EP3917890A4 - Method for drawing an optical fibre using rod-in-cylinder technique - Google Patents

Method for drawing an optical fibre using rod-in-cylinder technique Download PDF

Info

Publication number
EP3917890A4
EP3917890A4 EP20748219.1A EP20748219A EP3917890A4 EP 3917890 A4 EP3917890 A4 EP 3917890A4 EP 20748219 A EP20748219 A EP 20748219A EP 3917890 A4 EP3917890 A4 EP 3917890A4
Authority
EP
European Patent Office
Prior art keywords
rod
optical fibre
cylinder technique
cylinder
technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20748219.1A
Other languages
German (de)
French (fr)
Other versions
EP3917890A1 (en
Inventor
Nivedita PRASAD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sterlite Technologies Ltd
Original Assignee
Sterlite Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sterlite Technologies Ltd filed Critical Sterlite Technologies Ltd
Publication of EP3917890A1 publication Critical patent/EP3917890A1/en
Publication of EP3917890A4 publication Critical patent/EP3917890A4/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02763Fibres having axial variations, e.g. axially varying diameter, material or optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01282Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by pressing or sintering, e.g. hot-pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/08Sub-atmospheric pressure applied, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/14Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
EP20748219.1A 2019-01-29 2020-01-10 Method for drawing an optical fibre using rod-in-cylinder technique Pending EP3917890A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201911003619 2019-01-29
PCT/IN2020/050032 WO2020157769A1 (en) 2019-01-29 2020-01-10 Method for drawing an optical fibre using rod-in-cylinder technique

Publications (2)

Publication Number Publication Date
EP3917890A1 EP3917890A1 (en) 2021-12-08
EP3917890A4 true EP3917890A4 (en) 2022-10-12

Family

ID=71841012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20748219.1A Pending EP3917890A4 (en) 2019-01-29 2020-01-10 Method for drawing an optical fibre using rod-in-cylinder technique

Country Status (3)

Country Link
US (1) US20230060842A1 (en)
EP (1) EP3917890A4 (en)
WO (1) WO2020157769A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3917890A4 (en) * 2019-01-29 2022-10-12 Sterlite Technologies Limited Method for drawing an optical fibre using rod-in-cylinder technique
WO2020157767A1 (en) * 2019-01-29 2020-08-06 Sterlite Technologies Limited Ultra-low loss optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229743A1 (en) * 2003-03-12 2004-11-18 Silke Wolff Boron aluminosilicate glass

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774678B1 (en) * 1998-02-12 2000-03-03 Alsthom Cge Alcatel METHOD FOR RECHARGING AN OPTICAL FIBER PREFORM USING SILICA GRAINS DOPED IN ALUMINUM
US6970630B2 (en) * 2002-05-23 2005-11-29 Rutgers, The State University Of New Jersey Fiber optic cable and process for manufacturing
EP1632460A4 (en) * 2003-05-19 2011-12-28 Sumitomo Electric Industries Optical fiber and method of producing the same
NL1025476C2 (en) * 2004-02-12 2005-08-15 Draka Fibre Technology Bv Rod in tube method for producing optical fibres, comprises reducing pressure inside cavity between rod and tube during heating and flushing with inert gas
US8107784B2 (en) * 2007-06-15 2012-01-31 Ofs Fitel, Llc Reduced bend sensitivity and catastrophic bend loss in single mode optical fibers and method of making same
WO2012161811A1 (en) * 2011-02-24 2012-11-29 Ofs Fitel, Llc Multicore fiber designs for spatial multiplexing
US9212082B2 (en) * 2012-12-26 2015-12-15 Heraeus Quarzglas Gmbh & Co. Kg System and method for fabricating optical fiber preform and optical fiber
US9618692B2 (en) * 2014-07-10 2017-04-11 Corning Incorporated High chlorine content low attenuation optical fiber
WO2020157767A1 (en) * 2019-01-29 2020-08-06 Sterlite Technologies Limited Ultra-low loss optical fiber
EP3917890A4 (en) * 2019-01-29 2022-10-12 Sterlite Technologies Limited Method for drawing an optical fibre using rod-in-cylinder technique
EP3918389A4 (en) * 2019-01-29 2022-10-12 Sterlite Technologies Limited Optimized core particles for optical fiber preform and optical fiber preform thereof
WO2020157768A1 (en) * 2019-01-29 2020-08-06 Sterlite Technologies Limited Method for manufacturing an optical fibre and the optical fibre thereof
EP3918387A4 (en) * 2019-01-29 2022-10-12 Sterlite Technologies Limited Optical fibre preform and method of manufacturing thereof
CN118525230A (en) * 2022-02-16 2024-08-20 住友电气工业株式会社 Optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229743A1 (en) * 2003-03-12 2004-11-18 Silke Wolff Boron aluminosilicate glass

Also Published As

Publication number Publication date
US20230060842A1 (en) 2023-03-02
EP3917890A1 (en) 2021-12-08
WO2020157769A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
EP3923045A4 (en) Optical fiber
EP3923051A4 (en) Optical fiber unit and machining method for optical fiber unit
EP3919453A4 (en) Manufacturing method for radiation-resistant optical fiber
EP3868728A4 (en) Optical fiber
EP3604243A4 (en) Manufacturing method for optical fiber
EP3819691A4 (en) Optical fiber cable, and device and method for manufacturing optical fiber cable
EP3988590A4 (en) Optical fiber
EP3869252A4 (en) Optical fiber
EP4006622A4 (en) Optical apparatus
EP4023619A4 (en) Optical fiber
EP3918388A4 (en) Method for manufacturing an optical fibre and the optical fibre thereof
EP3825448A4 (en) Preparation method for pva fiber
EP3917890A4 (en) Method for drawing an optical fibre using rod-in-cylinder technique
EP4005986A4 (en) Method for manufacturing optical fiber
EP4006599A4 (en) Optical cross-connect apparatus
EP3989681A4 (en) Optical fiber
TWI799436B (en) Method for optical waveguide fabrication
CA3127821A1 (en) Optical apparatus
GB202102221D0 (en) Method for dividing optical fibre
EP4149894A4 (en) Optical fiber forming apparatus
EP3900283A4 (en) Method and apparatus for loss-aware optical routing
EP3932879A4 (en) Optical fiber and method for manufacturing optical fiber
GB201911183D0 (en) Optical fibre splicing method
EP3872540A4 (en) Optical fiber and forming method therefor
EP3921681A4 (en) Transition for an optical fibre cable

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20220908

RIC1 Information provided on ipc code assigned before grant

Ipc: C03B 37/029 20060101ALI20220902BHEP

Ipc: C03B 37/027 20060101AFI20220902BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS