EP3917152B1 - Procédé de transmission de données entre un noeud et une station de base dans un système de communication, ainsi que système de communication - Google Patents

Procédé de transmission de données entre un noeud et une station de base dans un système de communication, ainsi que système de communication Download PDF

Info

Publication number
EP3917152B1
EP3917152B1 EP21174847.0A EP21174847A EP3917152B1 EP 3917152 B1 EP3917152 B1 EP 3917152B1 EP 21174847 A EP21174847 A EP 21174847A EP 3917152 B1 EP3917152 B1 EP 3917152B1
Authority
EP
European Patent Office
Prior art keywords
base station
frequency
node
frequency transmitter
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21174847.0A
Other languages
German (de)
English (en)
Other versions
EP3917152A1 (fr
EP3917152C0 (fr
Inventor
Hristo PETKOV
Karolin Weiss
Thomas Kauppert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metering Systems GmbH
Original Assignee
Diehl Metering Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metering Systems GmbH filed Critical Diehl Metering Systems GmbH
Publication of EP3917152A1 publication Critical patent/EP3917152A1/fr
Application granted granted Critical
Publication of EP3917152B1 publication Critical patent/EP3917152B1/fr
Publication of EP3917152C0 publication Critical patent/EP3917152C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/826Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent periodically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method for transmitting data between at least one node and a base station with unidirectional or bidirectional radio transmission operation.
  • the invention further relates to a corresponding communication system.
  • the invention is suitable, for example, for use in recording the consumption of heat or energy, electricity, gas or water using self-sufficient consumption measuring devices.
  • Nodes of a communication system such as B. intelligent consumption meters are usually local locations such as. B. each assigned to residential units or houses.
  • the measurement data generated there can be read out in a variety of ways. Measurement data can e.g. B. can be read via the power supply (power line).
  • power supply power line
  • measurement data can be transmitted using mobile phone technology in the form of data packets or telegrams.
  • this is expensive, requires the installation of mobile radio modules on the consumption meters and has disadvantages in terms of the high power consumption on the individual consumption meters.
  • measurement data in the form of data packets or telegrams can also be transmitted via radio, for example in the ISM (Industrial, Scientific, Medical) band frequency range or in the SRD (Short Range Devices) band frequency range.
  • ISM International, Scientific, Medical
  • SRD Short Range Devices
  • These frequency ranges have the advantage that the operators only need a general license for frequency management.
  • the problem is that due to the frequency of use of such frequency ranges for a wide variety of technical devices such as garage door controls, baby monitors, alarm systems, WLAN, Bluetooth, smoke detectors, etc., interference can often occur.
  • the measurement data is collected via radio either by stationary or mobile data collectors (base stations or collectors), to which the measurement data provided in the transmitters of the consumption meters are transmitted.
  • consumption measuring devices transmit measurement data in certain, very short reference periods (reference time or reference time including time deviation) to a data collector and the measurement data received in these reference periods are used for a consumption evaluation.
  • One difficulty here is that communication systems between data collectors and consumption meters require very precise time synchronization between the communication modules located in the area of the consumption meters and that of the data collector.
  • simple crystals with low power consumption are used as frequency generators (with the function of a frequency reference device). Due to manufacturing tolerances, temperature behavior and aging, such quartz have quartz defects of approx. 10 - 100 ppm. For example, for a standard quartz, a quartz error of 50 ppm results in a deviation of 4.3 seconds per day or 26 minutes per year. This in turn results in an increasing deviation in the time synchronization with the result of an increasingly deteriorating reception behavior.
  • a method according to the preamble of the claim is from the DE 10 2005 020 349 B4 known.
  • the consumption measuring devices have a first time clock (time clock) with lower power consumption for continuous operation and a second clock with higher frequency stability and higher power consumption, which is only operated in short activation phases.
  • the frequency, the period duration or a variable derived therefrom is used in the consumption meter during the short activation phases of the second clock generator on the basis of a Comparison scale derived from the second timer is recorded and the accumulated time of the first timer is corrected depending on the deviation determined. The result of this is that the time error then corresponds to the time error of the second clock generator of the consumption meter.
  • the EP 1 791 100 A1 describes a radio transmission system with a radio receiver that carries out an automatic radio reception frequency search with a decreasing radio reception search frequency in the reception standby time intervals in order to match the radio reception frequency of the radio receiver to the radio transmission frequency of the radio transmitter.
  • the search start frequency and the temporal decrease rate of the reception frequency during the search depend on the time since the last evaluable reception of a radio telegram from the radio transmitter in question.
  • the EP 3 579 624 A1 describes a method for determining the sampling rate error for a radio transmission system using frequency hopping.
  • the sampling rate error is corrected by a temporal correction factor so that the samples of the consumption meter and the base station coincide and the consumption meter can be shifted in frequency.
  • the WO 2021/028249 A1 discloses a method for transmitting a radio telegram divided into a large number of data packets, with a correction of the transmission time and/or the carrier frequency taking place.
  • a data packet from the node is received by the base station, with the deviation between the first frequency transmitter of the node and the first frequency transmitter of the base station being determined and stored using a frequency estimate.
  • the DE 10 2016 014 375 Al discloses a method for improving the transmission quality between a data collector and a plurality of consumption meters. Here, a deviation or a frequency difference between the frequency reference devices of the consumption meter can be determined.
  • the US 2012/0220351 A1 describes a transmitter/receiver device for Bluetooth communication.
  • the object of the present invention is to propose a novel method and a base station with which the timing error can be further reduced or ideally eliminated.
  • the error or deviation between the frequency of the first frequency generator of the respective node and the frequency of the first frequency generator of the base station is calibrated.
  • the base station expects the data packet from the node on a carrier frequency. According to the invention, it estimates the carrier frequency from the received packet and uses this to determine the deviation of the two frequencies, which are caused by the first frequency transmitters (HF crystals) of the base station and the node.
  • HF crystals first frequency transmitters
  • the base station continuously stores the deviation between the frequency of the first frequency generator of the respective node and the frequency of the first frequency generator of the base station.
  • the timers for clock frequencies in the base station and node are different than the frequency generators for the carrier frequency.
  • the timer clock frequency can be compared or adjusted with the frequency generator clock frequency become.
  • the frequencies or speeds of the different clocks therefore have a known relationship. This means that time errors that have so far prevailed can be further reduced or, ideally, even completely eliminated.
  • the transmitting and receiving part of the base station therefore does not have to be switched on for as long as before. This in turn has a beneficial effect on power consumption.
  • the frequency is calibrated (by compensating for a frequency shift) or the time offset or the clock deviation of the frequency generator.
  • the base station is calibrated for the nodes continuously after receiving data packets from the individual nodes.
  • the respective reception window can be defined and/or adjusted particularly precisely with regard to its position and/or its length. On the one hand, this increases the reception quality and, on the other hand, reduces energy consumption.
  • the invention makes it possible to effectively reduce the size of the reception window, in particular in such a way that the reception window does not exceed three times the length of the data packet to be received in the reception window.
  • a search for the packet back and forth can be started from the base station within the reception window, preferably from the middle thereof, until the packet in question is found.
  • the determined distance can be saved.
  • the position and/or length of the reception window can be changed.
  • a search can be carried out on several reception windows and/or packets one after the other, with the results of the search being placed in relation to one another.
  • a smaller reception window can be opened the next time a reception occurs if a specified time distance forward or back from the starting point has not been exceeded in the last n (e.g. 10) searches.
  • the base station can also have a second frequency generator, which, as with each individual node, serves as a time quartz and has a lower frequency and usually a larger error than the first frequency generator.
  • the second frequency generator of the base station can advantageously be calibrated on the basis of the calibration of the first frequency generator of the base station. The base station also saves the deviation.
  • the base station can also be operated by means of an energy-autonomous energy source, preferably by means of a battery. Similar to a node, such base stations normally go into a sleep state and only switch on at certain times (reception window) to receive data from the nodes.
  • the self-sufficient service life of a base station with such an energy source can be up to 5 to 7 years. Base stations operated in this way will be of particular importance, especially in very close-meshed wireless networks (loT networks).
  • the self-sufficient energy source used is preferably one that has a maximum capacity of 80 Ah.
  • the base station knows the respective transmission times of the nodes. For example, these can be generated using a pseudo-random sequence (e.g. using PRBS).
  • PRBS pseudo-random sequence
  • the duration of the calibration of the second frequency generator in the base station can be longer than the calibration of the second frequency generator in the respective node. This results in a reduced residual calibration error overall.
  • a subsequent reception window is preferably related to the previous one. This avoids error propagation.
  • the temperature dependence of the first frequency generator and/or second frequency generator of the base station and/or the node can also be taken into account when determining the opening time of the reception window of the base station.
  • an estimate can also be based on several such parameters, e.g. B. based on the difference between two carrier frequencies or reception times or based on a weighted average of several values such as. B. based on filtering of N carrier frequencies.
  • Reference number 1 in Fig. 1 denotes a radio communication system or radio communication network, which includes a base station 3, for example a so-called data collector, and a plurality of individual, self-sufficiently operated nodes 2.
  • the nodes 2 are, for example, sensor devices, meters of any kind, for example water meters, heat meters, gas meters or electricity meters, or actuators. What these nodes 2 have in common is that they have a communication module 17 with an antenna 8 and a control and computing unit 19.
  • each node 2 has a first frequency generator 18 for generating a carrier frequency for radio transmission and a second frequency generator 21, which is used to determine the times at which the data packets are sent.
  • the first frequency generator 18 is an HF (high frequency) crystal, which usually has an error of the order of 20 ppm.
  • the second frequency generator 21 is an LF (low frequency) crystal, also called a time crystal, which typically has an error of the order of 100 ppm. This corresponds to a time error of 100 ⁇ s/sec.
  • the second frequency generator 21 of the node 2 must always be active due to the time measurement or timer function, whereas the first frequency generator 18 only has to be activated in transmitting mode and/or receiving mode. Otherwise it is in sleep mode.
  • Each node 2 is operated in an energy-autonomous manner, i.e. has an autonomous energy source through which the individual functional units of node 1 are supplied with energy.
  • each node 2 can also be provided with a display 9 if desired.
  • the radio communication system 1 according to Fig. 1 can be operated unidirectionally or bidirectionally.
  • data packets 4 are transmitted from the respective node 2 to the base station 3 and received there via its antenna 7.
  • data packets 5 are transmitted from the base station to each individual node 2 and received by their antennas 8.
  • the SRD band or the ISM band is preferably used for data transmission, which enable license-free frequency bandwidths for a wide range of applications.
  • Fig. 2 shows, in a highly simplified schematic representation, an exemplary structure of an energy-autonomously operated base station 3 of the communication system 1 according to Fig. 1 .
  • the base station 3 includes a transmitting and receiving part 6 with an antenna 7 and a microprocessor 13, which has a memory 15 and controls the display 9.
  • the base station 3 has a first frequency generator 11 in the form of an HF (high frequency) crystal and a second frequency generator 12 in the form of a LF (low frequency) crystal.
  • the second frequency generator 12 is used for time recording and is therefore analogous to the second frequency generator 21 of the respective node 2 is always active.
  • the second frequency generator 12 typically also has an error of the order of 100 ppm.
  • the error of the first frequency generator 11 is in the range of 20 ppm.
  • the first frequency generator 11 analogous to the first frequency generator 18 of the respective node 2, is only activated at times in which the transmitting and receiving part 6 opens a reception window for receiving data packets 4 from the respective node 2.
  • the energy source 16 is preferably a battery, in particular a battery with a capacity of max. 80 Ah.
  • the base station 3 In order to achieve self-sufficient operating time over several years with such an energy source, the base station 3 must not always be activated.
  • the base station 3 or its transmitting and receiving part 6 should only be activated, i.e. form a reception window, when the respective node 2 transmits data packets 4 to the base station 3. In the remaining periods, the transmitting and receiving part 6 of the communication module 10 of the base station 3 should be in sleep mode.
  • a time quartz to be used for the second frequency generator 21 typically has an error of the order of 100 ppm. This corresponds to a time error of 100 ⁇ s/sec. Assuming that the next data packet will arrive in an hour, this results in an error of 360 ms (60 x 60 x 100 ⁇ s) over the course of an hour. A data packet is approximately 10 ms long. The overhead after one hour would then be approx. 3,600%.
  • the calibration of the time quartz in the DE 10 2005 020 349 B4 typically results in a residual error of the order of 20 ppm. This error would therefore be five times smaller than the error mentioned at the beginning and would result in an error of 72 ms or 720% of the length of the data packet of 10 ms.
  • Fig. 3 shows a calibration KAL1 in the area of node 2, with which in the DE 10 2005 020 349 B4 described procedure, the deviation in the node between the second frequency generator 21 and the first frequency generator 18 can be reduced from approximately 100 ppm to 20 ppm.
  • a calibration is carried out between the first frequency generator 11 of the base station 3 and the first frequency generator 18 of the respective node 2 and stored in the base station 3. This allows the error in the base station 3 to be significantly reduced from 20 ppm, namely theoretically to an error of 0 ppm.
  • the calibration method in practical implementation only has a finite accuracy (for example due to temperature fluctuations and the like), a reduction to a range of 5-0 ppm should realistically be aimed for.
  • the additional increase in accuracy achieved by the method according to the invention therefore corresponds to a factor of at least 4.
  • a calibration of the second frequency generator 12 of the base station 3 and the first frequency generator 11 of the base station 3 is also carried out.
  • the process can be carried out with the following process steps: In node 2, the two frequency transmitters 18 and 21 are measured against each other and the resulting frequency deviation is stored in a memory of the respective node 2.
  • the node 2 in question sends a data packet, the carrier frequency being generated by the first frequency generator 18.
  • the node 2 in question sends a data packet, the time of its transmission being generated by the second frequency transmitter 21 and the measured deviation determined by the calibration KAL 1 being taken into account for this.
  • the transmission of the data packet behaves as if the time of its transmission had been generated by the first frequency transmitter 18.
  • a data packet 4 from the node 2 is received by the base station 3, the deviation between the first frequency generator 18 and the first frequency generator 11 of the base station 3 being determined and stored by means of a frequency estimate.
  • the base station 3 determines the deviation by measuring the frequencies of the first frequency generator s11 of the base station 3 and the second frequency generator 12 of the base station 3 and also stores the deviation (e.g. in ppm).
  • the respective node 2 sends the next data packet with a correction factor based on the deviation between the first frequency generator 18 of the node 2 and the second frequency generator 21 of the node 2. In other words, the node sends in the time as if the time from the first frequency generator 18 of node 2 has been generated.
  • the next reception window could also only be generated by the first frequency generator 11.
  • the base station 3 Due to the reception of the last data packet, the base station 3 knows the frequency deviation between the first frequency generator 11 of the base station 3 and the first frequency generator 18 of the node 2.
  • the reception window of the base station 3 is corrected as if the first frequency generator 11 had the same speed or Frequency runs like the first frequency generator 18 of node 2. If the temperature remains constant until the next data packet remains, it can be expected that the reception window will be hit perfectly. In practice, the temperature changes, so that there can be deviations of +- 5 ppm, for example, depending on the period in between.
  • the calibrations KAL1 and KAL 3 are not ideal but depend on the calibration length. There is therefore a residual accuracy error in the calibration.
  • the base station 3 adds the time offset caused by the deviation between the first frequency transmitter 11 of the base station 3 and the first frequency transmitter 18 of the node 2 as well as the time offset between the first frequency transmitter 11 of the base station 3 and the second frequency transmitter 12 Add base station 3.
  • the calibration between the first frequency generator 11 and the second frequency generator 12 of the base station is carried out during the respective open reception windows and can therefore take longer than in node 2. This can further reduce the residual error in the base station 3.
  • the invention eliminates a difference between the frequencies of the first frequency generators 11 and 18.
  • a reception window 14 is opened, this has a certain length L.
  • the time at which the reception window 14 is opened is in Fig. 4 marked with t1.
  • the base station 3 knows the time at which the respective node 2 sends a data packet 4 and opens a time window, the middle of which corresponds to the expected middle of the data packet 4. In fact, the data packet 4 is not in this desired position, but instead deviates due to the timing error different frequency transmitters 11, 18, 12 and 21 of them. After a time window 14 has been opened, in order to search for the data packet 4 in question, it is preferred to count both forwards and backwards from the middle of the time window p in order to find the data packet in question. For example, in Fig. 4 Counted backwards, the data packet 4 is found within the reception window 14.
  • the data packet located with a time offset of tx1 from the middle of the reception window 14 would still be found.
  • the data packet with the distance tx2, the beginning of which lies outside the reception window 14, would not be found.
  • the respective time offsets are always stored in the base station 3 and, in view of this, the length L of the reception window 14 can be continuously adjusted accordingly, the respective length L of the reception window 14 can be reduced in the course of the method and thereby a reduction in the load on the self-sufficient energy source can be achieved.
  • simpler and cheaper microprocessors with less memory capacity can also be used, since only smaller time differences or time intervals have to be saved as part of the sequence control.
  • the method is preferably carried out in such a way that, for example, based on the time offset determined in each case, a reduction in the reception window 14 is carried out when a series of successive data packets are received, for example when searching for the data packet 4 within a number of n estimates (e.g. 10 estimates ) the search always results in hits with a time interval t of ⁇ txmax.
  • a corresponding reduction is exemplified in Fig. 5 shown. From the group of individual data packets 4 that are received one after the other by the base station 3 over time t, the in Fig. 5 The data packets shown do not depend on a width of txmax, so that the length L1 of the reception window 14 can be reduced to the length L2. Through Reducing the reception window 14 in turn reduces the energy consumption and thus extends the operating time of the base station 3.
  • node 2 can, for example, generate future times and communicate these times to the base station in its payload.
  • the times can also be set pseudo-randomly, such as in a so-called PRBS sequence.
  • the temperature dependence of the first and second frequency transmitters of the base station 3 and/or the node 2 can also be taken into account.
  • the calibration duration in base station 3 is longer than that in node 2, which in turn results in a smaller residual calibration error.
  • the residual error e.g. 3 ppm, is calculated and taken into account deterministically for several times when data packets 4 are received.
  • an estimate can also be based on several such parameters, e.g. B. based on the difference between two carrier frequencies or reception times or based on a weighted average of several values such as. B. based on filtering of N carrier frequencies.
  • the reception accuracy of the base station 3 can be increased and energy consumption can be significantly reduced. This in turn enables an extended service life of an energy-autonomously operated base station 3. Furthermore, simpler and cheaper microprocessors can be used to carry out the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Claims (16)

  1. Procédé de transmission de données, notamment de données de capteur, par radio entre au moins un noeud (2), de préférence installé durablement de manière fixe, et une station de base (3) dans un système de communication (1) avec un mode de transmission radioélectrique unidirectionnel ou bidirectionnel,
    la station de base (3) possédant un module de communication (10) comprenant un premier transmetteur de fréquence (11),
    le noeud (2) possédant un module de communication (17) comprenant un premier transmetteur de fréquence (18) ainsi qu'un deuxième transmetteur de fréquence (21) ayant une fréquence plus basse que celle du premier transmetteur de fréquence (18),
    le module de communication (17) du noeud (2) étant conçu pour émettre des données par télégramme radioélectrique au moyen de paquets de données (4) au module de communication (10) de la station de base (3),
    une fréquence porteuse pour la transmission des paquets de données (4) étant générée par le premier transmetteur de fréquence (18),
    le premier module de communication (10) de la station de base (3) une fenêtre de réception (14) étant ouverte temporairement pour la réception des paquets de données (4),
    le premier module de communication (10) de la station de base (3) étant conçu pour recevoir les paquets de données (4) de la part du module de communication (17) du noeud (2) au sein de la fenêtre de réception (14), et
    un calibrage étant effectué entre la fréquence du premier transmetteur de fréquence (18) ainsi que du deuxième transmetteur de fréquence (21) du noeud (2),
    la station de base (3) attendant les paquets de données (4) de la part du noeud (2) sur la fréquence porteuse,
    la station de base (3) estimant à cet effet la fréquence porteuse à partir des paquets de données (4) reçus et spécifiant à partir de celle-ci l'écart entre la fréquence du premier transmetteur de fréquence (18) du noeud (2) et la fréquence du premier transmetteur de fréquence (11) de la station de base (3),
    la station de base (3) mémorisant à cet effet en continu l'écart entre la fréquence du premier transmetteur de fréquence (18) du noeud (2) et la fréquence du premier transmetteur de fréquence (11) de la station de base (3), et
    un calibrage (KAL2) étant effectué entre la fréquence du premier transmetteur de fréquence (18) du noeud (2) et la fréquence du premier transmetteur de fréquence (11) de la station de base (3).
  2. Procédé selon la revendication 1, caractérisé en ce que la fenêtre de réception (14) est spécifiée et/ou adaptée du point de vue de sa longueur (L) en fonction du calibrage (KAL2).
  3. Procédé selon les revendications précédentes, caractérisé en ce que la taille de la fenêtre de réception (14) ne dépasse pas le triple de la longueur du paquet de données (4) à recevoir dans la fenêtre de réception (14) .
  4. Procédé selon les revendications précédentes, caractérisé en ce qu'à l'intérieur de la fenêtre de réception (14), de préférence à partir du centre (P) de celle-ci, est lancée une recherche d'un paquet (4) vers l'avant et/ou l'arrière jusqu'à ce que le paquet (4, 5) concerné soit trouvé.
  5. Procédé selon la revendication 4, caractérisé en ce qu'une recherche est effectuée pour plusieurs fenêtres de réception (14) et/ou paquets (4) les uns après les autres et les résultats de la recherche sont mis en relation entre eux.
  6. Procédé selon les revendications précédentes, caractérisé en ce qu'une fenêtre de réception (14) suivante se référant à la fenêtre de réception (14) précédente dans le temps pour ce qui concerne le calibrage.
  7. Procédé selon les revendications précédentes, caractérisé en ce que la station de base (3) possède un deuxième transmetteur de fréquence (12) et un calibrage (KAL3) du deuxième transmetteur de fréquence (12) de la station de base (3) s'effectue sur la base du calibrage (KAL2) du premier transmetteur de fréquence (11) de la station de base (3).
  8. Procédé selon les revendications précédentes, caractérisé en ce que la dépendance à la température du premier transmetteur de fréquence (11) de la station de base (3) est prise en compte pour l'ouverture de la fenêtre de réception (14).
  9. Procédé selon la revendication 7, caractérisé en ce que la dépendance à la température du deuxième transmetteur de fréquence (12) de la station de base (3) est prise en compte pour l'ouverture de la fenêtre de réception (14).
  10. Procédé selon les revendications précédentes, caractérisé en ce que la station de base (3) fonctionne au moyen d'une source d'énergie (16) à autosuffisance énergétique, de préférence au moyen d'une batterie.
  11. Procédé selon les revendications précédentes, caractérisé en ce que la source d'énergie (16) à autosuffisance énergétique présente une puissance maximale de 80 Ah.
  12. Procédé selon les revendications précédentes, caractérisé en ce que les instants d'émission ts des noeuds (2) respectifs sont connus de la station de base (3) .
  13. Procédé selon la revendication 7, caractérisé en ce que la durée du calibrage (KAL3) du deuxième transmetteur de fréquence (12) de la station de base (3) est plus longue que celle du calibrage (KAL1) du deuxième transmetteur de fréquence (21) dans le noeud (2).
  14. Procédé selon les revendications précédentes, caractérisé en ce que le calibrage (KAL2) entre la fréquence du premier transmetteur de fréquence (18) du noeud (2) et la fréquence du premier transmetteur de fréquence (11) de la station de base (3) est déterminé par le module de communication (10) dans la station de base (3) sur la base d'une estimation d'au moins un paramètre du signal radioélectrique émis par le module de communication (17) du noeud (2) et reçu par le module de communication (10) de la station de base (3), issu du groupe de paramètres suivant
    fréquence porteuse et/ou
    largeur de bande et/ou
    débit de données et/ou
    temps de réception entre deux paquets de données et/ou
    excursion de fréquence et/ou
    indice de modulation.
  15. Procédé selon les revendications précédentes, caractérisé en ce qu'une erreur résiduelle du calibrage (KAL1) et/ou (KAL2) est prise en compte pour l'ouverture de la fenêtre de réception (14).
  16. Système de communication ayant le principe de transmission radioélectrique unidirectionnel ou bidirectionnel, comprenant
    une station de base (3) pourvue d'un microprocesseur (13) ainsi
    qu'une pluralité de noeuds (2),
    caractérisé en ce que
    la station de base (3) et la pluralité de noeuds (2) sont configurés de telle sorte que la transmission de données peut être réalisée conformément à au moins un procédé selon les revendications 1 à 15.
EP21174847.0A 2020-05-30 2021-05-19 Procédé de transmission de données entre un noeud et une station de base dans un système de communication, ainsi que système de communication Active EP3917152B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020003291.5A DE102020003291A1 (de) 2020-05-30 2020-05-30 Verfahren zum Übertragen von Daten zwischen einem Knoten und einer Basisstation in einem Kommunikationssystem sowie Basisstation

Publications (3)

Publication Number Publication Date
EP3917152A1 EP3917152A1 (fr) 2021-12-01
EP3917152B1 true EP3917152B1 (fr) 2024-01-31
EP3917152C0 EP3917152C0 (fr) 2024-01-31

Family

ID=76034452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21174847.0A Active EP3917152B1 (fr) 2020-05-30 2021-05-19 Procédé de transmission de données entre un noeud et une station de base dans un système de communication, ainsi que système de communication

Country Status (2)

Country Link
EP (1) EP3917152B1 (fr)
DE (1) DE102020003291A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020349B4 (de) 2005-05-02 2007-05-03 Prof. Dr. Horst Ziegler und Partner GbR (vertretungsberechtigter Gesellschafter: Prof. Dr. Horst Ziegler 33100 Paderborn) Verbrauchserfassungssystem
DE102005056932A1 (de) * 2005-11-29 2007-05-31 Prof. Dr. Horst Ziegler und Partner GbR (vertretungsberechtigter Gesellschafter: Prof. Dr. Horst Ziegler 33100 Paderborn) Funkübertragungssystem
JP5721713B2 (ja) 2009-07-23 2015-05-20 ノキア コーポレイション BluetoothLowEnergyデバイスとして動作する時の低消費電力化のための方法および装置
DE102016014375B4 (de) 2016-12-03 2018-06-21 Diehl Metering Systems Gmbh Verfahren zur Verbesserung der Übertragungsqualität zwischen einem Datensammler und einer Mehrzahl autonomer Messeinheiten sowie Kommunikationssystem
EP3579624B1 (fr) * 2018-06-08 2023-06-28 Diehl Metering Systems GmbH Procédé de fonctionnement d'un système de transmission radio ainsi qu'agencement d'un système de transmission radio
DE102019005686A1 (de) * 2019-08-13 2021-02-18 Diehl Metering Systems Gmbh Verfahren zum Übertragen von Daten zwischen einem Knoten und einer Basisstation in einem Kommunikationssystem sowie Basisstation sowie Knoten

Also Published As

Publication number Publication date
EP3917152A1 (fr) 2021-12-01
EP3917152C0 (fr) 2024-01-31
DE102020003291A1 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
DE102018004815B4 (de) Verfahren zum Betrieb eines Funkübertragungssystems sowie Anordnung eines Funkübertragungssystems
EP3549351B1 (fr) Procédé pour améliorer la qualité de transmission entre un collecteur de données et une pluralité d'unités de mesure autonomes, et système de communication
EP2752060B1 (fr) Concept pour la transmission bidirectionnelle de données entre une station de base et un noeud
EP1791100B1 (fr) Système de transmission sans fil avec stabilité de fréquence de diffusion compensé et recherche de fréquence de réception correspondante
DE102018004828A1 (de) Verfahren zum Übertragen von Daten
DE102016014376B4 (de) Verfahren zur Datenübertragung von Verbrauchsmessgeräten
EP3917152B1 (fr) Procédé de transmission de données entre un noeud et une station de base dans un système de communication, ainsi que système de communication
EP1750475B1 (fr) Système de transmission de données et procédé de fonctionnement d'un système de transmission de données
EP1630980B2 (fr) Procédé et dispositif de transmission de données par deux modes de transmission différents
WO2021028249A1 (fr) Procédé de transmission de données entre un nœud et une station de base dans un système de communication, et station de base et nœud
EP0962904B1 (fr) Procédé de transmission de données entre au moins deux unités émettrices et au moins une unité de réception sur au moins un canal de transmission
EP3656158B1 (fr) Procédé de distribution de données
EP3579624B1 (fr) Procédé de fonctionnement d'un système de transmission radio ainsi qu'agencement d'un système de transmission radio
DE102019005681A1 (de) Verfahren zum bidirektionalen Übertragen von Daten, insbesondere Sensordaten sowie funkfähiger Knoten
DE102005036250B4 (de) Funkübertragungssystem
DE102019206105B3 (de) Empfängerseitige ermittlung eines zeitpunkts eines senderseitigen ereignisses
DE102017005625B4 (de) Verfahren zum Betrieb eines elektronischen Datenerfassungsgeräts und Datenerfassungsgerät
DE102017119629B4 (de) Verfahren zur Funkübertragung von Daten in einem Erfassungssystem sowie Sensorsende- und Empfangsgerät
DE102004061742B4 (de) Funkkommunikationseinrichtung und Funkkommunikationsverfahren für die Hausleittechnik
WO2019063119A1 (fr) Procédé de transmission de données bidirectionnelle dans un système à bande étroite
EP1791255B1 (fr) Système de radiocommunication
EP2150084A2 (fr) Procédé et dispositif de transmission de données

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220517

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002535

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240219

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240226

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240522