating.
- the weight in % based on the manganese oxide coating is determined without the weight of the fibers. At least 75% by weight of the manganese oxide coating is advantageous. With the method according to the invention, 80% by weight or more by weight with respect to the manganese oxide coating is also possible.
- the fiber material has a particularly high concentration of manganese(IV) oxide.
- the manganese oxide coating has less than 5% by weight, in particular less than 1% by weight, of manganese(II) oxide, based on the total weight of the manganese oxide coating.
- the fiber material has a melting temperature below 200°C. Fibers with a melting temperature of below 180°C or even 160°C can also be advantageously selected. This expands the choice of materials, especially for skin-friendly fleece materials, e.g. B. Polypropylene.
- the fiber material contains silver. In order to achieve an improved antibacterial and antiviral effect, the fiber material contains silver.
- the fiber material can also have plastic fibers, in particular polypropylene fibers.
- the fiber material can consist entirely of the plastic fibers that are coated with the manganese oxide layer.
- a mouth and nose protector comprising a fiber material according to the invention.
- the fiber material can also be used in personal protective equipment.
- FIG 1 shows a system 100 that can process fiber material 10 and provide it with a manganese oxide coating.
- fiber material 10 z.
- B Nonwovens made of plastics that are used in respirators, such as polypropylene or polyamide fibers in question.
- the system 100 has a first roller 101 on which the fiber material 10 is delivered and which makes the fiber material 10 available for transport through the system 100 .
- the system also has a second roll 102 onto which the finished fiber material is rolled up.
- the rollers 101, 102 can be designed as transportable transport rollers.
- the system 100 also has a first nozzle 121 that applies the potassium permanganate solution and a second nozzle 122 that applies the manganese(II) salt solution or manganese(II) acetate solution to the fiber material 10 .
- a fleece made of plastic can thus be sprayed through the nozzles 121, 122 with a potassium permanganate solution and a manganese(II) salt solution, nitrate or acetate being usable as the salt.
- a first heating system 130 dries the resulting manganese oxide precipitate, in particular at 110°C.
- Fibrous materials 10 made of plastic usually withstand temperatures of up to a maximum of 160° C., in special cases up to 200° C., then these plastics melt and decomposition takes place at even higher temperatures. Therefore, in plant 100, a possible annealing process at 400°C was replaced by another energy-transferring process.
- the system 100 has a plasma generator 110, which offers the possibility of applying oxygen plasma 112 to the fiber material 10 provided with the dried manganese oxide precipitate.
- a plasma process e.g. hollow cathode plasma, inductively coupled plasma, capacitively coupled plasma or Microwave plasma
- oxygen molecules and oxygen atoms can be ionized. This creates atomic oxygen and oxygen ions O - , O 2 - , O 3 - , which with react with the manganese oxide surface produced shortly beforehand in the plant and this oxidizes into the corresponding manganese (IV) oxide.
- a hollow cathode plasma source as the plasma generator 110 is preferred because the hollow cathode, due to its shape, can trap oxygen ions and electrons in its cavities, thus providing a higher plasma (electron) density. Also, after plasma ignition, the voltage drops, but a further increase in current does not produce a larger increase in voltage. In contrast, with capacitively or inductively coupled plasma sources, the voltage increases continuously with the current. This high voltage potential is accelerated by the ions, which receive such a high excess of energy that the substrate surface can be damaged. With the hollow cathode, the plasma potential remains low so that the ions absorb less energy and do not damage the substrate surface.
- the fiber material 10, e.g. B. a plastic fleece can be introduced into a vacuum chamber.
- oxygen is introduced into a hollow cathode plasma source.
- this plasma generator 110 which is designed as a hollow cathode plasma source, high voltage (100 to 300 volts) is generated between the anode and cathode via a radio-frequency plasma generator and impedance differences (AC resistances) that occur are minimized and adjusted in a matching box.
- the oxygen molecules can be ionized at 12.06 eV and the oxygen atom at 13.62 eV.
- the discharge of the oxygen molecules occurs mainly through direct electron impact dissociation and through dissociative electron attachment. Unstable, excited O 2 - * are formed as intermediate products, which then decompose into atomic oxygen and oxygen ions. Oxygen discharges are weakly negative, this means that a fraction of the negative charge is made up of ions instead of electrons.
- the negative ions are O- , O 2 and even O 3- . These negative oxygen ions react with the manganese (II) oxide and the manganese (III) oxide to form the bactericidal manganese (IV) oxide and at the same time the hydroxyl groups and water molecules adhering to the manganese oxide mixture are removed as water vapor. This can be done by a turbo pump 114 on a vacuum chamber.
- Nonwovens mainly consisting of plastics and cellulose-based materials, can be easily coated in a roll-to-roll process.
- a silver nitrate solution is then sprayed through a third nozzle 123 and a reducing agent for the silver nitrate (e.g. hypophosphorous acid) through a fourth nozzle 124 onto the fiber material 10 coated/adhered to with manganese(IV) oxide.
- a reducing agent for the silver nitrate e.g. hypophosphorous acid
- the fiber material 10 is dried in a second heating system 140, preferably under a protective gas atmosphere (nitrogen or argon) at preferably 110°C. Drying removes excess water.
- the protective gas atmosphere is advantageous so that the silver does not oxidize.
- the order in which the bactericidal active substances are deposited is also advantageous in this process.
- the fleece can be moved automatically via the transport rollers 101, 102.
- the system 100 can be controlled with the aid of a computer via an electronic controller.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Catalysts (AREA)
Abstract
Zusammenfassend betrifft die Erfindung ein Verfahren zum Beschichten eines Fasermaterials (10), insbesondere eines Vlies, mit einem Manganoxid, ein Verfahren zum Erzeugen einer Antiviralen und Antibakteriellen Schicht sowie ein Fasermaterial mit Manganoxid. Um den Anteil an Mangan (IV)-oxid auf dem Fasermaterial (10) zu erhöhen werden die Schritte vorgeschlagen:- Aufbringen eines Manganoxid-Präzipitats auf das Fasermaterial,- Trocknen des Manganoxid-Präzipitats,- Oxidieren des Manganoxid-Präzipitats bei einer Temperatur unterhalb von 200°C, insbesondere unterhalb von 160°C, sodass sich eine Mangan (IV)oxid-Schicht mit mindestens 70 Gew.% bzgl. des Manganoxid-Präzipitats ausbildet.In summary, the invention relates to a method for coating a fiber material (10), in particular a fleece, with manganese oxide, a method for producing an antiviral and antibacterial layer and a fiber material with manganese oxide. In order to increase the proportion of manganese (IV) oxide on the fiber material (10), the steps are proposed: - applying a manganese oxide precipitate to the fiber material, - drying the manganese oxide precipitate, - oxidizing the manganese oxide precipitate at a temperature below of 200°C, in particular below 160°C, so that a manganese(IV) oxide layer with at least 70% by weight with respect to the manganese oxide precipitate is formed.
Description
Die Erfindung betrifft ein Verfahren zum Beschichten eines Fasermaterials, insbesondere eines Vlies, mit einem Manganoxid, ein Verfahren zum Erzeugen einer Antiviralen und Antibakteriellen Schicht sowie ein Fasermaterial mit Manganoxid.The invention relates to a method for coating a fiber material, in particular a fleece, with manganese oxide, a method for producing an antiviral and antibacterial layer and a fiber material with manganese oxide.
Fasermaterialien, insbesondere Vliesmaterialien, die aus Kunststoffen wie Polypropylen- oder Polyamid-Fasern oder auch aus Cellulose basierten Werkstoffen bestehen, werden mit einer antibakteriell oder antiviral wirkenden Schicht zum Einsatz in Atemschutzmasken versehen. Dies ist aus der unveröffentlichten Anmeldung
Ein Bestandteil dieser antibakteriell und antiviral wirkenden Schicht ist Mangandioxid, welches unter anderem nasschemisch aus Kaliumpermanganat und Mangan (II)- Salzen über eine Redoxreaktion auf das Vlies präzipitiert wird. Nach dem Trocknen des MnO2-Präzipitats bei 110° C verbleiben auf der MnO2-Oberfläche noch Hydroxyl-Gruppen (auch Hydroxygruppen genannt) und Wassermoleküle in atomarer Schichtdicke, die antibakterielle und antivirale Wirkung der Schicht beeinflussen können. Es ist zu beachten, dass das entstehende Manganoxid-präzipitat nach einer Wärmebehandlung bei 110°C aus ca.:
- 60 % Mangan (IV) Oxid - MnO2,
- 25 % Mangan (III) Oxid - Mn2O3 und
- 15 % Mangan (II) Oxid - MnO besteht.
- 60% manganese (IV) oxide - MnO 2 ,
- 25% manganese (III) oxide - Mn 2 O 3 and
- 15% manganese (II) oxide - MnO consists.
Den Anteil an Mangan (IV) Oxid kann durch einen Annealing-Prozess bei über 400°C in Gegenwart von Sauerstoff auf 80 % erhöht werden. Diese hohen Temperaturen sind insbesondere bei Kunstfasermaterialien, z.B. Vlieswerkstoffen nicht möglich, da diese thermisch beschädigt oder sogar zersetzt würden.The proportion of manganese (IV) oxide can be increased to 80% by an annealing process at over 400°C in the presence of oxygen. These high temperatures are particularly Synthetic fiber materials, eg non-woven materials, are not possible as they would be thermally damaged or even decomposed.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, das es ermöglicht den Anteil an Mangan (IV)-oxid zu erhöhen und dabei das Fasermaterial nicht zu beschädigen. Weiterhin ist es Aufgabe der Erfindung einen Faserwerkstoff mit einem erhöhten Anteil an Mangan (IV)-oxid anzugeben.The invention is based on the object of specifying a method which makes it possible to increase the proportion of manganese(IV) oxide without damaging the fiber material. Furthermore, the object of the invention is to specify a fiber material with an increased proportion of manganese(IV) oxide.
Dazu weist das Verfahren zum Beschichten des Fasermaterials mit Manganoxid, die folgenden Schritte auf:
- Aufbringen eines Manganoxid-Präzipitats auf das Fasermaterial,
- Trocknen des Manganoxid-Präzipitats,
- Oxidieren des Manganoxid-Präzipitats bei einer Temperatur unterhalb von 200°C, insbesondere unterhalb von 160°C, sodass sich eine Mangan(IV)-oxid-Schicht mit mindestens 70 Gew.% bzgl. des Manganoxid-Präzipitats ausbildet.
- applying a manganese oxide precipitate to the fiber material,
- drying the manganese oxide precipitate,
- Oxidation of the manganese oxide precipitate at a temperature below 200° C., in particular below 160° C., so that a manganese(IV) oxide layer is formed with at least 70% by weight based on the manganese oxide precipitate.
Dieses Verfahren ist besonders schonend bzgl. des Fasermaterials und ermöglicht eine erheblich vergrößerte Materialauswahl von Fasern, die sonst nicht mit einer verbesserten Manganoxid-Beschichtung versehen werden können. Das Manganoxid-Präzipitat weist üblicherweise Manganoxide in unterschiedlichen Oxidationsstufen auf, die mit dem vorliegenden Verfahren zu einer Mangan (IV)-oxid-Schicht mit hoher Qualität oxidiert werden. Dazu wird der aus dem Stand der Technik bekannte Annealing-Prozess bei 400°C oder darüber durch einen anderen energieübertragenden Vorgang ersetzt.This process is particularly gentle on the fiber material and enables a significantly larger selection of fibers that otherwise cannot be provided with an improved manganese oxide coating. The manganese oxide precipitate usually comprises manganese oxides in different oxidation states, which are oxidized with the present method to a high quality manganese (IV) oxide layer. For this purpose, the annealing process known from the prior art at 400° C. or above is replaced by another energy-transferring process.
In einer weiteren Ausführungsform wird das Manganoxid-Präzipitat nasschemisch aufgebracht, insbesondere aus Kaliumpermanganat und Mangan(II)-Salzen. Dies hat den Vorteil, dass ein Sprühverfahren verwendet werden kann, das sich insbesondere für Bahnmaterialien gut eignet. Das Manganoxid-Präzipitat kann bspw. über Düsen als Kaliumpermanganat-Lösung und als Mangan-(II)-Salzlösung (als Salze kommen dabei z. B. Nitrat oder Acetat in Frage) auf das Fasermaterial gesprüht werden. Treffen diese beiden Lösungen aufeinander fällt ein Gemisch aus Manganoxiden unterschiedlicher Oxidationsstufen aus. Vorzugsweise wird das Präzipitat, insbesondere zur Entfernung von Wasser, durch eine Heizanlage getrocknet. Hier hat sich 110°C als vorteilhaft erwiesen.In a further embodiment, the manganese oxide precipitate is applied wet-chemically, in particular from potassium permanganate and manganese(II) salts. This has the advantage that a spraying method can be used which is particularly well suited for web materials. The manganese oxide precipitate can, for example, be sprayed onto the fiber material via nozzles as a potassium permanganate solution and as a manganese(II) salt solution (possible salts here are, for example, nitrate or acetate). When these two solutions meet, a mixture of manganese oxides of different oxidation states precipitates. The precipitate is preferably dried by a heating system, in particular to remove water. 110°C has proven to be advantageous here.
In einer weiteren Ausführungsform wird das Manganoxid-Präzipitat durch ein Sauerstoff-Plasma oxidiert. Das Oxidieren durch Sauerstoff-Plasma hat den Vorteil, dass bei verhältnismäßig geringen Temperaturen, insbesondere unter 200°C, eine hohe Oxidationsrate der verschiedenen Manganoxide zu Mangan(IV)-oxid ermöglicht. Dies verbessert die Eigenschaften des Fasermaterials weiter. So kann das Fasermaterial nach dem Trocknen in eine Vakuumanlage verbracht und zur Überführung der unerwünschten Manganoxide (insbesondere Mangan(II)- und Mangan(III)-Oxide) in das bakterizid und viruzid wirkende Braunstein (Mangan(IV)-Oxid) mit Sauerstoffplasma z. B. über eine Hohlkathoden-Plasmaquelle behandelt werden.In another embodiment, the manganese oxide precipitate is oxidized by an oxygen plasma. Oxidation by means of oxygen plasma has the advantage that, at relatively low temperatures, in particular below 200° C., a high oxidation rate of the various manganese oxides to form manganese(IV) oxide is possible. This further improves the properties of the fiber material. After drying, the fiber material can be placed in a vacuum system and treated with oxygen plasma, e.g . B. be treated via a hollow cathode plasma source.
In einer weiteren Ausführungsform umfasst das Verfahren ein Entfernen von Hydroxyl-Gruppen von der Mangan(IV)oxidSchicht. Eine mögliche Reaktionsgleichung lautet:
2Mn(OH)2 + Δ Energie + O2 = 2MnO2 + 2H2O
In another embodiment, the method includes removing hydroxyl groups from the manganese(IV) oxide layer. A possible reaction equation is:
2Mn(OH)2 + Δ energy + O2 = 2MnO2 + 2H2O
Das Entfernen der Hydroxyl-Gruppen kann besonders vorteilhaft in einem Schritt mit dem Oxidieren unter Sauerstoff-Plasma durchgeführt werden. Die negativen Sauerstoff-Ionen reagieren mit dem Mangan(II)-Oxid und dem Mangan(III)-Oxid zu dem bakterizid wirkenden Mangan(IV)-Oxid und gleichzeitig werden die am Manganoxid-Gemisch anhaftenden Hydroxyl- Gruppen und Wassermoleküle als Wasserdampf über eine Turbopumpe an einer Vakuumkammer entfernt. Durch die Entfernung der Hydroxyl- Gruppen und der Wassermoleküle, die nach unmittelbarer Herstellung der Manganoxid-Präzipitate an diesem noch in atomarer Schichtdicke haften, kann vorteilhaft beim Abscheiden von Silber zwischen dem Silber und dem Mangan(IV)-Oxid ein chemisch engerer Kontakt hergestellt werden.The removal of the hydroxyl groups can be carried out particularly advantageously in one step with the oxidation under oxygen plasma. The negative oxygen ions react with the manganese(II) oxide and the manganese(III) oxide to form the bactericidal manganese(IV) oxide and at the same time the hydroxyl groups and water molecules adhering to the manganese oxide mixture are released as water vapor via a Removed turbopump on a vacuum chamber. By removing the hydroxyl groups and the water molecules which still adhere to the manganese oxide precipitates in an atomic layer thickness after the immediate production thereof, chemically closer contact can advantageously be produced between the silver and the manganese(IV) oxide when silver is deposited .
In einer weiteren Ausführungsform umfasst das Verfahren ein Aufbringen von Silber auf das Fasermaterial, das mit Mangan(IV)-oxid gemäß dem erfindungsgemäßen Verfahren versehen wurde. Dieser Schritt wird vorteilhaft nach dem Auftragen des Mangan (IV)-oxid durchgeführt. Es bildet sich so eine antibakterielle und antivirale Schicht mit sehr guter Wirkung.In a further embodiment, the method comprises applying silver to the fiber material which has been provided with manganese(IV) oxide according to the method according to the invention. This step is advantageously carried out after the manganese (IV) oxide has been applied. This forms an antibacterial and antiviral layer with a very good effect.
In einer weiteren Ausführungsform wird das Silber als Silbernitrat-Lösung aufgebracht und mittels eines Reduktionsmittels zu Silber reduziert. Dies kann durch über Düsen aufgebrachte Silbernitrat-Lösung und Hypophosphorige Säure als Reduktionsmittel für das Silbernitrat durchgeführt werden.In a further embodiment, the silver is applied as a silver nitrate solution and reduced to silver by means of a reducing agent. This can be done with jet-coated silver nitrate solution and hypophosphorous acid as a reducing agent for the silver nitrate.
In einer weiteren Ausführungsform wird das Fasermaterial unter Schutzgasatmosphäre getrocknet. Nach dem das Silber präzipitiert ist, wird das Vlies unter Schutzgasatmosphäre (Stickstoff oder Argon) getrocknet. Hier hat sich 110°C zum Trocknen als vorteilhaft erwiesen, auch um restliches Wasser zu entfernen. Die Schutzgasatmosphäre ist vorteilhaft, damit das Silber nicht oxidiert. Auch die Reihenfolge der Abscheidung der bakteriziden Wirkstoffe ist in diesem Verfahren vorteilhaft, da wegen der Oxidationsgefahr des Silbers, zuerst das Mangan (IV)-Oxid aufgetragen wird und dann das Silber. Dies führt zu einem verbesserten chemischen Kontakt zwischen dem Silber und dem Manganoxid.In a further embodiment, the fiber material is dried under a protective gas atmosphere. After the silver has precipitated, the fleece is dried under a protective gas atmosphere (nitrogen or argon). Here, 110°C has proven advantageous for drying, also to remove residual water. The protective gas atmosphere is advantageous so that the silver does not oxidize. The order in which the bactericidal active substances are deposited is also advantageous in this process, since the manganese(IV) oxide is applied first and then the silver because of the risk of oxidation of the silver. This results in improved chemical contact between the silver and the manganese oxide.
Die Aufgabe wird weiterhin durch ein Fasermaterial gelöst, das eine Manganoxidbeschichtung aufweist, die zumindest 70 Gew.% Mangan (IV)-oxid bzgl. der Manganoxidbeschichtung aufweist. Das Gewicht in % bzgl. der Manganoxidbeschichtung wird dabei ohne das Gewicht der Fasern bestimmt. Vorteilhaft sind zumindest 75 Gew.% bzgl. der Manganoxidbeschichtung. Mit dem erfindungsgemäßen Verfahren sind ebenso 80 Gew.% oder mehr Gew.% bzgl. der Manganoxidbeschichtung möglich. Das Fasermaterial weist dabei eine besonders hohe Konzentration an Mangan (IV)-oxid auf.The object is also achieved by a fiber material which has a manganese oxide coating which has at least 70% by weight of manganese(IV) oxide based on the manganese oxide coating. The weight in % based on the manganese oxide coating is determined without the weight of the fibers. At least 75% by weight of the manganese oxide coating is advantageous. With the method according to the invention, 80% by weight or more by weight with respect to the manganese oxide coating is also possible. The fiber material has a particularly high concentration of manganese(IV) oxide.
In einer weiteren Ausführungsform weist die Manganoxidbeschichtung weniger als 5 Gew.%, insbesondere weniger als 1 Gew.% Mangan (II)-oxid auf, jeweils bzgl. des Gesamtgewichts der Manganoxidbeschichtung. Je niedriger der Anteil von Mangan (II)-Oxid, desto höher die Qualität der Beschichtung auf dem Fasermaterial. Es hat sich herausgestellt, dass durch Anwendung des erfindungsgemäßen Verfahrens, insbesondere durch das Plasma-Verfahren der Anteil an Mangan (II)-oxid vorteilhaft verringert werden kann.In a further embodiment, the manganese oxide coating has less than 5% by weight, in particular less than 1% by weight, of manganese(II) oxide, based on the total weight of the manganese oxide coating. The lower the proportion of manganese (II) oxide, the higher the quality of the coating on the fiber material. It has been found that by using the method according to the invention, in particular by using the plasma method, the proportion of manganese(II) oxide can be advantageously reduced.
In einer weiteren Ausführungsform weist das Fasermaterial eine Schmelztemperatur unterhalb von 200°C auf. Vorteilhaft können auch Fasern mit einer Schmelztemperatur von unterhalb 180°C oder sogar 160°C gewählt werden. Dies erweitert die Materialauswahl insbesondere bei den hautverträglichen Vliesmaterialen, z. B. Polypropylen.In a further embodiment, the fiber material has a melting temperature below 200°C. Fibers with a melting temperature of below 180°C or even 160°C can also be advantageously selected. This expands the choice of materials, especially for skin-friendly fleece materials, e.g. B. Polypropylene.
In einer weiteren Ausführungsform weist das Fasermaterial Silber auf. Um einen verbesserten antibakteriellen und antiviralen Effekt zu erzielen weist das Fasermaterial Silber auf.In a further embodiment, the fiber material contains silver. In order to achieve an improved antibacterial and antiviral effect, the fiber material contains silver.
Das Fasermaterial kann weiterhin Kunststofffasern, insbesondere Polypropylen-Fasern, aufweisen. Das Fasermaterial kann vollständig aus den Kunststoff-Fasern bestehen, die mit der Manganoxid-Schicht beschichtet sind.The fiber material can also have plastic fibers, in particular polypropylene fibers. The fiber material can consist entirely of the plastic fibers that are coated with the manganese oxide layer.
Die Aufgabe wird weiterhin durch einen Mund-Nasen-Schutz gelöst, aufweisend ein erfindungsgemäßes Fasermaterial. Das Fasermaterial kann weiterhin in persönlicher Schutzausrüstung zum Einsatz kommen.The object is also achieved by a mouth and nose protector comprising a fiber material according to the invention. The fiber material can also be used in personal protective equipment.
Im Folgenden wird die Erfindung anhand der in der Figur dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigt:
- FIG 1
- ein Beispiel einer Anlage zur Durchführung des erfindungsgemäßen Verfahrens.
- FIG 1
- an example of a system for carrying out the method according to the invention.
Die Anlage 100 weist weiterhin eine erste Düse 121 auf, die Kaliumpermanganat-Lösung und eine zweite Düse 122 auf, die Mangan (II) -Salzlösung bzw. Mangan (II) -Acetat-Lösung auf das Fasermaterial 10 aufbringen. Ein Vlies aus Kunststoff kann also über die Düsen 121, 122 mit einer Kaliumpermanganat-Lösung und einer Mangan (II) -Salzlösung besprüht werden, wobei als Salz Nitrat oder Acetat verwendbar sind. Eine erste Heizanlage 130 trocknet das so entstehende Manganoxid-Präzipitat, insbesondere bei 110°C.The
Fasermaterialien 10 aus Kunststoff halten üblicherweise Temperaturen bis maximal 160°C in Sonderfällen bis 200°C aus, dann schmelzen diese Kunststoffe und bei noch höheren Temperaturen findet eine Zersetzung statt. Daher wurde in der Anlage 100 ein möglicher Annealing-Prozess bei 400°C durch einen anderen Energie- übertragenden Vorgang ersetzt.
Die Anlage 100 weist dazu einen Plasmagenerator 110 auf, der die Möglichkeit einer Anwendung von Sauerstoffplasma 112 auf das mit dem getrockneten Manganoxid-Präzipitat versehenen Fasermaterial 10. Mit Hilfe eines Plasmaverfahrens (z. B. Hohlkathoden Plasma, induktiv gekoppeltes Plasma, kapazitiv gekoppeltes Plasma oder Mikrowellenplasma) können Sauerstoffmoleküle und Sauerstoffatome ionisiert werden. Dabei entsteht atomarer Sauerstoff und Sauerstoff-Ionen O-, O2 -, O3 -, die mit der in der Anlage kurz zuvor hergestellten Manganoxid-Oberfläche reagieren und diese in das entsprechende Mangan (IV)-Oxid oxidiert.For this purpose, the
Die Anwendung einer Hohlkathoden-Plasmaquelle als Plasmagenerator 110 wird bevorzugt, weil die Hohlkathode aufgrund Ihrer Gestalt in Ihrem Hohlräumen Sauerstoff-Ionen und Elektronen einschließen kann und so für eine höhere Plasmadichte (Elektronendichte) sorgt. Des Weiteren fällt nach der Plasma-Zündung die Spannung ab, aber eine weitere Zunahme der Stromstärke erzeugt keine größere Steigung der Spannung. Dagegen steigt bei kapazitiv oder induktiv gekoppelten Plasma-Quellen die Spannung mit dem Strom kontinuierlich an. Dieses hohe Spannungspotential beschleunigen die Ionen, die einen so hohen Energieüberschuss erhalten, dass die Substratoberfläche geschädigt werden kann. Bei der Hohlkathode bleibt das Plasmapotential niedrig, so dass die Ionen weniger Energie aufnehmen und die Substratoberfläche nicht schädigen.The use of a hollow cathode plasma source as the
Das mit dem Manganoxid-Präzipitat (ein Gemisch von Manganoxiden in verschiedenen Oxidationsstufen des Mangans) beschichtete Fasermaterial 10, z. B. ein Kunststoff-Vlies, kann in eine Vakuumkammer eingeschleust werden. Um Mangan 2+ und Mangan 3+ in eine höhere Oxidationsstufe zu überführen, wird Sauerstoff in eine Hohlkathoden-Plasmaquelle eingeleitet.The
In diesem als Hohlkathoden-Plasmaquelle ausgestaltetem Plasmagenerator 110 werden zwischen Anode und Kathode hohe Spannung (100 bis 300 Volt) über einen Radiofrequenz- Plasmagenerator erzeugt und dabei auftretende Impedanz-Differenzen (Wechselstromwiderstände) in einer Matching Box minimiert und angepasst. Die Sauerstoff-Moleküle können bei 12,06 eV und das Sauerstoff- Atom bei 13,62 eV ionisiert werden. Die Entladung der Sauerstoff-Moleküle erfolgt hauptsächlich durch direkte Elektronenstoß-Dissoziation und durch dissoziative Elektronenanlagerung. Als Zwischenprodukte entstehen unstabile angeregte O2 -*, die dann in atomaren Sauerstoff und Sauerstoff-Ionen zerfallen. Sauerstoffentladungen sind schwach negativ, das bedeutet, dass ein Bruchteil der negativen Ladung aus Ionen anstelle von Elektronen besteht. Die negativen Ionen sind O-, O2 und sogar O3 -. Diese negativen Sauerstoff-Ionen reagieren mit dem Mangan (II)-Oxid und dem Mangan (III)-Oxid zu dem bakterizid wirkenden Mangan (IV)-Oxid und gleichzeitig werden die am Manganoxid-Gemisch anhaftenden Hydroxyl- Gruppen und Wassermoleküle als Wasserdampf entfernt. Dies kann durch eine Turbopumpe 114 an einer Vakuumkammer durchgeführt werden. Vliese, vorwiegend aus Kunststoffen und Cellulose basierten Stoffen bestehend, können so einfach in einem Roll-to-Roll-Verfahren beschichtet werden.In this
Anschließend wird über eine dritte Düse 123 eine Silbernitrat-Lösung und über eine vierte Düse 124 ein Reduktionsmittel für das Silbernitrat (z. B. Hypophosphorige Säure) auf das mit Mangan (IV)-Oxid beschichtete/behaftete Fasermaterial 10 aufgesprüht. Nach dem das Silber präzipitiert wurde, wird das Fasermaterial 10 in einer zweiten Heizanlage 140 vorzugsweise unter Schutzgasatmosphäre (Stickstoff oder Argon) bei vorzugsweise 110°C getrocknet. Das Trocknen entfernt dabei überschüssiges Wasser. Die Schutzgasatmosphäre ist vorteilhaft, damit das Silber nicht oxidiert. Auch die Reihenfolge der Abscheidung der bakteriziden Wirkstoffe ist in diesem Verfahren vorteilhaft. Wegen der Oxidationsgefahr des Silbers hat es sich als vorteilhaft erwiesen, zuerst das Mangan (IV)-Oxid, dann das Silber aufzubringen. Über die Transportrollen 101, 102 kann das Vlies automatisch bewegt werden. Die Anlage 100 kann über eine elektronische Steuerung computergestützt gesteuert werden.A silver nitrate solution is then sprayed through a
Zusammenfassend betrifft die Erfindung ein Verfahren zum Beschichten eines Fasermaterials (10), insbesondere eines Vlies, mit einem Manganoxid, ein Verfahren zum Erzeugen einer Antiviralen und Antibakteriellen Schicht sowie ein Fasermaterial mit Manganoxid. Um den Anteil an Mangan (IV)-oxid auf dem Fasermaterial (10) zu erhöhen werden die Schritte vorgeschlagen:
- Aufbringen eines Manganoxid-Präzipitats auf das Fasermaterial,
- Trocknen des Manganoxid-Präzipitats,
- Oxidieren des Manganoxid-Präzipitats bei einer Temperatur unterhalb von 200°C, insbesondere unterhalb von 160°C, sodass sich eine Mangan (IV)oxid-Schicht mit mindestens 70 Gew.% bzgl. des Manganoxid-Präzipitats ausbildet.
- applying a manganese oxide precipitate to the fiber material,
- drying the manganese oxide precipitate,
- Oxidation of the manganese oxide precipitate at a temperature below 200° C., in particular below 160° C., so that a manganese (IV) oxide layer is formed with at least 70% by weight based on the manganese oxide precipitate.
- 1010
- Fasermaterialfiber material
- 100100
- Anlagefactory
- 101101
- erste Rollefirst role
- 102102
- zweite Rollesecond role
- 110110
- Plasmaquelleplasma source
- 112112
- Plasmaplasma
- 114114
- Turbopumpeturbo pump
- 121121
- erste Düsefirst nozzle
- 122122
- zweite Düsesecond nozzle
- 123123
- dritte Düsethird nozzle
- 124124
- vierte Düsefourth nozzle
- 130130
- erste Heizanlagefirst heating system
- 140140
- zweite Heizanlagesecond heating system
Claims (14)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20188829.4A EP3945154A1 (en) | 2020-07-31 | 2020-07-31 | Fibrous material with manganese oxide coating |
US18/007,375 US20230295868A1 (en) | 2020-07-31 | 2021-07-15 | Fiber Material Having a Manganese Oxide Coating |
CN202180058468.4A CN116194635A (en) | 2020-07-31 | 2021-07-15 | Fibrous material with manganese oxide coating |
EP21746410.6A EP4143377A1 (en) | 2020-07-31 | 2021-07-15 | Fiber material having a manganese oxide coating |
PCT/EP2021/069726 WO2022023052A1 (en) | 2020-07-31 | 2021-07-15 | Fiber material having a manganese oxide coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20188829.4A EP3945154A1 (en) | 2020-07-31 | 2020-07-31 | Fibrous material with manganese oxide coating |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3945154A1 true EP3945154A1 (en) | 2022-02-02 |
Family
ID=71899534
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20188829.4A Withdrawn EP3945154A1 (en) | 2020-07-31 | 2020-07-31 | Fibrous material with manganese oxide coating |
EP21746410.6A Pending EP4143377A1 (en) | 2020-07-31 | 2021-07-15 | Fiber material having a manganese oxide coating |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21746410.6A Pending EP4143377A1 (en) | 2020-07-31 | 2021-07-15 | Fiber material having a manganese oxide coating |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230295868A1 (en) |
EP (2) | EP3945154A1 (en) |
CN (1) | CN116194635A (en) |
WO (1) | WO2022023052A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105249567A (en) * | 2015-11-18 | 2016-01-20 | 华文蔚 | Disposable non-woven mask |
CN105725310A (en) * | 2016-05-03 | 2016-07-06 | 韩淑敏 | Mask with oxygenation function |
CN107455822A (en) * | 2017-09-12 | 2017-12-12 | 江苏纳纤新材料科技有限公司 | A kind of nanofiber micrometer fibers compound anti-mist haze mouth mask |
KR102108768B1 (en) * | 2019-06-18 | 2020-05-08 | 홍창석 | Antibacterial Mask |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6517974B1 (en) * | 1998-01-30 | 2003-02-11 | Canon Kabushiki Kaisha | Lithium secondary battery and method of manufacturing the lithium secondary battery |
US9819220B2 (en) * | 2015-10-08 | 2017-11-14 | Everon24 Llc | Rechargeable aluminum ion battery |
-
2020
- 2020-07-31 EP EP20188829.4A patent/EP3945154A1/en not_active Withdrawn
-
2021
- 2021-07-15 US US18/007,375 patent/US20230295868A1/en active Pending
- 2021-07-15 EP EP21746410.6A patent/EP4143377A1/en active Pending
- 2021-07-15 WO PCT/EP2021/069726 patent/WO2022023052A1/en unknown
- 2021-07-15 CN CN202180058468.4A patent/CN116194635A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105249567A (en) * | 2015-11-18 | 2016-01-20 | 华文蔚 | Disposable non-woven mask |
CN105725310A (en) * | 2016-05-03 | 2016-07-06 | 韩淑敏 | Mask with oxygenation function |
CN107455822A (en) * | 2017-09-12 | 2017-12-12 | 江苏纳纤新材料科技有限公司 | A kind of nanofiber micrometer fibers compound anti-mist haze mouth mask |
KR102108768B1 (en) * | 2019-06-18 | 2020-05-08 | 홍창석 | Antibacterial Mask |
Also Published As
Publication number | Publication date |
---|---|
US20230295868A1 (en) | 2023-09-21 |
WO2022023052A1 (en) | 2022-02-03 |
EP4143377A1 (en) | 2023-03-08 |
CN116194635A (en) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3625018B1 (en) | Method for producing a dry film | |
DE10063518C2 (en) | Process for the electrostatic spinning of polymers to obtain nano and microfibers | |
DE102016105963B4 (en) | Coated fuel cell separator and manufacturing method for a coated fuel cell separator | |
WO2011042459A1 (en) | Atmospheric pressure plasma method for producing surface-modified particles and coatings | |
EP1902156A2 (en) | Method for treating plasma and/or covering plasma of workpieces under continuous atmospheric pressure, in particular material plates or strips | |
DE4117332C2 (en) | Process for treating moving substrate using an electrical discharge plasma and device for carrying it out | |
WO2002001656A9 (en) | Method for producing cathodes and anodes for electrochemical systems, metallised material used therein, method and device for production of said metallised material | |
WO1995009256A1 (en) | Treatment of surfaces by corona discharge | |
EP0160889B1 (en) | Method and apparatus for surface-treating sheet-material webs | |
DE3641718A1 (en) | METHOD FOR PRODUCING WRAPS FROM INSULATING FILMS COATED CONDUCTIVELY IN A VACUUM | |
EP4008030B1 (en) | Method for providing an electrode foil for producing a lithium-ion rechargeable battery and method for producing a lithium-ion rechargeable battery | |
EP3520158B1 (en) | Electrode for a lithium-ion battery and device and method for producing said electrode | |
DE102006015591B3 (en) | Organic material with a catalytically coated surface and process for its production | |
DE102008016969B3 (en) | Method for producing a layer by cold gas spraying | |
EP3945154A1 (en) | Fibrous material with manganese oxide coating | |
EP1546431A1 (en) | Composite material | |
DE2716452A1 (en) | METHOD OF MANUFACTURING A FLUX COATED WICK AND DEVICE FOR CARRYING OUT THE METHOD | |
EP0142083A2 (en) | Method and apparatus for the production of metallic coatings | |
DE1796176A1 (en) | Insulated wire and process for its manufacture | |
DE1494269C3 (en) | Modifying and improving the surface properties of foils | |
DE102008029385B4 (en) | A process for producing rare earth metal oxide layers and transition metal oxide layers, use of an apparatus for producing rare earth metal oxide layers and transition metal oxide layers, and use of a metal nitrate | |
DE4103959A1 (en) | Prodn. of coated non-conductors esp. plastics - by suitably oxidising the surface to increase its electrical conductivity and then spraying electrostatically with liquid or powder | |
EP0588246B1 (en) | Method and apparatus for treatment of endless webs | |
DE10127189C1 (en) | Production of cellulose molding, preferably fiber, filament, tube, foil or film, involves preparing cellulose carbamate solution and precipitation in precipitation bath in electric field | |
DE3439001C1 (en) | Process and apparatus for producing metallic films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220803 |