EP3936324B1 - Thermal vacuum insulating element - Google Patents

Thermal vacuum insulating element Download PDF

Info

Publication number
EP3936324B1
EP3936324B1 EP20185224.1A EP20185224A EP3936324B1 EP 3936324 B1 EP3936324 B1 EP 3936324B1 EP 20185224 A EP20185224 A EP 20185224A EP 3936324 B1 EP3936324 B1 EP 3936324B1
Authority
EP
European Patent Office
Prior art keywords
vacuum insulation
support elements
insulation element
fiber structure
limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20185224.1A
Other languages
German (de)
French (fr)
Other versions
EP3936324A1 (en
Inventor
Malte Lang
Roland Wiedenroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V21 GmbH
Original Assignee
V21 GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V21 GmbH filed Critical V21 GmbH
Priority to EP20185224.1A priority Critical patent/EP3936324B1/en
Priority to PCT/EP2021/067685 priority patent/WO2022008281A1/en
Priority to CN202180049535.6A priority patent/CN115803185A/en
Priority to US18/010,867 priority patent/US20230234324A1/en
Priority to JP2023501225A priority patent/JP2023534424A/en
Publication of EP3936324A1 publication Critical patent/EP3936324A1/en
Application granted granted Critical
Publication of EP3936324B1 publication Critical patent/EP3936324B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/182Insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to a vacuum thermal insulation element.
  • thermal vacuum insulation elements The high level of insulation that can be achieved with thermal vacuum insulation elements is due to the lack of thermal conductivity in vacuum. Without particles, no heat transport can take place. The remaining actual heat conduction takes place via a support core, which mechanically stabilizes the vacuum insulation element, and via edges of the vacuum insulation element, which laterally delimit the vacuumed space.
  • vacuum insulation elements consist of an open-pored support core that is encased in several layers of metalized plastic film.
  • the core material itself should have low thermal conductivity.
  • Known support cores are often made of a powdered insulating material such. B. fumed silica. Glass fiber mats are known as another core material.
  • WO 2011/016693 A2 U.S. 6,037,033 and DE 10 2007 056 837 A1 show differently designed supporting cores.
  • WO 2011/050800 A2 shows spacer assemblies comprising two spaced apart walls. Pressure transducers are arranged in a projecting manner on the walls, which project past one another and are spaced apart from one another.
  • a tensile force transmission element made of a fiber for example, connects the pressure sensors to one another and absorbs a pressure generated by a vacuum.
  • a borderless connection between individual spacer assemblies avoids border heat transfer problems. Vacuuming only takes place on site, the edge is sealed with a metal strip.
  • vacuum insulation panels are, for example, in the area of refrigerators and freezers as well as in the area of hot water tanks. Other well-known applications are in the field of building insulation.
  • thermal heat insulation elements can be used wherever high thermal insulation with a low layer thickness of the insulation layer is required.
  • a disadvantage of the previously known vacuum insulation panels is the very energy-consuming and expensive production of the support core.
  • the plates are very sensitive, since only an undamaged plastic film can guarantee the vacuum.
  • the vacuum insulation element 10 has a first flat delimiting part 12 and a second flat delimiting part 14 .
  • the delimiting part 12 and the delimiting part 14 define a vacuum space 16 between them.
  • the first flat delimiting part 12 and the second flat delimiting part 14 can be arranged parallel to one another.
  • the first flat delimiting part 12 and the second flat delimiting part 14 are spaced apart from one another. A heat transfer from the first delimitation part 12 to the second delimitation part 14 should be minimized.
  • First support elements 18 extend away from the first delimiting part 12 into the vacuumed space 16.
  • Second support elements 20 extend away from the second delimiting part 14 into the vacuumed space 16.
  • the delimiting parts 12, 14 with the support elements 18, 20 are arranged relative to one another that the first support elements 18 and the second support elements 20 project past one another and are spaced apart from one another.
  • the first supporting elements 18 extend towards the second bordering part 14.
  • the first supporting elements 18 do not touch the second bordering part 14.
  • the second supporting elements 20 extend towards the first bordering part 12.
  • the second supporting elements 20 do not contact the first bordering part 12.
  • the first Supporting elements 18 can be made in one piece with the first delimiting part 12 .
  • the second supporting elements 20 can be made in one piece with the second limiting part 14 .
  • first delimiting part 12 with the first support elements 18 can be designed as a wave-shaped or corrugated component.
  • the second delimiting part 14 with the second support elements 20 can also be designed as a wave-shaped or corrugated component.
  • a plurality of shafts can be provided.
  • the vacuum insulation element 10 has a fiber structure 22 .
  • the fiber structure 22 connects the first support elements 18 and the second support elements 20 in the vacuum space 16 to one another.
  • the fiber structure 22 can be fixed or secured to at least one of the first support elements 18, to at least one of the second support elements 20, to the first delimiting part 12 and/or to the second delimiting part 14.
  • An upper part of the vacuum insulation element comprising the first limiting part 12 and the first supporting elements 18 is connected to a lower part of the vacuum insulation element comprising the second delimiting part 14 and the second support elements 20 via the fiber structure 22.
  • the fiber structure 22 has a low thermal conductivity.
  • the fiber structure 22 is designed to absorb at least the pressure generated by the vacuum on the first delimiting part 12 and the second delimiting part 14 .
  • the fibrous structure 22 can also be designed to absorb further exertion of force on the vacuum insulation element 10 which is caused by the use of the vacuum insulation element 10 .
  • the force acting on the delimiting parts 12, 14 due to the ambient pressure due to the prevailing vacuum is represented symbolically by arrows 24.
  • the vacuum insulating element 10 has means 26 for sealing off the vacuumed space 16, which are explained in more detail below.
  • Heat conduction from the first delimiting part 12 to the second delimiting part 14 can only take place via the fiber structure 22, the means 26 for sealing edge regions 26 and the vacuumed space 16, ie via gas atoms and gas molecules remaining in the imperfect vacuum.
  • the inventors were able to demonstrate heat transfer in a range of only 10 -5 W/mK.
  • FIG 2 shows a small section of the vacuum insulation element 10 of FIG 1 .
  • Arrows 24 show the force acting on the delimiting part 12 due to the vacuum prevailing in the space 16 .
  • the force 24 is transmitted to the support element 18 shown and absorbed by the fiber structure 22 .
  • Due to the support elements 18, 20 projecting past one another, a force deflection of the external pressure load onto a tensile load on the fibers of the fiber structure 22 is achieved.
  • the obliquely arranged fiber structure 22 also absorbs transverse forces that also occur.
  • the bordering parts 12, 14 can define an upper and a lower surface of the vacuum insulation element 10.
  • FIG. The vacuum is formed between the first flat delimiting part 12 and the second flat delimiting part 14 .
  • the first delimiting part 12 and the second delimiting part 14 are spaced apart from one another and can run essentially parallel to one another.
  • the delimiting parts 12, 14 can be made of material suitable for high vacuum.
  • the thermal conductivity of Limiting parts 12, 14 is not important for the thermal conductivity of the vacuum insulation element, since they do not touch each other.
  • the limiting parts 12, 14 can be made of metal.
  • the limiting parts 12, 14 can be made of stainless steel.
  • the delimiting parts 12, 14 can be made of ceramic, glass, laminate and/or plastic.
  • the bordering parts 12, 14 may comprise or be made of a metal-coated fiber laminate.
  • the limiting parts 12, 14 can be flat and each lie completely in one plane. This is how plates can be formed.
  • the panels can be used, for example, for building insulation.
  • the panels can be laid in multiple layers.
  • the individual panels of the successive layers can be arranged offset from one another, so that abutting edges of different layers do not come to lie on top of one another. In other words, the panels can be stacked one on top of the other like a brick.
  • the limiting parts 12, 14 can assume any shape.
  • the limiting parts 12, 14 can be curved.
  • the bordering parts 12, 14 may comprise an edge, as illustrated in FIG figure 5 explained in more detail.
  • the bordering parts 12, 14 can form a corner.
  • the limiting parts 12, 14 can be designed for the respective application. If only flat panels are used to insulate a room, for example, thermal bridges inevitably arise at the edges, since a lower delimiting part 14 of a first panel touches an upper delimiting part of a second panel at the edge.
  • the proposed design of the delimiting parts 12, 14 as an edge or as a corner allows (room) insulation without the formation of thermal bridges.
  • the boundary parts 12, 14 can each be over the entire surface, for example made of a continuous stainless steel plate.
  • a stainless steel plate is inexpensive to produce and can be fully recovered at the end of the insulating element's life. The recycling rate is very good.
  • a full-surface configuration can increase the mechanical resistance of the vacuum insulating element 10 .
  • At least one of the delimiting parts 12, 14 can have openings or breakthroughs. At least one of the stop portions 12, 14 may be formed of wire. It can be in the form of a grid. At least one of the delimiting parts 12, 14 can be designed as a profile construction. Such a structure with Openings can be lighter in weight. Such a structure with openings can use less material. In the case of larger openings, the delimiting parts can be covered with the fiber structure 22 .
  • the means 26 for sealing the vacuumed space 16 can be as in 1 shown enclosing the entire vacuum insulation element 10 .
  • the means 26 for sealing the vacuumed space 16 can be a film bag, in particular a metalized film bag.
  • the means 26 for sealing the vacuumed space 16 can only run along the edges of the delimiting parts 12, 14 facing one another.
  • the means 26 for sealing the vacuumed space 16 can be connected directly along the edges of the delimiting parts 12, 14 to the latter in a diffusion-tight manner.
  • the means 26 for sealing the vacuumed space 16 are glued or welded to the delimiting parts 12, 14.
  • the means 26 for sealing the vacuumed space 16 can be integrally formed on one or both of the boundary parts 12,14.
  • the means 26 can be formed from the same material as the limiting parts 12,14.
  • the means 26 for sealing the vacuumed space 16 can consist of diffusion-tight material.
  • the means 26 for sealing the vacuumed space 16 can be made very thin to minimize heat transfer along the edges.
  • the means 26 for sealing the vacuumed space 16 may be formed of thin metal foil.
  • a thickness of the metal foil can be between 2 ⁇ m and 50 ⁇ m.
  • a thickness of the metal foil can have a different value.
  • the means 26 for sealing the vacuumed space 16 can consist of or comprise stainless steel foil with a thickness between 5 ⁇ m and 20 ⁇ m.
  • the means 26 for sealing the vacuumed space 16 can be made of glass or metalized plastic film.
  • the edge area of the vacuum insulation element is reinforced by the fiber structure 22, as well as the 1 can be seen.
  • the fibers of the fiber structure 22 run in the edge area perpendicular to the delimiting parts 12, 14.
  • the support elements 18, 20 can be attached to the respective delimiting part 12, 14.
  • the first and second support elements can be screwed, soldered, glued, welded, inserted into this, clamped or otherwise fastened to the first and second delimiting parts 12, 14, respectively.
  • the support members 18, 20 can with the respective limiting part 12, 14 may be integrally formed.
  • the support elements 18, 20 can be distributed uniformly over the bordering parts 12, 14.
  • the support members 18 may be mounted on the border member 12 in an arrangement which is offset from an arrangement of the support members 20 on the border member 14.
  • the support elements 18 can have the same shape as the support elements 20.
  • the support elements 18 can differ from the support elements 20 in their shape.
  • the support elements 18, 20 can be in the form of strips.
  • the support elements 18, 20 can extend as ribs over an entire extent of the delimiting parts 12, 14.
  • the ribs can be V-shaped, with the opening of the V facing the respective delimiting part.
  • the support elements 18, 20 can be essentially rod-shaped.
  • the rod-shaped support elements 18, 20 can be evenly distributed over the delimiting parts 12, 14 in rows and columns.
  • Rod-shaped support elements 18, 20 can have a substantially rectangular outline.
  • Rod-shaped support elements 18, 20 can have an essentially square outline.
  • Rod-shaped support elements 18, 20 can have a substantially circular or oval outline.
  • Rod-shaped support elements 18, 20 can have any outline. A dimensioning and a number of supporting elements per delimiting part is to a large extent dependent on the materials used, the area of application and any additional forces acting on the vacuum insulation element.
  • the support elements 18, 20 can have guides for the fiber structure 22.
  • the guides can be in the form of notches or grooves.
  • the guides can be in the form of lateral incisions.
  • the support elements 18, 20 can have holes as guides.
  • the fiber structure 22 can be fixed to the support elements 18, 20.
  • the support elements 18, 20 can have devices for fixing.
  • the devices can be clamping devices.
  • the fiber structure 22 is therefore designed to have a low thermal conductivity value.
  • the fibrous structure 22 can have a thermal conductivity of less than 0.06 W/mK.
  • the fiber structure 22 can be formed from glass fiber.
  • the glass fiber may have a thermal conductivity of about 1 W/mK.
  • the fibrous structure 22 may be formed from aramid fiber having a thermal conductivity of about 0.04 W/mK.
  • the fibrous structure 22 can be formed from nylon, hemp or carbon fibers.
  • the fiber structure can be formed from several of the materials mentioned. The heat conduction is also determined by a cross section of the fiber structure.
  • the fibrous structure 22 should have a high tensile strength, since the fibrous structure 22 absorbs a high level of force.
  • aramid fiber appears to be particularly suitable.
  • the word aramid stands for aromatic polyamides. These are anisotropic polymer fibers. They have a lower density than glass fibers and have a particularly high tensile strength and toughness. They are very resistant to fatigue. A tensile strength can be around 2800 N/mm 2 .
  • the fiber structure 22 can be a fiber strand or thread.
  • the thread 22 can be used as in 1 shown with one end fixed to the first border part 12 and then passed alternately over a first support member 18 and a second support member 20, another first support member 18, another second support member 20 etc. and fixed to the second border part 14.
  • the fiber structure 22 as a thread can be guided over the support elements in different directions.
  • the fibrous structure 22 can be embodied as a woven fabric.
  • the fabric can cover the entire area of the boundary parts.
  • the fiber structure 22 can be designed as a fabric band.
  • the fiber structure can be designed as a braided band.
  • Various configurations of the fiber structure 22 can be combined with one another.
  • the fiber structure 22 is guided in the edge area and attached to the edges of the delimiting parts 12, 14, for example to reinforce a sealing film 26 in the edge area. In the edge region, the fiber structure 22 is guided perpendicularly from the first delimiting part 12 to the second delimiting part 14 .
  • the fiber structure can be designed as a fabric in the edge area and as a thread between the support elements 18 , 20 .
  • the delimiting parts 12, 14 can be designed as full-surface stainless steel plates, with a narrow fiber covering and a thin stainless steel foil in the edge area, which is connected to the stainless steel plates in a gas-tight manner.
  • the tight fiber skin can be sized to reinforce a very thin stainless steel foil. As a result, a very robust, recyclable vacuum insulation panel can be made available.
  • FIG. 3 12 shows a plan view of the first delimiting part 12 according to an embodiment.
  • First rod-shaped support elements 18 are distributed over the entire surface of the delimiting part 12 in a regular grid.
  • the first support members 18 are arranged in columns and rows.
  • the cross section of the first rod-shaped support elements 18 is rectangular in the illustrated embodiment.
  • the fiber structure 22 is formed from individual threads, for example an aramid fiber.
  • the limiting part 14 is rectangular, for example. The individual threads of the fiber structure 22 run essentially parallel to the edges of the delimiting part 14 and end at the edge.
  • the first support elements 18 and the second support elements 20 project past one another and are spaced apart from one another.
  • the threads of the fiber structure 22 cross each other on the support elements 18, 20. They can be guided in or on the support elements at their crossing points (not shown).
  • figure 5 shows schematically a side view through an exemplary vacuum insulation element that forms an edge.
  • Both the first delimiting part 12 and the second delimiting part 14 are designed in such a way that they form an edge 30 .
  • a first partial surface 12a of the first delimiting part 12 extends perpendicular to a second partial surface 12b and thus forms the edge 30.
  • first support elements 18 and second support elements 20 and fibrous structure 22 are analogous to the previously described embodiments and is not explained in more detail.
  • a first vacuum insulating element is shaped as a container that is open on one side.
  • the first delimiting part 12 and the second delimiting part 14 are designed in the form of a cuboid, cube or cylinder that is open on one side.
  • a vacuumed space is defined by the delimiting parts, into which support elements 18, 20 protrude, as described above, which are connected via a fiber structure 22.
  • a second vacuum insulation element can be provided as a cover for the open side.
  • the second vacuum insulation element can essentially have the shape of a plate, which depicts the outer shape of the missing side.
  • a second vacuum insulation element can also serve as a cover, which essentially has the same shape as the first vacuum insulation element, but is designed somewhat larger, so that it can be slipped over the first vacuum insulation element.
  • the side walls of the larger vacuum insulation element can completely or partially cover the side walls of the smaller vacuum insulation element.
  • the vacuum then prevents heat transport from the inside of the (inner) container to the outside.
  • This type of construction can be used, for example, in buffer storage or in containers.
  • the fibrous structure 22 is made stronger in this embodiment since the fibrous structure must also carry the static load of the contents.
  • the delimiting parts are not made of pure metal but of metal-coated fiber laminate.
  • the mold is first produced as described, including the seal, and the enclosed space is then evacuated in a known manner in order to provide a vacuumed space 16 .
  • a getter material can be introduced into the space between the delimiting parts 12, 14, which can, for example, bind gas molecules penetrating from the outside over time and thus maintain the vacuum even if the seal can be maintained.
  • the inventors have achieved very good insulation values in the range of 10 -5 W/mK with a vacuum of around 10 -4 mbar.
  • the vacuum insulation element according to the invention can replace the support core of conventional vacuum insulation panels, which was previously mostly made of pyrogenic silica, with a simple construction that can be made of metal for the most part. As a result, the primary energy requirement during production can be significantly reduced. The production is also cheaper. In addition, when metal foils are used in the edge area, the diffusion tightness and resistance of the edge can be significantly improved. This enables a long service life and simplifies the handling of the insulating material.

Description

Die vorliegende Erfindung betrifft ein thermisches Vakuumdämmelement.The present invention relates to a vacuum thermal insulation element.

Die hohe erreichbare Isolationswirkung thermischer Vakuumdämmelemente liegt in der fehlenden Wärmeleitfähigkeit von Vakuum begründet. Ohne Teilchen kann kein Wärmetransport stattfinden. Die verbleibende tatsächliche Wärmeleitung erfolgt über einen Stützkern, der das Vakuumdämmelement mechanisch stabilisiert und über Ränder des Vakuumdämmelements, die den vakuumierten Raum seitlich begrenzen.The high level of insulation that can be achieved with thermal vacuum insulation elements is due to the lack of thermal conductivity in vacuum. Without particles, no heat transport can take place. The remaining actual heat conduction takes place via a support core, which mechanically stabilizes the vacuum insulation element, and via edges of the vacuum insulation element, which laterally delimit the vacuumed space.

Herkömmlicher Weise bestehen Vakuumdämmelemente aus einem offenporigen Stützkern, der von mehreren Lagen metallisierter Kunststofffolie umhüllt ist. Das Material des Stützkerns sollte selbst eine geringe Wärmeleitfähigkeit aufweisen. Bekannte Stützkerne sind häufig aus einem pulverförmigen Dämmstoff wie z. B. pyrogener Kieselsäure gefertigt. Als weiteres Kernmaterial sind Glasfaservliese bekannt.Traditionally, vacuum insulation elements consist of an open-pored support core that is encased in several layers of metalized plastic film. The core material itself should have low thermal conductivity. Known support cores are often made of a powdered insulating material such. B. fumed silica. Glass fiber mats are known as another core material.

WO 2011/016693 A2 , US 6,037,033 und DE 10 2007 056 837 A1 zeigen verschieden ausgebildete Stützkerne. WO 2011/050800 A2 zeigt Abstandhalteranordnungen, die zwei voneinander beabstandete Wandungen umfassen. An den Wandungen sind Druckaufnehmer vorragend angeordnet, die aneinander vorbeiragen und voneinander beabstandet sind. Ein beispielsweise aus einer Faser ausgebildetes Zugkraft-Übertragungselement verbindet die Druckaufnehmer miteinander und fängt einen durch ein Vakuum erzeugten Druck auf. Eine randlose Verbindung zwischen einzelnen Abstandhalteranordnungen vermeidet Randwärmeübertragungsprobleme. Eine Vakuumierung erfolgt erst vor Ort, der Rand wird dabei duch einen Metallstreifen abgedichtet. WO 2011/016693 A2 , U.S. 6,037,033 and DE 10 2007 056 837 A1 show differently designed supporting cores. WO 2011/050800 A2 shows spacer assemblies comprising two spaced apart walls. Pressure transducers are arranged in a projecting manner on the walls, which project past one another and are spaced apart from one another. A tensile force transmission element made of a fiber, for example, connects the pressure sensors to one another and absorbs a pressure generated by a vacuum. A borderless connection between individual spacer assemblies avoids border heat transfer problems. Vacuuming only takes place on site, the edge is sealed with a metal strip.

Anwendungen von Vakuumdämmplatten liegen beispielsweise im Bereich von Kühl- und Gefrierschränken sowie im Bereich von Warmwasserspeichern. Weitere bekannte Anwendungen liegen im Bereich der Gebäudedämmung. Generell können thermische Wärmedämmelemente überall dort eingesetzt werden, wo eine hohe thermische Isolation bei geringer Schichtdicke der Isolationsschicht gefragt ist.Applications of vacuum insulation panels are, for example, in the area of refrigerators and freezers as well as in the area of hot water tanks. Other well-known applications are in the field of building insulation. In general, thermal heat insulation elements can be used wherever high thermal insulation with a low layer thickness of the insulation layer is required.

Nachteilig bei den bisher bekannten Vakuumdämmplatten ist die sehr energieaufwändige und teure Herstellung des Stützkerns. Zudem sind die Platten sehr empfindlich, da nur eine unbeschädigte Kunststofffolie das Vakuum garantiert.A disadvantage of the previously known vacuum insulation panels is the very energy-consuming and expensive production of the support core. In addition, the plates are very sensitive, since only an undamaged plastic film can guarantee the vacuum.

Aus diesen und anderen Gründen besteht ein Bedarf an der vorliegenden Erfindung. Es kann eine Aufgabe der Erfindung sein, eine Vakuumdämmplatte bereitzustellen, die weniger Energie zur Herstellung benötigt. Es kann eine Aufgabe der Erfindung sein, eine robustere Vakuumdämmplatte bereitzustellen. Es kann eine Aufgabe der Erfindung sein, eine vollständig recyclingfähige Vakuumdämmplatte bereitzustellen.For these and other reasons, there is a need for the present invention. It may be an object of the invention to provide a vacuum insulation panel that requires less energy to manufacture. It may be an object of the invention to provide a more robust vacuum insulation board. It may be an object of the invention to provide a fully recyclable vacuum insulation board.

Die Ziele und Merkmale der vorliegenden Erfindung werden deutlich in der folgenden Beschreibung von Ausführungsbeispielen, die mit Bezug auf die beigefügten Figuren erfolgt, in denen:

  • Fig. 1 schematisch eine Seitenansicht eines erfindungsgemäßen thermischen Vakuumdämmelements zeigt;
  • Fig. 2 schematisch eine Kraftübertragung in dem erfindungsgemäßen thermischen Vakuumdämmelement der Fig. 1 zeigt;
  • Fig. 3 schematisch eine Draufsicht auf ein erfindungsgemäßes Begrenzungsteil mit Stützelementen zeigt;
  • Fig. 4 schematisch einen Schnitt entlang der Linie A-A` in Fig.1 zeigt; und
  • Fig. 5 schematisch eine Seitenansicht durch ein erfindungsgemäßes Vakuumdämmelement zeigt, das eine Kante ausbildet.
The aims and characteristics of the present invention will become clear in the following description of exemplary embodiments, made with reference to the attached figures, in which:
  • 1 schematically shows a side view of a thermal vacuum insulation element according to the invention;
  • 2 schematically shows a power transmission in the thermal vacuum insulation element according to the invention 1 shows;
  • 3 schematically shows a plan view of a delimiting part according to the invention with support elements;
  • 4 schematically a section along the line AA` in Fig.1 shows; and
  • figure 5 schematically shows a side view through a vacuum insulation element according to the invention, which forms an edge.

Im Folgenden sind unter Bezugnahme auf die Zeichnungen Gesichtspunkte und Ausführungsformen beschrieben, worin gleiche oder ähnliche Bezugszeichen im Allgemeinen benutzt werden, um auf gleiche oder ähnliche Elemente zu verweisen. In der folgenden Beschreibung sind zahlreiche bestimmte Einzelheiten dargelegt, um ein gründliches Verständnis eines oder mehrerer Gesichtspunkte der Ausführungsformen zu bieten. Einem Fachmann kann jedoch offensichtlich sein, dass ein oder mehrere Gesichtspunkte der Ausführungsformen mit einem geringeren Maß der bestimmten Einzelheiten ausgeführt werden kann. In weiteren Fällen sind Elemente in schematischer Form gezeigt, um das Beschreiben eines oder mehrerer Gesichtspunkte der Ausführungsformen zu erleichtern. Die folgende Beschreibung soll daher nicht als beschränkend aufgefasst werden. Es wird bemerkt, dass die Darstellung der verschiedenen Elemente in den Figuren nicht notwendigerweise maßstabsgetreu ist.Aspects and embodiments are described below with reference to the drawings, wherein the same or similar reference numbers are generally used to refer to the same or similar elements. In the following description, numerous specific details are set forth to provide a thorough understanding of one or more aspects of the embodiments. However, it may be apparent to one skilled in the art that one or more aspects of the embodiments may be practiced with a lesser degree of the specific details. In other instances, elements are shown in schematic form in order to facilitate describing one or more aspects of the embodiments. The following description should therefore not be taken in a limiting sense. It is noted that the representations of the various elements in the figures are not necessarily to scale.

In der Beschreibung mit Bezug auf die Zeichnungen verwendete Richtungsterminologie, wie etwa zum Beispiel "oben", "unten", "Oberseite", "Unterseite", "links", "rechts", "Vorderseite", "Rückseite", "senkrecht", "waagerecht" usw. ist nicht beschränkend zu verstehen. Bestandteile von Ausführungsformen können in einer Anzahl unterschiedlicher Ausrichtungen positioniert werden, die Richtungsterminologie wird lediglich zur Erläuterung verwendet. Es versteht sich, dass weitere Ausführungsformen verwendet werden können und bauliche oder logische Veränderungen vorgenommen werden können, ohne von dem Konzept der vorliegenden Erfindung abzuweichen.Directional terminology used in the description with reference to the drawings, such as, for example, "top", "bottom", "top", "bottom", "left", "right", "front", "back", "vertical" , "horizontal" etc. is not meant to be limiting. Components of embodiments can be positioned in a number of different orientations, the directional terminology is used for explanation only. It is understood that other embodiments may be employed and structural or logical changes may be made without departing from the concept of the present invention.

Fig. 1 zeigt stark schematisiert eine Seitenansicht eines erfindungsgemäßen thermischen Vakuumdämmelements 10. Das Vakuumdämmelement 10 weist ein erstes flächiges Begrenzungsteil 12 und ein zweites flächiges Begrenzungsteil 14 auf. Das Begrenzungsteil 12 und das Begrenzungsteil 14 definieren zwischen sich einen vakuumierten Raum 16. Das erste flächige Begrenzungsteil 12 und das zweite flächige Begrenzungsteil 14 können zueinander parallel angeordnet sein. Das erste flächige Begrenzungsteil 12 und das zweite flächige Begrenzungsteil 14 sind voneinander beabstandet. Von dem ersten Begrenzungsteil 12 zu dem zweiten Begrenzungsteil 14 soll ein Wärmetransport minimiert werden. 1 shows a highly schematic side view of a thermal vacuum insulation element 10 according to the invention. The vacuum insulation element 10 has a first flat delimiting part 12 and a second flat delimiting part 14 . The delimiting part 12 and the delimiting part 14 define a vacuum space 16 between them. The first flat delimiting part 12 and the second flat delimiting part 14 can be arranged parallel to one another. The first flat delimiting part 12 and the second flat delimiting part 14 are spaced apart from one another. A heat transfer from the first delimitation part 12 to the second delimitation part 14 should be minimized.

Von dem ersten Begrenzungsteil 12 weg erstrecken sich erste Stützelemente 18 in den vakuumierten Raum 16. Von dem zweiten Begrenzungsteil 14 weg erstrecken sich zweite Stützelemente 20 in den vakuumierten Raum 16. Die Begrenzungsteile 12, 14 mit den Stützelementen 18, 20 sind so zueinander angeordnet, dass die ersten Stützelemente 18 und die zweiten Stützelemente 20 aneinander vorbeiragen und voneinander beabstandet sind.First support elements 18 extend away from the first delimiting part 12 into the vacuumed space 16. Second support elements 20 extend away from the second delimiting part 14 into the vacuumed space 16. The delimiting parts 12, 14 with the support elements 18, 20 are arranged relative to one another that the first support elements 18 and the second support elements 20 project past one another and are spaced apart from one another.

Die ersten Stützelemente 18 erstrecken sich in Richtung des zweiten Begrenzungsteils 14. Die ersten Stützelemente 18 berühren nicht das zweite Begrenzungsteil 14. Die zweiten Stützelemente 20 erstrecken sich in Richtung des ersten Begrenzungsteils 12. Die zweiten Stützelemente 20 berühren nicht das erste Begrenzungsteil 12. Die ersten Stützelemente 18 können einstückig mit dem ersten Begrenzungsteil 12 ausgefertigt sein. Die zweiten Stützelemente 20 können einstückig mit dem zweiten Begrenzungsteil 14 ausgefertigt sein.The first supporting elements 18 extend towards the second bordering part 14. The first supporting elements 18 do not touch the second bordering part 14. The second supporting elements 20 extend towards the first bordering part 12. The second supporting elements 20 do not contact the first bordering part 12. The first Supporting elements 18 can be made in one piece with the first delimiting part 12 . The second supporting elements 20 can be made in one piece with the second limiting part 14 .

Das erste Begrenzungsteil 12 mit den ersten Stützelementen 18 kann in einer Ausführungsform als ein wellenförmiges oder gewelltes Bauteil ausgeführt sein. Das zweite Begrenzungsteil 14 mit den zweiten Stützelementen 20 kann in der Ausführungsform ebenfalls als ein wellenförmiges oder gewelltes Bauteil ausgeführt sein. Es kann eine Vielzahl von Wellen vorgesehen sein.In one embodiment, the first delimiting part 12 with the first support elements 18 can be designed as a wave-shaped or corrugated component. In the embodiment, the second delimiting part 14 with the second support elements 20 can also be designed as a wave-shaped or corrugated component. A plurality of shafts can be provided.

Das Vakuumdämmelement 10 weist ein Fasergebilde 22 auf. Das Fasergebilde 22 verbindet die ersten Stützelemente 18 und die zweiten Stützelemente 20 im vakuumierten Raum 16 miteinander. Das Fasergebilde 22 kann an wenigstens einem der ersten Stützelemente 18, an wenigstens einem der zweiten Stützelemente 20, an dem ersten Begrenzungsteil 12 und/oder an dem zweiten Begrenzungsteil 14 fixiert oder festgelegt sein. Ein oberer Teil des Vakuumdämmelements umfassend das erste Begrenzungsteil 12 und die ersten Stützelemente 18 ist mit einem unteren Teil des Vakuumdämmelements umfassend das zweite Begrenzungsteil 14 und die zweiten Stützelemente 20 über das Fasergebilde 22 verbunden. Das Fasergebilde 22 weist eine geringe Wärmeleitfähigkeit auf. Das Fasergebilde 22 ist ausgestaltet, zumindest den durch das Vakuum auf das erste Begrenzungsteil 12 und das zweite Begrenzungsteil 14 erzeugten Druck aufzufangen. Das Fasergebilde 22 kann ferner ausgestaltet sein, weitere Kraftaufwendungen auf das Vakuumdämmelement 10 aufzufangen, die durch eine Verwendung des Vakuumdämmelements 10 bedingt sind. Die aufgrund des herrschenden Vakuums auf die Begrenzungsteile 12, 14 durch den Umgebungsdruck bedingte einwirkende Kraft ist durch Pfeile 24 symbolisch dargestellt.The vacuum insulation element 10 has a fiber structure 22 . The fiber structure 22 connects the first support elements 18 and the second support elements 20 in the vacuum space 16 to one another. The fiber structure 22 can be fixed or secured to at least one of the first support elements 18, to at least one of the second support elements 20, to the first delimiting part 12 and/or to the second delimiting part 14. An upper part of the vacuum insulation element comprising the first limiting part 12 and the first supporting elements 18 is connected to a lower part of the vacuum insulation element comprising the second delimiting part 14 and the second support elements 20 via the fiber structure 22. The fiber structure 22 has a low thermal conductivity. The fiber structure 22 is designed to absorb at least the pressure generated by the vacuum on the first delimiting part 12 and the second delimiting part 14 . The fibrous structure 22 can also be designed to absorb further exertion of force on the vacuum insulation element 10 which is caused by the use of the vacuum insulation element 10 . The force acting on the delimiting parts 12, 14 due to the ambient pressure due to the prevailing vacuum is represented symbolically by arrows 24.

Das Vakuumdämmelement 10 weist Mittel 26 zum Abdichten des vakuumierten Raums 16 auf, die nachfolgend näher erläutert sind.The vacuum insulating element 10 has means 26 for sealing off the vacuumed space 16, which are explained in more detail below.

Eine Wärmeleitung von dem ersten Begrenzungsteil 12 zu dem zweiten Begrenzungsteil 14 kann nur über das Fasergebilde 22, die Mittel 26 zum Abdichten von Randbereichen 26 und den vakuumierten Raum 16, d.h. über im nicht perfekten Vakuum verbleibende Gasatome und Gasmoleküle erfolgen. Die Erfinder konnten hiermit eine Wärmeübertragung in einem Bereich von nur 10-5 W/mK nachweisen.Heat conduction from the first delimiting part 12 to the second delimiting part 14 can only take place via the fiber structure 22, the means 26 for sealing edge regions 26 and the vacuumed space 16, ie via gas atoms and gas molecules remaining in the imperfect vacuum. The inventors were able to demonstrate heat transfer in a range of only 10 -5 W/mK.

Mit Bezug auf Fig. 2 wird das Zusammenspiel zwischen den Stützelementen 18, 20 und dem Fasergebilde 22 deutlich. Fig. 2 zeigt einen kleinen Ausschnitt aus dem Vakuumdämmelement 10 der Fig. 1. Pfeile 24 zeigen die auf das Begrenzungsteil 12 einwirkende Kraft aufgrund des im Raum 16 herrschenden Vakuums. Die Kraft 24 wird auf das dargestellte Stützelement 18 übertragen und von dem Fasergebilde 22 aufgenommen. Durch die aneinander vorbeiragenden Stützelemente 18, 20 wird eine Kraftumlenkung der äußeren Druckbelastung auf eine Zugbelastung der Fasern des Fasergebildes 22 erreicht. Durch das schräg angeordnete Fasergebilde 22 werden auch ebenfalls auftretende Querkräfte aufgenommen.Regarding 2 the interaction between the support elements 18, 20 and the fiber structure 22 becomes clear. 2 shows a small section of the vacuum insulation element 10 of FIG 1 . Arrows 24 show the force acting on the delimiting part 12 due to the vacuum prevailing in the space 16 . The force 24 is transmitted to the support element 18 shown and absorbed by the fiber structure 22 . Due to the support elements 18, 20 projecting past one another, a force deflection of the external pressure load onto a tensile load on the fibers of the fiber structure 22 is achieved. The obliquely arranged fiber structure 22 also absorbs transverse forces that also occur.

Die Begrenzungsteile 12, 14 können eine obere und eine untere Oberfläche des Vakuumdämmelements 10 definieren. Zwischen dem ersten flächigen Begrenzungsteil 12 und dem zweiten flächigen Begrenzungsteil 14 ist das Vakuum ausgebildet. Das erste Begrenzungsteil 12 und das zweite Begrenzungsteil 14 sind beabstandet voneinander und können im Wesentlichen parallel zueinander verlaufen. Die Begrenzungsteile 12, 14 können aus hochvakuumtauglichem Material gefertigt sein. Die Wärmeleitfähigkeit der Begrenzungsteile 12, 14 ist für die Wärmeleitfähigkeit des Vakuumdämmelements nicht von Bedeutung, da sie einander nicht berühren. Die Begrenzungsteile 12, 14 können aus Metall gefertigt sein. Die Begrenzungsteile 12, 14 können aus Edelstahl gefertigt sein. Die Begrenzungsteile 12, 14 können aus Keramik, Glas, Laminat, und/oder Kunststoff gefertigt sein. Die Begrenzungsteile 12, 14 können ein metallbeschichtetes Faserlaminat umfassen oder aus diesem gefertigt sein.The bordering parts 12, 14 can define an upper and a lower surface of the vacuum insulation element 10. FIG. The vacuum is formed between the first flat delimiting part 12 and the second flat delimiting part 14 . The first delimiting part 12 and the second delimiting part 14 are spaced apart from one another and can run essentially parallel to one another. The delimiting parts 12, 14 can be made of material suitable for high vacuum. The thermal conductivity of Limiting parts 12, 14 is not important for the thermal conductivity of the vacuum insulation element, since they do not touch each other. The limiting parts 12, 14 can be made of metal. The limiting parts 12, 14 can be made of stainless steel. The delimiting parts 12, 14 can be made of ceramic, glass, laminate and/or plastic. The bordering parts 12, 14 may comprise or be made of a metal-coated fiber laminate.

Die Begrenzungsteile 12, 14 können flach sein und jeweils vollständig in einer Ebene liegen. So lassen sich Platten ausbilden. Die Platten können beispielsweise zur Gebäudeisolierung dienen. Die Platten können mehrlagig verlegt werden. Die einzelnen Platten der aufeinanderfolgenden Lagen können dabei gegeneinander versetzt angeordnet werden, so dass Stoßkanten verschiedener Lagen nicht übereinander zu liegen kommen. Die Platten können in anderen Worten ziegelsteinartig übereinander angeordnet werden.The limiting parts 12, 14 can be flat and each lie completely in one plane. This is how plates can be formed. The panels can be used, for example, for building insulation. The panels can be laid in multiple layers. The individual panels of the successive layers can be arranged offset from one another, so that abutting edges of different layers do not come to lie on top of one another. In other words, the panels can be stacked one on top of the other like a brick.

Die Begrenzungsteile 12, 14 können in anderen Ausführungsformen eine beliebige Form annehmen. Die Begrenzungsteile 12, 14 können gebogen sein. In einer Ausführungsform können die Begrenzungsteile 12, 14 eine Kante umfassen, wie anhand der Fig. 5 näher erläutert. In einer Ausführungsform können die Begrenzungsteile 12, 14 eine Ecke ausbilden. Die Begrenzungsteile 12, 14 können für den jeweiligen Anwendungsfall ausgebildet sein. Werden nur ebene Platten zur Dämmung beispielsweise eines Raumes benutzt, so entstehen an den Kanten zwangsläufig Wärmebrücken, da ein unteres Begrenzungsteil 14 einer ersten Platte ein oberes Begrenzungsteil einer zweiten Platte an der Kante berührt. Die vorgeschlagen Ausbildung der Begrenzungsteile 12, 14 als Kante oder als Ecke erlaubt eine (Raum-) Dämmung ohne die Ausbildung thermischer Brücken.In other embodiments, the limiting parts 12, 14 can assume any shape. The limiting parts 12, 14 can be curved. In one embodiment, the bordering parts 12, 14 may comprise an edge, as illustrated in FIG figure 5 explained in more detail. In one embodiment, the bordering parts 12, 14 can form a corner. The limiting parts 12, 14 can be designed for the respective application. If only flat panels are used to insulate a room, for example, thermal bridges inevitably arise at the edges, since a lower delimiting part 14 of a first panel touches an upper delimiting part of a second panel at the edge. The proposed design of the delimiting parts 12, 14 as an edge or as a corner allows (room) insulation without the formation of thermal bridges.

Die Begrenzungsteile 12, 14 können jeweils vollflächig sein, beispielsweise aus einer durchgehenden Edelstahlplatte. Eine Edelstahlplatte ist kostengünstig herzustellen und kann am Ende der Lebensdauer des Dämmelements vollständig wiedergewonnen werden. Die Recycling-Rate ist sehr gut. Eine vollflächige Ausgestaltung kann eine mechanische Widerstandsfähigkeit des Vakuumdämmelements 10 erhöhen.The boundary parts 12, 14 can each be over the entire surface, for example made of a continuous stainless steel plate. A stainless steel plate is inexpensive to produce and can be fully recovered at the end of the insulating element's life. The recycling rate is very good. A full-surface configuration can increase the mechanical resistance of the vacuum insulating element 10 .

In anderen Ausführungsformen kann wenigstens eines der Begrenzungsteile 12, 14 Öffnungen oder Durchbrüche aufweisen. Wenigstens eines der Begrenzungsteile 12, 14 kann aus Draht geformt sein. Es kann gitterförmig ausgebildet sein. Wenigstens eines der Begrenzungsteile 12, 14 kann als Profilkonstruktion ausgebildet sein. Eine solche Struktur mit Öffnungen kann ein geringeres Gewicht aufweisen. Eine solche Struktur mit Öffnungen kann weniger Material verbrauchen. Bei größeren Öffnungen können die Begrenzungsteile mit dem Fasergebilde 22 überspannt sein.In other embodiments, at least one of the delimiting parts 12, 14 can have openings or breakthroughs. At least one of the stop portions 12, 14 may be formed of wire. It can be in the form of a grid. At least one of the delimiting parts 12, 14 can be designed as a profile construction. Such a structure with Openings can be lighter in weight. Such a structure with openings can use less material. In the case of larger openings, the delimiting parts can be covered with the fiber structure 22 .

Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können wie in Fig. 1 dargestellt das gesamte Vakuumdämmelement 10 umschließen. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können ein Folienbeutel, insbesondere ein metallisierter Folienbeutel sein.The means 26 for sealing the vacuumed space 16 can be as in 1 shown enclosing the entire vacuum insulation element 10 . The means 26 for sealing the vacuumed space 16 can be a film bag, in particular a metalized film bag.

Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können lediglich entlang der Ränder der sich gegenüberstehenden Begrenzungsteile 12, 14 verlaufen. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können direkt entlang der Ränder der Begrenzungsteile 12, 14 mit diesen diffusionsdicht verbunden sein. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 sind mit den Begrenzungsteilen 12, 14 verklebt oder verschweißt. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können an ein oder an beide der Begrenzungsteile 12, 14 angeformt sein. Die Mittel 26 können aus dem gleichen Material wie die Begrenzungsteile 12, 14 gebildet sein.The means 26 for sealing the vacuumed space 16 can only run along the edges of the delimiting parts 12, 14 facing one another. The means 26 for sealing the vacuumed space 16 can be connected directly along the edges of the delimiting parts 12, 14 to the latter in a diffusion-tight manner. The means 26 for sealing the vacuumed space 16 are glued or welded to the delimiting parts 12, 14. The means 26 for sealing the vacuumed space 16 can be integrally formed on one or both of the boundary parts 12,14. The means 26 can be formed from the same material as the limiting parts 12,14.

Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können aus diffusionsdichtem Material bestehen. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können sehr dünn ausgebildet sein, um eine Wärmeübertragung entlang der Ränder zu minimieren. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können aus dünner Metallfolie ausgebildet sein. Eine Dicke der Metallfolie kann zwischen 2 µm und 50 µm betragen. Eine Dicke der Metallfolie kann einen anderen Wert aufweisen. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können aus Edelstahlfolie mit einer Dicke zwischen 5 µm und 20 µm bestehen oder diese umfassen. Die Mittel 26 zum Abdichten des vakuumierten Raums 16 können aus Glas oder aus metallisierter Kunststofffolie bestehen. Der Randbereich des Vakuumdämmelements ist durch das Fasergebilde 22 verstärkt, wie ebenfalls der Fig. 1 zu entnehmen ist. Die Fasern des Fasergebildes 22 verlaufen im Randbereich senkrecht zu den Begrenzungsteilen 12, 14.The means 26 for sealing the vacuumed space 16 can consist of diffusion-tight material. The means 26 for sealing the vacuumed space 16 can be made very thin to minimize heat transfer along the edges. The means 26 for sealing the vacuumed space 16 may be formed of thin metal foil. A thickness of the metal foil can be between 2 μm and 50 μm. A thickness of the metal foil can have a different value. The means 26 for sealing the vacuumed space 16 can consist of or comprise stainless steel foil with a thickness between 5 μm and 20 μm. The means 26 for sealing the vacuumed space 16 can be made of glass or metalized plastic film. The edge area of the vacuum insulation element is reinforced by the fiber structure 22, as well as the 1 can be seen. The fibers of the fiber structure 22 run in the edge area perpendicular to the delimiting parts 12, 14.

Die Stützelemente 18, 20 können an dem jeweiligen Begrenzungsteil 12, 14 befestigt sein. Die ersten und zweiten Stützelemente können mit dem ersten beziehungsweise dem zweiten Begrenzungsteil 12, 14 verschraubt, verlötet, verklebt, verschweißt, in dieses eingesteckt, eingeklemmt oder anderweitig befestigt sein. Die Stützelemente 18, 20 können mit dem jeweiligen Begrenzungsteil 12, 14 einteilig ausgebildet sein. Die Stützelemente 18, 20 können gleichförmig über die Begrenzungsteile 12, 14 verteilt sein. Die Stützelemente 18 können auf dem Begrenzungsteil 12 in einer Anordnung montiert sein, die versetzt ist zu einer Anordnung der Stützelemente 20 auf dem Begrenzungsteil 14.The support elements 18, 20 can be attached to the respective delimiting part 12, 14. The first and second support elements can be screwed, soldered, glued, welded, inserted into this, clamped or otherwise fastened to the first and second delimiting parts 12, 14, respectively. The support members 18, 20 can with the respective limiting part 12, 14 may be integrally formed. The support elements 18, 20 can be distributed uniformly over the bordering parts 12, 14. The support members 18 may be mounted on the border member 12 in an arrangement which is offset from an arrangement of the support members 20 on the border member 14.

Die Stützelemente 18 können eine gleiche Form haben wie die Stützelemente 20. Die Stützelemente 18 können sich in ihrer Form von den Stützelementen 20 unterscheiden.The support elements 18 can have the same shape as the support elements 20. The support elements 18 can differ from the support elements 20 in their shape.

Die Stützelemente 18, 20 können leistenförmig ausgebildet sein. Die Stützelemente 18, 20 können sich als Rippen über eine gesamte Ausdehnung der Begrenzungsteile 12, 14 erstrecken. Die Rippen können v-förmig ausgebildet sein, wobei die Öffnung des v dem jeweiligen Begrenzungsteil zugewandt sein kann.The support elements 18, 20 can be in the form of strips. The support elements 18, 20 can extend as ribs over an entire extent of the delimiting parts 12, 14. The ribs can be V-shaped, with the opening of the V facing the respective delimiting part.

Die Stützelemente 18, 20 können im Wesentlichen stabförmig ausgebildet sein. Die stabförmigen Stützelemente 18, 20 können in Reihen und Spalten gleichmäßig über die Begrenzungsteile 12, 14 verteilt sein. Stabförmige Stützelemente 18, 20 können einen im Wesentlichen rechteckigen Grundriss aufweisen. Stabförmige Stützelemente 18, 20 können einen im Wesentlichen quadratischen Grundriss aufweisen. Stabförmige Stützelemente 18, 20 können einen im Wesentlichen kreisförmigen oder ovalen Grundriss aufweisen. Stabförmige Stützelemente 18, 20 können einen beliebigen Grundriss aufweisen. Eine Dimensionierung und eine Anzahl von Stützelementen je Begrenzungsteil ist in starkem Maße abhängig von den verwendeten Materialien, dem Anwendungsbereich und eventuell zusätzlich auf das Vakuumdämmelement einwirkenden Kräften.The support elements 18, 20 can be essentially rod-shaped. The rod-shaped support elements 18, 20 can be evenly distributed over the delimiting parts 12, 14 in rows and columns. Rod-shaped support elements 18, 20 can have a substantially rectangular outline. Rod-shaped support elements 18, 20 can have an essentially square outline. Rod-shaped support elements 18, 20 can have a substantially circular or oval outline. Rod-shaped support elements 18, 20 can have any outline. A dimensioning and a number of supporting elements per delimiting part is to a large extent dependent on the materials used, the area of application and any additional forces acting on the vacuum insulation element.

Die Stützelemente 18, 20 können Führungen für das Fasergebilde 22 aufweisen. Die Führungen können in der Form von Auskerbungen oder Nuten ausgeführt sein. Die Führungen können in der Form von seitlichen Einschnitten ausgeführt sein. Die Stützelemente 18, 20 können Löcher als Führungen aufweisen. Das Fasergebilde 22 kann an den Stützelementen 18, 20 fixiert sein. Die Stützelemente 18, 20 können Vorrichtungen zum Fixieren aufweisen. Die Vorrichtungen können Klemmvorrichtungen sein.The support elements 18, 20 can have guides for the fiber structure 22. The guides can be in the form of notches or grooves. The guides can be in the form of lateral incisions. The support elements 18, 20 can have holes as guides. The fiber structure 22 can be fixed to the support elements 18, 20. The support elements 18, 20 can have devices for fixing. The devices can be clamping devices.

Über das Fasergebilde 22 erfolgt neben der Randabdichtung eine wesentliche Wärmeübertragung zwischen dem ersten Begrenzungsteil 12 und dem zweiten Begrenzungsteil 14. Das Fasergebilde 22 ist daher ausgestaltet, einen niedrigen Wärmeleitwert aufzuweisen. Das Fasergebilde 22 kann einen Wärmeleitwert von kleiner als 0,06 W/mK aufweisen. Das Fasergebilde 22 kann aus Glasfaser gebildet sein. Die Glasfaser kann einen Wärmeleitwert von etwa 1 W/mK aufweisen.. Das Fasergebilde 22 kann aus Aramidfaser mit einem Wärmeleitwert von etwa 0,04 W/mK gebildet sein. Das Fasergebilde 22 kann aus Nylon-, Hanf- oder Carbonfaser gebildet sein. Das Fasergebilde kann aus mehreren der genannten Materialien gebildet sein. Die Wärmeleitung ist zudem bestimmt durch einen Querschnitt des Fasergebildes.In addition to the edge seal, a significant heat transfer between the first delimiting part 12 and the second delimiting part 14 takes place via the fiber structure 22. The fiber structure 22 is therefore designed to have a low thermal conductivity value. The fibrous structure 22 can have a thermal conductivity of less than 0.06 W/mK. The fiber structure 22 can be formed from glass fiber. The glass fiber may have a thermal conductivity of about 1 W/mK. The fibrous structure 22 may be formed from aramid fiber having a thermal conductivity of about 0.04 W/mK. The fibrous structure 22 can be formed from nylon, hemp or carbon fibers. The fiber structure can be formed from several of the materials mentioned. The heat conduction is also determined by a cross section of the fiber structure.

Das Fasergebilde 22 sollte eine hohe Zugbelastbarkeit aufweisen, da über das Fasergebilde 22 eine hohe Kraft aufgenommen wird.The fibrous structure 22 should have a high tensile strength, since the fibrous structure 22 absorbs a high level of force.

Derzeit scheint eine Aramidfaser besonders geeignet zu sein. Das Wort Aramid steht für aromatische Polyamide. Es handelt sich um anisotrope Polymerfasern. Sie haben eine geringere Dichte als Glasfasern und weisen eine besonders hohe Zugfestigkeit und eine hohe Zähigkeit aus. Sie sind sehr ermüdungsfest. Eine Zugfestigkeit kann bei etwa 2800 N/mm2 liegen.At present, an aramid fiber appears to be particularly suitable. The word aramid stands for aromatic polyamides. These are anisotropic polymer fibers. They have a lower density than glass fibers and have a particularly high tensile strength and toughness. They are very resistant to fatigue. A tensile strength can be around 2800 N/mm 2 .

Bei dem Fasergebilde 22 kann es sich um einen Faserstrang oder Faden handeln. Der Faden 22 kann wie in Fig. 1 dargestellt mit einem Ende an dem ersten Begrenzungsteil 12 befestigt sein und dann abwechselnd über ein erstes Stützelement 18 und ein zweites Stützelement 20, ein weiteres erstes Stützelement 18, ein weiteres zweites Stützelement 20 usw. geführt und an dem zweiten Begrenzungsteil 14 befestigt sein.The fiber structure 22 can be a fiber strand or thread. The thread 22 can be used as in 1 shown with one end fixed to the first border part 12 and then passed alternately over a first support member 18 and a second support member 20, another first support member 18, another second support member 20 etc. and fixed to the second border part 14.

Das Fasergebilde 22 als Faden kann je nach Anordnung der ersten und zweiten Stützelemente in unterschiedlichen Richtungen über die Stützelemente geführt sein.Depending on the arrangement of the first and second support elements, the fiber structure 22 as a thread can be guided over the support elements in different directions.

Das Fasergebilde 22 kann in anderen Ausführungsformen als Gewebe ausgeführt sein. Das Gewebe kann die gesamte Fläche der Begrenzungsteile überdecken. Das Fasergebilde 22 kann in anderen Ausführungsformen als Gewebeband ausgeführt sein. Das Fasergebilde kann als geflochtenes Band ausgeführt sein. Verschiedene Ausgestaltungen des Fasergebildes 22 können miteinander kombiniert sein.In other embodiments, the fibrous structure 22 can be embodied as a woven fabric. The fabric can cover the entire area of the boundary parts. In other embodiments, the fiber structure 22 can be designed as a fabric band. The fiber structure can be designed as a braided band. Various configurations of the fiber structure 22 can be combined with one another.

Das Fasergebilde 22 ist im Randbereich geführt und an den Rändern der Begrenzungsteile 12, 14 befestigt, um beispielsweise eine Abdichtungsfolie 26 im Randbereich zu verstärken. Das Fasergebilde 22 ist im Randbereich senkrecht von dem ersten Begrenzungsteil 12 zu dem zweiten Begrenzungsteil 14 geführt. Das Fasergebilde kann im Randbereich als Gewebe ausgeführt sein und zwischen den Stützelementen 18, 20 als Faden.The fiber structure 22 is guided in the edge area and attached to the edges of the delimiting parts 12, 14, for example to reinforce a sealing film 26 in the edge area. In the edge region, the fiber structure 22 is guided perpendicularly from the first delimiting part 12 to the second delimiting part 14 . The fiber structure can be designed as a fabric in the edge area and as a thread between the support elements 18 , 20 .

In einer Ausführungsform können die Begrenzungsteile 12, 14 als vollflächige Edelstahlplatten ausgebildet sein, mit einer engen Faserbespannung und einer dünnen Edelstahlfolie im Randbereich, die mit den Edelstahlplatten gasdicht verbunden ist. Die enge Faserbespannung kann so dimensioniert sein, dass sie eine sehr dünne Edelstahlfolie verstärkt. Hierdurch kann eine sehr robuste, recyclingfähige Vakuumdämmplatte zur Verfügung gestellt werden.In one embodiment, the delimiting parts 12, 14 can be designed as full-surface stainless steel plates, with a narrow fiber covering and a thin stainless steel foil in the edge area, which is connected to the stainless steel plates in a gas-tight manner. The tight fiber skin can be sized to reinforce a very thin stainless steel foil. As a result, a very robust, recyclable vacuum insulation panel can be made available.

Fig. 3 zeigt eine Draufsicht auf das erste Begrenzungsteil 12 gemäß einer Ausführungsform. Erste stabförmige Stützelemente 18 sind in einem regelmäßigen Raster über die gesamte Fläche des Begrenzungsteils 12 verteilt. Die ersten Stützelemente 18 sind in Spalten und Reihen angeordnet. Der Querschnitt der ersten stabförmigen Stützelemente 18 ist in der dargestellten Ausführungsform rechteckig. 3 12 shows a plan view of the first delimiting part 12 according to an embodiment. First rod-shaped support elements 18 are distributed over the entire surface of the delimiting part 12 in a regular grid. The first support members 18 are arranged in columns and rows. The cross section of the first rod-shaped support elements 18 is rectangular in the illustrated embodiment.

Fig. 4 zeigt einen Schnitt entlang der Linie A-A` in Fig. 1 mit Blick auf das zweite Begrenzungsteil 14. Die ersten Stützelemente 18 sind in dieser Darstellung geschnitten, während auf die zweiten Stützelemente 20 geblickt wird. In der Darstellung der Fig. 4 sind die Mittel 26 zum Abdichten des vakuumierten Raums weggelassen. In der dargestellten Ausführungsform ist das Fasergebilde 22 aus einzelnen Fäden beispielsweise einer Aramidfaser gebildet. Das Begrenzungsteil 14 ist beispielhaft rechteckig. Die einzelnen Fäden des Fasergebildes 22 laufen im Wesentlichen parallel zu den Rändern des Begrenzungsteils 14 und enden am Rand. 4 shows a section along the line AA` in 1 with a view of the second boundary part 14. The first support elements 18 are sectioned in this illustration, while the second support elements 20 are viewed. In the representation of 4 the means 26 for sealing the vacuumed space are omitted. In the illustrated embodiment, the fiber structure 22 is formed from individual threads, for example an aramid fiber. The limiting part 14 is rectangular, for example. The individual threads of the fiber structure 22 run essentially parallel to the edges of the delimiting part 14 and end at the edge.

Die ersten Stützelemente 18 und die zweiten Stützelemente 20 ragen aneinander vorbei und sind voneinander beabstandet. Die Fäden des Fasergebildes 22 kreuzen sich jeweils auf den Stützelementen 18, 20. Sie können an ihren Kreuzungspunkten in bzw. auf den Stützelementen geführt sein (nicht dargestellt).The first support elements 18 and the second support elements 20 project past one another and are spaced apart from one another. The threads of the fiber structure 22 cross each other on the support elements 18, 20. They can be guided in or on the support elements at their crossing points (not shown).

Fig. 5 zeigt schematisch eine Seitenansicht durch ein beispielhaftes Vakuumdämmelement, das eine Kante ausbildet. Sowohl das erste Begrenzungsteil 12 als auch das zweite Begrenzungsteil 14 sind so ausgebildet, dass sie eine Kante 30 bilden. In der abgebildeten Ausführungsform verläuft eine erste Teilfläche 12a des ersten Begrenzungsteils 12 rechtwinklig zu einer zweiten Teilfläche 12b und bildet damit die Kante 30. Entsprechendes gilt für das zweite Begrenzungsteil 14 mit erster Teilfläche 14a und zweiter Teilfläche 14b. figure 5 shows schematically a side view through an exemplary vacuum insulation element that forms an edge. Both the first delimiting part 12 and the second delimiting part 14 are designed in such a way that they form an edge 30 . In the illustrated embodiment, a first partial surface 12a of the first delimiting part 12 extends perpendicular to a second partial surface 12b and thus forms the edge 30. The same applies to the second delimiting part 14 with the first partial surface 14a and second partial surface 14b.

Dadurch wird auch im Kantenbereich eine Berührung von äußerem oder erstem Begrenzungsteil 12 und innerem oder zweitem Begrenzungsteil 14 vermieden und es bilden sich keine thermischen Brücken.As a result, contact between the outer or first delimiting part 12 and the inner or second delimiting part 14 is also avoided in the edge region and no thermal bridges form.

Die Ausbildung mit ersten Stützelementen 18 und zweiten Stützelementen 20 sowie Fasergebilde 22 ist analog zu den bisher beschriebenen Ausführungsformen und wird nicht näher erläutert.The formation with first support elements 18 and second support elements 20 and fibrous structure 22 is analogous to the previously described embodiments and is not explained in more detail.

In einer Ausführungsform ist ein erstes Vakuumdämmelement als ein auf einer Seite geöffneter Behälter ausgeformt. Beispielsweise sind das erste Begrenzungsteil 12 und das zweite Begrenzungsteil 14 in Form eines auf einer Seite geöffneten Quaders, Würfels oder Zylinders ausgebildet. Auch hier wird durch die Begrenzungsteile ein vakuumierter Raum definiert, in den wie oben beschrieben Stützelemente 18, 20 ragen, die über ein Fasergebilde 22 verbunden sind. Für die offene Seite kann ein zweites Vakuumdämmelement als Deckel bereitgestellt werden.In one embodiment, a first vacuum insulating element is shaped as a container that is open on one side. For example, the first delimiting part 12 and the second delimiting part 14 are designed in the form of a cuboid, cube or cylinder that is open on one side. Here, too, a vacuumed space is defined by the delimiting parts, into which support elements 18, 20 protrude, as described above, which are connected via a fiber structure 22. A second vacuum insulation element can be provided as a cover for the open side.

Das zweite Vakuumdämmelement kann im Wesentlichen die Form einer Platte aufweisen, die die äußere Form der fehlenden Seite abbildet. Alternativ kann als Deckel auch ein zweites Vakuumdämmelement dienen, das im Wesentlichen die gleiche Form wie das erste Vakuumdämmelement aufweist, jedoch etwas größer ausgebildet ist, so dass es über das erste Vakuumdämmelement gestülpt werden kann. Hierbei können die Seitenwände des größeren Vakuumdämmelements die Seitenwände des kleineren Vakuumdämmelements vollständig oder teilweise überdecken.The second vacuum insulation element can essentially have the shape of a plate, which depicts the outer shape of the missing side. Alternatively, a second vacuum insulation element can also serve as a cover, which essentially has the same shape as the first vacuum insulation element, but is designed somewhat larger, so that it can be slipped over the first vacuum insulation element. Here, the side walls of the larger vacuum insulation element can completely or partially cover the side walls of the smaller vacuum insulation element.

Das Vakuum verhindert dann den Wärmetransport vom Inneren des (inneren) Behälters nach außen. Diese Konstruktionsform kann z.B. bei Pufferspeichern oder auch bei Containern Anwendung finden. Vorzugsweise wird das Fasergebilde 22 bei dieser Ausführungsform stärker ausgelegt, da das Fasergebilde zusätzlich die statische Belastung des Inhalts tragen muss.The vacuum then prevents heat transport from the inside of the (inner) container to the outside. This type of construction can be used, for example, in buffer storage or in containers. Preferably, the fibrous structure 22 is made stronger in this embodiment since the fibrous structure must also carry the static load of the contents.

Mit den zwei, jeweils einseitig geöffneten und übereinander geschobenen Behältern entsteht eine leicht zu öffnende Vorrichtung mit hervorragenden thermischen Dämmeigenschaften.With the two containers, each open on one side and pushed on top of each other, an easy-to-open device with excellent thermal insulation properties is created.

Diese kann beispielsweise als Kühlbox Anwendung finden. In einer Ausführungsform sind hierbei die Begrenzungsteile nicht aus reinem Metall sondern aus metallbeschichtetem Faserlaminat hergestellt.This can be used, for example, as a cool box. In one embodiment, the delimiting parts are not made of pure metal but of metal-coated fiber laminate.

Bei der Herstellung des erfindungsgemäßen Vakuumdämmelements wird zunächst die Form wie beschrieben einschließlich der Abdichtung hergestellt und dann in bekannter Weise der umschlossene Raum vakuumiert, um einen vakuumierten Raum 16 bereitzustellen. Um die Qualität des Vakuums zu verbessern oder die Lebensdauer der Vakuumdämmelemente zu verlängern, kann in den Raum zwischen den Begrenzungsteilen 12, 14 ein Gettermaterial eingebracht werden, das beispielsweise von außen über die Zeit eindringende Gasmoleküle binden kann und somit das Vakuum auch bei einer Verschlechterung der Abdichtung aufrechterhalten kann. Die Erfinder haben mit einem Vakuum von etwa 10-4 mbar sehr gute Dämmwerte im Bereich von 10-5 W/mK erreicht.In the production of the vacuum insulation element according to the invention, the mold is first produced as described, including the seal, and the enclosed space is then evacuated in a known manner in order to provide a vacuumed space 16 . In order to improve the quality of the vacuum or to extend the service life of the vacuum insulation elements, a getter material can be introduced into the space between the delimiting parts 12, 14, which can, for example, bind gas molecules penetrating from the outside over time and thus maintain the vacuum even if the seal can be maintained. The inventors have achieved very good insulation values in the range of 10 -5 W/mK with a vacuum of around 10 -4 mbar.

Das erfindungsgemäße Vakuumdämmelement kann den bisher meist aus pyrogener Kieselsäure hergestellten Stützkern üblicher Vakuumisolationspaneele durch eine einfache Konstruktion ersetzen, die zum größten Teil aus Metall gefertigt sein kann. Hierdurch kann der Primärenergiebedarf bei der Herstellung erheblich reduziert werden. Auch wird die Herstellung kostengünstiger. Zudem kann bei Einsatz von Metallfolien im Randbereich die Diffusionsdichtigkeit und Widerstandsfähigkeit des Randes deutlich verbessert werden. Dies ermöglicht eine lange Lebensdauer und vereinfacht den Umgang mit dem Dämmstoff.The vacuum insulation element according to the invention can replace the support core of conventional vacuum insulation panels, which was previously mostly made of pyrogenic silica, with a simple construction that can be made of metal for the most part. As a result, the primary energy requirement during production can be significantly reduced. The production is also cheaper. In addition, when metal foils are used in the edge area, the diffusion tightness and resistance of the edge can be significantly improved. This enables a long service life and simplifies the handling of the insulating material.

Claims (16)

  1. A thermal vacuum insulation element (10) comprising:
    a first flat limiting part (12) and a second flat limiting part (14) spaced apart from one another and defining an evacuated space (16) between them;
    means (26) for sealing the evacuated space (16);
    first support elements (18) extending away from the said first limiting part (12) into the said evacuated space (16) and second support elements (20) extending away from the said second limiting part (14) into the said evacuated space (16), wherein the said limiting parts (12, 14) are arranged with the said support elements (18, 20) in such a way that the first support elements (18) and the second support elements (20) protrude beyond one another and are spaced apart from one another, and wherein the first support elements (18) are spaced apart from the second limiting part (14), and wherein the second support elements (20) are spaced apart from the first limiting part (12); and
    a fiber structure (22) connects the first support elements (18) and the second support elements (20) to one another, wherein the fiber structure (22) has a low heat conductivity and is designed to collect at least the pressure generated by the vacuum on the first and second limiting parts (12, 14), characterized in that
    the fiber structure (22) also spans an edge region limiting the evacuated space (10), and wherein the limiting parts (12, 14) are configured to be vacuum-tight and the means (26) for sealing the evacuated space (16) comprise an edge film which is welded or bonded to the limiting parts (12, 14) along the edges of the limiting parts (12, 14), wherein the fiber structure (22) is perpendicularly guided in the edge region from the first limiting part (12) to the second limiting part (14).
  2. Vacuum insulation element (10) according to claim 1,
    wherein the fiber structure (22) has a heat conductivity value of less than 0.06 W/mK.
  3. Vacuum insulation element (10) according to any one of the preceding claims, wherein the fiber structure (22) comprises glass, nylon, hemp, aramid or/and carbon fibers.
  4. Vacuum insulation element (10) according to any one of the preceding claims, wherein the fiber structure (22) is configured in the form of individual threads stretched between the support elements (18, 20).
  5. Vacuum insulation element (10) according to any one of the preceding claims, wherein the fiber structure (22) is formed as a fiber fabric.
  6. Vacuum insulation element (10) according to any one of claims 1 to 3, wherein the fiber structure is configured as a fabric in the edge region and as a thread between the support elements (18, 20).
  7. Vacuum insulation element (10) according to any one of the preceding claims, wherein at least one of the limiting parts (12, 14) comprises metal, ceramic, glass, laminate, and/or plastics.
  8. Vacuum insulation element (10) according to one of the preceding claims, wherein at least one of the limiting parts (12, 14) formed in a vacuum-tight manner comprises a limiting part having openings, wherein the openings are spanned with the fiber structure (22) and sealed by a foil.
  9. Vacuum insulation element (10) according to any one of the preceding claims, wherein the limiting parts (12, 14) each form at least one edge or one corner.
  10. Vacuum insulation element (10) according to any one of the preceding claims, wherein the first and second support elements (18, 20) are configured rod-shaped.
  11. Vacuum insulation element (10) according to claim 8,
    wherein the first and second support elements (18, 20) are evenly distributed in rows and columns over the limiting parts (12, 14).
  12. Vacuum insulation element (10) according to any one of claims 1 to 9, wherein the first and second support elements (18, 20) are configured rib-shaped, in particular v-shaped, and extend over an entire extension of the limiting parts (12, 14).
  13. Vacuum insulation element (10) according to any one of the preceding claims, wherein the first and second support elements (18, 20) comprise guides and/or fasteners for the fiber structure (22).
  14. Vacuum insulation element (10) according to any one of claims 1 to 13, wherein the means (26) for sealing the evacuated space (16) comprise a foil bag that completely surrounds the limiting parts (12, 14) with the evacuated space (16) located between them.
  15. Vacuum insulation element (10) according to any one of the preceding claims, wherein the limiting parts (12, 14) are configured as cuboids or cylinders open on one side.
  16. Thermal insulation container comprising either a vacuum insulation element (10) according to claim 15 and a vacuum insulation element (10) formed as a lid for the cuboid or cylinder according to one of claims 1 to 14, or two vacuum insulation elements (10) according to claim 15, which are dimensioned such that they can be slid into one another.
EP20185224.1A 2020-07-10 2020-07-10 Thermal vacuum insulating element Active EP3936324B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20185224.1A EP3936324B1 (en) 2020-07-10 2020-07-10 Thermal vacuum insulating element
PCT/EP2021/067685 WO2022008281A1 (en) 2020-07-10 2021-06-28 Thermal vacuum insulation element
CN202180049535.6A CN115803185A (en) 2020-07-10 2021-06-28 Vacuum insulation element
US18/010,867 US20230234324A1 (en) 2020-07-10 2021-06-28 Thermal Vacuum Insulation Element
JP2023501225A JP2023534424A (en) 2020-07-10 2021-06-28 Vacuum insulation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20185224.1A EP3936324B1 (en) 2020-07-10 2020-07-10 Thermal vacuum insulating element

Publications (2)

Publication Number Publication Date
EP3936324A1 EP3936324A1 (en) 2022-01-12
EP3936324B1 true EP3936324B1 (en) 2023-05-10

Family

ID=71575163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20185224.1A Active EP3936324B1 (en) 2020-07-10 2020-07-10 Thermal vacuum insulating element

Country Status (5)

Country Link
US (1) US20230234324A1 (en)
EP (1) EP3936324B1 (en)
JP (1) JP2023534424A (en)
CN (1) CN115803185A (en)
WO (1) WO2022008281A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050800A2 (en) * 2009-10-30 2011-05-05 Viktor Schatz Tensile spacer arrangement, method for the production thereof, and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0912329A4 (en) * 1996-07-08 2001-03-07 Oceaneering Int Inc Insulation panel
DE102007056837A1 (en) * 2007-11-26 2009-05-28 Michael Hamberger Vacuum isolation element for thermal insulation of buildings, devices, refrigerating chambers, refrigerators, motor vehicles, airplanes, ships, has insulating material that defines multiple chambers
KR101544453B1 (en) * 2009-08-07 2015-08-13 엘지전자 주식회사 Core for a vacuum insulation panel and vacuum insulation pannel using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050800A2 (en) * 2009-10-30 2011-05-05 Viktor Schatz Tensile spacer arrangement, method for the production thereof, and use thereof

Also Published As

Publication number Publication date
US20230234324A1 (en) 2023-07-27
JP2023534424A (en) 2023-08-09
CN115803185A (en) 2023-03-14
WO2022008281A1 (en) 2022-01-13
EP3936324A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
DE19635214C2 (en) Multi-layer foil insulation material for thermal insulation and sound insulation
DE10047489C2 (en) Dense and thermally insulating tank integrated in the support structure of a ship and method for producing insulating boxes for use in such a tank
DE60309112T2 (en) Sound-absorbing layer for a sound-absorbing panel and a panel with such a layer
EP2715835B1 (en) Energy storage module comprising a plurality of, in particular, prismatic storage cells, and method for producing an energy storage module, and also method for producing an end plate for an energy storage module
DE3701481A1 (en) VACUUM-INSULATED CARGO CONTAINER
DE2446286A1 (en) COMPOSITE ARRANGEMENT
DE10140467A1 (en) Dense and thermally insulating tank with improved longitudinal edges
DE3121351C2 (en)
DE1575227A1 (en) Thermal insulation
DE102006044842A1 (en) Aircraft component and method for producing an aircraft component
EP3936324B1 (en) Thermal vacuum insulating element
DE3438416C1 (en) Mineral fiber web
DE19834379C2 (en) Wall element
DE202012104182U1 (en) Rail of multilayer insulating material, web of Dämmverbund, which is formed from such sheets of multi-layer insulation
DE4307818A1 (en) Wall element
DE102014107970A1 (en) Vacuum insulation panel with needle felt core
DE4206893A1 (en) NET, IN PARTICULAR SPACER NET, SURFACE PROTECTION NET OR THE LIKE
EP0106328B1 (en) Tubular insulating material
WO1986001554A1 (en) Foil material for controllable leakproof separation of the areas located on both of its sides
DE4412865A1 (en) Lightweight construction member
DE3735463C2 (en)
EP0149443A2 (en) Clamping connection between double-walled panels provided with cross-beams and a profile, especially for small greenhouses
DE2441392C3 (en) Liquid gas tanks, in particular for ships
EP2345770A1 (en) Vacuum insulation
AT513425B1 (en) Chalkboard with plastic shell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1566297

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003228

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230622

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003228

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230710

26N No opposition filed

Effective date: 20240213