EP3921392A1 - Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits - Google Patents

Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits

Info

Publication number
EP3921392A1
EP3921392A1 EP19888587.3A EP19888587A EP3921392A1 EP 3921392 A1 EP3921392 A1 EP 3921392A1 EP 19888587 A EP19888587 A EP 19888587A EP 3921392 A1 EP3921392 A1 EP 3921392A1
Authority
EP
European Patent Office
Prior art keywords
fuel
calcium
additive
sulfonates
aviation gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19888587.3A
Other languages
German (de)
French (fr)
Other versions
EP3921392A4 (en
Inventor
Chris D'acosta
Thomas Albuzat
Justin D. Zink
Benjamin WEGENHART
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swift Fuels LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3921392A1 publication Critical patent/EP3921392A1/en
Publication of EP3921392A4 publication Critical patent/EP3921392A4/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2493Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2462Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
    • C10L1/2468Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained by reactions involving only carbon to carbon unsaturated bonds; derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/226Organic compounds containing nitrogen containing at least one nitrogen-to-nitrogen bond, e.g. azo compounds, azides, hydrazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • C10L1/303Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0213Group II metals: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd, Hg
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/083Disinfectants, biocides, anti-microbials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/16Tracers which serve to track or identify the fuel component or fuel composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/18Function and purpose of a components of a fuel or the composition as a whole for rendering the fuel or flame visible or for adding or altering its color
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/04Additive or component is a polymer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation

Definitions

  • VSR Valve Seat Recession
  • Combustion of gasoline products in the combustion chamber of a piston engine often results in residue and deposits forming around the intake valve and exhaust port and around the cylinder and piston head.
  • the composition of gasoline typically comprises C7 - C1 0 aromatic hydrocarbons and C4 - C12 aliphatic compounds that upon incomplete combustion result in engine deposits and combustion residue.
  • these fuels may utilize specific compounds known as octane boosters, e.g. aromatic amines, organometallic compounds, or >5% (m/m) aromatic hydrocarbons.
  • Typical high-octane compounds used to boost octane rating in gasoline engines, but that often result in heavier engine, sparkplug and valve-seat deposits may include any of the following: aromatic hydrocarbons (e.g., toluene, xylenes, and tri- methylbenzenes); aromatic amines (e.g., aniline, m-toluidine and Cumidine); and organometallic compounds (e.g. tetraethyllead (TEL), MMT (Methylcyclopentadienyl manganese tricarbonyl and ferrocene).
  • aromatic hydrocarbons e.g., toluene, xylenes, and tri- methylbenzenes
  • aromatic amines e.g., ani
  • the octane boosters increase octane ratings of the fuel but tend to cause dirty build-up of deposits and grime in the combustion chamber. This can create a physical barrier, primarily around the exhaust port, which serves to resist valve seat recession. However, this type of build-up can become excessive, leading to loss of compression in the combustion chamber or even engine shut-down - thus such excessive deposits require frequent servicing and diligent cleaning of the spark plugs, often every 25 to 50 hours of engine operation in certain engine applications.
  • VSR additives in gasoline to prevent or minimize valve seat recession.
  • additives have focused for decades on the use of phosphorous-based compounds, potassium, sodium and manganese organometallic chemistries (see Technical Committee on Petroleum Additive Manufacturers in Europe - (ATC) document 113 published in September 2013).
  • TEL Trigger-Edge gasoline
  • Fuel additives determine much about the useful nature of any gasoline. TEL is toxic and although it is present in small amounts ( ⁇ 2.1g Pb /gallon), it has a large impact on airborne and municipal water toxicity levels across the nation.
  • Aviation gasoline is one type of premium-quality gasoline for somewhat lower-compression piston engines that has historically contained TEL, which tends to create what is sometimes referred to as a lubricity effect which serves to prevent valve seat recession.
  • a fuel additive is provided to limit valve seat recession in piston engines.
  • the additive provides calcium sulfonates in an amount in fuel formulation effective to limit VSR in engines using the fuel formulation.
  • the calcium sulfonates preferably comprise calcium petroleum sulfonates, and the fuel additive may also include detergents, antioxidants and anti-microbial agents.
  • the additives find particular use with clean burning aircraft fuels. Also provided are methods for treating vale seat recession in engines by combining the fuel additives to the fuel used by such engines. Further provided are fuel formulations containing calcium sulfonates, and optionally detergents and other components, which result in limited valve seat recession in the engines using such fuels.
  • VSR valve seat recession
  • This invention utilizes a new technology - a specialized gasoline additive - to limit valve seat recession (VSR), including when using a clean -burning gasoline, preferably an unleaded gasoline.
  • VSR valve seat recession
  • gasolines particularly clean-burning gasolines, using this invention result in far less corrosion in the engine and oil system (typically caused by the presence of organometallics) leading to longer engine life and longer time between engine overhauls.
  • a preferred embodiment is a high-octane premium-quality aviation gasoline comprised of aliphatic hydrocarbons and oxygenates with no or very low levels of aromatics, amines or metals as outlined herein.
  • This invention uses a special formulation of components blended in solution as a fuel Additive (the "Additive”) which is added at a specified treat rate to appropriate gasoline or aviation gasoline compositions.
  • Additive a fuel Additive
  • This invention provides a unique and novel approach to anti-VSR additives, resulting in a soft, easy-to-clean, non-toxic thin residue film which coats the combustion area of the cylinder, piston head, intake and exhaust port areas, thereby treating VSR (wear-and-tear) to the mechanical parts.
  • the Additive of the present invention is tailored to work with any gasoline, but also finds particular advantage in use with clean-burning gasoline to treat VSR. Without being bound to any particular mechanism of action, it appears that the VSR Additive produces a very thin layer of a soft, easy to clean, non-toxic residue which accumulates and then stabilizes in the combustion chamber. This produces a minimal but useful buildup of soft, white residue in and around the intake and exhaust ports during the combustion process. The result is a thin, soft residue that serves as a barrier to treat valve seat recession and to leave the combustion chamber with virtually no wear-and- tear on the valve seat and with freedom from harmful deposits.
  • the Additive is useful limiting VSR.
  • VSR is meant to include a reduction of VSR as compared to operation of the engine with the same fuel formulation, but without the Additive. This reduction may include, for example, a reduction in VSR of at least 10%, preferably at least 25%, and most preferably at least 50%.
  • the Additive is effective to substantially eliminate VSR, meaning that VSR is reduced by at least 90%.
  • use of the Additive eliminates VSR.
  • the Additive package is free of an octane booster and/or a chemical scavenger, and in an aspect the final fuel formulation including the Additive is free, and preferably substantially free, of an octane booster and/or a chemical scavenger. Being substantially free refers to the final fuel formulation constituting less than 1 wt % of octane booster and/or chemical scavenger.
  • the inventive Additive includes one or more fuel-soluble calcium sulfonates.
  • the calcium sulfonates preferably comprise calcium petroleum sulfonates.
  • the calcium is provide to provide a low treat rate ranging from about 5 to about 100 ppm (as Ca 2+ ), alternatively at least 5 or 10 ppm, in the fuel formulation.
  • Sulfonates can be derived from petroleum fractions, from lignin, and from fatty oils.
  • Natural petroleum sulfonates are defined as those manufactured by sulfonation of crude oil, crude distillates, or any portion of these distillates in which hydrocarbons present are not substantially different from their state in the original crude oil.
  • Calcium petroleum sulfonate is calcium salt of sulfonic acid made by processing heavy alkaline benzene of suitable fraction with sulfuric acid or sulfur trioxide and refining by liquid extraction by using suitable alcoholic solvent and precipitating insoluble salts by control of PH and centrifuging.
  • Petroleum sulfonate is mainly obtained by treating high-boiling petroleum fractions in a stirred tank reactor (STR) or in a falling- film reactor (FFR). Synthesis of petroleum sulfonate surfactant may be made with ultra-low interfacial tension in a rotating packed bed reactor.
  • Sulfonation may be defined as any chemical process by which the sulfonic acid group (SO2OH) or the corresponding salt or sulfonyl halide group (e.g. -SO2CI) is introduced into an organic compound.
  • SO2OH sulfonic acid group
  • -SO2CI sulfonyl halide group
  • the calcium compound is preferably formulated in a compatible, low-toxicity carrier suitable for use in combination with gasoline fuels.
  • a compatible, low-toxicity carrier suitable for use in combination with gasoline fuels.
  • such carriers include, for example, C7 to C9 arene hydrocarbons.
  • the Additive further may comprise one or more detergents.
  • the detergents typically comprise, for example, from 50 to 200 ppm of the Additive.
  • a polyolefin alkyl phenol alkyl amine is a suitable detergent.
  • Detergents leave the intake clean, while the calcium forms a soft white film during combustion which is easily cleaned by a light brush or rinsed with water and air dried. This is dramatically easier to clean than removing TEL or MMT organometallic deposits which form once fuel is combusted and caked onto engine parts - requiring frequent and excessive physical effort to clean off the spark plugs.
  • a detergent will depend on the nature of the fuel. For clean-burning fuels there will be less need for a detergent, whereas fuels which are not clean-burning may benefit from addition of a detergent. This is demonstrated in the examples provided hereafter. The determination of the use of a detergent, and the amount, is within the ordinary skill in the art based on assessment of the results of using the calcium sulfonate with a given fuel.
  • the detergent is used with the calcium sulfonates for addition to a fuel formulation requiring the detergent to make the calcium sulfonates effective to limit VSR.
  • certain fuels benefit from the combination of calcium sulfonates and detergents in order to enhance the effect of either alone in limiting VSR.
  • the calcium sulfonates and the detergents are used in amounts and proportions that increase the VSR limiting effect of the calcium sulfonates.
  • the combination of the one or more calcium sulfonates and the one or more detergents provides enhanced limiting of VSR that is at least 25%, preferably at least 50%, better than use of the calcium sulfonates alone for a given fuel and engine. For example, if the calcium sulfonates limit VSR to 12%, then the addition of the detergent results in a limitation of VSR to at most 9%, or at most 6%.
  • An additional component may comprise an antioxidant, suitable for use with fuel formulations.
  • An example of a suitable antioxidant is 2,6-ditertiaiy butyl-4- methylphenol. The determination of the use of an antioxidant, and the amount, is within the ordinary skill in the art based on assessment of the results of using the calcium sulfonate with a given fuel.
  • an anti-microbial agent such as 4,4,6-trimethyl-l,3,2- dioxaborolane
  • an anti-microbial agent such as 4,4,6-trimethyl-l,3,2- dioxaborolane
  • a color dye for example Blue (1,4-dialkylaminoanthraquinone), or Red (alkylazobenzene-4-azo-2- naphthol) dyes, or possibly other colors.
  • the addition of such coloring agent may be prescribed by international fuel regulatory organizations (e.g. ASTM International) for quality control and color calibration when used in aviation gasolines.
  • This invention is a specially designed Additive uniquely tailored to work with specific fuels, particularly clean -burning aviation gasolines that combust with very little or no organometallic, amines or hydrocarbon deposits - i.e. those fuels comprised of
  • This Additive can be applied to any gasoline formulation for use in a piston engine, no matter the formulation, but is particularly useful when used in very clean burning unleaded gasoline blends comprised of aliphatic hydrocarbons or any combination of aliphatic hydrocarbons and oxygenates as described herein.
  • the cleanest burning high-octane gasoline preferred an oxygenate compound.
  • Our scientists tested various known high-octane aviation gasolines (100LL, 100-octane with MMT, 100-octane with aniline) were tested.
  • 100R the cleanest burning oxygenated aviation gasoline, which in various embodiments contained > 80% Ethyl Tert-Butyl Ether and ideally > 95% ETBE, however some combination of other ethers (MTBE, TAME, THME, Diisopropyl Ether, etc.) and trace amount of alcohols (methanol, ethanol, etc.) in the fuel as acceptable within industry limits on water solubility.
  • a further aspect of this invention is the Additive formulation in a clean-burning fuel eliminates the use of harmful chemicals that can cause acidity, corrosion, organometallic deposits and sparkplug fouling, and sludge build-up that by their chemical nature can cause unwanted wear-and-tear throughout the piston engine.
  • Using this special Additive with clean-burning gasoline results in less frequent and less extensive engine maintenance requirements, conducted at longer time intervals between servicing, thereby creating an economic benefit to operators of aircraft piston engines.
  • the present invention provides an Additive package suited for addition to an existing fuel formulation. This addition could occur at any point in the preparation and use of a given fuel formulation.
  • the calcium sulfonate may be added to the other fuel components.
  • the calcium sulfonate may be provided by itself, or it may be in combination with other intended fuel components.
  • the calcium sulfonate forms a components of an Additive package that includes other components intended to work in combination with the calcium sulfonates, such as those described herein including detergents and/or antioxidants.
  • the Additive package may then also comprise a carrier effective to suspend or otherwise support, including by solution, the calcium sulfonates
  • the Additive package is configured to be used for addition to a fuel formulation as provided to an end user.
  • the Additive package may be separately contained and added directly to the fuel in a storage receptacle or in the fuel tank of an aircraft or the like.
  • the Additive package may be specifically supplied with a combination of related components, e.g., the calcium sulfonates and other components such as carrier, detergent, antioxidant, dye, etc.
  • the present invention further includes a method of treating VSR using the Additive.
  • the method comprises adding the Additive to a fuel formulation to provide the calcium sulfonates at a level to provide the concentrations of calcium in the final fuel formulation as set forth herein.
  • the method may comprise adding the Additive during the blending of the fuel formulation.
  • the method may also comprise adding the
  • Additive to the fuel formulation as it is received from the producer This may occur by way of adding the Additive to the fuel while in storage or as present in a fuel tank, such as the tank of an aircraft.
  • An aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested without any anti-VSR additive.
  • the result was an excessive level of valve recession as the fuel combustion ran "too clean" and the metal-on-metal impact of the valves undesirably eroded the facing edge of the valves with the valve seat making the valve seat, out-of-tolerance after the 250 hours test of engine operation.
  • Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a phosphorous-based anti-VSR additive. The result was a limited level of valve recession, still within tolerance, but sludge and grime were excessive and difficult to remove.
  • Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a potassium -based anti-VSR additive.
  • the result was a limited level of valve recession, still within tolerance, but sludge and grime were excessive and difficult to remove. Potassium tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion or exhaust chamber.
  • Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a manganese-based anti-VSR additive (MMT).
  • MMT manganese-based anti-VSR additive
  • the result was a limited level of valve recession, but sludge and grime were excessive. Spark plug deposits shut down the engine between regular cleaning intervals. MMT tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion chamber.
  • MMT manganese-based anti-VSR additive
  • the response of the Additive package of this invention was tested in several different test engine runs using SAE standard testing for the response of the Additive package.
  • the standard calls for a 250-hour test, with the engine under full load. In total, 13 of these test engines were run the full 250 hours to evaluate additive response.
  • This test was conducted on a nominal blend of 100R, a clean-burning aviation gasoline with 75% aliphatic hydrocarbons and 25% oxygenates (m/m) with the maximum treat rate prescribed by the SPEC-lOOR-18 specification.
  • 8 other full runs were conducted with decreasing amounts of the Additive package in this invention.
  • the piston engines were purchased new, fully dimensionally measured, and reassembled before the run. Oil was changed initially at 25 hours and thereafter every 50 hours. For comparison of data, 100LL avgas with tetraethyllead and ethanol-free automotive gasoline were each run on a full additive test engine. At the completion of each run, the test engine was torn down and completely measured, evaluated, and photographed.
  • VSR pass / fail was only one criteria of the test:
  • 100LL avgas created lead deposits which allowed the fuel to meet valve seat recession requirements.
  • the lead deposits required 25- to 50-hour inspections and cleaning.
  • Autogas typically has up to 50% aromatics and high boiling compounds which impact the heavy exhaust valve deposits; autogas detergents may clean the intake.
  • the 100R baseline fuel with no additives was spotless on both valve seats, but regrettably the amount of valve seat wear was "high” due to the metal-on-metal impact (i.e., without appropriate additives the fuel burns "too clean", with no deposits).
  • Table 3 reports the results of using very clean-burning unleaded avgas 100R (second column), and using small amounts of calcium (2.5 ppm, 5 ppm and 7.5 ppm) from calcium petroleum sulfonate, with 10 mg/L of antioxidant (2, 6-ditertiary butyl-4- methylphenol).
  • the use of 7.5 ppm of Ca for test blend TA 402 yielded a passing result with respect to VSR.
  • Addition of 50 ppm of detergent for test blend TA 401 helped clean the intake on TA401 and provided passing results.
  • organometallic compounds provided passing results using an Additive containing at least lOppm calcium petroleum sulfonates plus anti-oxidants to result in no valve seat recession.
  • an aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with the calcium-based anti-VSR Additive.
  • the result was a level of valve recession of zero wear - like new.
  • the calcium component of the additive formed a thin white layer of soft film which prevented the valve seat from wearing during the 250-hour engine test. Additional testing found that the addition of detergents kept the intake clear from any deposits and dirt buildup.
  • the antioxidant reduced the impact of any gum-forming compounds.
  • the anti-microbial agent reduced the risk of microbial growth in unleaded fuels that might be exposed to growth propagating conditions.
  • Anti-VSR Calcium petroleum sulfonates
  • Anti-Oxidant 2,6-ditertiary butyl-4-methylphenol
  • Anti-microbial 4, 4, 6 - trimethyl- 1, 3, 2-dioxaborinane (Optional)
  • Blue Dye 1,4-dialkylaminoanthraquinone (Optional)
  • Red Dye alkylazobenzene-4-azo-2-naphthol (Optional)
  • the present invention has many aspects. These further include the following.
  • the fuel Additive may be comprised of at least 10 ppm of calcium petroleum sulfonates in solution with a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any gasoline composition, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber.
  • a liquid carrier an C7 to C9 arene hydrocarbon
  • the fuel Additive in the first aspect may be blended
  • the fuel Additive of the first or second aspect may be combined with 50 to 250 ppm of detergent - such as Polyolefin alkyl phenol alkyl amine.
  • the fuel Additive of the first or second aspect may be combined with up to 20 mg/L of antioxidant - 2,6-ditertiary butyl-4-methylphenol.
  • the fuel Additive of the first or second aspect may be combined with up to 40 mg/L of an anti-microbial agent - 4, 4, 6 - trimethyl- 1, 3, 2-dioxaborinane.
  • the fuel Additive of the first or second aspect may be combined with any approved dyes for quality control and color calibration for fuel safety.
  • a fuel Additive may be comprised of at least 10 ppm of calcium petroleum sulfonates in solution with a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any clean-burning aviation gasoline with at least a 99.6 MON octane rating, comprised of at least one C4 to C8 aliphatic hydrocarbon and at least one oxygenated-compound and with no more than 5% aromatic hydrocarbons, and no amines or organometallic compounds, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber.
  • a liquid carrier an C7 to C9 arene hydrocarbon
  • the fuel Additive of the third aspect may be combined with 50 to 250 ppm of detergent - such as Polyolefin alkyl phenol alkyl amine.
  • the fuel Additive of the third aspect may be combined with up to 20 mg/L of antioxidant - such as 2,6-ditertiary butyl-4-methylphenol.
  • the fuel Additive of the third aspect may be combined with up to 40 mg/L of an anti-microbial agent - such as 4, 4, 6 - trimethyl-1, 3, 2-dioxaborinane.
  • an anti-microbial agent - such as 4, 4, 6 - trimethyl-1, 3, 2-dioxaborinane.
  • the fuel Additive of the third aspect may be combined with any approved dyes for quality control and color calibration for fuel safety - such as Blue Dye: 1,4- dialkylaminoanthraquinone and Red Dye: alkylazobenzene-4-azo-2-naphthol.
  • the fuel Additive of any of the first, second or third aspects may comprise at least 10 ppm of calcium petroleum sulfonates in a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any combination of specified detergents, anti oxidants, anti-microbial agents and dyes and subsequently blended with any gasoline composition or aviation gasoline composition, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber.
  • a method of treating VSR in a fuel formulation may comprise addition of a fuel Additive of the first, second or third aspects to yield a fuel formulation having the indicated amounts of calcium sulfonates in the final fuel.
  • a fuel formulation comprising calcium sulfonates and other components, as disclosed herein, at amounts operative to limit, or eliminate, VSR for the engine in which the fuel formulation is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

A fuel additive for fuel formulations comprising calcium sulfonates in an amount effective to limit or eliminate valve seat recession in engines utilizing such fuel formulations. The fuel additive may also include a detergent, particularly in an amount to enhance the VSR limiting effect of the calcium sulfonates. Also included are fuel formulations containing calcium sulfonates in a concentration effective to limit vale seat recession in engines utilizing the fuel formulations. Methods for treating VSR in piston engines are also provided.

Description

Clean-Burning Gasoline Additive
to Eliminate Valve Seat Recession and Toxic Deposits
Field of Invention
Valve Seat Recession (VSR) can occur in any internal combustion engine due to the repetitive impact of the valves in the cylinder, particularly the exhaust valve, contacting the cylinder head socket (valve seat) under intense temperature and pressure over the operating life of a piston engine.
Background
Combustion of gasoline products in the combustion chamber of a piston engine often results in residue and deposits forming around the intake valve and exhaust port and around the cylinder and piston head. The composition of gasoline typically comprises C7 - C10 aromatic hydrocarbons and C4 - C12 aliphatic compounds that upon incomplete combustion result in engine deposits and combustion residue.
The cleanest combustion examples, i.e. those unleaded gasolines that contain only C4 - C10 aliphatic compounds and high-octane oxygenated compounds (e.g. ETBE, MTBE, TAME, alcohols, etc.), tend to offer much cleaner combustion characteristics due to the presence of oxygen in their chemistry. However, many high performance gasolines with more exotic high-octane chemistries often do not fully combust. This can result in the combustion chamber being effectively "too clean" without the help of an effective valve seat recession additive.
Alternatively, these fuels may utilize specific compounds known as octane boosters, e.g. aromatic amines, organometallic compounds, or >5% (m/m) aromatic hydrocarbons. Typical high-octane compounds used to boost octane rating in gasoline engines, but that often result in heavier engine, sparkplug and valve-seat deposits, may include any of the following: aromatic hydrocarbons (e.g., toluene, xylenes, and tri- methylbenzenes); aromatic amines (e.g., aniline, m-toluidine and Cumidine); and organometallic compounds (e.g. tetraethyllead (TEL), MMT (Methylcyclopentadienyl manganese tricarbonyl and ferrocene).
The octane boosters increase octane ratings of the fuel but tend to cause dirty build-up of deposits and grime in the combustion chamber. This can create a physical barrier, primarily around the exhaust port, which serves to resist valve seat recession. However, this type of build-up can become excessive, leading to loss of compression in the combustion chamber or even engine shut-down - thus such excessive deposits require frequent servicing and diligent cleaning of the spark plugs, often every 25 to 50 hours of engine operation in certain engine applications.
There is a long history of using VSR additives in gasoline to prevent or minimize valve seat recession. However, such additives have focused for decades on the use of phosphorous-based compounds, potassium, sodium and manganese organometallic chemistries (see Technical Committee on Petroleum Additive Manufacturers in Europe - (ATC) document 113 published in September 2013).
Traditional phosphorous, potassium, sodium and manganese anti-VSR additives blended with gasoline or aviation gasoline in an aircraft engine tend to develop specific unwanted effects, such as increased wear at other parts of the engine and layers of sludge on the combustion chamber making an uncontrollable amount of deposits that may require a chemical scavenger to abate. Chemical scavengers often add to toxicity concerns and add complexity to the combustion and exhaust behavior of the fuel.
Fuel additives determine much about the useful nature of any gasoline. TEL is toxic and although it is present in small amounts (~ 2.1g Pb /gallon), it has a large impact on airborne and municipal water toxicity levels across the nation. Aviation gasoline is one type of premium-quality gasoline for somewhat lower-compression piston engines that has historically contained TEL, which tends to create what is sometimes referred to as a lubricity effect which serves to prevent valve seat recession.
Such leaded gasoline is also coupled (2:1) with ethylene dibromide, an even more toxic compound as a chemical scavenger of the lead. Together these compounds directly affect the level of sludge in an engine, the frequency of oil changes, the frequency of sparkplug changes due to lead fouling, the consternation of communities dealing with exhaust toxicity of micro-particulates of lead dust. The seemingly small quantity of additives determines a lot about the nature of the fuel. See Table 1. Table 1 - Old Fuel Additives
NR = Not Required due to the chemistry of the fuel causing excessive combustion chamber deposits
Summary of Invention
A fuel additive is provided to limit valve seat recession in piston engines. The additive provides calcium sulfonates in an amount in fuel formulation effective to limit VSR in engines using the fuel formulation. The calcium sulfonates preferably comprise calcium petroleum sulfonates, and the fuel additive may also include detergents, antioxidants and anti-microbial agents. The additives find particular use with clean burning aircraft fuels. Also provided are methods for treating vale seat recession in engines by combining the fuel additives to the fuel used by such engines. Further provided are fuel formulations containing calcium sulfonates, and optionally detergents and other components, which result in limited valve seat recession in the engines using such fuels.
Key features of the Additive package in this invention are its ability to limit, or even prevent, valve seat recession (VSR), eliminate intake deposits, and protect against corrosion and microbial growth in the aircraft.
This invention utilizes a new technology - a specialized gasoline additive - to limit valve seat recession (VSR), including when using a clean -burning gasoline, preferably an unleaded gasoline.
Furthermore, such gasolines, particularly clean-burning gasolines, using this invention result in far less corrosion in the engine and oil system (typically caused by the presence of organometallics) leading to longer engine life and longer time between engine overhauls.
A preferred embodiment is a high-octane premium-quality aviation gasoline comprised of aliphatic hydrocarbons and oxygenates with no or very low levels of aromatics, amines or metals as outlined herein.
Further forms, objects, features, aspects, benefits, advantages, and embodiments of the present invention will become apparent from a detailed description and drawings provided herewith. Description
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. One embodiment of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
This invention uses a special formulation of components blended in solution as a fuel Additive (the "Additive") which is added at a specified treat rate to appropriate gasoline or aviation gasoline compositions. This invention provides a unique and novel approach to anti-VSR additives, resulting in a soft, easy-to-clean, non-toxic thin residue film which coats the combustion area of the cylinder, piston head, intake and exhaust port areas, thereby treating VSR (wear-and-tear) to the mechanical parts.
The Additive of the present invention is tailored to work with any gasoline, but also finds particular advantage in use with clean-burning gasoline to treat VSR. Without being bound to any particular mechanism of action, it appears that the VSR Additive produces a very thin layer of a soft, easy to clean, non-toxic residue which accumulates and then stabilizes in the combustion chamber. This produces a minimal but useful buildup of soft, white residue in and around the intake and exhaust ports during the combustion process. The result is a thin, soft residue that serves as a barrier to treat valve seat recession and to leave the combustion chamber with virtually no wear-and- tear on the valve seat and with freedom from harmful deposits.
The Additive is useful limiting VSR. As used herein, the reference to "limiting" VSR is meant to include a reduction of VSR as compared to operation of the engine with the same fuel formulation, but without the Additive. This reduction may include, for example, a reduction in VSR of at least 10%, preferably at least 25%, and most preferably at least 50%. In some embodiments, the Additive is effective to substantially eliminate VSR, meaning that VSR is reduced by at least 90%. In embodiments, use of the Additive eliminates VSR.
A major difference between the Additive of this invention and those commonly known in the prior art is its low treatment rate the Additive results in harmless deposits and less residue with a cleaner combustion chamber, which extends maintenance cycles and engine life while allowing for ease of cleaning of spark plugs. It is a particular feature of this invention that the Additive package is free of an octane booster and/or a chemical scavenger, and in an aspect the final fuel formulation including the Additive is free, and preferably substantially free, of an octane booster and/or a chemical scavenger. Being substantially free refers to the final fuel formulation constituting less than 1 wt % of octane booster and/or chemical scavenger.
Calcium Sulfonates
The inventive Additive includes one or more fuel-soluble calcium sulfonates. The calcium sulfonates preferably comprise calcium petroleum sulfonates. In one
embodiment, the calcium is provide to provide a low treat rate ranging from about 5 to about 100 ppm (as Ca2+), alternatively at least 5 or 10 ppm, in the fuel formulation.
Sulfonates can be derived from petroleum fractions, from lignin, and from fatty oils.
These materials are mixtures of indeterminate or variable composition, probably comprising one or more of the main chemical types of sulfonates together with sulfates and other sulfur compounds. Such compositions are made largely by empirical procedures. Natural petroleum sulfonates are defined as those manufactured by sulfonation of crude oil, crude distillates, or any portion of these distillates in which hydrocarbons present are not substantially different from their state in the original crude oil. For further information, see
httDs://www.Drimarvinfo.com/technoloev/calcium-Detroleum-sulfonate.htm, the content of which is hereby incorporated by reference.
These natural materials, then, are quite different from synthetic sulfonates, which are derived most commonly from sulfonation of olefinic polymers or alkyl aromatic hydrocarbons. Calcium petroleum sulfonate is calcium salt of sulfonic acid made by processing heavy alkaline benzene of suitable fraction with sulfuric acid or sulfur trioxide and refining by liquid extraction by using suitable alcoholic solvent and precipitating insoluble salts by control of PH and centrifuging. Petroleum sulfonate is mainly obtained by treating high-boiling petroleum fractions in a stirred tank reactor (STR) or in a falling- film reactor (FFR). Synthesis of petroleum sulfonate surfactant may be made with ultra-low interfacial tension in a rotating packed bed reactor.
Sulfonation may be defined as any chemical process by which the sulfonic acid group (SO2OH) or the corresponding salt or sulfonyl halide group (e.g. -SO2CI) is introduced into an organic compound. Recently a process has been developed for the manufacture of superior metal petroleum sulfonates, particularly calcium petroleum sulfonates, by the sulfonation of a highly viscous, highly refined paraffinic oil fraction having a viscosity of at least about 200 to 230 SUS at 210 F, and having a viscosity index of about 85 to 100 or higher.
Carriers
The calcium compound is preferably formulated in a compatible, low-toxicity carrier suitable for use in combination with gasoline fuels. As known in the art, such carriers include, for example, C7 to C9 arene hydrocarbons.
Detergents
The Additive further may comprise one or more detergents. The detergents typically comprise, for example, from 50 to 200 ppm of the Additive. By way of example, a polyolefin alkyl phenol alkyl amine is a suitable detergent. The use of such detergents in combination with the calcium sulfonates provides an unexpectedly superior impact on gasoline fuels by forming a thin soft residue layer without undesired build-up, while still being sufficient to treat valve seat recession when an engine is operated
continuously under load.
Detergents leave the intake clean, while the calcium forms a soft white film during combustion which is easily cleaned by a light brush or rinsed with water and air dried. This is dramatically easier to clean than removing TEL or MMT organometallic deposits which form once fuel is combusted and caked onto engine parts - requiring frequent and excessive physical effort to clean off the spark plugs.
The use of a detergent will depend on the nature of the fuel. For clean-burning fuels there will be less need for a detergent, whereas fuels which are not clean-burning may benefit from addition of a detergent. This is demonstrated in the examples provided hereafter. The determination of the use of a detergent, and the amount, is within the ordinary skill in the art based on assessment of the results of using the calcium sulfonate with a given fuel.
In a particular aspect, the detergent is used with the calcium sulfonates for addition to a fuel formulation requiring the detergent to make the calcium sulfonates effective to limit VSR. As disclosed herein, certain fuels benefit from the combination of calcium sulfonates and detergents in order to enhance the effect of either alone in limiting VSR. In this respect, the calcium sulfonates and the detergents are used in amounts and proportions that increase the VSR limiting effect of the calcium sulfonates. Preferably, the combination of the one or more calcium sulfonates and the one or more detergents provides enhanced limiting of VSR that is at least 25%, preferably at least 50%, better than use of the calcium sulfonates alone for a given fuel and engine. For example, if the calcium sulfonates limit VSR to 12%, then the addition of the detergent results in a limitation of VSR to at most 9%, or at most 6%.
Antioxidant
An additional component may comprise an antioxidant, suitable for use with fuel formulations. An example of a suitable antioxidant is 2,6-ditertiaiy butyl-4- methylphenol. The determination of the use of an antioxidant, and the amount, is within the ordinary skill in the art based on assessment of the results of using the calcium sulfonate with a given fuel.
Other Excipients
Other known excipients may also be included in the Additive. For example, an anti-microbial agent, such as 4,4,6-trimethyl-l,3,2- dioxaborolane, may optionally be included. It may also be desirable to add a color dye to the Additive formulation, for example Blue (1,4-dialkylaminoanthraquinone), or Red (alkylazobenzene-4-azo-2- naphthol) dyes, or possibly other colors. The addition of such coloring agent may be prescribed by international fuel regulatory organizations (e.g. ASTM International) for quality control and color calibration when used in aviation gasolines.
Fuels
The use of > 5% (m/m) aromatic hydrocarbons in aircraft piston engines has an adverse effect on the output of exhaust emissions (particularly in the absence of catalytic convertors as required in automobiles) and heavy combustion deposits of carbon. Using 30 - 50 % aromatics (m/m) in the fuel, as is often the case in Autogas used in aircraft, increases the density of the fuel above 6 lbs. per gallon which may create a concern on managing center-of-gravity and weight/balance attributes of an aircraft. Accordingly, the preferred clean-burning gasoline is one with < 5% aromatic hydrocarbons.
This invention is a specially designed Additive uniquely tailored to work with specific fuels, particularly clean -burning aviation gasolines that combust with very little or no organometallic, amines or hydrocarbon deposits - i.e. those fuels comprised of
leave very little or no residue on the valves. Such clean-burning fuels might expose the exhaust valves to direct (unlubricated) impact with the cylinder head, leading to valve seat recession.
Use of aromatic hydrocarbons >30% (m/m) increases the density of the fuel plus contributes to carbon fouling which has shown evidence of impacting sparkplug performance; also, excessive carbon fouling can contribute to sticking / blow-by in the cylinder walls.
This Additive can be applied to any gasoline formulation for use in a piston engine, no matter the formulation, but is particularly useful when used in very clean burning unleaded gasoline blends comprised of aliphatic hydrocarbons or any combination of aliphatic hydrocarbons and oxygenates as described herein.
The cleanest burning high-octane gasoline preferred an oxygenate compound. Our scientists tested various known high-octane aviation gasolines (100LL, 100-octane with MMT, 100-octane with aniline) were tested. In addition we tested 100R, the cleanest burning oxygenated aviation gasoline, which in various embodiments contained > 80% Ethyl Tert-Butyl Ether and ideally > 95% ETBE, however some combination of other ethers (MTBE, TAME, THME, Diisopropyl Ether, etc.) and trace amount of alcohols (methanol, ethanol, etc.) in the fuel as acceptable within industry limits on water solubility.
A further aspect of this invention is the Additive formulation in a clean-burning fuel eliminates the use of harmful chemicals that can cause acidity, corrosion, organometallic deposits and sparkplug fouling, and sludge build-up that by their chemical nature can cause unwanted wear-and-tear throughout the piston engine. Using this special Additive with clean-burning gasoline results in less frequent and less extensive engine maintenance requirements, conducted at longer time intervals between servicing, thereby creating an economic benefit to operators of aircraft piston engines.
Additive Package
In one aspect, the present invention provides an Additive package suited for addition to an existing fuel formulation. This addition could occur at any point in the preparation and use of a given fuel formulation. For example, during initial formulation of a fuel the calcium sulfonate may be added to the other fuel components. The calcium sulfonate may be provided by itself, or it may be in combination with other intended fuel components. In a particular aspect, the calcium sulfonate forms a components of an Additive package that includes other components intended to work in combination with the calcium sulfonates, such as those described herein including detergents and/or antioxidants. The Additive package may then also comprise a carrier effective to suspend or otherwise support, including by solution, the calcium sulfonates
In a related aspect, the Additive package is configured to be used for addition to a fuel formulation as provided to an end user. For example, the Additive package may be separately contained and added directly to the fuel in a storage receptacle or in the fuel tank of an aircraft or the like. In this respect, the Additive package may be specifically supplied with a combination of related components, e.g., the calcium sulfonates and other components such as carrier, detergent, antioxidant, dye, etc.
Method of Treating VSR
The present invention further includes a method of treating VSR using the Additive. The method comprises adding the Additive to a fuel formulation to provide the calcium sulfonates at a level to provide the concentrations of calcium in the final fuel formulation as set forth herein. The method may comprise adding the Additive during the blending of the fuel formulation. The method may also comprise adding the
Additive to the fuel formulation as it is received from the producer. This may occur by way of adding the Additive to the fuel while in storage or as present in a fuel tank, such as the tank of an aircraft. Example 1 - Prior Art
An aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested without any anti-VSR additive. The result was an excessive level of valve recession as the fuel combustion ran "too clean" and the metal-on-metal impact of the valves undesirably eroded the facing edge of the valves with the valve seat making the valve seat, out-of-tolerance after the 250 hours test of engine operation.
Example 2 - Phosphate
Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a phosphorous-based anti-VSR additive. The result was a limited level of valve recession, still within tolerance, but sludge and grime were excessive and difficult to remove.
Example 3 - Potassium
Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a potassium -based anti-VSR additive. The result was a limited level of valve recession, still within tolerance, but sludge and grime were excessive and difficult to remove. Potassium tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion or exhaust chamber.
Example 4 - Manganese
Aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a manganese-based anti-VSR additive (MMT). The result was a limited level of valve recession, but sludge and grime were excessive. Spark plug deposits shut down the engine between regular cleaning intervals. MMT tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion chamber. Example 5 - Anti -VSR Additive
The response of the Additive package of this invention was tested in several different test engine runs using SAE standard testing for the response of the Additive package. The standard calls for a 250-hour test, with the engine under full load. In total, 13 of these test engines were run the full 250 hours to evaluate additive response. This test was conducted on a nominal blend of 100R, a clean-burning aviation gasoline with 75% aliphatic hydrocarbons and 25% oxygenates (m/m) with the maximum treat rate prescribed by the SPEC-lOOR-18 specification. In addition, 8 other full runs were conducted with decreasing amounts of the Additive package in this invention.
The piston engines were purchased new, fully dimensionally measured, and reassembled before the run. Oil was changed initially at 25 hours and thereafter every 50 hours. For comparison of data, 100LL avgas with tetraethyllead and ethanol-free automotive gasoline were each run on a full additive test engine. At the completion of each run, the test engine was torn down and completely measured, evaluated, and photographed.
The following items were of specific focus as they relate to additive response and an overall assessment of each attribute was compiled. Note that VSR pass / fail was only one criteria of the test:
• Intake Valve seat wear
• Exhaust valve seat wear
• Spark Plug - evaluation and photos
• Cylinder head - evaluation and photos
• Intake runner - evaluation and photos
• Intake Valve stem- evaluation and photos
• Exhaust Valve stem- evaluation and photos
• Intake Valve face- evaluation and photos
• Exhaust Valve face- evaluation and photos
Experiments were conducted comparing prior art fuel formulations as compared to fuel formulations according to the present invention. In accordance with the guidance in D7826, the final test engine was run on a 100R with 4x treat rate of the recommended 10 ppm calcium Additive package (i.e. 40ppm of calcium). Results are summarized in the following tables. A FAIL criterion was established for valve seat wear above 19% change from the pre-test measurements based upon industry service and manufacturer norms for valve seat tolerance. The percent of VSR was determined by comparing the change in measurement of a suitable structure of the engine, e.g., a ridge on the edge of the valve seat. The tests were run based on a 200 hour engine test.
Table 2
As evidenced in Table 2, 100LL avgas created lead deposits which allowed the fuel to meet valve seat recession requirements. However, the lead deposits required 25- to 50-hour inspections and cleaning. Autogas typically has up to 50% aromatics and high boiling compounds which impact the heavy exhaust valve deposits; autogas detergents may clean the intake. The 100R baseline fuel with no additives was spotless on both valve seats, but regrettably the amount of valve seat wear was "high" due to the metal-on-metal impact (i.e., without appropriate additives the fuel burns "too clean", with no deposits).
Table 3
Table 3 reports the results of using very clean-burning unleaded avgas 100R (second column), and using small amounts of calcium (2.5 ppm, 5 ppm and 7.5 ppm) from calcium petroleum sulfonate, with 10 mg/L of antioxidant (2, 6-ditertiary butyl-4- methylphenol). The use of 7.5 ppm of Ca for test blend TA 402 yielded a passing result with respect to VSR. Addition of 50 ppm of detergent for test blend TA 401 helped clean the intake on TA401 and provided passing results.
Table 4
Using very clean-burning unleaded avgas 100R for the results in Table 4, and additive treat rates of at least 10 ppm of calcium, plus adding detergents from 0 ppm up to 250 ppm and the antioxidant, made the entire valve seat recession disappear and the combustion chamber was very clean from any deposits.
Using very clean-burning unleaded aviation gasoline, blended in a minimum 99.6 MON formulation comprising at least one C4 - C10 aliphatic and at least one oxygenated- compound, with no more than 5% aromatic content and with no amines or
organometallic compounds, provided passing results using an Additive containing at least lOppm calcium petroleum sulfonates plus anti-oxidants to result in no valve seat recession.
Furthermore, the optional addition of 50 ppm to 250 ppm of detergents and the option of an anti-microbial agent results in cleaner piston-engine intakes and long-time storability of the fuel, thereby extending overall engine life.
In one experiment, an aviation gasoline blend comprising at least one C4 - C10 aliphatic hydrocarbon and at least oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with the calcium-based anti-VSR Additive. The result was a level of valve recession of zero wear - like new. The calcium component of the additive formed a thin white layer of soft film which prevented the valve seat from wearing during the 250-hour engine test. Additional testing found that the addition of detergents kept the intake clear from any deposits and dirt buildup. The antioxidant reduced the impact of any gum-forming compounds. The anti-microbial agent reduced the risk of microbial growth in unleaded fuels that might be exposed to growth propagating conditions.
Example 6
Exemplary formulations for the Additive are provided in Table 5.
Table 5
The terms in Table 5 have the following meanings:
Anti-VSR = Calcium petroleum sulfonates
Anti-Oxidant = 2,6-ditertiary butyl-4-methylphenol
Detergent/Cl = Polyolefin alkyl phenol alkyl amine
Anti-microbial = 4, 4, 6 - trimethyl- 1, 3, 2-dioxaborinane (Optional)
Blue Dye = 1,4-dialkylaminoanthraquinone (Optional)
Red Dye = alkylazobenzene-4-azo-2-naphthol (Optional)
Carrier in Solution = C7 to C9 arene hydrocarbon
Aspects of the Invention
As described herein, the present invention has many aspects. These further include the following.
In a first aspect, the fuel Additive may be comprised of at least 10 ppm of calcium petroleum sulfonates in solution with a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any gasoline composition, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber.
In a second aspect, the fuel Additive in the first aspect may be blended
specifically with any aviation gasoline composition used in piston aircraft, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber. The fuel Additive of the first or second aspect may be combined with 50 to 250 ppm of detergent - such as Polyolefin alkyl phenol alkyl amine.
The fuel Additive of the first or second aspect may be combined with up to 20 mg/L of antioxidant - 2,6-ditertiary butyl-4-methylphenol.
The fuel Additive of the first or second aspect may be combined with up to 40 mg/L of an anti-microbial agent - 4, 4, 6 - trimethyl- 1, 3, 2-dioxaborinane.
The fuel Additive of the first or second aspect may be combined with any approved dyes for quality control and color calibration for fuel safety.
In a third aspect, a fuel Additive may be comprised of at least 10 ppm of calcium petroleum sulfonates in solution with a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any clean-burning aviation gasoline with at least a 99.6 MON octane rating, comprised of at least one C4 to C8 aliphatic hydrocarbon and at least one oxygenated-compound and with no more than 5% aromatic hydrocarbons, and no amines or organometallic compounds, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber.
The fuel Additive of the third aspect may be combined with 50 to 250 ppm of detergent - such as Polyolefin alkyl phenol alkyl amine.
The fuel Additive of the third aspect may be combined with up to 20 mg/L of antioxidant - such as 2,6-ditertiary butyl-4-methylphenol.
The fuel Additive of the third aspect may be combined with up to 40 mg/L of an anti-microbial agent - such as 4, 4, 6 - trimethyl-1, 3, 2-dioxaborinane.
The fuel Additive of the third aspect may be combined with any approved dyes for quality control and color calibration for fuel safety - such as Blue Dye: 1,4- dialkylaminoanthraquinone and Red Dye: alkylazobenzene-4-azo-2-naphthol.
Further, the fuel Additive of any of the first, second or third aspects may comprise at least 10 ppm of calcium petroleum sulfonates in a liquid carrier (an C7 to C9 arene hydrocarbon), blended with any combination of specified detergents, anti oxidants, anti-microbial agents and dyes and subsequently blended with any gasoline composition or aviation gasoline composition, which upon combustion prevents valve seat recession, intake coking, and reduces post-combustion deposits in the exhaust chamber. In a fourth aspect, a method of treating VSR in a fuel formulation may comprise addition of a fuel Additive of the first, second or third aspects to yield a fuel formulation having the indicated amounts of calcium sulfonates in the final fuel.
In a fifth aspect, there is provided a fuel formulation comprising calcium sulfonates and other components, as disclosed herein, at amounts operative to limit, or eliminate, VSR for the engine in which the fuel formulation is used.
While the invention has been illustrated and described in detail in the foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes, equivalents, and modifications that come within the spirit of the inventions defined by following claims are desired to be protected. All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.

Claims

Claims
1. A fuel additive for use in gasoline fuels comprising:
one or more calcium sulfonates in an amount, upon addition to the gasoline fuel, to be effective to limit valve seat recession in an engine using the fuel.
2. The fuel additive of claim 1 in which the calcium sulfonates comprise calcium petroleum sulfonates.
3. The fuel additive of claim 2 which further comprises;
a detergent present in an amount to provide enhanced limiting of the VSR over that achieved with the calcium sulfonates, the calcium sulfonates and the detergent being formulated for direct addition to a final fuel formulation.
4. The fuel additive of claim 3 in which the detergent is polyolefin alkyl phenol alkyl amine.
5. The fuel additive of claim 4 which further includes an antioxidant.
6. An aviation gasoline fuel formulation comprising:
aviation gasoline;
one or more calcium sulfonates in an amount effective to limit valve seat recession in an engine using the fuel.
7. The aviation gasoline fuel formulation of claim 6 comprising at least 5 ppm of calcium petroleum sulfonates.
8. The aviation gasoline fuel formulation of claim 6 that includes calcium petroleum sulfonates in an amount effective to eliminate valve seat recession in an engine using the fuel. comprising calcium petroleum sulfonates and present in the aviation gasoline at a Ca2+ concentration of at least 10 ppm.
9. The fuel formulation of claim 6 and which further includes a detergent present in the aviation gasoline fuel formulation at a concentration effective to provide enhanced limiting of the VSR over that achieved with the calcium petroleum sulfonates.
10. The fuel formulation of claim 6 which further includes 50 to 250 ppm of the detergent polyolefin alkyl phenol alkyl amine to prevent intake coking and reduce post combustion deposits.
11. The fuel formulation of claim 10 which further includes the antioxidant 2,6- ditertiaiy butyl-4-methylphenol in an amount up to 20 mg/L.
12. The fuel formulation of claim 11 which further includes the anti-microbial agent 4, 4, 6 - trimethyl- 1, 3, 2-dioxaborinane in an amount up to 40 mg/L.
13. The fuel formulation of claim 12 which further includes a dye for quality control and color calibration for fuel safety.
14. The fuel formulation of claim 6 comprising calcium petroleum sulfonates in solution with a liquid carrier, the calcium petroleum sulfonates being present in an amount of at least lOppm calcium, the aviation gasoline comprising a clean-burning aviation gasoline with at least a 99.6 MON octane rating comprised of at least one C4 to C8 aliphatic hydrocarbon and at least one oxygenated-compound and with no more than 5% m/m aromatic hydrocarbons, and no more than 1.5% m/m amines and/or no more than 0.005% m/m organometallic compounds, which formulation upon combustion prevents valve seat recession and intake coking, and reduces post-combustion deposits.
15. A method for treating VSR in a piston aircraft engine using an aviation gasoline, comprising:
blending with the aviation gasoline an amount of calcium petroleum sulfonates to provide a concentration of 10 ppm in the aviation gasoline as used.
16. The method of claim 15 which further comprises adding a detergent to be present in an amount to provide enhanced limiting of the VSR over that achieved with the calcium petroleum sulfonates.
17. The method of claim 16 which further comprises adding the detergent to provide 50 to 250 ppm of the detergent in the aviation gasoline.
18. The method of claim 17 in which the detergent is polyolefin alkyl phenol alkyl amine.
19. The method of claim 18 and which further includes adding to the aviation gasoline an antioxidant.
20. The method of claim 19 which includes adding the antioxidant 2,6-ditertiaiy butyl-4-methylphenol in an amount up to 20 mg/L.
EP19888587.3A 2018-11-26 2019-11-26 Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits Pending EP3921392A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862771292P 2018-11-26 2018-11-26
PCT/US2019/063353 WO2020112842A1 (en) 2018-11-26 2019-11-26 Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits

Publications (2)

Publication Number Publication Date
EP3921392A1 true EP3921392A1 (en) 2021-12-15
EP3921392A4 EP3921392A4 (en) 2023-01-11

Family

ID=70770074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19888587.3A Pending EP3921392A4 (en) 2018-11-26 2019-11-26 Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits

Country Status (4)

Country Link
US (2) US20200165534A1 (en)
EP (1) EP3921392A4 (en)
CA (1) CA3121161A1 (en)
WO (1) WO2020112842A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718919A (en) * 1986-10-01 1988-01-12 Ppg Industries, Inc. Fuel additive
US5160350A (en) * 1988-01-27 1992-11-03 The Lubrizol Corporation Fuel compositions
US5407453A (en) * 1993-03-19 1995-04-18 The Lubrizol Corporation Deposit cleaning composition for internal combustion engines
ES2248887T3 (en) * 1997-02-03 2006-03-16 Ciba Specialty Chemicals Holding Inc. POLYFUNCTIONAL LIQUID ADDITIVES TO IMPROVE FUEL LUBRICITY.
US7862629B2 (en) * 2004-04-15 2011-01-04 Exxonmobil Research And Engineering Company Leaded aviation gasoline
US20100132253A1 (en) * 2008-12-03 2010-06-03 Taconic Energy, Inc. Fuel additives and fuel compositions and methods for making and using the same
US20100206260A1 (en) * 2009-02-18 2010-08-19 Chevron Oronite Company Llc Method for preventing exhaust valve seat recession
EP3161112B1 (en) * 2014-06-27 2021-08-04 BP Oil International Limited Aviation gasoline composition, its preparation and use
CN107532096A (en) * 2014-07-14 2018-01-02 斯威夫特燃料有限责任公司 For piston-engined unleaded gas preparation

Also Published As

Publication number Publication date
US20200165534A1 (en) 2020-05-28
EP3921392A4 (en) 2023-01-11
US20230250349A1 (en) 2023-08-10
WO2020112842A1 (en) 2020-06-04
CA3121161A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
AU2006350703B2 (en) Stabilizer compositions for blends of petroleum and renewable fuels
EP1357170B9 (en) Friction modifier additives for fuel compositions and methods of use thereof
RU2480514C2 (en) Stabilising synergistic mixture and use thereof
DK169472B1 (en) Dibasic alkali metal salt of a succinic acid derivative, concentrate containing it for addition to gasoline and its use in gasoline
Badia et al. New octane booster molecules for modern gasoline composition
ZA200510016B (en) Gasoline composition
EP0829527A1 (en) Additive concentrate for fuel compositions
Danilov Progress in research on fuel additives
US2575003A (en) Fuel oil composition
CN106687566A (en) Aviation fuel with a renewable oxygenate
JP2004339504A (en) Fuel composition containing molybdenum source and metal-containing detergent, and its use in two-stroke engine
JP5020434B2 (en) Fuel additive and fuel processing method
US2952637A (en) Carburetor and engine cleaning composition
Danilov Fuel additives: evolution and use in 1996-2000
WO2020112842A1 (en) Clean-burning gasoline additive to eliminate valve seat recession and toxic deposits
DE2555921A1 (en) MULTI-PURPOSE ADDITIONAL MIXTURE FOR LIQUID FUELS
CN111133080B (en) Method for controlling deposits
US3877887A (en) Motor fuel composition
US2853530A (en) Bis [2-(1-methoxysopropoxyisopropoxy) ethyl] ether
CA2482735C (en) Method for reducing combustion chamber deposit flaking
RU2737165C2 (en) Method and composition for improving combustion of aviation fuel
US3230057A (en) Addition agent and two-cycle engine oil
Nomura et al. Development of Gasoline Injector Cleaner for Port Fuel Injection and Direct Injection
US2938777A (en) Gasoline fuel composition
Badia i Córcoles et al. New Octane Booster Molecules for Modern Gasoline Composition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SWIFT FUELS, LLC

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEGENHART, BENJAMIN

Inventor name: ZINK, JUSTIN, D

Inventor name: ALBUZAT, THOMAS

Inventor name: D'ACOSTA, CHRIS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20221207

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/30 20060101ALN20221202BHEP

Ipc: C10L 1/24 20060101ALN20221202BHEP

Ipc: C10L 10/04 20060101ALN20221202BHEP

Ipc: C10L 1/226 20060101ALN20221202BHEP

Ipc: C10L 1/223 20060101ALN20221202BHEP

Ipc: C10L 1/22 20060101ALN20221202BHEP

Ipc: C10L 1/16 20060101ALN20221202BHEP

Ipc: C10L 10/08 20060101ALI20221202BHEP

Ipc: C10L 1/238 20060101ALI20221202BHEP

Ipc: C10L 10/18 20060101ALI20221202BHEP

Ipc: C10L 1/234 20060101ALI20221202BHEP

Ipc: C10L 1/183 20060101ALI20221202BHEP

Ipc: C10L 1/12 20060101ALI20221202BHEP

Ipc: C10L 1/14 20060101AFI20221202BHEP