EP3921625A1 - Method for measuring the concentration of gaseous species in a biogas - Google Patents

Method for measuring the concentration of gaseous species in a biogas

Info

Publication number
EP3921625A1
EP3921625A1 EP20701268.3A EP20701268A EP3921625A1 EP 3921625 A1 EP3921625 A1 EP 3921625A1 EP 20701268 A EP20701268 A EP 20701268A EP 3921625 A1 EP3921625 A1 EP 3921625A1
Authority
EP
European Patent Office
Prior art keywords
biogas
chemical species
concentration
radiation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20701268.3A
Other languages
German (de)
French (fr)
Inventor
Matthieu LECOMPTE
Philipp SCHIFFMANN
Olivier Laget
Noemie Caillol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3921625A1 publication Critical patent/EP3921625A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0042SO2 or SO3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0044Sulphides, e.g. H2S
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to the measurement of the concentration of chemical species contained in a biogas, by means of an optical system.
  • the present invention applies advantageously and without limitation to the field of the treatment of a biogas, which aims to transform a biogas into biomethane, and to the use of this biomethane.
  • Biogas is the product of anaerobic decomposition of organic wastes, such as sludge from sewage treatment plants, agricultural wastes, landfills.
  • Biogas is mainly composed of methane (40 to 70%), C0 2 and water vapor, but it also contains impurities, such as sulfur compounds (H 2 S, S0 2 , ...) of siloxanes, halogens or even VOCs (Volatile Organic Compounds). Biogas is therefore not directly exploitable.
  • Biomethane is thus obtained which can be injected into the natural gas distribution network, or used as a bio-fuel.
  • a particular use of a purified biogas is the fuel cell ("fuel cell” in English), for which the tolerance thresholds to impurities or contaminants are particularly demanding in order not to damage the system (cf. for example the document “ Biogas and fuel cells workshop “, Argonne, 2012, Dennis Papadias and Shabbir Ahmed, Argonne National Laboratory, Presented at the Biogas and Fuel Cells Workshop Golden, CO, June 1 1 -13, 2012”).
  • Document DE 202008003790 U1 which relates to a device and a method for measuring the concentrations of contaminants contained in a biogas. More precisely, a partial flow of biogas passes continuously through a gas cell by means of a pump, then a particularly ultra-violet spectrum is measured by means of a spectrometer. This spectrum is then analyzed according to one or more chemometric calibration models. Thus, this method comprises a step of sampling the gas to be analyzed.
  • the device described in this document therefore requires additional elements (a pump in particular) to the measurement itself, making the device more bulky, expensive, and requiring more maintenance.
  • the analysis of contaminants is de facto remote and therefore deferred in time, which can be harmful in the case in particular of a fuel cell.
  • the method described in this document requires a prior increase in the concentration of the chemical species to be measured, with an adsorption device on a filter, in the event that the concentrations of the species to be measured are too low to be detected and measured. by a spectrometer.
  • the method according to the invention aims to overcome these drawbacks.
  • the method according to the invention aims to provide an optical measurement of the concentration of gaseous chemical species contained in a biogas carried out in situ, and without requiring a step of over-concentration of the chemical species present in small quantities in the biogas at analyze.
  • the method according to the invention allows a dissociated and simultaneous measurement of different gaseous chemical species contained in the biogas.
  • the method according to the invention can allow the diagnosis and / or the control of a process for the purification of a biogas, from measurements of the concentration of gaseous chemical species contained in the biogas carried out before, during and after the purification of biogas.
  • the method according to the invention can also be advantageously implemented upstream of an installation using biomethane, such as for example in a fuel cell, so as to guarantee the integrity of the system using this gas.
  • the present invention relates to a method for in situ measurement of the concentration of at least one gaseous chemical species contained in a biogas flowing in a duct (20) by means of an optical measurement system comprising at least one light source emitting a UV radiation and at least one spectrometer capable of analyzing at least said UV radiation, said conduit comprising at least one first optical access formed in a wall of said conduit.
  • the method according to the invention comprises at least the following steps: a) by means of said light source, said UV radiation is emitted at at least said optical access through said biogas within a measurement zone located at least in part in said duct; b) by means of said spectrometer, at the level of said first optical port and / or of a second optical port, at least part of said UV radiation having passed through said biogas in said measurement zone is measured, and a digital signal of the light intensity as a function of the wavelength (W) of said part of the UV radiation having passed through said biogas;
  • step c) can include at least:
  • said absorbance of said biogas can be a function of the absorbance length, of the density number of the molecules of said chemical species and of the molar extinction coefficient.
  • said digital reference signal can be obtained by emitting said UV radiation through said reference gas and by measuring at least part of said UV radiation having passed through said reference gas, said gas having a concentration of said known or no chemical species.
  • a temperature of said biogas can also be determined from said digital signal.
  • said temperature can be determined by modifying the molar extinction coefficient of the absorbance of said chemical species extracted from said absorbance of said biogas, said modification being a shift in the wavelength or a modification amplitude or a combination of both.
  • said optical measurement system may further include a reflector arranged in said measurement zone of said duct. According to this implementation, at least part of said UV radiation having been emitted by said light source at the level of the first optical access and having at least partly reflected on said reflector can be measured at at least said first optical access.
  • said first and / or second optical access can be offset from said wall of said duct in which the biogas circulates.
  • said UV radiation can be emitted at a wavelength between 180 and 400 nm, preferably between 180 and 280 nm, and even more preferably between 180 and 240 nm.
  • the concentration of at least one, and preferably several, gaseous chemical species contained in said biogas and included in the list consisting of: S0 2 , H 2 S, NH 3 , BTEX, siloxanes and halogens.
  • the concentration of at least two gaseous chemical species can be measured simultaneously, and preferably at least the concentration of H 2 S and the concentration of NH 3 .
  • the concentration of at least one gaseous chemical species chosen from sulfur-containing chemical species S0 2 and H 2 S it is possible to measure the concentration of at least one gaseous chemical species chosen from sulfur-containing chemical species S0 2 and H 2 S, and preferably both.
  • the concentration can be measured at least
  • said pipe in which said biogas circulates can be a pipe of an installation for the purification of said biogas, and said method can be implemented upstream and / or downstream of said installation.
  • said duct in which said biogas circulates can be a duct of a system using said biogas such as a distribution network of said biogas.
  • biogas, a vehicle, or a fuel cell and said method can be implemented upstream of said system using said biogas.
  • FIG. 1A is a diagram illustrating the optical measurement of the concentration of chemical species contained in a biogas, according to a transmissive configuration of the optical measurement system for the implementation of the method according to the invention.
  • FIG. 1B is a diagram illustrating the optical measurement of the concentration of chemical species contained in a biogas, according to a reflective configuration of the optical measurement system for the implementation of the method according to the invention.
  • FIGS. 1 C and 1 D respectively represent variants of the embodiments presented in FIGS. 1A and 1 B, comprising optical accesses offset from the duct in which the biogas circulates.
  • Figure 2 shows schematically the absorbance of biogas comprising different gaseous chemical species A, B, C that we want to measure.
  • Figure 3 shows schematically the influence of temperature on the absorbance of a given chemical species contained in biogas.
  • FIGS. 4 to 14 are diagrams illustrating different embodiments of the optical measurement system for implementing the method according to the invention.
  • the present invention relates to a method for measuring in situ the concentration of at least one gaseous chemical species contained in a biogas by means of an optical measuring system.
  • biogas any gas resulting from the anaerobic decomposition of waste of organic origin, such as sludge from purification plants, agricultural waste, landfills.
  • the biomethane is a biogas according to the invention.
  • the present invention allows measurement in situ, that is to say directly in a conduit in which the biogas circulates and without taking any sample (s) of the biogas.
  • This pipe can be a pipe from an installation for treating said biogas (for example a pipe from a biogas purification installation) and / or a pipe located upstream of an installation using biogas (for example a pipeline of a biogas distribution network). In general, this is referred to below as the conduit of an installation to be monitored.
  • the present invention does not require preconditioning of the biogas (by overconcentration for example) in the case of a chemical species present in small quantity in the biogas to be analyzed.
  • the method according to the invention is implemented by means of an optical measurement system comprising at least one light source emitting UV radiation and a spectrometer.
  • the conduit through which the biogas circulates comprises at least one optical access formed in the conduit in which the biogas flows, said optical access being capable of allowing at least UV radiation to pass.
  • This optical access can be formed by an opening made in the duct, to which is fixed for example a lens or a window.
  • Figures 1 A and 1 B show schematically and without limitation the measurement principle according to the invention.
  • Figure 1A differs from Figure 1B by the optical measurement system, which is in a transmissive configuration in Figure 1A and in a reflective configuration in Figure 1B.
  • the measurement process consists of the following steps:
  • a pipe 20 for example a pipe of a biogas treatment plant
  • the UV radiation 42 passes through the biogas, along an optical path of length d, which can be substantially but not limited to perpendicular to the path P of the biogas, as shown in Figures 1 A and 1 B.
  • the UV radiation 42 enters the zone measurement by an optical access, for example a window or a lens, provided in the conduit in which the biogas flows.
  • the gaseous chemical species whose concentration is to be measured absorb part of the UV radiation and each gaseous chemical species absorbs the rays at certain given wavelengths. Absorption follows, under ideal conditions, Beer-Lambert's law.
  • the UV radiation which has passed through the biogas is detected by the spectrometer 44 through an optical access (another optical access for the embodiment of figure 1A, the same optical access for the embodiment of figure 1B) , arranged as for emission by the light source.
  • the optical system 40 further comprises a reflector 45.
  • the UV radiation emitted by the source 41 is reflected by the reflector 45, positioned at the end of the measurement zone 21 opposite the end where the light source 41 and the spectrometer 44 are located.
  • the reflector 45 is preferably positioned in the conduit 20 in which the biogas circulates, as illustrated in FIG. 1 B. It can alternatively be integrated into the wall of this element, or be disposed outside the latter.
  • the UV radiation 42 passes through the biogas 10 in the measurement zone 21 for the first time, is reflected by the reflector 45, passes through the biogas in the measurement zone 21 in the opposite direction a second time, and is then detected by the spectrometer 44, as described above.
  • the location of the reflector 45 can be further adjusted depending on the order of magnitude of the expected chemical species concentration (s). In fact, the greater the length of the optical path traveled by UV radiation through the biogas, the more reliable and precise the measurement of the concentration will be in the case of low concentrations of chemical species. It is thus advantageously possible to place the mirror 45 on the wall of the duct 20 opposite the light source 41, so as to increase (in this case double) the length of the optical path compared to the configuration in FIG. 1 A.
  • the length of the optical path traversed by the UV radiation in the biogas can be adjusted by means of at least one optical access offset with respect to the wall of the duct in which the gas circulates. biogas.
  • This remote optical access may consist of a tube fixed at one of its ends to the opening made in the conduit of the installation to be monitored, and the other end of this tube comprising means suitable for letting UV radiation, like a porthole or a lens.
  • the biogas which circulates in the pipe of the installation to be monitored can therefore also occupy the space defined by said remote optical access fixed to said element, thus enlarging the measurement zone.
  • the cross section (relative to the main direction of UV radiation) of the remote optical access is preferably substantially circular, but may be of any other shape, of preferably in relation to the shape of the opening made in the duct of the installation to be monitored.
  • 1 C shows an exemplary embodiment of this variant of the invention, in the case of a transmissive configuration of the optical system according to the invention as defined above, and which comprises two remote optical accesses 31 ', 31 "in the form of circular tubes of length respectively d1 and d2, the first remote optical access being intended for the passage of UV radiation emitted by the light source 41, and the second remote optical access being intended for the passage of UV radiation having passed through the biogas traversed in the measurement zone 21, 21, 21 ", with a view to its measurement by the spectrometer 44.
  • the total optical path of the UV radiation which has passed through the biogas is equal to d + d1 + d2.
  • Figure 1D shows another embodiment of this variant of the invention, in the case of a reflective configuration of the optical system according to the invention as defined above, and which comprises a remote optical access 31, under the shape of a circular tube of length d1 in the longitudinal direction, optical access intended for the passage of UV radiation emitted by the light source 41, then reflected by the reflector 45 after having passed through the biogas for the first time in the measurement zone 21 ', 21, and passing through the optical access again to be detected by the spectrometer 44 after having passed through the biogas a second time in the measurement zone 21', 21.
  • the total optical path of the UV radiation having passed through the biogas is 2 (d + d1).
  • optical system according to the invention which are not limiting, comprising at least one remote optical access, make it possible to vary the length of the optical path traversed by the UV radiation, and thus to improve the precision of the measurement of the concentration. in the case of low concentrations of chemical species.
  • the method according to the invention which can be implemented in situ, has the advantage of not modifying the flow of the biogas and of being instantaneous, for example with a response time which may be less than 0.1.
  • a possible evolution of the gases to be analyzed during sampling which is undesirable (in fact, during a sampling, the gas may condense, which can contribute to modifying the gas finally analyzed, for example by adsorption of certain molecules on the walls of the sampling tubes), and a transit of the gases to the measurement cell causing a delay in the measurement.
  • the method according to the invention can allow a reliable and precise measurement of the chemical species (s) present in the biogas in small quantities, without having recourse to a prior step of overconcentration of the chemical species, by means of an adjustment of the length of the optical path which depends on the arrangement of the elements of the optical system according to the invention.
  • the light source 41 and the spectrometer 44 are preferably positioned outside the duct 20 in which the biogas circulates, for example on the external face of the walls of the duct, or at a distance from this element if radiation transmission means are provided, such as for example optical fibers as shown in Figures 10 and 11 described below. This makes it possible in particular to prevent the fouling of these optical elements.
  • the method according to the invention preferably comprises a preliminary step of calibrating the optical measuring system making it possible to obtain a reference digital signal of the light intensity as a function of the wavelength.
  • this step consists in emitting the UV radiation through a reference gas, for example a gas not containing any of the chemical species to be measured (such as helium, dinitrogen or air), or through a reference gas which contains certain chemical species which it is desired to measure and of which the concentration in said gas is known.
  • the radiation passes through the reference gas, and is then detected by the spectrometer to provide a reference digital signal of light intensity as a function of the wavelength of the part of the UV radiation that has passed through the reference gas.
  • the reference signal is used in the concentration and temperature estimation step, in particular to calculate the absorbance of biogas, as described in detail below.
  • the UV radiation emitted by the light source 42 has a wavelength between 180 and 400 nm, preferably between 180 and 280 nm (in particular in the case where the chemical species is NO), or very preferably between 180 and 240 nm (especially in the case where the chemical species is NH 3 ). These wavelength ranges are part of what is referred to as deep UV.
  • the light source can be an LED diode emitting in UV and in particular in deep UV as indicated above, or perhaps a xenon, deuterium or zinc lamp, cadmium, or another gas lamp such as KrBr, KrCL, KrF excimer lamps.
  • the spectrometer makes it possible to analyze the light signal in the wavelength range 180-400 nm, preferably 180-280 nm, and more preferably 180-240 nm.
  • a simplified system for analyzing a reduced wavelength range can be used.
  • the term spectrometer is retained in the present invention to denote such a simplified system.
  • the assembly formed by at least the UV light source and the spectrometer, also called optical system or optical sensor in the present invention, is known per se. Such optical sensors can be found commercially.
  • the optical system can include other elements, in particular optical elements such as lenses making it possible to modify the light beam if necessary (for example convergence or divergence), or even protection elements aiming to protect the light source and the spectrometer, in particular during cold operation of the optical measuring system. Indeed, cold operation can cause deposits on the optical elements by a phenomenon of condensation.
  • optical elements such as lenses making it possible to modify the light beam if necessary (for example convergence or divergence), or even protection elements aiming to protect the light source and the spectrometer, in particular during cold operation of the optical measuring system.
  • cold operation can cause deposits on the optical elements by a phenomenon of condensation.
  • Such protective elements are described below, in relation to Figure 12.
  • the position of the sensor installed on the pipe in which the biogas circulates can be chosen so as to limit the clogging thereof.
  • gaseous chemical species X and preferably several gaseous chemical species X, included in the list consisting of: S0 2 , H 2 S, NH 3 , BTEX (this which includes benzene, toluene, ethylbenzene and xylene), siloxanes and halogens.
  • hydrocarbons such as aromatics, alkenes, terpenes and terpenoids
  • siloxanes such as D2 to D7
  • organic compounds such as sulphides, mercaptans, thiols
  • inorganic sulfur compounds such as sulphides
  • halogens halogens
  • the dissociated and simultaneous measurement of the concentration of a plurality of these gaseous chemical species can be carried out.
  • dissociated measurement is meant an access to the specific concentration of each chemical species, as opposed to an overall measurement of the concentration of several chemical species without distinction.
  • the simultaneous measurement of the concentration of at least two gaseous chemical species preferably at least the concentration of H 2 S and the concentration of NH 3, is carried out .
  • the concentration of at least S0 2 , or H 2 S it is also possible to measure the concentration of at least S0 2 , or H 2 S, and preferably at least both.
  • the quantification of the sulfur elements in a biogas is particularly useful when the method according to the invention is implemented to qualify the biogas before its use in a fuel cell, for which corrosion can be very harmful.
  • the concentration of at least NH 3 is measured.
  • the concentration of each chemical species is determined from the optical measurement carried out on the biogas and from an optical signature specific to each chemical species.
  • Each gaseous chemical species whose concentration is to be measured absorbs part of the UV radiation and has its own absorption spectrum (absorbance as a function of wavelength).
  • the absorbance A of the biogas is determined as a function of of the wavelength W from the digital signal of the light intensity 50 generated by the spectrometer and resulting from the detection of the part of the UV radiation which has passed through the biogas, and from a digital reference signal.
  • the digital reference signal is preferably established during the preliminary calibration step described above.
  • the absorbance of biogas is calculated according to a formula of the type of formula (I) below:
  • the concentration [X] of each chemical species to be measured is determined from the absorbance A of the biogas , predetermined absorbance characteristics and an estimate of the pressure and temperature of each of the chemical species.
  • predetermined characteristics of absorbance of each of the chemical species are preferably obtained during preliminary measurement campaigns making it possible to create a library. Data from the literature can also feed into such a library.
  • absorbance characteristic of a given chemical species is meant its molar extinction coefficient.
  • the pressure and / or the temperature can be estimated by measurement during the implementation of the method according to the invention, by means respectively of a pressure sensor and / or a temperature sensor.
  • the temperature of the biogas is estimated by means of the main variant described below. below, which may constitute an additional step c) to steps a) and b) described above.
  • the temperature (T) of the biogas circulating in the pipe is also determined, in addition to the concentration.
  • the temperature (T) of the biogas circulating in the duct is determined by modifying the molar extinction coefficient of the absorbance of the chemical species whose concentration is to be measured, said absorbance of the chemical species being extracted from the absorbance of said biogas.
  • the change in the molar extinction coefficient can be a shift in wavelength, leading to absorption at different wavelengths, or a change in the amplitude of the absorbance at a given wavelength, or a combination of both.
  • FIG. 3 illustrates the influence of temperature on the absorbance of a chemical species, here ammonia, used to determine the temperature according to the present invention.
  • the curve A-Tc represents the absorbance of NH 3 for a low temperature, for example 20 t C
  • the curve A-Th represents the absorbance of NH 3 for a high temperature, for example 450 t C.
  • a modification of the molar extinction coefficient results in a shift in the absorption signal.
  • any other chemical species such as SO 2 , H 2 S, NH 3 , BTEX, siloxanes, halogens, aldehydes such as acetaldehyde or formaldehyde, non-hydrocarbons. aromatics such as acetylene or buta-1,3-diene, can be used to determine the temperature.
  • the same type of algorithms that are used to determine the concentration of chemical species can be used to determine the temperature.
  • FIG. 2 schematically represents the absorbance A of the biogas comprising different gaseous chemical species A, B, C that it is desired to measure.
  • the diagram on the left shows an example of absorbance A (unitless) of biogas, expressed as a function of wavelength W (in nm), calculated from the digital signal of light intensity 50 generated by the spectrometer and of the digital reference signal.
  • the absorbance A of a gas is a function of the absorbance length, that is to say the length of the optical path crossed by the light in the measurement zone, of the numerical density of the molecules of the gaseous chemical species (A, B, C) contained in gases, and the molar extinction coefficient of chemical species.
  • the molar extinction coefficient also called molar absorptivity, is a measure of the probability that a photon is interacting with an atom or molecule.
  • the numerical density of the molecules of a chemical species is itself a function of the temperature, pressure, and concentration of the chemical species, and the molar extinction coefficient is a function of the wavelength, l chemical species, temperature and pressure.
  • concentration values can be determined using least squares adjustment algorithms applied to the absorbance signals themselves, to the derivatives of the absorbance signals, or to the frequency portion of the signals.
  • absorbance typically derived from a Fourier transform.
  • chemometric methods can be used for this process such as, for example, principal component analysis (PCA) or partial least squares (PLS) algorithms.
  • PCA principal component analysis
  • PLS partial least squares
  • the invention advantageously applies to the field of the treatment of a biogas, which may comprise an installation for the purification (or else for the purification) of the biogas.
  • the optical measurement system according to the invention can be positioned at different locations of a biogas purification installation, in particular upstream and / or downstream of such an installation.
  • the method according to the invention can also be advantageously applied upstream of a system using a biogas, in particular an already purified biogas, so as to ensure that the biogas used in said system complies with the operating requirements and / or regulations of this system.
  • the measurement is carried out downstream of an installation for the purification of a biogas and / or of a system using a biogas.
  • an installation for the purification of a biogas and / or of a system using a biogas Such an embodiment is shown schematically in FIG. 4.
  • the biogas 10 circulates along the path P in a conduit 20 of an installation 60 for purifying a biogas.
  • the optical measurement system 40 is placed downstream of the installation 60 for purifying a biogas.
  • the upstream and downstream positions are defined in relation to the direction of circulation of the biogas in the pipe 20.
  • the in situ measurement is carried out identically to that of the embodiment shown in FIG. 4, except that the optical measurement system comprises a reflector 45, for reflective measurement.
  • the optical measurement system is that described in relation to FIG. 2.
  • the source 41 and the spectrometer 44 are placed on the same side of the duct 20, that is to say at the same end of the measurement zone 21, opposite to that where the reflector 45 is positioned.
  • the in situ measurement is carried out upstream of at least one installation to be monitored, such as an installation for the purification of a biogas or else a system using a biogas.
  • an installation for the purification of a biogas or else a system using a biogas Such an embodiment is shown diagrammatically in FIG. 6, identical to FIG. 4 except for the optical measuring system 40 positioned upstream of the installation 60 to be monitored.
  • Such an embodiment can be useful for obtaining information on the concentration of chemical species in the biogas before they enter a biogas purification installation, for example to influence the operation of this installation.
  • Such an embodiment can also be advantageously implemented upstream of a system using a biogas, such as a network. distribution of said biogas, a vehicle, or a fuel cell, so as to control, in real time, the quality of the biogas entering this system.
  • the in situ measurement is carried out both upstream and downstream of at least one installation to be monitored, such as an installation for the purification of biogas.
  • An example according to this mode is illustrated in Figure 7, in which two optical measurement systems 40 and 40 ’are placed respectively upstream and downstream of an installation 60 for purification.
  • the second optical measuring system 40 ' is identical to the first optical measuring system 40 arranged upstream, and comprises a light source 41' and a light analyzer 44 'respectively allowing the emission of UV radiation and the detection and the detection. analysis of the UV radiation which has passed through the biogas in the measurement zone 21 ′ situated along the conduit 20, in order to provide an estimate of the concentration of gaseous chemical species.
  • FIG. 8 Another example according to this mode is illustrated in FIG. 8, in which the method according to the invention is implemented by means of three optical measuring systems 40, 40 ', and 40 ”, placed respectively upstream of a first installation 60 for purification of a biogas, between the first installation 60 for purification and a second installation 61 for purification, and downstream of the second installation 61 for purification of a biogas.
  • the first installation 60 is an installation using a first type of treatment of biogas
  • the second installation 61 is an installation using a second type of treatment of biogas.
  • Such an embodiment makes it possible to monitor the efficiency of each of these installations with a view to converting the biogas into biomethane, and possibly to adjust the parameters of these installations as a function of the concentration information obtained upstream, downstream and between them. different facilities.
  • the UV light source and / or the spectrometer of the optical measurement system is connected to the conduit in which the biogas circulates by an optical fiber, making it possible for example to install the optical measurement elements in a protective enclosure. , without affecting the instantaneousness of the measurement.
  • An example of such an embodiment is shown in FIG. 9, where optical fibers 75 and 76 respectively connect the light source 71 and the spectrometer 74 of the optical measurement system 70 to the duct 20, at the level of the zone of. measure 21 where the biogas is crossed by the UV radiation conducted by the optical fibers 75 and 76.
  • the optical fiber 76 connected to the spectrometer 74 can be (not shown) placed on the same side of the duct 20 as the optical fiber 75 connected to the light source 71. It is quite clear that for each of the embodiments represented in FIGS. 6 to 9, the optical system can be that described in relation to FIG. 1B, comprising at least one reflector placed in the measurement zone. In the case of the embodiments shown in Figures 6 to 8, the spectrometer (s) 44, 44 ', 44 "can then be placed (not shown) on the same side of the duct 20 as the light source (s) 41, 41' and
  • the optical measurement system comprises several measurement zones connected to a single light source and a single spectrometer, by means of optical fibers.
  • Such an embodiment makes it possible, for example, to reduce the cost of implementing the optical measurement in the event that measurements upstream and downstream of an installation to be monitored (for example an installation for purification) are desired.
  • An example of such an embodiment is illustrated in FIG. 10, in which the optical measurement system 80 comprises three measurement zones 21, 22 and 23, and a single light source 81 and a single spectrometer 84 connected to the measurement zones. measurements by optical fibers 85, 86, 87 and 88.
  • the in situ measurement is performed in an identical manner to that of the embodiment shown in FIG. 10, except that the optical measurement system comprises three reflectors 45, 45 'and 45 ”as described in relationship with Figure 2, respectively arranged at the ends of the measuring zones 21, 22 and 23.
  • the length of the measuring zones 21, 22 and 23 increases in the upstream-downstream direction, or in other words the length of the optical path in the upstream-downstream direction.
  • This embodiment is particularly advantageous for improving the accuracy of the measurement of the efficiency of a biogas treatment process because, as the biogas passes through biogas purification plants (here the installations 60 and 61), chemical species are present in the biogas with increasingly low concentrations.
  • the optical measurement system 90 comprises means 95 for protecting the light source 91 and / or the spectrometer 94. Such protection means are useful for example during operation.
  • protection means can comprise a shutter, an air barrier between the light source 91 or the spectrometer 94 and the biogas passing through the measurement zone 21, a specific coating, for example to prevent the adhesion of liquid or solid particles. , the surface or surfaces separating the light source 91 from the biogas or the spectrometer 94 from the biogas, or a means for heating said surfaces. It can also be a specific geometry of the optical sensor, not shown in FIG. 12.
  • the configuration of the optical measuring system 90 is of the reflective type, the optical measuring system 90 comprising a light source 91, a spectrometer 94 as well as a reflector 45, these elements of the optical measurement system 90 being positioned, for example, at an elbow of the duct 20, so that the optical path of the UV radiation is substantially tangent to the path P of the biogas in the measurement zone 21.
  • the configuration of the optical measuring system 90 is of the reflective type, the optical measuring system 90 comprising a light source 91, a spectrometer 94 as well as a reflector 45, these elements of the optical measurement system being arranged inside the duct 20, and preferably at the outlet of the duct 20, so that the optical path of the UV radiation is substantially parallel to the path P of the biogas in the measurement zone 21.
  • the invention further relates to an installation comprising at least one optical measurement system as described above for implementing the method according to the invention.
  • the installation can be a biogas purification installation and / or a system using biogas.
  • the method according to the invention can be implemented upstream of said installation.
  • the invention also relates to a use of the method according to the invention for measuring the concentration of at least one gaseous chemical species contained in a biogas circulating in a pipe of an installation.
  • the installation can be a biogas purification installation and / or an installation using biogas.
  • the method according to the invention can be implemented upstream of said installation.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a method for in situ measurement of the concentration of gaseous chemical species contained in a biogas (10) circulating in a line (20), for example of a biogas treatment plant or of a system utilizing a biogas. The method of the invention is implemented by means of an optical measurement system (40) comprising a light source (41) and a spectrometer (44). The source (41) emits UV radiation (42) through the biogas (10) within a measurement area (21) situated in the line. The spectrometer (44) detects at least a portion of said UV radiation having passed through the biogas (10) and generates a digital signal of the luminous intensity (50) depending on the wavelength of the portion of the UV radiation having passed through the biogas. A determination is then made of the concentration of the chemical species from the digital signal of the luminous intensity (50).

Description

PROCEDE POUR LA MESURE DE LA CONCENTRATION EN ESPECES GAZEUSES DANS UN BIOGAZ METHOD FOR MEASURING THE CONCENTRATION OF GASEOUS SPECIES IN A BIOGAS
Domaine technique Technical area
La présente invention concerne la mesure de la concentration d’espèces chimiques contenues dans un biogaz, au moyen d’un système optique. La présente invention s’applique avantageusement et non limitativement au domaine du traitement d'un biogaz, qui vise à transformer un biogaz en biométhane, et à l'utilisation de ce biométhane. The present invention relates to the measurement of the concentration of chemical species contained in a biogas, by means of an optical system. The present invention applies advantageously and without limitation to the field of the treatment of a biogas, which aims to transform a biogas into biomethane, and to the use of this biomethane.
Le biogaz est le produit de décomposition anaérobie de déchets d'origine organique, tels que les boues des stations d'épuration, les déchets agricoles, les décharges. Le biogaz est principalement composé de méthane (de 40 à 70 %), de C02 et de vapeur d'eau, mais il contient également des impuretés, telles que des composés soufrés (H2S, S02, ...) des siloxanes, des halogénés ou bien encore des COV (Composés Organiques Volatiles). Le biogaz n'est donc pas directement exploitable. Biogas is the product of anaerobic decomposition of organic wastes, such as sludge from sewage treatment plants, agricultural wastes, landfills. Biogas is mainly composed of methane (40 to 70%), C0 2 and water vapor, but it also contains impurities, such as sulfur compounds (H 2 S, S0 2 , ...) of siloxanes, halogens or even VOCs (Volatile Organic Compounds). Biogas is therefore not directly exploitable.
Pour pouvoir exploiter un biogaz, il est nécessaire qu'il soit épuré (ou encore purifié), notamment pour éliminer le dioxyde de carbone et le sulfure d'hydrogène, mais également les autres impuretés. On obtient ainsi du biométhane que l'on peut injecter dans le réseau de distribution du gaz naturel, ou utiliser comme bio-carburant. To be able to use a biogas, it must be purified (or even purified), in particular to eliminate carbon dioxide and hydrogen sulphide, but also other impurities. Biomethane is thus obtained which can be injected into the natural gas distribution network, or used as a bio-fuel.
Une utilisation particulière d'un biogaz épuré est la pile à combustible ("fuel cell" en anglais), pour laquelle les seuils de tolérance aux impuretés ou contaminants sont particulièrement exigeants afin de ne pas endommager le système (cf. par exemple le document "Biogas and fuel cells workshop", Argonne, 2012, Dennis Papadias and Shabbir Ahmed, Argonne National Laboratory, Presented at the Biogas and Fuel Cells Workshop Golden, CO, June 1 1 -13, 2012"). A particular use of a purified biogas is the fuel cell ("fuel cell" in English), for which the tolerance thresholds to impurities or contaminants are particularly demanding in order not to damage the system (cf. for example the document " Biogas and fuel cells workshop ", Argonne, 2012, Dennis Papadias and Shabbir Ahmed, Argonne National Laboratory, Presented at the Biogas and Fuel Cells Workshop Golden, CO, June 1 1 -13, 2012").
La mise au point de capteurs et de procédés de mesure de chacune des substances polluantes revêt ainsi un intérêt majeur, afin de contrôler le processus de traitement des biogaz ainsi qu’à la qualification du biométhane obtenu après purification, en vue de son utilisation. The development of sensors and methods for measuring each of the polluting substances is therefore of major interest, in order to control the biogas treatment process as well as the qualification of the biomethane obtained after purification, with a view to its use.
Technique antérieure Prior art
On connaît le document DE 202008003790 U1 qui concerne un dispositif et un procédé pour mesurer des concentrations en contaminants contenus dans un biogaz. Plus précisément, un flux partiel de biogaz passe en permanence dans une cellule à gaz au moyen d'une pompe, puis un spectre notamment ultra-violet est mesuré au moyen d'un spectromètre. Ce spectre est ensuite analysé selon un ou plusieurs modèles d'étalonnage chimiométriques. Ainsi, ce procédé comprend une étape de prélèvement du gaz à analyser. Le dispositif décrit dans ce document requiert donc des éléments supplémentaires (une pompe notamment) à la mesure elle-même, rendant le dispositif plus encombrant, coûteux, et nécessitant plus de maintenance. De plus, l'analyse des contaminants est de facto déportée et donc différée dans le temps, ce qui peut être dommageable dans le cas notamment d'une pile à combustible. Par ailleurs, le procédé décrit dans ce document requiert une augmentation préalable de la concentration des espèces chimiques à mesurer, avec un appareil d'adsorption sur un filtre, dans le cas où les concentrations des espèces à mesurer sont trop faibles pour être détectées et mesurées par un spectromètre. Document DE 202008003790 U1 is known which relates to a device and a method for measuring the concentrations of contaminants contained in a biogas. More precisely, a partial flow of biogas passes continuously through a gas cell by means of a pump, then a particularly ultra-violet spectrum is measured by means of a spectrometer. This spectrum is then analyzed according to one or more chemometric calibration models. Thus, this method comprises a step of sampling the gas to be analyzed. The device described in this document therefore requires additional elements (a pump in particular) to the measurement itself, making the device more bulky, expensive, and requiring more maintenance. In addition, the analysis of contaminants is de facto remote and therefore deferred in time, which can be harmful in the case in particular of a fuel cell. Furthermore, the method described in this document requires a prior increase in the concentration of the chemical species to be measured, with an adsorption device on a filter, in the event that the concentrations of the species to be measured are too low to be detected and measured. by a spectrometer.
Le procédé selon l'invention vise à pallier ces inconvénients. Notamment, le procédé selon l'invention vise à fournir une mesure optique de la concentration en espèces chimiques gazeuses contenues dans un biogaz réalisée in situ, et sans nécessiter d'étape de sur-concentration des espèces chimiques présentes en faibles quantités dans le biogaz à analyser. De plus, le procédé selon l'invention permet une mesure dissociée et simultanée de différentes espèces chimiques gazeuses contenues dans le biogaz. Enfin, le procédé selon l'invention peut permettre le diagnostic et/ou le contrôle d’un procédé de purification d'un biogaz, à partir de mesures de la concentration en espèces chimiques gazeuses contenues dans le biogaz réalisées avant, pendant et après la purification du biogaz. Le procédé selon l'invention peut être également avantageusement mis en oeuvre en amont d'une installation utilisant un biométhane, comme par exemple dans une pile à combustible, de manière à garantir l’intégrité du système utilisant ce gaz. The method according to the invention aims to overcome these drawbacks. In particular, the method according to the invention aims to provide an optical measurement of the concentration of gaseous chemical species contained in a biogas carried out in situ, and without requiring a step of over-concentration of the chemical species present in small quantities in the biogas at analyze. In addition, the method according to the invention allows a dissociated and simultaneous measurement of different gaseous chemical species contained in the biogas. Finally, the method according to the invention can allow the diagnosis and / or the control of a process for the purification of a biogas, from measurements of the concentration of gaseous chemical species contained in the biogas carried out before, during and after the purification of biogas. The method according to the invention can also be advantageously implemented upstream of an installation using biomethane, such as for example in a fuel cell, so as to guarantee the integrity of the system using this gas.
Résumé de l’invention Summary of the invention
La présente invention concerne un procédé pour la mesure in situ de la concentration d’au moins une espèce chimique gazeuse contenue dans un biogaz circulant dans un conduit (20) au moyen d’un système de mesure optique comprenant au moins une source lumineuse émettant un rayonnement UV et au moins un spectromètre apte à analyser au moins ledit rayonnement UV, ledit conduit comportant au moins un premier accès optique formé dans une paroi dudit conduit. The present invention relates to a method for in situ measurement of the concentration of at least one gaseous chemical species contained in a biogas flowing in a duct (20) by means of an optical measurement system comprising at least one light source emitting a UV radiation and at least one spectrometer capable of analyzing at least said UV radiation, said conduit comprising at least one first optical access formed in a wall of said conduit.
Le procédé selon l'invention comporte au moins les étapes suivantes : a) au moyen de ladite source lumineuse, on émet, au niveau d'au moins ledit accès optique, ledit rayonnement UV au travers dudit biogaz au sein d'une zone de mesure située au moins en partie dans ledit conduit ; b) au moyen dudit spectromètre, on mesure, au niveau dudit premier accès optique et/ou d'un deuxième accès optique, au moins une partie dudit rayonnement UV ayant traversé ledit biogaz dans ladite zone de mesure, et on génère un signal numérique de l’intensité lumineuse en fonction de la longueur d’onde (W) de ladite partie du rayonnement UV ayant traversé ledit biogaz; The method according to the invention comprises at least the following steps: a) by means of said light source, said UV radiation is emitted at at least said optical access through said biogas within a measurement zone located at least in part in said duct; b) by means of said spectrometer, at the level of said first optical port and / or of a second optical port, at least part of said UV radiation having passed through said biogas in said measurement zone is measured, and a digital signal of the light intensity as a function of the wavelength (W) of said part of the UV radiation having passed through said biogas;
c) on détermine ladite concentration de ladite espèce chimique contenue dans ledit biogaz à partir au moins dudit signal numérique. c) said concentration of said chemical species contained in said biogas is determined from at least said digital signal.
Selon une mise en œuvre du procédé, l'étape c) peut comporter au moins :According to one implementation of the method, step c) can include at least:
- la détermination de l’absorbance dudit biogaz en fonction de la longueur d’onde à partir dudit signal numérique de l’intensité lumineuse en fonction de la longueur d’onde de ladite partie du rayonnement UV ayant traversé ledit biogaz et d'un signal numérique de référence de l’intensité lumineuse en fonction de la longueur d’onde prédéterminée pour un gaz de référence ; - determining the absorbance of said biogas as a function of the wavelength from said digital signal of the light intensity as a function of the wavelength of said part of the UV radiation having passed through said biogas and of a signal reference numerical light intensity as a function of the predetermined wavelength for a reference gas;
- la détermination de ladite concentration de ladite au moins une espèce chimique à partir de ladite absorbance dudit biogaz, de caractéristiques prédéterminées d’absorbance de ladite espèce chimique et d'une estimation de la température et de la pression dudit biogaz. - determining said concentration of said at least one chemical species from said absorbance of said biogas, predetermined absorbance characteristics of said chemical species and an estimate of the temperature and pressure of said biogas.
Avantageusement, ladite absorbance dudit biogaz peut être une fonction de la longueur d'absorbance, du nombre de densité des molécules de ladite espèce chimique et du coefficient d’extinction molaire. Advantageously, said absorbance of said biogas can be a function of the absorbance length, of the density number of the molecules of said chemical species and of the molar extinction coefficient.
Selon une mise en œuvre du procédé, ledit signal numérique de référence peut être obtenu par émission dudit rayonnement UV au travers dudit gaz de référence et par mesure d'au moins une partie dudit rayonnement UV ayant traversé ledit gaz de référence, ledit gaz ayant une concentration en ladite espèce chimique connue ou nulle. According to one implementation of the method, said digital reference signal can be obtained by emitting said UV radiation through said reference gas and by measuring at least part of said UV radiation having passed through said reference gas, said gas having a concentration of said known or no chemical species.
Selon une mise en œuvre du procédé, à l'étape c), on peut déterminer en outre une température dudit biogaz à partir dudit signal numérique. According to an implementation of the method, in step c), a temperature of said biogas can also be determined from said digital signal.
Selon une mise en œuvre du procédé, on peut déterminer ladite température par modification du coefficient d’extinction molaire de l'absorbance de ladite espèce chimique extraite de ladite absorbance dudit biogaz, ladite modification étant un décalage de la longueur d’onde ou une modification de l’amplitude ou une combinaison des deux. Selon une mise en œuvre du procédé, ledit système de mesure optique peut comporter en outre un réflecteur disposé dans ladite zone de mesure dudit conduit. Selon cette mise en œuvre, on peut mesurer au niveau au moins dudit premier accès optique au moins une partie dudit rayonnement UV ayant été émis par ladite source lumineuse au niveau du premier accès optique et s'étant au moins en partie réfléchie sur ledit réflecteur. According to one implementation of the method, said temperature can be determined by modifying the molar extinction coefficient of the absorbance of said chemical species extracted from said absorbance of said biogas, said modification being a shift in the wavelength or a modification amplitude or a combination of both. According to one implementation of the method, said optical measurement system may further include a reflector arranged in said measurement zone of said duct. According to this implementation, at least part of said UV radiation having been emitted by said light source at the level of the first optical access and having at least partly reflected on said reflector can be measured at at least said first optical access.
Selon une mise en œuvre du procédé, lesdits premier et/ou deuxième accès optiques peuvent être déportés par rapport à ladite paroi dudit conduit dans lequel circule le biogaz. According to one implementation of the method, said first and / or second optical access can be offset from said wall of said duct in which the biogas circulates.
Selon une mise en œuvre du procédé, ledit rayonnement UV peut être émis a une longueur d’onde comprise entre 180 et 400 nm, de préférence comprise entre 180 et 280 nm, et encore plus préférentiellement comprise entre 180 et 240 nm. According to one implementation of the method, said UV radiation can be emitted at a wavelength between 180 and 400 nm, preferably between 180 and 280 nm, and even more preferably between 180 and 240 nm.
Selon une mise en œuvre du procédé, on peut mesurer la concentration d’au moins une, et de préférence plusieurs, espèces chimiques gazeuses contenues dans ledit biogaz, et comprises dans la liste constituée par : S02, H2S, NH3, les BTEX, les siloxanes et les halogénés. According to one implementation of the method, it is possible to measure the concentration of at least one, and preferably several, gaseous chemical species contained in said biogas, and included in the list consisting of: S0 2 , H 2 S, NH 3 , BTEX, siloxanes and halogens.
Selon une mise en œuvre du procédé, on peut mesurer simultanément la concentration d’au moins deux espèces chimiques gazeuses, et de préférence d’au moins la concentration de H2S et la concentration en NH3. According to one implementation of the method, the concentration of at least two gaseous chemical species can be measured simultaneously, and preferably at least the concentration of H 2 S and the concentration of NH 3 .
Selon une mise en œuvre du procédé, on peut mesurer la concentration d’au moins une espèce chimique gazeuse choisie parmi les espèces chimiques soufrées S02 et H2S, et de préférence les deux. According to one implementation of the method, it is possible to measure the concentration of at least one gaseous chemical species chosen from sulfur-containing chemical species S0 2 and H 2 S, and preferably both.
Selon une mise en œuvre du procédé, on peut mesurer la concentration d’au moinsDepending on an implementation of the method, the concentration can be measured at least
NH3. NH 3 .
Selon une mise en œuvre du procédé, ledit conduit dans lequel circule ledit biogaz peut être un conduit d'une installation pour la purification dudit biogaz, et ledit procédé peut être mis en œuvre en amont et/ou en aval de ladite installation. According to one implementation of the method, said pipe in which said biogas circulates can be a pipe of an installation for the purification of said biogas, and said method can be implemented upstream and / or downstream of said installation.
Selon une mise en œuvre du procédé, ledit conduit dans lequel circule ledit biogaz peut être un conduit d'un système utilisant ledit biogaz tel qu'un réseau de distribution dudit biogaz, un véhicule, ou une pile à combustible, et ledit procédé peut être mis en oeuvre en amont dudit système utilisant ledit biogaz. According to one implementation of the method, said duct in which said biogas circulates can be a duct of a system using said biogas such as a distribution network of said biogas. biogas, a vehicle, or a fuel cell, and said method can be implemented upstream of said system using said biogas.
D’autres objets et avantages de l’invention apparaîtront à la lecture de la description qui suit d’exemples de réalisations particuliers de l’invention, donnés à titre d’exemples non limitatifs, la description étant faite en référence aux figures annexées décrites ci-après. Other objects and advantages of the invention will become apparent on reading the following description of examples of particular embodiments of the invention, given by way of non-limiting examples, the description being given with reference to the appended figures described below. -after.
Liste des figures List of Figures
La figure 1A est un schéma illustrant la mesure optique de la concentration d’espèces chimiques contenues dans un biogaz, selon une configuration transmissive du système de mesure optique pour la mise en oeuvre du procédé selon l'invention. FIG. 1A is a diagram illustrating the optical measurement of the concentration of chemical species contained in a biogas, according to a transmissive configuration of the optical measurement system for the implementation of the method according to the invention.
La figure 1 B est un schéma illustrant la mesure optique de la concentration d’espèces chimiques contenues dans un biogaz, selon une configuration réflective du système de mesure optique pour la mise en oeuvre du procédé selon l'invention. FIG. 1B is a diagram illustrating the optical measurement of the concentration of chemical species contained in a biogas, according to a reflective configuration of the optical measurement system for the implementation of the method according to the invention.
Les figures 1 C et 1 D représentent respectivement des variantes des modes de réalisation présentés dans les figures 1A et 1 B, comportant des accès optiques déportés par rapport au conduit dans lequel circule le biogaz. FIGS. 1 C and 1 D respectively represent variants of the embodiments presented in FIGS. 1A and 1 B, comprising optical accesses offset from the duct in which the biogas circulates.
La figure 2 représente schématiquement l’absorbance du biogaz comportant différentes espèces chimiques gazeuses A, B, C que l’on souhaite mesurer. Figure 2 shows schematically the absorbance of biogas comprising different gaseous chemical species A, B, C that we want to measure.
La figure 3 représente schématiquement l’influence de la température sur l’absorbance d’une espèce chimique donnée contenue dans le biogaz. Figure 3 shows schematically the influence of temperature on the absorbance of a given chemical species contained in biogas.
Les figures 4 à 14 sont des schémas illustrant différents modes de réalisation du système de mesure optique pour la mise en oeuvre du procédé selon l'invention. FIGS. 4 to 14 are diagrams illustrating different embodiments of the optical measurement system for implementing the method according to the invention.
Description des modes de réalisation Description of embodiments
La présente invention concerne un procédé de mesure in situ de la concentration d’au moins une espèce chimique gazeuse contenue dans un biogaz au moyen d’un système de mesure optique. The present invention relates to a method for measuring in situ the concentration of at least one gaseous chemical species contained in a biogas by means of an optical measuring system.
Par biogaz, il est entendu tout gaz résultant de la décomposition anaérobie de déchets d'origine organique, tels que les boues des stations d'épuration, les déchets agricoles, les décharges. Il en résulte que le biométhane est un biogaz selon l'invention. La présente invention permet une mesure in situ, c’est-à-dire directement dans un conduit dans lequel circule le biogaz et sans prélèvement d’échantillon(s) du biogaz. Ce conduit peut être un conduit d'une installation de traitement dudit biogaz (par exemple un conduit d'une installation de purification d'un biogaz) et/ou un conduit se trouvant en amont d'une installation utilisant un biogaz (par exemple une canalisation d'un réseau de distribution du biogaz). De manière générale, on parle par la suite de conduit d'une installation à surveiller. By biogas, it is understood any gas resulting from the anaerobic decomposition of waste of organic origin, such as sludge from purification plants, agricultural waste, landfills. It follows that the biomethane is a biogas according to the invention. The present invention allows measurement in situ, that is to say directly in a conduit in which the biogas circulates and without taking any sample (s) of the biogas. This pipe can be a pipe from an installation for treating said biogas (for example a pipe from a biogas purification installation) and / or a pipe located upstream of an installation using biogas (for example a pipeline of a biogas distribution network). In general, this is referred to below as the conduit of an installation to be monitored.
De plus, comme cela sera décrit ci-dessous, la présente invention ne requiert pas de pré-conditionnement du biogaz (par une surconcentration par exemple) dans le cas d'une espèce chimique présente en faible quantité dans le biogaz à analyser. In addition, as will be described below, the present invention does not require preconditioning of the biogas (by overconcentration for example) in the case of a chemical species present in small quantity in the biogas to be analyzed.
Le procédé selon l'invention est mis en oeuvre au moyen d'un système de mesure optique comprenant au moins une source lumineuse émettant dans le rayonnement UV et un spectromètre. Selon l'invention, le conduit au travers duquel circule le biogaz comprend au moins un accès optique formé dans le conduit dans lequel s'écoule le biogaz, ledit accès optique étant apte à laisser passer au moins des rayonnements UV. Cet accès optique peut être formé par une ouverture ménagée dans le conduit, sur laquelle est fixée par exemple une lentille ou un hublot. The method according to the invention is implemented by means of an optical measurement system comprising at least one light source emitting UV radiation and a spectrometer. According to the invention, the conduit through which the biogas circulates comprises at least one optical access formed in the conduit in which the biogas flows, said optical access being capable of allowing at least UV radiation to pass. This optical access can be formed by an opening made in the duct, to which is fixed for example a lens or a window.
Les figures 1 A et 1 B représentent schématiquement et non limitativement le principe de mesure selon l’invention. La figure 1 A diffère de la figure 1 B par le système de mesure optique, qui est selon une configuration transmissive dans la figure 1A et selon une configuration réflective dans la figure 1 B. Figures 1 A and 1 B show schematically and without limitation the measurement principle according to the invention. Figure 1A differs from Figure 1B by the optical measurement system, which is in a transmissive configuration in Figure 1A and in a reflective configuration in Figure 1B.
Le procédé de mesure comporte les étapes suivantes : The measurement process consists of the following steps:
- rémission par la source lumineuse 41 d’un rayonnement UV 42 à travers un biogaz 10 au sein d’une zone de mesure 21 située dans un conduit 20 (par exemple une canalisation d'une installation de traitement du biogaz) dans lequel s'écoule le biogaz. Le rayonnement UV 42 traverse le biogaz, selon un chemin optique de longueur d, qui peut être sensiblement mais non limitativement perpendiculaire au parcours P du biogaz, tel que représenté dans les figures 1 A et 1 B. Le rayonnement UV 42 entre dans la zone de mesure par un accès optique, par exemple un hublot ou une lentille, ménagé dans le conduit dans lequel s'écoule le biogaz. - remission by the light source 41 of UV radiation 42 through a biogas 10 within a measurement zone 21 located in a pipe 20 (for example a pipe of a biogas treatment plant) in which s' flows the biogas. The UV radiation 42 passes through the biogas, along an optical path of length d, which can be substantially but not limited to perpendicular to the path P of the biogas, as shown in Figures 1 A and 1 B. The UV radiation 42 enters the zone measurement by an optical access, for example a window or a lens, provided in the conduit in which the biogas flows.
- La détection par le spectromètre 44 d’au moins une partie 43 du rayonnement UV ayant traversé le biogaz dans la zone de mesure 21 , et la génération d’un signal numérique 50 de l’intensité lumineuse en fonction de la longueur d’onde de la partie du rayonnement UV ayant traversé le biogaz. Les espèces chimiques gazeuses dont on souhaite mesurer la concentration absorbent une partie du rayonnement UV et chaque espèce chimique gazeuse absorbe les rayons à certaines longueurs d’ondes données. L’absorption suit, sous des conditions idéales, la loi de Beer-Lambert. Le rayonnement UV ayant traversé le biogaz est détecté par le spectromètre 44 à travers un accès optique (un autre accès optique pour le mode de réalisation de la figure 1 A, le même accès optique pour le mode de la réalisation de la figure 1 B), aménagé comme pour l’émission par la source lumineuse. - The detection by the spectrometer 44 of at least part 43 of the UV radiation which has passed through the biogas in the measurement zone 21, and the generation of a digital signal 50 of the light intensity as a function of the wavelength the part of UV radiation that has passed through the biogas. The gaseous chemical species whose concentration is to be measured absorb part of the UV radiation and each gaseous chemical species absorbs the rays at certain given wavelengths. Absorption follows, under ideal conditions, Beer-Lambert's law. The UV radiation which has passed through the biogas is detected by the spectrometer 44 through an optical access (another optical access for the embodiment of figure 1A, the same optical access for the embodiment of figure 1B) , arranged as for emission by the light source.
- l’estimation de la concentration [X] de l’espèce chimique gazeuse à partir au moins du signal numérique 50. - the estimation of the concentration [X] of the gaseous chemical species from at least the digital signal 50.
Alors que la configuration est transmissive dans le mode de réalisation représenté à la figure 1A, la configuration est réflective dans le mode de réalisation représenté à la figure 1 B. Selon cette configuration réflective, le système optique 40 comprend en outre un réflecteur 45. Le rayonnement UV émis par la source 41 est réfléchi par le réflecteur 45, positionné à l’extrémité de la zone de mesure 21 opposée à l’extrémité où se trouvent la source lumineuse 41 et le spectromètre 44. Le réflecteur 45 est de préférence positionné dans le conduit 20 dans lequel circule le biogaz, tel qu’illustré à la figure 1 B. Il peut alternativement être intégré à la paroi de cet élément, ou être disposé à l’extérieur de celle- ci. Le rayonnement UV 42 traverse une première fois le biogaz 10 dans la zone de mesure 21 , est réfléchi par le réflecteur 45, traverse une deuxième fois en sens inverse le biogaz dans la zone de mesure 21 , et est ensuite détecté par le spectromètre 44, tel que décrit plus haut. L'emplacement du réflecteur 45 peut être en outre ajusté en fonction de l'ordre de grandeur de la ou des concentrations en espèces chimiques attendues. En effet, plus la longueur du chemin optique parcouru par le rayonnement UV au travers du biogaz est grande, plus la mesure de la concentration sera fiable et précise dans le cas de faibles concentrations en espèces chimiques. On peut ainsi avantageusement placer le miroir 45 sur la paroi du conduit 20 opposée à la source lumineuse 41 , de manière à augmenter (en l'espèce doubler) la longueur du chemin optique par rapport à la configuration en Figure 1 A. While the configuration is transmissive in the embodiment shown in Figure 1A, the configuration is reflective in the embodiment shown in Figure 1 B. According to this reflective configuration, the optical system 40 further comprises a reflector 45. The UV radiation emitted by the source 41 is reflected by the reflector 45, positioned at the end of the measurement zone 21 opposite the end where the light source 41 and the spectrometer 44 are located. The reflector 45 is preferably positioned in the conduit 20 in which the biogas circulates, as illustrated in FIG. 1 B. It can alternatively be integrated into the wall of this element, or be disposed outside the latter. The UV radiation 42 passes through the biogas 10 in the measurement zone 21 for the first time, is reflected by the reflector 45, passes through the biogas in the measurement zone 21 in the opposite direction a second time, and is then detected by the spectrometer 44, as described above. The location of the reflector 45 can be further adjusted depending on the order of magnitude of the expected chemical species concentration (s). In fact, the greater the length of the optical path traveled by UV radiation through the biogas, the more reliable and precise the measurement of the concentration will be in the case of low concentrations of chemical species. It is thus advantageously possible to place the mirror 45 on the wall of the duct 20 opposite the light source 41, so as to increase (in this case double) the length of the optical path compared to the configuration in FIG. 1 A.
Selon une autre variante de mise en oeuvre de l'invention, on peut ajuster la longueur du trajet optique parcouru par le rayonnement UV dans le biogaz au moyen d'au moins un accès optique déporté par rapport à la paroi du conduit dans lequel circule le biogaz. Cet accès optique déporté peut consister en un tube fixé à l'une de ses extrémités à l'ouverture ménagée dans le conduit de l'installation à surveiller, et l'autre extrémité de ce tube comprenant un moyen apte à laisser les rayonnements UV, comme un hublot ou une lentille. Le biogaz qui circule dans le conduit de l'installation à surveiller peut donc également occuper l'espace défini par ledit accès optique déporté fixé audit élément, agrandissant ainsi la zone de mesure. Selon cette variante de mise en oeuvre de l'invention, la section transversale (par rapport à la direction principale du rayonnement UV) de l'accès optique déporté est de préférence sensiblement circulaire, mais peut être de toute autre forme, de préférence en rapport avec la forme de l'ouverture ménagée dans le conduit de l'installation à surveiller. La Figure 1 C présente un exemple de réalisation de cette variante de l'invention, dans le cas d'une configuration transmissive du système optique selon l'invention telle que définie ci-dessus, et qui comprend deux accès optiques déportés 31 ', 31 " sous forme de tubes circulaires de longueur respectivement d1 et d2, le premier accès optique déporté étant destiné au passage du rayonnement UV émis par la source lumineuse 41 , et le deuxième accès optique déporté étant destiné au passage du rayonnement UV ayant traversé le biogaz traversé dans la zone de mesure 21 , 21 , 21 ", en vue de sa mesure par le spectromètre 44. Dans ce cas, le chemin optique total du rayonnement UV ayant traversé le biogaz vaut d+d1 +d2. La Figure 1 D présente un autre exemple de réalisation de cette variante de l'invention, dans le cas d'une configuration réflective du système optique selon l'invention telle que définie ci-dessus, et qui comprend un accès optique déporté 31 , sous la forme d'un tube circulaire de longueur d1 dans la direction longitudinale, accès optique destiné au passage du rayonnement UV émis par la source lumineuse 41 , puis réfléchi par le réflecteur 45 après avoir traversé une première fois le biogaz dans la zone de mesure 21 ', 21 , et retraversant l'accès optique pour être détecté par le spectromètre 44 après avoir traversé une deuxième fois le biogaz dans la zone de mesure 21 ', 21. Dans ce cas, le chemin optique total du rayonnement UV ayant traversé le biogaz vaut 2(d+d1 ). Ces différentes configurations du système optique selon l'invention, non limitatives, comprenant au moins un accès optique déporté, permettent de faire varier la longueur du chemin optique parcouru par le rayonnement UV, et ainsi d'améliorer la précision de la mesure de la concentration dans le cas de faibles concentrations en espèces chimiques. According to another variant embodiment of the invention, the length of the optical path traversed by the UV radiation in the biogas can be adjusted by means of at least one optical access offset with respect to the wall of the duct in which the gas circulates. biogas. This remote optical access may consist of a tube fixed at one of its ends to the opening made in the conduit of the installation to be monitored, and the other end of this tube comprising means suitable for letting UV radiation, like a porthole or a lens. The biogas which circulates in the pipe of the installation to be monitored can therefore also occupy the space defined by said remote optical access fixed to said element, thus enlarging the measurement zone. According to this alternative embodiment of the invention, the cross section (relative to the main direction of UV radiation) of the remote optical access is preferably substantially circular, but may be of any other shape, of preferably in relation to the shape of the opening made in the duct of the installation to be monitored. FIG. 1 C shows an exemplary embodiment of this variant of the invention, in the case of a transmissive configuration of the optical system according to the invention as defined above, and which comprises two remote optical accesses 31 ', 31 "in the form of circular tubes of length respectively d1 and d2, the first remote optical access being intended for the passage of UV radiation emitted by the light source 41, and the second remote optical access being intended for the passage of UV radiation having passed through the biogas traversed in the measurement zone 21, 21, 21 ", with a view to its measurement by the spectrometer 44. In this case, the total optical path of the UV radiation which has passed through the biogas is equal to d + d1 + d2. Figure 1D shows another embodiment of this variant of the invention, in the case of a reflective configuration of the optical system according to the invention as defined above, and which comprises a remote optical access 31, under the shape of a circular tube of length d1 in the longitudinal direction, optical access intended for the passage of UV radiation emitted by the light source 41, then reflected by the reflector 45 after having passed through the biogas for the first time in the measurement zone 21 ', 21, and passing through the optical access again to be detected by the spectrometer 44 after having passed through the biogas a second time in the measurement zone 21', 21. In this case, the total optical path of the UV radiation having passed through the biogas is 2 (d + d1). These different configurations of the optical system according to the invention, which are not limiting, comprising at least one remote optical access, make it possible to vary the length of the optical path traversed by the UV radiation, and thus to improve the precision of the measurement of the concentration. in the case of low concentrations of chemical species.
Ainsi, le procédé selon l'invention, pouvant être mis en oeuvre in situ, présente l’avantage de ne pas modifier l’écoulement du biogaz et d’être instantanée, par exemple avec un temps de réponse pouvant être inférieur à 0,1 s, contrairement aux méthodes connues par prélèvement des gaz, dans lesquelles il y a un rajout de contre pression, une évolution possible des gaz à analyser lors du prélèvement, qui est non souhaitée (en effet, lors d'un prélèvement, le gaz peut se condenser, ce qui peut contribuer à modifier le gaz finalement analysé, par exemple par adsorption de certaines molécules sur les parois des tubes de prélèvements), et un transit des gaz jusqu’à la cellule de mesure provoquant un délai dans la mesure. Thus, the method according to the invention, which can be implemented in situ, has the advantage of not modifying the flow of the biogas and of being instantaneous, for example with a response time which may be less than 0.1. s, unlike the known methods by sampling gases, in which there is an addition of back pressure, a possible evolution of the gases to be analyzed during sampling, which is undesirable (in fact, during a sampling, the gas may condense, which can contribute to modifying the gas finally analyzed, for example by adsorption of certain molecules on the walls of the sampling tubes), and a transit of the gases to the measurement cell causing a delay in the measurement.
De plus, le procédé selon l'invention peut permettre une mesure fiable et précise de la ou des espèces chimiques présentes dans le biogaz en faibles quantités, sans avoir recours à une étape préalable de surconcentration des espèces chimiques, et ce, au moyen d'un ajustement de la longueur du chemin optique qui est fonction de la disposition des éléments du système optique selon l'invention. Que ce soit dans le cas d’une configuration transmissive ou réflective, la source lumineuse 41 et le spectromètre 44 sont de préférence positionnés à l’extérieur du conduit 20 dans lequel circule le biogaz, par exemple sur la face externe des parois du conduit, ou à distance de cet élément si des moyens de transmission du rayonnement sont prévus, tel que par exemple des fibres optiques comme représenté aux figures 10 et 1 1 décrites plus loin. Cela permet notamment d’éviter l’encrassement de ces éléments optiques. In addition, the method according to the invention can allow a reliable and precise measurement of the chemical species (s) present in the biogas in small quantities, without having recourse to a prior step of overconcentration of the chemical species, by means of an adjustment of the length of the optical path which depends on the arrangement of the elements of the optical system according to the invention. Whether in the case of a transmissive or reflective configuration, the light source 41 and the spectrometer 44 are preferably positioned outside the duct 20 in which the biogas circulates, for example on the external face of the walls of the duct, or at a distance from this element if radiation transmission means are provided, such as for example optical fibers as shown in Figures 10 and 11 described below. This makes it possible in particular to prevent the fouling of these optical elements.
Le procédé selon l’invention comporte de préférence une étape préalable de calibration du système de mesure optique permettant d’obtenir un signal numérique de référence de l’intensité lumineuse en fonction de la longueur d’onde. The method according to the invention preferably comprises a preliminary step of calibrating the optical measuring system making it possible to obtain a reference digital signal of the light intensity as a function of the wavelength.
De préférence, cette étape consiste à émettre le rayonnement UV à travers un gaz de référence, par exemple un gaz ne contenant aucune des espèces chimiques à mesurer (comme de l’hélium, du diazote ou de l’air), ou à travers un gaz de référence qui contient certaines espèces chimiques que l’on souhaite mesurer et dont on connaît la concentration dans ledit gaz. Le rayonnement traverse le gaz de référence, et est ensuite détecté par le spectromètre pour fournir un signal numérique de référence de l’intensité lumineuse en fonction de la longueur d’onde de la partie du rayonnement UV ayant traversé le gaz de référence. Le signal de référence est utilisé dans l’étape d’estimation de la concentration et de la température, en particulier pour calculer l’absorbance du biogaz, comme décrit en détails plus bas. Preferably, this step consists in emitting the UV radiation through a reference gas, for example a gas not containing any of the chemical species to be measured (such as helium, dinitrogen or air), or through a reference gas which contains certain chemical species which it is desired to measure and of which the concentration in said gas is known. The radiation passes through the reference gas, and is then detected by the spectrometer to provide a reference digital signal of light intensity as a function of the wavelength of the part of the UV radiation that has passed through the reference gas. The reference signal is used in the concentration and temperature estimation step, in particular to calculate the absorbance of biogas, as described in detail below.
Le rayonnement UV émis par la source lumineuse 42 a une longueur d’onde comprise entre 180 et 400 nm, de préférence comprise entre 180 et 280 nm (notamment dans le cas où l'espèce chimique est le NO), ou très préférentiellement comprise entre 180 et 240 nm (notamment dans le cas où l'espèce chimique est le NH3). Ces gammes de longueur d’onde font partie de ce qu’on désigne par UV profond. The UV radiation emitted by the light source 42 has a wavelength between 180 and 400 nm, preferably between 180 and 280 nm (in particular in the case where the chemical species is NO), or very preferably between 180 and 240 nm (especially in the case where the chemical species is NH 3 ). These wavelength ranges are part of what is referred to as deep UV.
A titre d’exemple, la source lumineuse peut être une diode LED émettant dans l’UV et en particulier dans l’UV profond tel qu’indiqué ci-dessus, ou peut-être une lampe au xénon, au deutérium, au zinc, au cadmium, ou une autre lampe à gaz comme les lampes excimères KrBr, KrCL, KrF. By way of example, the light source can be an LED diode emitting in UV and in particular in deep UV as indicated above, or perhaps a xenon, deuterium or zinc lamp, cadmium, or another gas lamp such as KrBr, KrCL, KrF excimer lamps.
Le spectromètre permet d'analyser le signal lumineux dans la gamme de longueur d’onde 180-400 nm, de préférence 180-280 nm, et plus préférentiellement 180-240 nm. Alternativement, un système simplifié permettant d'analyser une gamme de longueur d'ondes réduite peut être utilisé. On conserve le terme de spectromètre dans la présente invention pour désigner un tel système simplifié. L’ensemble formé par au moins la source lumineuse UV et le spectromètre, aussi appelé système optique ou capteur optique dans la présente invention, est connu en soi. De tels capteurs optiques peuvent être trouvés dans le commerce. The spectrometer makes it possible to analyze the light signal in the wavelength range 180-400 nm, preferably 180-280 nm, and more preferably 180-240 nm. Alternatively, a simplified system for analyzing a reduced wavelength range can be used. The term spectrometer is retained in the present invention to denote such a simplified system. The assembly formed by at least the UV light source and the spectrometer, also called optical system or optical sensor in the present invention, is known per se. Such optical sensors can be found commercially.
Le système optique peut comporter d’autres éléments, notamment des éléments optiques tels que des lentilles permettant de modifier le faisceau lumineux si nécessaire (par exemple convergence ou divergence), ou encore des éléments de protection visant à protéger la source lumineuse et le spectromètre, en particulier lors d’un fonctionnement à froid du système de mesure optique. En effet, le fonctionnement à froid peut provoquer des dépôts sur les éléments optiques par un phénomène de condensation. De tels éléments de protection sont décrits plus bas, en relation avec la figure 12. La position du capteur installé sur le conduit dans lequel circule le biogaz peut être choisie de manière à limiter l’encrassement de celui-ci. The optical system can include other elements, in particular optical elements such as lenses making it possible to modify the light beam if necessary (for example convergence or divergence), or even protection elements aiming to protect the light source and the spectrometer, in particular during cold operation of the optical measuring system. Indeed, cold operation can cause deposits on the optical elements by a phenomenon of condensation. Such protective elements are described below, in relation to Figure 12. The position of the sensor installed on the pipe in which the biogas circulates can be chosen so as to limit the clogging thereof.
Selon l’invention, on peut effectuer la mesure d’au moins une espèce chimique gazeuse X, et de préférence plusieurs espèces chimiques gazeuses X, comprises dans la liste constituée par : S02, H2S, NH3, les BTEX (ce qui comprend le benzène, le toluène, l'éthylbenzène et le xylène), les siloxanes et les halogénés. De préférence, on effectue la mesure d’au moins une, et plus préférentiellement de plusieurs, espèces chimiques gazeuses comprises dans la liste constituée par : les hydrocarbures (tels que les aromatiques, les alcènes, les terpènes et les terpénoïdes), les siloxanes (tels que les D2 à D7), les composés organiques (tels que les sulfides, les mercaptans, les thiols) ou inorganiques soufrés (tels que les sulfides), les halogénés. Avantageusement, on effectue au moins la mesure de la concentration en THT (tétrahydrothiophène). According to the invention, it is possible to measure at least one gaseous chemical species X, and preferably several gaseous chemical species X, included in the list consisting of: S0 2 , H 2 S, NH 3 , BTEX (this which includes benzene, toluene, ethylbenzene and xylene), siloxanes and halogens. Preferably, the measurement of at least one, and more preferably of several, gaseous chemical species included in the list consisting of: hydrocarbons (such as aromatics, alkenes, terpenes and terpenoids), siloxanes ( such as D2 to D7), organic compounds (such as sulphides, mercaptans, thiols) or inorganic sulfur compounds (such as sulphides), halogens. Advantageously, at least the measurement of the concentration of THT (tetrahydrothiophene) is carried out.
Avantageusement, on peut effectuer la mesure dissociée et simultanée de la concentration d’une pluralité de ces espèces chimiques gazeuses. Advantageously, the dissociated and simultaneous measurement of the concentration of a plurality of these gaseous chemical species can be carried out.
Par mesure dissociée, on entend un accès à la concentration propre de chaque espèce chimique, par opposition à une mesure globale de la concentration de plusieurs espèces chimiques sans distinction. Par exemple, on procède, selon l’invention, à la mesure simultanée de la concentration d’au moins deux espèces chimiques gazeuses, de préférence au moins la concentration de H2S et la concentration en NH3. By dissociated measurement is meant an access to the specific concentration of each chemical species, as opposed to an overall measurement of the concentration of several chemical species without distinction. For example, according to the invention, the simultaneous measurement of the concentration of at least two gaseous chemical species, preferably at least the concentration of H 2 S and the concentration of NH 3, is carried out .
Selon une mise en oeuvre de l’invention, on peut également effectuer la mesure de la concentration d’au moins le S02, ou l’H2S, et de préférence d’au moins les deux. La quantification des éléments soufrés dans un biogaz est particulièrement utile lorsque le procédé selon l'invention est mis en oeuvre pour qualifier le biogaz avant son utilisation dans une pile à combustible, pour laquelle la corrosion peut être très néfaste. Avantageusement, on mesure la concentration d’au moins le NH3. En répétant les étapes du procédé selon l'invention à différents instants, on peut par exemple surveiller l’évolution dans le temps de la concentration en NH3 d'une installation de purification de biogaz. According to one implementation of the invention, it is also possible to measure the concentration of at least S0 2 , or H 2 S, and preferably at least both. The quantification of the sulfur elements in a biogas is particularly useful when the method according to the invention is implemented to qualify the biogas before its use in a fuel cell, for which corrosion can be very harmful. Advantageously, the concentration of at least NH 3 is measured. By repeating the steps of the process according to the invention at different times, it is possible for example to monitor the evolution over time of the NH 3 concentration of a biogas purification installation.
Dans le procédé selon l’invention, la concentration de chaque espèce chimique est déterminée à partir de la mesure optique effectuée sur le biogaz et d'une signature optique propre à chaque espèce chimique. Chaque espèce chimique gazeuse dont on souhaite mesurer la concentration absorbe en effet une partie du rayonnement UV et présente un spectre d’absorption qui lui est propre (absorbance en fonction de la longueur d’onde). In the method according to the invention, the concentration of each chemical species is determined from the optical measurement carried out on the biogas and from an optical signature specific to each chemical species. Each gaseous chemical species whose concentration is to be measured absorbs part of the UV radiation and has its own absorption spectrum (absorbance as a function of wavelength).
Lors de l’étape d’estimation de la concentration [X] d’au moins une espèce chimique, on effectue au moins les étapes a) et b) décrites ci-dessous : a) on détermine l’absorbance A du biogaz en fonction de la longueur d’onde W à partir du signal numérique de l’intensité lumineuse 50 généré par le spectromètre et issu de la détection de la partie du rayonnement UV ayant traversé le biogaz, et à partir d’un signal numérique de référence. Le signal numérique de référence est établi de préférence lors de l’étape préalable de calibration décrite plus haut. En particulier, l’absorbance du biogaz est calculée selon une formule du type de la formule (I) ci-dessous : During the step of estimating the concentration [X] of at least one chemical species, at least steps a) and b) described below are carried out: a) the absorbance A of the biogas is determined as a function of of the wavelength W from the digital signal of the light intensity 50 generated by the spectrometer and resulting from the detection of the part of the UV radiation which has passed through the biogas, and from a digital reference signal. The digital reference signal is preferably established during the preliminary calibration step described above. In particular, the absorbance of biogas is calculated according to a formula of the type of formula (I) below:
b) on détermine, à l’aide de moyens d’analyse et de traitement du signal tels qu’un microprocesseur, la concentration [X] de chaque espèce chimique que l’on souhaite mesurer, à partir de l’absorbance A du biogaz, de caractéristiques prédéterminées d’absorbance et d'une estimation de la pression et de la température de chacune des espèces chimiques. Ces caractéristiques prédéterminées d’absorbance de chacune des espèces chimiques sont de préférence obtenues lors de campagnes de mesure préalables permettant de créer une bibliothèque. Des données issues de la littérature peuvent également venir alimenter une telle bibliothèque. Par caractéristique d’absorbance d’une espèce chimique donnée on entend son coefficient d’extinction molaire. Avantageusement, la pression et/ou la température peuvent être estimées par mesure au cours de la mise en oeuvre du procédé selon l'invention, au moyen respectivement d'un capteur de pression et/ou d'un capteur de température. Avantageusement, selon une mise en oeuvre de l'invention, on estime la température du biogaz au moyen de la variante principale décrite ci- dessous, qui peut constituer une étape c) supplémentaire aux étapes a) et b) décrites ci- dessus. b) using analysis and signal processing means such as a microprocessor, the concentration [X] of each chemical species to be measured is determined from the absorbance A of the biogas , predetermined absorbance characteristics and an estimate of the pressure and temperature of each of the chemical species. These predetermined characteristics of absorbance of each of the chemical species are preferably obtained during preliminary measurement campaigns making it possible to create a library. Data from the literature can also feed into such a library. By absorbance characteristic of a given chemical species is meant its molar extinction coefficient. Advantageously, the pressure and / or the temperature can be estimated by measurement during the implementation of the method according to the invention, by means respectively of a pressure sensor and / or a temperature sensor. Advantageously, according to one implementation of the invention, the temperature of the biogas is estimated by means of the main variant described below. below, which may constitute an additional step c) to steps a) and b) described above.
Selon une variante principale du procédé selon l'invention, on détermine en outre la température (T) du biogaz circulant dans le conduit, en plus de la concentration. Selon une mise en oeuvre de cette variante principale, on détermine la température (T) du biogaz circulant dans le conduit par modification du coefficient d’extinction molaire de l’absorbance de l'espèce chimique dont on souhaite mesurer la concentration, ladite absorbance de l’espèce chimique étant extraite de l’absorbance dudit biogaz. La modification du coefficient d’extinction molaire peut être un décalage de la longueur d’onde, conduisant à une absorption à des longueurs d'ondes différentes, ou une modification de l’amplitude de l’absorbance à une longueur d’onde donnée, ou une combinaison des deux. Lorsque le comportement exact du coefficient d’extinction molaire de l’absorbance en fonction de la température d'une espèce chimique est connu, par le biais de mesures préalables ou de données issues de la littérature, permettant de créer une bibliothèque, cette espèce chimique peut être utilisée comme indicateur de température. Le degré de précision sur la détermination de la température dépend de la sensibilité du coefficient d’extinction molaire de l’espèce chimique dans la gamme de longueur d’onde mesurée. La figure 3 illustre l’influence de la température sur l’absorbance d’une espèce chimique, ici l’ammoniac, exploitée pour déterminer la température selon la présente invention. La courbe A-Tc représente l’absorbance de NH3 pour une température faible, par exemple 20tC, et la courbe A-Th représente l’absorbance de NH3 pour une température élevée, par exemple 450tC. Une modification du coefficient d’extinction molaire par exemple abouti à un décalage du signal d’absorption. Bien que l’exemple donné porte sur l’ammoniac, toute autre espèce chimique comme le S02, H2S, NH3, les BTEX, les siloxanes, les halogénés, les aldéhydes comme l’acétaldéhyde ou le formaldéhyde, des hydrocarbures non aromatiques comme l’acétylène ou le buta-1 ,3-diène, peut être utilisée pour déterminer la température. Le même type d’algorithmes que ceux utilisés pour déterminer la concentration des espèces chimiques peut être utilisé pour déterminer la température. According to a main variant of the method according to the invention, the temperature (T) of the biogas circulating in the pipe is also determined, in addition to the concentration. According to one implementation of this main variant, the temperature (T) of the biogas circulating in the duct is determined by modifying the molar extinction coefficient of the absorbance of the chemical species whose concentration is to be measured, said absorbance of the chemical species being extracted from the absorbance of said biogas. The change in the molar extinction coefficient can be a shift in wavelength, leading to absorption at different wavelengths, or a change in the amplitude of the absorbance at a given wavelength, or a combination of both. When the exact behavior of the molar extinction coefficient of absorbance as a function of temperature of a chemical species is known, by means of preliminary measurements or data from the literature, allowing the creation of a library, this chemical species can be used as a temperature indicator. The degree of accuracy in determining the temperature depends on the sensitivity of the molar extinction coefficient of the chemical species in the measured wavelength range. FIG. 3 illustrates the influence of temperature on the absorbance of a chemical species, here ammonia, used to determine the temperature according to the present invention. The curve A-Tc represents the absorbance of NH 3 for a low temperature, for example 20 t C, and the curve A-Th represents the absorbance of NH 3 for a high temperature, for example 450 t C. A modification of the molar extinction coefficient, for example, results in a shift in the absorption signal. Although the example given relates to ammonia, any other chemical species such as SO 2 , H 2 S, NH 3 , BTEX, siloxanes, halogens, aldehydes such as acetaldehyde or formaldehyde, non-hydrocarbons. aromatics such as acetylene or buta-1,3-diene, can be used to determine the temperature. The same type of algorithms that are used to determine the concentration of chemical species can be used to determine the temperature.
Ainsi, le procédé selon cette variante principale de l’invention permet d’accéder à la température du biogaz, sans appareil de mesure supplémentaire dans la zone de contrôle. De plus, cette variante principale permet la mesure instantanée de la température, par un traitement spécifique du signal d’absorption UV, simultanément à la mesure de la concentrations d’espèces chimiques gazeuses contenues dans les gaz. La figure 2 représente schématiquement l’absorbance A du biogaz comportant différentes espèces chimiques gazeuses A, B, C que l’on souhaite mesurer. Le diagramme de gauche représente un exemple d’absorbance A (sans unité) du biogaz, exprimée en fonction de la longueur d’onde W (en nm), calculée à partir du signal numérique de l’intensité lumineuse 50 généré par le spectromètre et du signal numérique de référence. Thus, the method according to this main variant of the invention makes it possible to access the temperature of the biogas, without additional measuring device in the control zone. In addition, this main variant allows instantaneous measurement of the temperature, by specific processing of the UV absorption signal, simultaneously with the measurement of the concentration of gaseous chemical species contained in the gases. FIG. 2 schematically represents the absorbance A of the biogas comprising different gaseous chemical species A, B, C that it is desired to measure. The diagram on the left shows an example of absorbance A (unitless) of biogas, expressed as a function of wavelength W (in nm), calculated from the digital signal of light intensity 50 generated by the spectrometer and of the digital reference signal.
L’absorbance A d'un gaz est une fonction de la longueur d'absorbance, c’est-à-dire la longueur du chemin optique traversé par la lumière dans la zone de mesure, de la densité numérique des molécules des espèces chimiques gazeuses (A, B, C) contenues dans les gaz, et du coefficient d'extinction molaire des espèces chimiques. Le coefficient d’extinction molaire, aussi appelé absorptivité molaire, est une mesure de probabilité qu’un photon soit en interaction avec un atome ou molécule. The absorbance A of a gas is a function of the absorbance length, that is to say the length of the optical path crossed by the light in the measurement zone, of the numerical density of the molecules of the gaseous chemical species (A, B, C) contained in gases, and the molar extinction coefficient of chemical species. The molar extinction coefficient, also called molar absorptivity, is a measure of the probability that a photon is interacting with an atom or molecule.
La densité numérique des molécules d’une espèce chimique est elle-même fonction de la température, de la pression et de la concentration de l’espèce chimique, et le coefficient d’extinction molaire est fonction de la longueur d’onde, de l’espèce chimique, de la température et de la pression. The numerical density of the molecules of a chemical species is itself a function of the temperature, pressure, and concentration of the chemical species, and the molar extinction coefficient is a function of the wavelength, l chemical species, temperature and pressure.
Ainsi, en disposant des caractéristiques prédéterminées du coefficient d’extinction molaire, de température et de pression de chacune des espèces chimiques, il est possible de déterminer la concentration [X] de chaque espèce chimique X à partir de l’absorbance A du biogaz. Les valeurs d’absorbance de chaque espèce chimique s’additionnent et leur somme est sensiblement égale (au bruit près) aux valeurs d’absorbance A du biogaz. C’est ce qui est représenté à droite sur la figure 2 par les diagrammes d’absorbance A-A, A-B, et A-C des espèces chimiques A, B et C que l'on souhaite détecter, qui s’additionnent au bruit et à l'absorbance des espèces chimiques non détectées A-D pour former l’absorbance A du biogaz. Thus, by having the predetermined characteristics of the molar extinction coefficient, temperature and pressure of each of the chemical species, it is possible to determine the concentration [X] of each chemical species X from the absorbance A of the biogas. The absorbance values of each chemical species are added and their sum is approximately equal (except for noise) to the absorbance A values of the biogas. This is represented on the right in FIG. 2 by the absorbance diagrams AA, AB, and AC of the chemical species A, B and C which one wishes to detect, which are added to the noise and to the absorbance of undetected chemical species AD to form absorbance A of biogas.
Différents types d'algorithmes peuvent être utilisés pour déterminer les valeurs de concentration, tels que des algorithmes d'ajustement des moindres carrés appliqués aux signaux d'absorbance eux-mêmes, aux dérivées des signaux d'absorbance ou à la partie de fréquence des signaux d'absorbance (typiquement dérivée d'une transformée de Fourier). De même, un certain nombre de méthodes chimiométriques peuvent être utilisées pour ce processus comme, par exemple, l'analyse des composants principaux (PCA) ou les algorithmes des moindres carrés partiels (PLS). L’invention s’applique avantageusement au domaine du traitement d'un biogaz, qui peut comprendre une installation pour la purification (ou encore pour l'épuration) du biogaz. Dans ce cadre, le système de mesure optique selon l'invention peut être positionné à différents endroits d'une installation de purification du biogaz, notamment en amont et/ou en aval d’une telle installation. Cela peut permettre de contrôler la qualité d'un procédé de traitement d'un biogaz, à différents stades de ce traitement, et qui plus est, en temps réel. Le procédé selon l'invention, peut être aussi avantageusement appliqué en amont d'un système utilisant un biogaz, notamment un biogaz déjà purifié, de manière à s'assurer que le biogaz utilisé dans ledit système est conforme aux exigences de fonctionnement et/ou réglementaires de ce système. Different types of algorithms can be used to determine concentration values, such as least squares adjustment algorithms applied to the absorbance signals themselves, to the derivatives of the absorbance signals, or to the frequency portion of the signals. absorbance (typically derived from a Fourier transform). Likewise, a number of chemometric methods can be used for this process such as, for example, principal component analysis (PCA) or partial least squares (PLS) algorithms. The invention advantageously applies to the field of the treatment of a biogas, which may comprise an installation for the purification (or else for the purification) of the biogas. In this context, the optical measurement system according to the invention can be positioned at different locations of a biogas purification installation, in particular upstream and / or downstream of such an installation. This can make it possible to control the quality of a biogas treatment process, at different stages of this treatment, and what is more, in real time. The method according to the invention can also be advantageously applied upstream of a system using a biogas, in particular an already purified biogas, so as to ensure that the biogas used in said system complies with the operating requirements and / or regulations of this system.
Selon un mode de réalisation, la mesure est effectuée en aval d’une installation pour la purification d'un biogaz et/ou d'un système utilisant un biogaz. Un tel mode de réalisation est représenté schématiquement à la figure 4. Le biogaz 10 circule selon le parcours P dans un conduit 20 d'une installation 60 de purification d'un biogaz. Selon ce mode de réalisation, le système de mesure optique 40 est placé en aval de l'installation 60 de purification d'un biogaz. Les positions amont et aval sont définies par rapport au sens de circulation du biogaz dans le conduit 20. La mesure de la concentration de certaines espèces chimiques du biogaz en aval d'une installation 60 de purification d'un biogaz permet de vérifier le respect des normes d’émissions des substances polluantes de telles installations, de suivre leur évolution, et si nécessaire d’ajuster le fonctionnement de ces installations de manière à respecter les normes en vigueur. According to one embodiment, the measurement is carried out downstream of an installation for the purification of a biogas and / or of a system using a biogas. Such an embodiment is shown schematically in FIG. 4. The biogas 10 circulates along the path P in a conduit 20 of an installation 60 for purifying a biogas. According to this embodiment, the optical measurement system 40 is placed downstream of the installation 60 for purifying a biogas. The upstream and downstream positions are defined in relation to the direction of circulation of the biogas in the pipe 20. The measurement of the concentration of certain chemical species of the biogas downstream of a biogas purification installation 60 makes it possible to verify compliance with the emission standards for polluting substances from such installations, monitor their development, and if necessary adjust the operation of these installations so as to comply with the standards in force.
Selon un autre un mode de réalisation, représenté à la figure 5, la mesure in situ est effectuée de manière identique à celle du mode de réalisation représenté à la figure 4, à l’exception que le système de mesure optique comporte un réflecteur 45, pour une mesure réflective. Le système de mesure optique est celui décrit en relation avec la figure 2. La source 41 et le spectromètre 44 sont placés du même côté du conduit 20, c’est-à-dire à une même extrémité de la zone de mesure 21 , opposée à celle où est positionné le réflecteur 45. According to another embodiment, shown in FIG. 5, the in situ measurement is carried out identically to that of the embodiment shown in FIG. 4, except that the optical measurement system comprises a reflector 45, for reflective measurement. The optical measurement system is that described in relation to FIG. 2. The source 41 and the spectrometer 44 are placed on the same side of the duct 20, that is to say at the same end of the measurement zone 21, opposite to that where the reflector 45 is positioned.
Selon un autre un mode de réalisation, la mesure in situ est effectuée en amont d’au moins d’une installation à surveiller, telle qu'une installation pour la purification d'un biogaz ou bien un système utilisant un biogaz. Un tel mode de réalisation est représenté schématiquement à la figure 6, identique à la figure 4 à l’exception du système de mesure optique 40 positionné en amont de l'installation 60à surveiller. Un tel mode de réalisation peut être utile pour obtenir des informations de concentration d’espèces chimiques du biogaz avant leur entrée dans une installation de purification d'un biogaz, pour influer par exemple sur le fonctionnement de cette installation. Un tel mode de réalisation peut également être avantageusement mis en oeuvre en amont d'un système utilisant un biogaz, tel qu'un réseau de distribution dudit biogaz, un véhicule, ou une pile à combustible, de manière à contrôler, en temps réel, la qualité du biogaz entrant dans ce système. According to another embodiment, the in situ measurement is carried out upstream of at least one installation to be monitored, such as an installation for the purification of a biogas or else a system using a biogas. Such an embodiment is shown diagrammatically in FIG. 6, identical to FIG. 4 except for the optical measuring system 40 positioned upstream of the installation 60 to be monitored. Such an embodiment can be useful for obtaining information on the concentration of chemical species in the biogas before they enter a biogas purification installation, for example to influence the operation of this installation. Such an embodiment can also be advantageously implemented upstream of a system using a biogas, such as a network. distribution of said biogas, a vehicle, or a fuel cell, so as to control, in real time, the quality of the biogas entering this system.
Selon un mode de réalisation, la mesure in situ est effectuée à la fois en amont et en aval d’au moins une installation à surveiller telle qu'une installation pour la purification d'un biogaz. Un exemple selon ce mode est illustré à la figure 7, dans lequel deux systèmes de mesure optique 40 et 40’ sont placés respectivement en amont et en aval d’une installation 60 pour la purification. Le deuxième système de mesure optique 40’ est identique au premier système de mesure optique 40 disposé en amont, et comprend une source de lumière 41’ et un analyseur de lumière 44’ permettant respectivement l’émission du rayonnement UV et la détection et l’analyse du rayonnement UV ayant traversé le biogaz dans la zone de mesure 21’ située le long du conduit 20, afin de fournir une estimation de la concentration d’espèces chimiques gazeuses. According to one embodiment, the in situ measurement is carried out both upstream and downstream of at least one installation to be monitored, such as an installation for the purification of biogas. An example according to this mode is illustrated in Figure 7, in which two optical measurement systems 40 and 40 ’are placed respectively upstream and downstream of an installation 60 for purification. The second optical measuring system 40 'is identical to the first optical measuring system 40 arranged upstream, and comprises a light source 41' and a light analyzer 44 'respectively allowing the emission of UV radiation and the detection and the detection. analysis of the UV radiation which has passed through the biogas in the measurement zone 21 ′ situated along the conduit 20, in order to provide an estimate of the concentration of gaseous chemical species.
Un autre exemple selon ce mode est illustré à la figure 8, dans lequel le procédé selon l'invention est mis en oeuvre au moyen de trois systèmes de mesure optique 40, 40’, et 40”, placés respectivement en amont d'une première installation 60 de purification d'un biogaz, entre la première installation 60 de purification et une deuxième installation 61 de purification, et en aval de la deuxième installation 61 de purification d'un biogaz. Avantageusement, la première installation 60 est une installation utilisant un premier type de traitement d'un biogaz, et la deuxième installation 61 est une installation utilisant un deuxième type de traitement d'un biogaz. Un tel mode de réalisation permet de surveiller l’efficacité de chacune de ces installations en vue de la transformation du biogaz en biométhane, et éventuellement de régler les paramètres de ces installations en fonction des informations de concentration obtenues en amont, en aval et entre les différentes installations. Another example according to this mode is illustrated in FIG. 8, in which the method according to the invention is implemented by means of three optical measuring systems 40, 40 ', and 40 ”, placed respectively upstream of a first installation 60 for purification of a biogas, between the first installation 60 for purification and a second installation 61 for purification, and downstream of the second installation 61 for purification of a biogas. Advantageously, the first installation 60 is an installation using a first type of treatment of biogas, and the second installation 61 is an installation using a second type of treatment of biogas. Such an embodiment makes it possible to monitor the efficiency of each of these installations with a view to converting the biogas into biomethane, and possibly to adjust the parameters of these installations as a function of the concentration information obtained upstream, downstream and between them. different facilities.
Selon un mode de réalisation, la source de lumière UV et/ou le spectromètre du système de mesure optique est relié au conduit dans lequel circule le biogaz par une fibre optique, permettant par exemple d'installer les éléments de mesure optique dans une enceinte protectrice, sans nuire à l'instantanéité de la mesure. Un exemple d’un tel mode de réalisation est représenté à la figure 9, où des fibres optiques 75 et 76 relient respectivement la source de lumière 71 et le spectromètre 74 du système de mesure optique 70 au conduit 20, au niveau de la zone de mesure 21 où le biogaz est traversé par le rayonnement UV conduit par les fibres optiques 75 et 76. Il est bien clair que la fibre optique 76 reliée au spectromètre 74 peut être (non représenté) placée du même côté du conduit 20 que la fibre optique 75 reliée à la source lumineuse 71 . Il est bien clair que pour chacun des modes de réalisation représentés aux figures 6 à 9, le système optique peut être celui décrit en relation avec la figure 1 B, comprenant au moins un réflecteur placé dans la zone de mesure. Dans le cas des modes de réalisation représentés aux figures 6 à 8, le ou les spectromètres 44, 44', 44" peuvent être alors placés (non représenté) du même côté du conduit 20 que la ou les sources lumineuses 41 , 41 ' etAccording to one embodiment, the UV light source and / or the spectrometer of the optical measurement system is connected to the conduit in which the biogas circulates by an optical fiber, making it possible for example to install the optical measurement elements in a protective enclosure. , without affecting the instantaneousness of the measurement. An example of such an embodiment is shown in FIG. 9, where optical fibers 75 and 76 respectively connect the light source 71 and the spectrometer 74 of the optical measurement system 70 to the duct 20, at the level of the zone of. measure 21 where the biogas is crossed by the UV radiation conducted by the optical fibers 75 and 76. It is quite clear that the optical fiber 76 connected to the spectrometer 74 can be (not shown) placed on the same side of the duct 20 as the optical fiber 75 connected to the light source 71. It is quite clear that for each of the embodiments represented in FIGS. 6 to 9, the optical system can be that described in relation to FIG. 1B, comprising at least one reflector placed in the measurement zone. In the case of the embodiments shown in Figures 6 to 8, the spectrometer (s) 44, 44 ', 44 "can then be placed (not shown) on the same side of the duct 20 as the light source (s) 41, 41' and
41 ". 41 ".
Selon un mode de réalisation, le système de mesure optique comprend plusieurs zones de mesure reliées à une unique source lumineuse et un unique spectromètre, au moyen de fibres optiques. Un tel mode de réalisation permet par exemple de réduire le coût de la mise en oeuvre de la mesure optique dans le cas où des mesures en amont et en aval d'une installation à surveiller (par exemple une installation pour la purification) sont souhaitées. Un exemple d’un tel mode de réalisation est illustré à la figure 10, dans lequel le système de mesure optique 80 comprend trois zones de mesure 21 , 22 et 23, et une unique source lumineuse 81 et un unique spectromètre 84 relié aux zones de mesures par des fibres optiques 85, 86, 87 et 88. According to one embodiment, the optical measurement system comprises several measurement zones connected to a single light source and a single spectrometer, by means of optical fibers. Such an embodiment makes it possible, for example, to reduce the cost of implementing the optical measurement in the event that measurements upstream and downstream of an installation to be monitored (for example an installation for purification) are desired. An example of such an embodiment is illustrated in FIG. 10, in which the optical measurement system 80 comprises three measurement zones 21, 22 and 23, and a single light source 81 and a single spectrometer 84 connected to the measurement zones. measurements by optical fibers 85, 86, 87 and 88.
Selon un autre un mode de réalisation, la mesure in situ est effectuée de manière identique à celle du mode de réalisation représenté à la figure 10, sauf que le système de mesure optique comporte trois réflecteurs 45, 45’ et 45” tels que décrits en relation avec la figure 2, respectivement disposés aux extrémités des zones de mesure 21 , 22 et 23. Comme illustré schématiquement sur cette figure 1 1 , la longueur des zones de mesure 21 , 22 et 23, augmente dans la direction amont-aval, ou autrement dit la longueur du chemin optique dans la direction amont-aval. Ce mode de réalisation est particulièrement avantageux pour améliorer la précision de la mesure de l'efficacité d'un procédé de traitement d'un biogaz car, au fur et à mesure que le biogaz traverse des installations de purification d'un biogaz (ici les installations 60 et 61 ), les espèces chimiques sont présentes dans le biogaz avec des concentrations de plus en plus faibles. Par conséquent, il peut être est avantageux d'ajuster le chemin optique du rayonnement UV, notamment en l'allongeant dans la direction avale, de manière à permettre une mesure fiable de la concentration en espèces chimiques, même dans le cas d'une concentration en espèces chimiques faible. Ceci évite d'utiliser des dispositifs pour surconcentrer les espèces chimiques, notamment en fin de procédé de traitement d'un biogaz. Afin d'allonger le chemin optique dans la direction amont-aval, on peut, alternativement ou de manière combinée avec le mode de réalisation de la figure 10, mettre en oeuvre le procédé selon l'un des modes de réalisation de l'invention décrit ci- dessus, pour lequel le système optique comprend au moins un accès optique déporté. Selon un mode de réalisation, illustré à la figure 12, le système de mesure optique 90 comprend des moyens de protection 95 de la source lumineuse 91 et/ou du spectromètre 94. De tels moyens de protection sont utiles par exemple lors d’un fonctionnement à froid du système de mesure optique, afin d’empêcher un encrassement des éléments optiques, tel que déjà expliqué plus haut. Ces moyens de protection peuvent comprendre un volet, une barrière d’air entre la source lumineuse 91 ou le spectromètre 94 et le biogaz traversant la zone de mesure 21 , un revêtement spécifique, par exemple pour empêcher l’adhésion de liquide ou de particules solides, de la ou les surfaces séparant la source lumineuse 91 du biogaz ou le spectromètre 94 du biogaz, ou un moyen de chauffage desdites surfaces. Il peut également s’agir d’une géométrie spécifique du capteur optique, non représenté dans la figure 12. According to another embodiment, the in situ measurement is performed in an identical manner to that of the embodiment shown in FIG. 10, except that the optical measurement system comprises three reflectors 45, 45 'and 45 ”as described in relationship with Figure 2, respectively arranged at the ends of the measuring zones 21, 22 and 23. As illustrated schematically in this Figure 11, the length of the measuring zones 21, 22 and 23, increases in the upstream-downstream direction, or in other words the length of the optical path in the upstream-downstream direction. This embodiment is particularly advantageous for improving the accuracy of the measurement of the efficiency of a biogas treatment process because, as the biogas passes through biogas purification plants (here the installations 60 and 61), chemical species are present in the biogas with increasingly low concentrations. Therefore, it may be advantageous to adjust the optical path of UV radiation, in particular by lengthening it in the downstream direction, so as to allow a reliable measurement of the concentration of chemical species, even in the case of a concentration. low chemical species. This avoids using devices to overconcentrate the chemical species, in particular at the end of the biogas treatment process. In order to lengthen the optical path in the upstream-downstream direction, it is possible, alternatively or in combination with the embodiment of FIG. 10, to implement the method according to one of the embodiments of the invention described. above, for which the optical system comprises at least one remote optical access. According to one embodiment, illustrated in FIG. 12, the optical measurement system 90 comprises means 95 for protecting the light source 91 and / or the spectrometer 94. Such protection means are useful for example during operation. cold of the optical measurement system, in order to prevent fouling of the optical elements, as already explained above. These protection means can comprise a shutter, an air barrier between the light source 91 or the spectrometer 94 and the biogas passing through the measurement zone 21, a specific coating, for example to prevent the adhesion of liquid or solid particles. , the surface or surfaces separating the light source 91 from the biogas or the spectrometer 94 from the biogas, or a means for heating said surfaces. It can also be a specific geometry of the optical sensor, not shown in FIG. 12.
Selon un mode de réalisation, illustré à la figure 13, la configuration du système de mesure optique 90 est de type réflective, le système de mesure optique 90 comprenant une source lumineuse 91 , un spectromètre 94 ainsi qu'un réflecteur 45, ces éléments du système de mesure optique 90 étant positionnés par exemple au niveau d’un coude du conduit 20, de manière à ce que le chemin optique du rayonnement UV soit sensiblement tangent au parcours P du biogaz dans la zone de mesure 21. According to one embodiment, illustrated in FIG. 13, the configuration of the optical measuring system 90 is of the reflective type, the optical measuring system 90 comprising a light source 91, a spectrometer 94 as well as a reflector 45, these elements of the optical measurement system 90 being positioned, for example, at an elbow of the duct 20, so that the optical path of the UV radiation is substantially tangent to the path P of the biogas in the measurement zone 21.
Selon un autre mode de réalisation, illustré à la figure 14, la configuration du système de mesure optique 90 est de type réflective, le système de mesure optique 90 comprenant une source lumineuse 91 , un spectromètre 94 ainsi qu'un réflecteur 45, ces éléments du système de mesure optique étant disposés à l'intérieur du conduit 20, et préférentiellement à la sortie du conduit 20, de manière à ce que le chemin optique du rayonnement UV soit sensiblement parallèle au parcours P du biogaz dans la zone de mesure 21. According to another embodiment, illustrated in FIG. 14, the configuration of the optical measuring system 90 is of the reflective type, the optical measuring system 90 comprising a light source 91, a spectrometer 94 as well as a reflector 45, these elements of the optical measurement system being arranged inside the duct 20, and preferably at the outlet of the duct 20, so that the optical path of the UV radiation is substantially parallel to the path P of the biogas in the measurement zone 21.
L'invention concerne en outre une installation comprenant au moins un système de mesure optique tel que décrit ci-dessus pour la mise en oeuvre du procédé selon l'invention. Selon une mise en oeuvre de l'invention, l'installation peut être une installation de purification d'un biogaz et/ou un système utilisant le biogaz. Selon une mise en oeuvre de l'invention selon laquelle l'installation est un système utilisant un biogaz, le procédé selon l'invention peut être mis en oeuvre en amont de ladite installation. The invention further relates to an installation comprising at least one optical measurement system as described above for implementing the method according to the invention. According to one implementation of the invention, the installation can be a biogas purification installation and / or a system using biogas. According to one implementation of the invention according to which the installation is a system using a biogas, the method according to the invention can be implemented upstream of said installation.
L'invention concerne également une utilisation du procédé selon l'invention pour la mesure de la concentration d’au moins une espèce chimique gazeuse contenue dans un biogaz circulant dans un conduit d'une installation. Selon une mise en oeuvre de l'invention, l'installation peut être une installation de purification d'un biogaz et/ou une installation utilisant le biogaz. Selon une mise en oeuvre de l'invention selon laquelle l'installation est un système utilisant un biogaz, le procédé selon l'invention peut être mis en oeuvre en amont de ladite installation. The invention also relates to a use of the method according to the invention for measuring the concentration of at least one gaseous chemical species contained in a biogas circulating in a pipe of an installation. According to one implementation of the invention, the installation can be a biogas purification installation and / or an installation using biogas. According to an implementation of the invention according to which the installation is a system using a biogas, the method according to the invention can be implemented upstream of said installation.

Claims

Revendications Claims
1 . Procédé pour la mesure in situ de la concentration ([X]) d’au moins une espèce chimique gazeuse contenue dans un biogaz (10) circulant dans un conduit (20) au moyen d’un système de mesure optique (40, 40’, 40”, 70, 80, 90) comprenant au moins une source lumineuse (41 , 41’, 41”, 71 , 81 , 91 ) émettant un rayonnement UV (42) et au moins un spectromètre (44, 44’, 44”, 74, 84, 94) apte à analyser au moins ledit rayonnement UV (42, 43), ledit conduit (20) comportant au moins un premier accès optique formé dans une paroi dudit conduit (20), ledit procédé comportant au moins les étapes suivantes : 1. Method for in situ measurement of the concentration ([X]) of at least one gaseous chemical species contained in a biogas (10) circulating in a duct (20) by means of an optical measuring system (40, 40 ' , 40 ”, 70, 80, 90) comprising at least one light source (41, 41 ', 41”, 71, 81, 91) emitting UV radiation (42) and at least one spectrometer (44, 44', 44 ”, 74, 84, 94) capable of analyzing at least said UV radiation (42, 43), said duct (20) comprising at least a first optical access formed in a wall of said duct (20), said method comprising at least the following steps :
a) au moyen de ladite source lumineuse (41 , 41’, 41”, 71 , 81 , 91 ), on émet, au niveau d'au moins ledit accès optique, ledit rayonnement UV (42) au travers dudit biogaz (10) au sein d'une zone de mesure (21 , 21 ', 21 ", 22, 23) située au moins en partie dans ledit conduit (20) ; a) by means of said light source (41, 41 ', 41 ”, 71, 81, 91), at least said optical access, said UV radiation (42) is emitted through said biogas (10) within a measurement zone (21, 21 ', 21 ", 22, 23) located at least partly in said duct (20);
b) b) au moyen dudit spectromètre (44, 44’, 44”, 74, 84, 94), on mesure, au niveau dudit premier accès optique et/ou d'un deuxième accès optique, au moins une partie dudit rayonnement UV (43) ayant traversé ledit biogaz (10) dans ladite zone de mesure (21 , 21 ', 21 ", 22, 23), et on génère un signal numérique de l’intensité lumineuse (50) en fonction de la longueur d’onde (W) de ladite partie du rayonnement UV (43) ayant traversé ledit biogaz (10); b) b) by means of said spectrometer (44, 44 ', 44 ”, 74, 84, 94), at least part of said UV radiation is measured at said first optical port and / or at a second optical port (43) having passed through said biogas (10) in said measuring zone (21, 21 ', 21 ", 22, 23), and a digital signal of the light intensity (50) is generated as a function of the length of wave (W) of said portion of UV radiation (43) having passed through said biogas (10);
c) c) on détermine ladite concentration ([X]) de ladite espèce chimique contenue dans ledit biogaz (10) à partir au moins dudit signal numérique (50). c) c) said concentration ([X]) of said chemical species contained in said biogas (10) is determined from at least said digital signal (50).
2. Procédé selon la revendication 1 , dans lequel l'étape c) comporte au moins : 2. The method of claim 1, wherein step c) comprises at least:
- la détermination de l’absorbance (A) dudit biogaz en fonction de la longueur d’onde à partir dudit signal numérique de l’intensité lumineuse (50) en fonction de la longueur d’onde de ladite partie du rayonnement UV ayant traversé ledit biogaz (43) et d'un signal numérique de référence de l’intensité lumineuse en fonction de la longueur d’onde prédéterminée pour un gaz de référence ; - determining the absorbance (A) of said biogas as a function of the wavelength from said digital signal of the light intensity (50) as a function of the wavelength of said part of the UV radiation having passed through said said biogas (43) and a digital reference signal of light intensity as a function of the predetermined wavelength for a reference gas;
- la détermination de ladite concentration ([X]) de ladite au moins une espèce chimique à partir de ladite absorbance dudit biogaz, de caractéristiques prédéterminées d’absorbance de ladite espèce chimique et d'une estimation de la température et de la pression dudit biogaz. - determining said concentration ([X]) of said at least one chemical species from said absorbance of said biogas, predetermined absorbance characteristics of said chemical species and an estimate of the temperature and pressure of said biogas .
3. Procédé selon la revendication 2, dans lequel ladite absorbance (A) dudit biogaz (10) est une fonction de la longueur d'absorbance, du nombre de densité des molécules de ladite espèce chimique et du coefficient d’extinction molaire. 3. The method of claim 2, wherein said absorbance (A) of said biogas (10) is a function of the absorbance length, the density number of molecules of said chemical species and the molar extinction coefficient.
4. Procédé selon l'une des revendications 2 à 3, dans lequel ledit signal numérique de référence est obtenu par émission dudit rayonnement UV (42) au travers dudit gaz de référence et par mesure d'au moins une partie dudit rayonnement UV (43) ayant traversé ledit gaz de référence, ledit gaz ayant une concentration en ladite espèce chimique connue ou nulle. 4. Method according to one of claims 2 to 3, wherein said digital reference signal is obtained by emitting said UV radiation (42) through said reference gas and by measuring at least part of said UV radiation (43). ) having passed through said reference gas, said gas having a known or zero concentration of said chemical species.
5. Procédé selon l'une des revendications précédentes, dans lequel, à l'étape c), on détermine en outre une température (T) dudit biogaz (10) à partir dudit signal numérique (50). 5. Method according to one of the preceding claims, wherein, in step c), a temperature (T) of said biogas (10) is further determined from said digital signal (50).
6. Procédé selon la revendication 5, dans lequel on détermine ladite température (T) par modification du coefficient d’extinction molaire de l'absorbance de ladite espèce chimique extraite de ladite absorbance dudit biogaz, ladite modification étant un décalage de la longueur d’onde ou une modification de l’amplitude ou une combinaison des deux. 6. The method of claim 5, wherein said temperature (T) is determined by modifying the molar extinction coefficient of the absorbance of said chemical species extracted from said absorbance of said biogas, said modification being a shift in the length of. wave or a change in amplitude or a combination of both.
7. Procédé selon l'une des revendications précédentes, dans lequel ledit système de mesure optique comporte en outre un réflecteur (45, 45’, 45”) disposé dans ladite zone de mesure (21 , 21 ', 21 ", 22, 23) dudit conduit (20) et dans lequel, à l'étape b), on mesure au niveau au moins dudit premier accès optique au moins une partie dudit rayonnement UV (42, 43) ayant été émis par ladite source lumineuse au niveau du premier accès optique et s'étant au moins en partie réfléchie sur ledit réflecteur. 7. Method according to one of the preceding claims, wherein said optical measuring system further comprises a reflector (45, 45 ', 45 ") disposed in said measuring zone (21, 21', 21", 22, 23 ) of said duct (20) and in which, in step b), at least a part of said UV radiation (42, 43) having been emitted by said light source at the first optical port is measured at the level of said first optical port. optical access and being at least partly reflected on said reflector.
8. Procédé selon l'une des revendications précédentes, dans lequel lesdits premier et/ou deuxième accès optiques (31 ,32) sont déportés par rapport à ladite paroi dudit conduit (20) dans lequel circule le biogaz (10). 8. Method according to one of the preceding claims, wherein said first and / or second optical access (31, 32) are offset from said wall of said conduit (20) in which the biogas (10) circulates.
9. Procédé selon l’une des revendications précédentes, dans lequel ledit rayonnement UV (42) émis a une longueur d’onde comprise entre 180 et 400 nm, de préférence comprise entre 180 et 280 nm, et encore plus préférentiellement comprise entre 180 et 240 nm. 9. Method according to one of the preceding claims, wherein said UV radiation (42) emitted has a wavelength between 180 and 400 nm, preferably between 180 and 280 nm, and even more preferably between 180 and 240 nm.
10. Procédé selon l’une des revendications précédentes, dans lequel on mesure la concentration ([X]) d’au moins une, et de préférence plusieurs, espèces chimiques gazeuses contenues dans ledit biogaz (10), et comprises dans la liste constituée par : S02, H2S, NH3, les BTEX, les siloxanes et les halogénés. 10. Method according to one of the preceding claims, wherein the concentration ([X]) of at least one, and preferably several, gaseous chemical species contained in said biogas (10), and included in the list made up is measured. by: S0 2 , H 2 S, NH 3 , BTEX, siloxanes and halogens.
1 1. Procédé selon l’une des revendications précédentes, dans lequel on mesure simultanément la concentration ([X]) d’au moins deux espèces chimiques gazeuses, et de préférence d’au moins la concentration de H2S et la concentration en NH3. 1 1. Method according to one of the preceding claims, wherein simultaneously measuring the concentration ([X]) of at least two gaseous chemical species, and preferably at least the concentration of H 2 S and the concentration of NH 3 .
12. Procédé selon l’une des revendications précédentes, dans lequel on mesure la concentration d’au moins une espèce chimique gazeuse choisie parmi les espèces chimiques soufrées S02 et H2S, et de préférence les deux. 12. Method according to one of the preceding claims, in which the concentration of at least one gaseous chemical species chosen from sulfur-containing chemical species S0 2 and H 2 S, and preferably both, is measured.
13. Procédé selon l’une des revendications précédentes, dans lequel on mesure la concentration d’au moins NH3. 13. Method according to one of the preceding claims, in which the concentration of at least NH 3 is measured.
14. Procédé selon l'une des revendications précédentes, dans lequel ledit conduit (20) dans lequel circule ledit biogaz (10) est un conduit d'une installation (60, 61 ) pour la purification dudit biogaz, et dans lequel ledit procédé est mis en oeuvre en amont et/ou en aval de ladite installation. 14. Method according to one of the preceding claims, wherein said conduit (20) in which said biogas circulates (10) is a conduit of an installation (60, 61) for the purification of said biogas, and in which said process is implemented upstream and / or downstream of said installation.
15. Procédé selon l'une des revendications précédentes, dans lequel ledit conduit (20) dans lequel circule ledit biogaz (10) est un conduit d'un système utilisant ledit biogaz (10) tel qu'un réseau de distribution dudit biogaz, un véhicule, ou une pile à combustible, et dans lequel ledit procédé est mis en oeuvre en amont dudit système utilisant ledit biogaz. 15. Method according to one of the preceding claims, wherein said conduit (20) in which said biogas (10) circulates is a conduit of a system using said biogas (10) such as a distribution network for said biogas, a vehicle, or a fuel cell, and wherein said method is implemented upstream of said system using said biogas.
EP20701268.3A 2019-02-07 2020-01-14 Method for measuring the concentration of gaseous species in a biogas Withdrawn EP3921625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1901225A FR3092665A1 (en) 2019-02-07 2019-02-07 METHOD FOR MEASURING THE CONCENTRATION OF GASEOUS SPECIES IN A BIOGAS
PCT/EP2020/050834 WO2020160880A1 (en) 2019-02-07 2020-01-14 Method for measuring the concentration of gaseous species in a biogas

Publications (1)

Publication Number Publication Date
EP3921625A1 true EP3921625A1 (en) 2021-12-15

Family

ID=67107736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20701268.3A Withdrawn EP3921625A1 (en) 2019-02-07 2020-01-14 Method for measuring the concentration of gaseous species in a biogas

Country Status (7)

Country Link
US (1) US20220128459A1 (en)
EP (1) EP3921625A1 (en)
JP (1) JP2022520557A (en)
KR (1) KR20210121234A (en)
CN (1) CN113424046A (en)
FR (1) FR3092665A1 (en)
WO (1) WO2020160880A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534755B1 (en) * 2021-06-17 2023-05-26 위아비 주식회사 Device for detecting contaminants in air

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621213A (en) * 1995-07-07 1997-04-15 Novitron International Inc. System and method for monitoring a stack gas
US7372573B2 (en) * 2005-09-30 2008-05-13 Mks Instruments, Inc. Multigas monitoring and detection system
DE202008003790U1 (en) 2008-03-18 2008-05-15 Buck, Christian, Dr. Device for fast on-line measurement in biogas
CN201210143Y (en) * 2008-06-17 2009-03-18 聚光科技(杭州)有限公司 Apparatus for adding measurement optical path
JP5973969B2 (en) * 2013-07-31 2016-08-23 国立大学法人徳島大学 Inline densitometer and concentration detection method
DE102016007825A1 (en) * 2016-06-25 2017-12-28 Hydac Electronic Gmbh Method and device for monitoring the quality of gaseous media
EP3270045B1 (en) * 2016-07-11 2023-06-07 Bluepoint Medical GmbH & Co. KG Assembly for the measurement of gas concentrations
FR3069641B1 (en) * 2017-07-27 2019-07-19 IFP Energies Nouvelles METHOD AND SYSTEM FOR OPTICALLY MEASURING THE CONCENTRATION OF EXHAUST GAS CASES
US10684215B2 (en) * 2018-01-25 2020-06-16 Ludlum Measurements, Inc. Method for measuring air pollutants using a folded tubular photometer
CN109306321A (en) * 2018-12-14 2019-02-05 黑龙江省能源环境研究院 A kind of biogas fermentation environment on-line monitoring early warning system

Also Published As

Publication number Publication date
CN113424046A (en) 2021-09-21
US20220128459A1 (en) 2022-04-28
WO2020160880A1 (en) 2020-08-13
FR3092665A1 (en) 2020-08-14
JP2022520557A (en) 2022-03-31
KR20210121234A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
EP3658895B1 (en) Method and system for optical measurement of the concentration of chemical species in an exhaust gas
JP2018530744A (en) Method and apparatus for spectroscopic detection of low concentrations of hydrogen sulfide gas
EP3921625A1 (en) Method for measuring the concentration of gaseous species in a biogas
EP1064533B1 (en) Device and method for directly measuring calorific energy contained in a fuel gas
US20180321138A1 (en) Optical exhaust gas detection assembly with remote mounted electronics
FR3060749A1 (en) SIMPLIFIED DEVICE FOR DETECTING THE FORMATION OF GAS HYDRATES
Dooly et al. Low concentration monitoring of exhaust gases using a UV-based optical sensor
EP0107535B1 (en) Method and fast-answering devices for detecting faulty combustion
EP4111165A1 (en) Method and system for the optical measurement of a property of particles present in a gaseous medium
EP3901604A1 (en) System and method for monitoring gas leaks by means of an optical measurement
EP3507588B1 (en) Method for analysing a gas
Dooly et al. Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques
KR100616557B1 (en) Distinction apparatus of similar gasoline
Dooly et al. Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor
Rahman et al. Development of a Fast Response Nitrogen Compounds Analyzer Using Quantum Cascade Laser for Wide-Range Measurement
Hara et al. Development of nitrogen components analyzer utilizing quantum cascade laser
Muda et al. Simulation and measurement of carbon dioxide exhaust emissions using an optical-fibre-based mid-infrared point sensor
Pfeifer et al. The influence of the baseline drift on the resulting extinction values of a cavity attenuated phase shift-based extinction monitor (CAPS PMex)
WO2023104528A1 (en) System and method for locating the source of an emission of gas or particles
Wang et al. Applications of optical measurement technology in pollution gas monitoring at thermal power plants
Gao et al. Measurement of the absorption cross-sections of sulfur compounds in the 180–270 nm region considering nonlinear effects
Dong et al. Effective correction of dissolved organic carbon interference in nitrate detection using ultraviolet spectroscopy combined with the equivalent concentration offset method
Kireev et al. Development of a real-time absorption method for detecting the mercaptan odorizing mixture of natural gas
BR102019027693A2 (en) multiple gas detection system and method
KR100500990B1 (en) Apparatus and Method for Detection of Oil leakage using Soil-gas Analysis

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230802