EP3916225B1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
EP3916225B1
EP3916225B1 EP21199985.9A EP21199985A EP3916225B1 EP 3916225 B1 EP3916225 B1 EP 3916225B1 EP 21199985 A EP21199985 A EP 21199985A EP 3916225 B1 EP3916225 B1 EP 3916225B1
Authority
EP
European Patent Office
Prior art keywords
pump
vacuum pump
ballast
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21199985.9A
Other languages
German (de)
French (fr)
Other versions
EP3916225A3 (en
EP3916225A2 (en
Inventor
Jan Hofmann
Jonas Becker
Herbert Stammler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum Technology AG
Original Assignee
Pfeiffer Vacuum Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum Technology AG filed Critical Pfeiffer Vacuum Technology AG
Priority to EP21199985.9A priority Critical patent/EP3916225B1/en
Publication of EP3916225A2 publication Critical patent/EP3916225A2/en
Publication of EP3916225A3 publication Critical patent/EP3916225A3/en
Priority to JP2022134087A priority patent/JP7492999B2/en
Application granted granted Critical
Publication of EP3916225B1 publication Critical patent/EP3916225B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/07Pressure difference over the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/043Settings of time

Definitions

  • the present invention relates to a vacuum pump with a pump chamber and an inlet connected to the pump chamber and an outlet connected to the pump chamber.
  • a gas to be pumped can be pumped from the inlet to the outlet in the pump chamber, in particular by means of a pump body.
  • a chamber to be evacuated can be connected to the inlet.
  • the vacuum pump is designed to supply gas ballast into the pump chamber.
  • a vacuum pump according to the preamble of claim 1 is from DE 102 55 792 A1 known. Vacuum pumps that allow the supply of gas ballast are in the EP 2 071 186 A2 , the DE 702 480 C , EP 2 821 650 A1 and DE 10 2007 043 350 B3 disclosed.
  • a chamber connected to the inlet of the vacuum pump When operating vacuum pumps, a chamber connected to the inlet of the vacuum pump is usually evacuated.
  • the vacuum pump sucks in gas present in the chamber at the inlet and pumps this gas to be pumped through the outlet, whereby the chamber is evacuated.
  • the gas initially present in the chamber is further compressed within the vacuum pump as it approaches the outlet, so that any moisture contained in the gas to be pumped condenses and precipitates in the area of the outlet. It is undesirable for (condensed) water to remain in the pump room.
  • ballast gas or gas ballast removes the water from the pump room.
  • the problem with conventional methods can be that it is not guaranteed that there is actually no more moisture in the pump chamber of the vacuum pump.
  • the vacuum pump according to the invention comprises a control device which is designed to calculate a ballast pumping duration, which indicates how long gas ballast must be pumped in order to pump out water present or suspected in the pumping chamber, wherein the control device is further designed to supply the gas ballast for a supply duration effect, whereby the feeding time depends on the calculated ballast pumping time.
  • the invention is based on the knowledge that the ballast pumping duration can be calculated (or at least estimated using reasonable assumptions), so that a ballast pumping duration can be specified for the respective operating parameters or the respective operating state, which ensures that water present or suspected in the pumping room is within the ballast pumping time can be completely pumped out.
  • the calculation can also be based on assumptions so that an assumed amount of water can be calculated.
  • the calculated amount of water can preferably be chosen so that the calculated amount of water usually exceeds the amount of water actually present in the pumping room.
  • the ballast pumping duration calculated from the calculated amount of water can then be used to introduce gas ballast into the pumping room for the supply duration.
  • the calculations and/or determinations of quantities (e.g. the amount of water) described herein may also be estimates, as the calculations are based at least in part on assumptions and/or measurements (with inaccuracies).
  • the feeding time can in particular correspond to the ballast pumping time or can also differ from it, as will be explained later.
  • the vacuum pump is in operation during the supply period, conveys the supplied gas ballast towards the outlet and releases it through the outlet.
  • the gas ballast also called ballast gas or additional gas load
  • the gas ballast can be a different gas than the gas to be conveyed, for example the gas ballast can come from a different source (not from the chamber to be evacuated), have a different temperature and/or a different humidity, and the like.
  • An inert gas or, for example, air can be provided as gas ballast.
  • the gas ballast can in particular have a low relative humidity (of, for example, less than 40% or less than 30% or 20%).
  • the gas ballast can also be, for example, dry nitrogen. Gases with low humidity can easily absorb water present in the pump room and lead to the water being discharged from the pump room.
  • the control device can in particular be designed to automatically effect the supply of the gas ballast, as will be explained in more detail later.
  • the control device can also output a signal, which then instructs an operator to manually open a valve or the like.
  • the control device is designed to calculate the amount of water present in the pump room.
  • the amount of water can in principle include evaporated and/or condensed water. Accordingly, instead of the amount of water, one could also speak of the amount of moisture.
  • the amount of water present in the pump room is determined based on the volume of a chamber connected to the inlet.
  • the volume of the chamber is determined based on a previous pump-out time, the pumping speed of the pump and/or a pressure difference over the pump-out time.
  • the amount of water present in the pump room can be determined based on the volume of the chamber, assuming that all water from the volume of the chamber remains in the pump room.
  • the volume of the chamber can, for example, be a maximum volume of a chamber to be connected specified by the manufacturer. This maximum volume can also be used if a smaller chamber is connected if necessary.
  • the volume of the chamber can, for example, be permanently stored in the control device. This ensures that the amount of water in the pump room is not too low.
  • the control unit can record the previous pump-out time.
  • the pumping speed of the pump (unit m 3 /h) is inherent to the pump and can therefore also be stored in the control unit.
  • the pumping speed of the pump can also be determined by measuring the power consumed by the vacuum pump. In this way, chambers of different sizes can be recognized and different pump-out times can be taken into account. If a larger chamber volume is calculated than the chamber volume stored in the control unit, the larger chamber volume can be used.
  • the gas to be pumped in the connected chamber has the maximum permitted temperature for the vacuum pump and/or the maximum permitted humidity for the vacuum pump. It is also preferably assumed that all moisture in the gas to be pumped or in the (already) pumped gas remains as water in the pump room.
  • the maximum temperature and the maximum (relative) humidity of the gas in the chamber are also fixed for a respective vacuum pump and are therefore known. In order to ensure that the water is completely pumped out of the pump chamber, it can be assumed that the gas in the chamber actually has the maximum humidity and temperature permitted for the vacuum pump.
  • the maximum temperature may be 40°C and the maximum relative humidity may be 80% for the gas to be conveyed.
  • air can absorb a maximum of 50 g/m 3 of water. If it is now assumed that the chamber has a volume of 200 liters, these 200 liters contain 8 g of water. The amount of water in the pump room after evacuating such a chamber is therefore assumed to be 8 g.
  • the control device is designed to calculate the ballast pumping duration from the water vapor capacity of the vacuum pump and the amount of water in the pump chamber.
  • the water vapor capacity is the largest amount of water that a vacuum pump can continuously suck in and pump in the form of water vapor per unit of time under ambient conditions of 20°C and 1,013 hPa.
  • the water vapor capacity can be specified, for example, in g/h.
  • the water vapor capacity is a quantity for a water vapor mass flow.
  • the water vapor capacity indicates the highest water vapor pressure at which a vacuum pump can continuously suck in and pump pure water vapor under normal ambient conditions (20°C, 1,013 hPa).
  • q pV,Ballast is the gas ballast flow
  • S is the pumping speed of the vacuum pump
  • p s is the saturation vapor pressure of the water vapor at the exhaust gas temperature (ie at the outlet)
  • p A is the partial pressure of the water vapor when the gas ballast is supplied
  • p 0 is the atmospheric pressure of the environment
  • is a dimensionless one Correction factor that takes into account the fact that a pressure greater than atmospheric pressure is required to open an exhaust valve, if present.
  • can take a value of 1.1.
  • the water vapor compatibility has the dimension of a pressure and is usually given in hPa. If the above-mentioned pressures p are not measured, maximum values can be assumed that are just permissible for the vacuum pump and that lead to a maximum amount of water or ballast pumping time or to a low water vapor compatibility.
  • the water vapor capacity increases as the partial pressure of the water vapor in the gas ballast decreases and also increases at a higher temperature at the outlet, since the saturation vapor pressure of the water vapor then increases at the exhaust gas temperature.
  • control device can be designed to determine the water vapor capacity of the vacuum pump based on the moisture of the gas ballast and/or based on the partial pressure of the water vapor in the gas ballast and/or based on the temperature at the outlet. For a low humidity or a low partial pressure of the water vapor in the gas ballast or a high temperature at the outlet, a higher water vapor capacity can be determined accordingly.
  • the humidity of the gas ballast, the partial pressure of the water vapor in the gas ballast and/or the temperature at the outlet can each be determined by measurement or by specifying set values.
  • the supply time corresponds to between 70% and 110%, preferably between 80% and 100%, particularly preferably between 90% and 100% of the ballast pumping time.
  • the supply duration is in particular the period in which gas ballast is actually supplied and pumped through the outlet by the vacuum pump in order to discharge the amount of water from the pump room.
  • the feeding time can correspond exactly to the calculated ballast pumping time. However, it is also possible for the feeding time to be chosen to be longer or shorter than the ballast pumping time. Using the worst-case assumptions, it can be assumed, for example, that all water can be removed from the pump room during the supply period, even if the time is shortened to 70%.
  • a gas ballast valve of the vacuum pump can be open during the supply period. While the gas ballast valve is open, the gas to be evacuated can Chamber must be separated in particular in order to avoid a subsequent increase in pressure in the chamber.
  • control device is designed to cause the opening of a gas ballast valve and thus the supply of the gas ballast, the gas ballast valve preferably being opened when the pressure falls below a predetermined pressure at the inlet.
  • the gas ballast valve can therefore be opened automatically by the control unit.
  • the control unit can also instruct an operator to open the gas ballast valve using a signal.
  • the gas ballast valve can in particular be opened or the supply period can begin when the chamber has been sufficiently evacuated and the pressure at the inlet falls below 10 mbar or 1 mbar, for example.
  • the gas ballast is ambient air, with the ambient air having the maximum temperature and/or humidity permitted for the (environment of the) vacuum pump (e.g. 40° C and 30% relative humidity).
  • control device is designed to close the inlet while supplying the gas ballast or to fundamentally separate the chamber from the pump space.
  • closing the inlet while supplying the gas ballast only a small change in the minimum pressure in the chamber can be achieved.
  • Such operation can also be referred to as clocked operation.
  • the inlet can be open while simultaneously supplying gas ballast (gas ballast valve open).
  • gas ballast gas ballast valve open
  • it can then be continuously calculated how much new moisture was introduced from the chamber into the pump room and what amount of water was pumped out.
  • the calculated one Ballast pumping time can then be extended during operation, so that the delivery time can also be extended.
  • a channel for supplying the gas ballast opens into the pump chamber, the channel preferably opening between the inlet and the outlet in the pump chamber and in particular being arranged closer to the outlet than to the inlet.
  • the channel is therefore a separate access to the pump room for the inlet and outlet.
  • the channel can be located closer to the outlet because the moisture precipitates or condenses there due to the higher pressure.
  • the vacuum pump is a scroll pump.
  • the vacuum pump can have two parallel chambers that compress the gas to be pumped towards the interior or towards the outlet of the vacuum pump.
  • the vacuum pump can have two interlocking spirals, which compress and convey the gas to be pumped and also the supplied gas ballast in the direction of the outlet by moving in opposite directions.
  • the pump body can accordingly comprise one or more of the spirals.
  • a gas ballast bore connected to the gas ballast valve can be positioned so that at least one of the two parallel chambers or both chambers can be supplied with the gas ballast at a time.
  • the vacuum pump can also be a rotary vane vacuum pump, preferably an oil-lubricated rotary vane vacuum pump.
  • the pump body can be formed by a rotor shaft and at least one rotary valve.
  • the vacuum pump can be designed in one or more stages, for example in two stages.
  • a further subject of the invention is a method for operating a vacuum pump according to claim 10.
  • the invention also relates to a vacuum pumping system with a vacuum pump as described herein, the vacuum pumping system comprising a chamber to be evacuated, which is coupled to the inlet of the vacuum pump.
  • Fig. 1 shows a vacuum pump 10, which is designed as a scroll pump.
  • a pump chamber 12 is arranged in the vacuum pump 10, in which a gas to be pumped is pumped or conveyed from an inlet 16 to an outlet 18 by means of a spiral-shaped pump body 14 (not explicitly shown).
  • a chamber 20 to be evacuated is connected to the inlet 16, in which in the present example there are 200 liters of air at 40 ° C and 80% humidity.
  • a pressure sensor 22 is arranged, which determines the pressure of the air flowing in from the chamber 20 via the inlet 16.
  • the pressure sensor 22 is coupled to a control device 24 of the vacuum pump 10 and transmits its measurement results to the control device 24.
  • the control device 24 also receives measurement results from a temperature sensor 26, which is arranged at the outlet 18.
  • a gas ballast valve 28 is also arranged on the vacuum pump 10, which can introduce ambient air 30 between the inlet 16 and the outlet 18 into the pump chamber 12.
  • the control device 24 is coupled to the gas ballast valve 28 in order to be able to open the gas ballast valve 28.
  • control device 24 is connected to a power measurement 32, the power measurement 32 recording the power currently required by the vacuum pump 10, so that the control device 24 can draw conclusions about the respective pumping speed and the pumping time/pump-out time of the vacuum pump 10.
  • step 100 the pump-out time begins.
  • the initial pressure at the inlet 16 or in the chamber 20 is first determined via the pressure sensor 22 and the vacuum pump 10 begins pumping the gas to be pumped out of the chamber 20.
  • the chamber 20 is further evacuated, with the gas ballast valve 28 is closed.
  • the pumping out time ends with step 120.
  • the pressure then present at the inlet is measured via the pressure sensor 22 determined.
  • the temperature of the pump at the outlet 18 can be measured via the temperature sensor 26. Based on the performance measurement 32, the control unit 24 can also determine at what suction speed the vacuum pump 10 was operated and for how long. In this way, the control device 24 can determine the volume of the chamber 20 connected to the inlet 16 or the volume pumped out. The pressure difference between steps 100 and 120 is also used for this determination.
  • control device 24 calculates in step 130 the amount of water potentially present (in particular suspected) in the pump chamber 12.
  • the ballast pumping duration is then calculated from the amount of water in step 140 using the water vapor capacity of the vacuum pump. If the water vapor capacity of the vacuum pump 10 is, for example, 44.7 g/h and the amount of water was calculated as 8 g, the ballast pumping time is 11 minutes.
  • step 150 the control device 24 then opens the gas ballast valve 28 and closes the inlet 16.
  • gas ballast in this Example ambient air
  • the duration of the pumping of gas ballast i.e. the supply time, can be selected according to the ballast pumping time of 11 minutes, so that the pumping of gas ballast is stopped after 11 minutes. At this point it can be assumed that all water or moisture has been removed from the pump room 12. You can then start again at step 100.
  • worst-case assumptions ensure that practically all water is removed from the pump room during the supply period of the gas ballast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Die vorliegende Erfindung betrifft eine Vakuumpumpe mit einem Pumpraum und einem mit dem Pumpraum verbundenen Einlass sowie einem mit dem Pumpraum verbundenen Auslass. Dabei ist in dem Pumpraum, insbesondere mittels eines Pumpkörpers, ein zu förderndes Gas von dem Einlass zu dem Auslass förderbar. An den Einlass ist eine zu evakuierende Kammer anschließbar. Zudem ist die Vakuumpumpe für das Zuführen eines Gasballasts in den Pumpraum ausgebildet.The present invention relates to a vacuum pump with a pump chamber and an inlet connected to the pump chamber and an outlet connected to the pump chamber. In this case, a gas to be pumped can be pumped from the inlet to the outlet in the pump chamber, in particular by means of a pump body. A chamber to be evacuated can be connected to the inlet. In addition, the vacuum pump is designed to supply gas ballast into the pump chamber.

Eine Vakuumpumpe gemäß dem Oberbegriff des Anspruchs 1 ist aus der DE 102 55 792 A1 bekannt. Vakuumpumpen, die das Zuführen eines Gasballasts gestatten, sind in der EP 2 071 186 A2 , der DE 702 480 C , EP 2 821 650 A1 und DE 10 2007 043 350 B3 offenbart.A vacuum pump according to the preamble of claim 1 is from DE 102 55 792 A1 known. Vacuum pumps that allow the supply of gas ballast are in the EP 2 071 186 A2 , the DE 702 480 C , EP 2 821 650 A1 and DE 10 2007 043 350 B3 disclosed.

Beim Betrieb von Vakuumpumpen wird üblicherweise eine an den Einlass der Vakuumpumpe angeschlossene Kammer evakuiert. Dabei saugt die Vakuumpumpe in der Kammer vorhandenes Gas am Einlass an und pumpt dieses zu fördernde Gas durch den Auslass, wodurch die Kammer evakuiert wird. Das zunächst in der Kammer vorhandene Gas wird innerhalb der Vakuumpumpe beim Annähern an den Auslass immer weiter komprimiert, sodass eventuell in dem zu fördernden Gas enthaltene Feuchtigkeit kondensiert und sich im Bereich des Auslasses niederschlägt. Ein Verbleib von (Kondens-)Wasser im Pumpraum ist unerwünscht.When operating vacuum pumps, a chamber connected to the inlet of the vacuum pump is usually evacuated. The vacuum pump sucks in gas present in the chamber at the inlet and pumps this gas to be pumped through the outlet, whereby the chamber is evacuated. The gas initially present in the chamber is further compressed within the vacuum pump as it approaches the outlet, so that any moisture contained in the gas to be pumped condenses and precipitates in the area of the outlet. It is undesirable for (condensed) water to remain in the pump room.

Um die Feuchtigkeit bzw. das Wasser aus dem Pumpraum wieder zu entfernen, ist es bekannt, einen Gasballast zu verwenden, das heißt ein Ballastgas durch den Pumpraum der Vakuumpumpe zu pumpen, sodass das Ballastgas bzw. der Gasballast das Wasser aus dem Pumpraum entfernt.In order to remove the moisture or water from the pump room again, it is known to use a gas ballast, that is to say to pump a ballast gas through the pump room of the vacuum pump, so that the ballast gas or gas ballast removes the water from the pump room.

Bei herkömmlichen Verfahren kann das Problem bestehen, dass nicht sichergestellt ist, dass tatsächlich keine Feuchtigkeit mehr im Pumpraum der Vakuumpumpe vorhanden ist.The problem with conventional methods can be that it is not guaranteed that there is actually no more moisture in the pump chamber of the vacuum pump.

Es ist daher die der Erfindung zugrunde liegende Aufgabe, eine Vakuumpumpe anzugeben, welche ein Verbleiben von Wasser bzw. Feuchtigkeit im Pumpraum verhindert.It is therefore the object underlying the invention to provide a vacuum pump which prevents water or moisture from remaining in the pump chamber.

Diese Aufgabe wird durch eine Vakuumpumpe gemäß Anspruch 1 gelöst.This task is solved by a vacuum pump according to claim 1.

Die erfindungsgemäße Vakuumpumpe umfasst ein Steuergerät, welches ausgebildet ist, eine Ballastpumpdauer zu berechnen, die angibt, wie lange Gasballast gepumpt werden muss, um im Pumpraum vorhandenes oder vermutetes Wasser auszupumpen, wobei das Steuergerät ferner ausgebildet ist, ein Zuführen des Gasballasts für eine Zuführdauer zu bewirken, wobei die Zuführdauer von der berechneten Ballastpumpdauer abhängt.The vacuum pump according to the invention comprises a control device which is designed to calculate a ballast pumping duration, which indicates how long gas ballast must be pumped in order to pump out water present or suspected in the pumping chamber, wherein the control device is further designed to supply the gas ballast for a supply duration effect, whereby the feeding time depends on the calculated ballast pumping time.

Die Erfindung geht von der Erkenntnis aus, dass die Ballastpumpdauer berechnet (oder durch vernünftige Annahmen zumindest abgeschätzt) werden kann, sodass für die jeweiligen Betriebsparameter bzw. den jeweiligen Betriebszustand eine Ballastpumpdauer angegeben werden kann, die sicherstellt, dass im Pumpraum vorhandenes oder vermutetes Wasser innerhalb der Ballastpumpdauer vollständig ausgepumpt werden kann. Bei der Berechnung kann auch von Annahmen ausgegangen werden, sodass eine vermutete Wassermenge berechnet werden kann. Die berechnete Wassermenge kann bevorzugt so gewählt sein, dass die berechnete Wassermenge üblicherweise die tatsächlich in dem Pumpraum vorhandene Wassermange übersteigt. Die aus der berechneten Wassermange berechnete Ballastpumpdauer kann dann herangezogen werden, um für die Zuführdauer Gasballast in den Pumpraum einzubringen.The invention is based on the knowledge that the ballast pumping duration can be calculated (or at least estimated using reasonable assumptions), so that a ballast pumping duration can be specified for the respective operating parameters or the respective operating state, which ensures that water present or suspected in the pumping room is within the ballast pumping time can be completely pumped out. The calculation can also be based on assumptions so that an assumed amount of water can be calculated. The calculated amount of water can preferably be chosen so that the calculated amount of water usually exceeds the amount of water actually present in the pumping room. The ballast pumping duration calculated from the calculated amount of water can then be used to introduce gas ballast into the pumping room for the supply duration.

Die hierin beschriebenen Berechnungen und/oder Bestimmungen von Größen (z.B. der Wassermenge) können jeweils auch Schätzungen sein, da die Berechnungen zumindest zum Teil auf Annahmen und/oder Messgrößen (mit Ungenauigkeiten) basieren.The calculations and/or determinations of quantities (e.g. the amount of water) described herein may also be estimates, as the calculations are based at least in part on assumptions and/or measurements (with inaccuracies).

Die Zuführdauer kann insbesondere der Ballastpumpdauer entsprechen oder sich auch von ihr unterscheiden, wie später noch ausgeführt wird.The feeding time can in particular correspond to the ballast pumping time or can also differ from it, as will be explained later.

Es versteht sich, dass die Vakuumpumpe während der Zuführdauer in Betrieb ist, den zugeführten Gasballast in Richtung des Auslasses fördert und durch den Auslass abgibt.It is understood that the vacuum pump is in operation during the supply period, conveys the supplied gas ballast towards the outlet and releases it through the outlet.

Durch den Gasballast (auch Ballastgas oder zusätzliche Gaslast genannt) wird ein Spüleffekt bewirkt, der es ermöglicht, das im Pumpraum vorhandene Wasser durch den Auslass aus der Pumpe heraus zu befördern.The gas ballast (also called ballast gas or additional gas load) creates a flushing effect that allows the water present in the pump chamber to be pumped out of the pump through the outlet.

Bei dem Gasballast kann es sich um ein anderes Gas als das zu fördernde Gas handeln, beispielsweise kann der Gasballast aus einer anderen Quelle (nicht aus der zu evakuierenden Kammer) stammen, eine andere Temperatur und/oder eine andere Luftfeuchtigkeit besitzen und dergleichen mehr. Als Gasballast kann z.B. ein Inertgas oder beispielsweise auch Luft vorgesehen sein. Der Gasballast kann insbesondere eine geringe relative Feuchte aufweisen (von beispielsweise weniger als 40 % oder weniger als 30 % oder 20 %). Insbesondere kann es sich bei dem Gasballast auch z.B. um trockenen Stickstoff handeln. Gase mit geringer Feuchte können dabei gut im Pumpraum vorhandenes Wasser aufnehmen und zu einem Austragen des Wassers aus dem Pumpraum führen.The gas ballast can be a different gas than the gas to be conveyed, for example the gas ballast can come from a different source (not from the chamber to be evacuated), have a different temperature and/or a different humidity, and the like. An inert gas or, for example, air can be provided as gas ballast. The gas ballast can in particular have a low relative humidity (of, for example, less than 40% or less than 30% or 20%). In particular, the gas ballast can also be, for example, dry nitrogen. Gases with low humidity can easily absorb water present in the pump room and lead to the water being discharged from the pump room.

Das Steuergerät kann insbesondere ausgebildet sein, das Zuführen des Gasballasts automatisch zu bewirken, wie später noch genauer ausgeführt wird. Alternativ kann das Steuergerät auch ein Signal ausgeben, wodurch ein Bediener dann zu einem manuellen Öffnen eines Ventils oder dergleichen angeleitet wird.The control device can in particular be designed to automatically effect the supply of the gas ballast, as will be explained in more detail later. Alternatively The control device can also output a signal, which then instructs an operator to manually open a valve or the like.

Vorteilhafte Weiterbildungen der Erfindung sind der Beschreibung, den Zeichnungen sowie den Unteransprüchen zu entnehmen.Advantageous developments of the invention can be found in the description, the drawings and the subclaims.

Erfindungsgemäß ist das Steuergerät ausgebildet, die im Pumpraum vorhandene Wassermenge zu berechnen. Bei der Berechnung der vorhandenen Wassermenge kann die potentiell vorhandene Wassermenge bestimmt werden, die z.B. zum momentanen Zeitpunkt im Pumpraum vorliegt. Die Wassermenge kann grundsätzlich verdampftes und/oder kondensiertes Wasser umfassen. Dementsprechend könnte statt Wassermenge auch von Feuchtemenge gesprochen werden.According to the invention, the control device is designed to calculate the amount of water present in the pump room. When calculating the amount of water available, the potential amount of water that is currently in the pump room can be determined. The amount of water can in principle include evaporated and/or condensed water. Accordingly, instead of the amount of water, one could also speak of the amount of moisture.

Erfindungsgemäß wird die im Pumpraum vorhandene Wassermenge basierend auf dem Volumen einer an den Einlass angeschlossenen Kammer ermittelt. Erfindungsgemäß wird das Volumen der Kammer anhand einer bisherigen Auspumpzeit, dem Saugvermögen der Pumpe und/oder einer Druckdifferenz über die Auspumpzeit ermittelt.According to the invention, the amount of water present in the pump room is determined based on the volume of a chamber connected to the inlet. According to the invention, the volume of the chamber is determined based on a previous pump-out time, the pumping speed of the pump and/or a pressure difference over the pump-out time.

Grundsätzlich kann also die im Pumpraum vorhandene Wassermenge basierend auf dem Volumen der Kammer ermittelt werden, wobei davon ausgegangen wird, dass sämtliches Wasser aus dem Volumen der Kammer im Pumpraum verbleibt. Das Volumen der Kammer kann beispielsweise ein vom Hersteller angegebenes Maximalvolumen einer anzuschließenden Kammer sein. Dieses Maximalvolumen kann auch dann verwendet werden, wenn gegebenenfalls eine kleinere Kammer angeschlossen wird. Das Volumen der Kammer kann also beispielsweise fest in dem Steuergerät hinterlegt sein. Auf diese Weise wird sichergestellt, dass die Wassermenge im Pumpraum nicht zu gering angenommen wird.In principle, the amount of water present in the pump room can be determined based on the volume of the chamber, assuming that all water from the volume of the chamber remains in the pump room. The volume of the chamber can, for example, be a maximum volume of a chamber to be connected specified by the manufacturer. This maximum volume can also be used if a smaller chamber is connected if necessary. The volume of the chamber can, for example, be permanently stored in the control device. This ensures that the amount of water in the pump room is not too low.

Alternativ oder zusätzlich kann das Steuergerät das Kammervolumen VK auch über die Formel V K = t A S ln p 1 p 2

Figure imgb0001
berechnen, wobei tA die Auspumpzeit, S das Saugvermögen der Vakuumpumpe, p1 der Druck in der Kammer (oder am Einlass) beim Beginn der Auspumpzeit und p2 der Druck am Ende der Auspumpzeit ist. Zur Bestimmung des Kammervolumens kann das Steuergerät die bisherige Auspumpzeit erfassen. Das Saugvermögen der Pumpe (Einheit m3/h) ist der Pumpe inhärent und kann dementsprechend ebenfalls im Steuergerät hinterlegt sein. Alternativ oder zusätzlich kann das Saugvermögen der Pumpe auch über eine Leistungsmessung der von der Vakuumpumpe aufgenommenen Leistung ermittelt werden. Auf diese Weise können unterschiedlich große Kammern erkannt werden und es kann unterschiedlichen Auspumpzeiten Rechnung getragen werden. Wird ein größeres Kammervolumen berechnet als das fest im Steuergerät hinterlegte Kammervolumen, so kann das größere Kammervolumen verwendet werden.Alternatively or additionally, the control unit can also determine the chamber volume V K using the formula v K = t A S ln p 1 p 2
Figure imgb0001
calculate, where t A is the pump-out time, S is the pumping speed of the vacuum pump, p 1 is the pressure in the chamber (or at the inlet) at the start of the pump-out time and p 2 is the pressure at the end of the pump-out time. To determine the chamber volume, the control unit can record the previous pump-out time. The pumping speed of the pump (unit m 3 /h) is inherent to the pump and can therefore also be stored in the control unit. Alternatively or additionally, the pumping speed of the pump can also be determined by measuring the power consumed by the vacuum pump. In this way, chambers of different sizes can be recognized and different pump-out times can be taken into account. If a larger chamber volume is calculated than the chamber volume stored in the control unit, the larger chamber volume can be used.

Gemäß einer weiteren Ausführungsform wird für die Ermittlung der im Pumpenraum vorhandenen Wassermenge angenommen, dass das zu fördernde Gas in der angeschlossenen Kammer die für die Vakuumpumpe maximal zugelassene Temperatur und/oder die für die Vakuumpumpe maximal zugelassene Feuchtigkeit aufweist. Bevorzugt wird ebenfalls angenommen, dass sämtliche Feuchtigkeit des zu fördernden Gases oder des (bereits) geförderten Gases als Wasser im Pumpraum zurückbleibt.According to a further embodiment, in order to determine the amount of water present in the pump room, it is assumed that the gas to be pumped in the connected chamber has the maximum permitted temperature for the vacuum pump and/or the maximum permitted humidity for the vacuum pump. It is also preferably assumed that all moisture in the gas to be pumped or in the (already) pumped gas remains as water in the pump room.

Dass sämtliche Feuchtigkeit des zu fördernden oder schon geförderten Gases als Wasser im Pumpraum zurückbleibt, kann als Annahme sämtlichen hierin beschriebenen Ausführungsformen zugrundegelegt werden.The fact that all moisture in the gas to be pumped or already pumped remains as water in the pump chamber can be assumed as the basis for all embodiments described herein.

Die maximale Temperatur und die maximale (relative) Feuchtigkeit des Gases in der Kammer sind für eine jeweilige Vakuumpumpe ebenfalls festgelegt und damit bekannt. Um ein vollständiges Auspumpen des Wassers aus dem Pumpraum sicherzustellen, kann somit angenommen werden, dass das Gas in der Kammer tatsächlich die maximal für die Vakuumpumpe zugelassene Feuchtigkeit und Temperatur aufweist.The maximum temperature and the maximum (relative) humidity of the gas in the chamber are also fixed for a respective vacuum pump and are therefore known. In order to ensure that the water is completely pumped out of the pump chamber, it can be assumed that the gas in the chamber actually has the maximum humidity and temperature permitted for the vacuum pump.

Beispielsweise kann die maximale Temperatur bei 40°C und die maximale relative Luftfeuchtigkeit bei 80 % für das zu fördernde Gas liegen. Bei 40°C kann Luft maximal 50 g/m3 Wasser aufnehmen. Wird nun davon ausgegangen, dass die Kammer ein Volumen von 200 Litern umfasst, so finden sich in diesen 200 I 8 g Wasser. Die Wassermenge im Pumpraum wird nach dem Evakuieren einer solchen Kammer folglich mit 8 g angenommen.For example, the maximum temperature may be 40°C and the maximum relative humidity may be 80% for the gas to be conveyed. At 40°C, air can absorb a maximum of 50 g/m 3 of water. If it is now assumed that the chamber has a volume of 200 liters, these 200 liters contain 8 g of water. The amount of water in the pump room after evacuating such a chamber is therefore assumed to be 8 g.

Gemäß einer weiteren Ausführungsform ist das Steuergerät ausgebildet, aus der Wasserdampfkapazität der Vakuumpumpe und der Wassermenge im Pumpraum die Ballastpumpdauer zu berechnen. Die Wasserdampfkapazität ist die größte Wassermenge, die eine Vakuumpumpe je Zeiteinheit unter den Umgebungsbedingungen von 20°C und 1.013 hPa in Form von Wasserdampf dauernd ansaugen und fördern kann. Die Wasserdampfkapazität kann beispielsweise in g/h angegeben werden. Bei der Wasserdampfkapazität handelt es sich also um eine Größe für einen Wasserdampf-Massenstrom. Die Wasserdampfkapazität kann insbesondere nach der Formel q m , Wasser = p W S M RT 1

Figure imgb0002
berechnet werden, wobei qm, Wasser die Wasserdampfkapazität, pw die Wasserdampfverträglichkeit der Vakuumpumpe am Einlass, S das Saugvermögen der Vakuumpumpe am Einlass, M die molare Masse von Wasser, R die allgemeine Gaskonstante und T die absolute Temperatur ist.According to a further embodiment, the control device is designed to calculate the ballast pumping duration from the water vapor capacity of the vacuum pump and the amount of water in the pump chamber. The water vapor capacity is the largest amount of water that a vacuum pump can continuously suck in and pump in the form of water vapor per unit of time under ambient conditions of 20°C and 1,013 hPa. The water vapor capacity can be specified, for example, in g/h. The water vapor capacity is a quantity for a water vapor mass flow. The water vapor capacity can be determined in particular according to the formula q m , Water = p W S M RT 1
Figure imgb0002
can be calculated, where q m, water is the water vapor capacity, p w is the water vapor compatibility of the vacuum pump at the inlet, S is the pumping speed of the vacuum pump at the inlet, M is the molar mass of water, R is the general gas constant and T is the absolute temperature.

Die Wasserdampfkapazität gibt den höchsten Wasserdampfdruck an, bei dem eine Vakuumpumpe unter normalen Umgebungsbedingungen (20°C, 1.013 hPa) reinen Wasserdampf dauernd ansaugen und fördern kann.The water vapor capacity indicates the highest water vapor pressure at which a vacuum pump can continuously suck in and pump pure water vapor under normal ambient conditions (20°C, 1,013 hPa).

Die Wasserdampfverträglichkeit pw kann nach der Formel p W = q pV , Ballast p S p a S α p 0 p a

Figure imgb0003
berechnet werden. Dabei ist qpV,Ballast der Gasballaststrom, S das Saugvermögen der Vakuumpumpe, ps der Sättigungsdampfdruck des Wasserdampfs bei Abgastemperatur (d.h. am Auslass), pA der Partialdruck des Wasserdampfs beim Zuführen des Gasballasts, p0 der Atmosphärendruck der Umgebung und α ein dimensionsloser Korrekturfaktor, der der Tatsache Rechnung trägt, dass zum Öffnen eines gegebenenfalls vorhandenen Auslassventils ein Druck größer als der Atmosphärendruck erforderlich ist. α kann beispielsweise einen Wert von 1,1 annehmen. Die Wasserdampfverträglichkeit hat die Dimension eines Drucks und wird üblicherweise in hPa angegeben. Falls die vorstehend genannten Drücke p nicht gemessen werden, so können jeweils solche Maximalwerte angenommen werden, die für die Vakuumpumpe gerade noch zulässig sind und die zu einer maximal großen Wassermenge oder Ballastpumpdauer oder zu einer niedrigen Wasserdampfverträglichkeit führen.The water vapor tolerance p w can be determined using the formula p W = q pV , ballast p S p a S α p 0 p a
Figure imgb0003
be calculated. Where q pV,Ballast is the gas ballast flow, S is the pumping speed of the vacuum pump, p s is the saturation vapor pressure of the water vapor at the exhaust gas temperature (ie at the outlet), p A is the partial pressure of the water vapor when the gas ballast is supplied, p 0 is the atmospheric pressure of the environment and α is a dimensionless one Correction factor that takes into account the fact that a pressure greater than atmospheric pressure is required to open an exhaust valve, if present. For example, α can take a value of 1.1. The water vapor compatibility has the dimension of a pressure and is usually given in hPa. If the above-mentioned pressures p are not measured, maximum values can be assumed that are just permissible for the vacuum pump and that lead to a maximum amount of water or ballast pumping time or to a low water vapor compatibility.

Die Wasserdampfkapazität steigt also mit geringer werdendem Partialdruck des Wasserdampfs im Gasballast und steigt ebenfalls bei einer höheren Temperatur am Auslass, da dann der Sättigungsdampfdruck des Wasserdampfs bei der Abgastemperatur steigt.The water vapor capacity increases as the partial pressure of the water vapor in the gas ballast decreases and also increases at a higher temperature at the outlet, since the saturation vapor pressure of the water vapor then increases at the exhaust gas temperature.

Dementsprechend kann das Steuergerät ausgebildet sein, die Wasserdampfkapazität der Vakuumpumpe basierend auf der Feuchtigkeit des Gasballasts und/oder basierend auf dem Partialdruck des Wasserdampfs im Gasballast und/oder basierend auf der Temperatur am Auslass zu bestimmen. Für eine niedrige Feuchtigkeit bzw. einen niedrigen Partialdruck des Wasserdampfs im Gasballast oder eine hohe Temperatur am Auslass kann dementsprechend eine höhere Wasserdampfkapazität bestimmt werden. Die Feuchtigkeit des Gasballasts, der Partialdruck des Wasserdampfs im Gasballast und/oder die Temperatur am Auslass können jeweils durch Messung oder durch Vorgabe von eingestellten Werten bestimmt werden.Accordingly, the control device can be designed to determine the water vapor capacity of the vacuum pump based on the moisture of the gas ballast and/or based on the partial pressure of the water vapor in the gas ballast and/or based on the temperature at the outlet. For a low humidity or a low partial pressure of the water vapor in the gas ballast or a high temperature at the outlet, a higher water vapor capacity can be determined accordingly. The humidity of the gas ballast, the partial pressure of the water vapor in the gas ballast and/or the temperature at the outlet can each be determined by measurement or by specifying set values.

Bei einer beispielhaften Vakuumpumpe kann sich eine Wasserdampfkapazität von z.B. 44,7 g/h ergeben. Wird nun davon ausgegangen (insbesondere in einer Worst-Case-Betrachtung), dass im Pumpraum eine Wassermenge von 8 g vorhanden ist, so ergibt sich eine Ballastpumpdauer von 11 min (8 g / 44,7 g/h = 11 min). Da es sich um eine Worst-Case-Betrachtung handelt, ist sichergestellt, dass nach Ablauf der Ballastpumpdauer tatsächlich die gesamte Wassermenge aus dem Pumpraum entfernt wurde.An exemplary vacuum pump can have a water vapor capacity of, for example, 44.7 g/h. If it is now assumed (especially in a worst-case scenario) that there is a quantity of 8 g of water in the pumping room, this results in a ballast pumping time of 11 min (8 g / 44.7 g/h = 11 min). Since this is a worst-case scenario, it is ensured that the entire amount of water has actually been removed from the pumping room after the ballast pumping period has expired.

Gemäß einer weiteren Ausführungsform entspricht die Zuführdauer zwischen 70 % und 110 %, bevorzugt zwischen 80 % und 100 %, besonders bevorzugt zwischen 90 % und 100 % der Ballastpumpdauer. Die Zuführdauer ist insbesondere der Zeitraum, in welchem tatsächlich Gasballast zugeführt und von der Vakuumpumpe durch den Auslass gepumpt wird, um die Wassermenge aus dem Pumpraum auszutragen. Die Zuführdauer kann exakt der berechneten Ballastpumpdauer entsprechen. Es ist aber auch möglich, dass die Zuführdauer länger oder kürzer als die Ballastpumpdauer gewählt wird. Durch die Worst-Case-Annahmen kann beispielsweise auch bei einer Verkürzung auf 70 % davon ausgegangen werden, dass sämtliches Wasser in der Zuführdauer aus dem Pumpraum entfernt werden kann. Während der Zuführdauer kann ein Gasballastventil der Vakuumpumpe geöffnet sein. Während das Gasballastventil geöffnet ist, kann die zu evakuierende Kammer insbesondere abgetrennt werden, um eine nachträgliche Druckerhöhung in der Kammer zu vermeiden.According to a further embodiment, the supply time corresponds to between 70% and 110%, preferably between 80% and 100%, particularly preferably between 90% and 100% of the ballast pumping time. The supply duration is in particular the period in which gas ballast is actually supplied and pumped through the outlet by the vacuum pump in order to discharge the amount of water from the pump room. The feeding time can correspond exactly to the calculated ballast pumping time. However, it is also possible for the feeding time to be chosen to be longer or shorter than the ballast pumping time. Using the worst-case assumptions, it can be assumed, for example, that all water can be removed from the pump room during the supply period, even if the time is shortened to 70%. A gas ballast valve of the vacuum pump can be open during the supply period. While the gas ballast valve is open, the gas to be evacuated can Chamber must be separated in particular in order to avoid a subsequent increase in pressure in the chamber.

Gemäß einer weiteren Ausführungsform ist das Steuergerät ausgebildet, das Öffnen eines Gasballastventils und damit das Zuführen des Gasballasts zu bewirken, wobei das Gasballastventil bevorzugt dann geöffnet wird, wenn am Einlass ein vorbestimmter Druck unterschritten wird. Das Öffnen des Gasballastventils kann damit automatisch durch das Steuergerät erfolgen. Alternativ kann das Steuergerät auch einen Bediener durch ein Signal anweisen, das Gasballastventil zu öffnen. Das Gasballastventil kann insbesondere dann geöffnet werden bzw. die Zuführdauer kann dann beginnen, wenn die Kammer ausreichend evakuiert ist und am Einlass z.B. ein Druck von 10 mbar oder 1 mbar unterschritten wird.According to a further embodiment, the control device is designed to cause the opening of a gas ballast valve and thus the supply of the gas ballast, the gas ballast valve preferably being opened when the pressure falls below a predetermined pressure at the inlet. The gas ballast valve can therefore be opened automatically by the control unit. Alternatively, the control unit can also instruct an operator to open the gas ballast valve using a signal. The gas ballast valve can in particular be opened or the supply period can begin when the chamber has been sufficiently evacuated and the pressure at the inlet falls below 10 mbar or 1 mbar, for example.

Für die Zuführung des Gasballasts kann wieder eine Worst-Case-Annahme getroffen werden, nämlich dass es sich bei dem Gasballast um Umgebungsluft handelt, wobei die Umgebungsluft die maximal für die (Umgebung der) Vakuumpumpe zugelassene Temperatur und/oder Feuchte aufweist (z.B. 40°C und 30 % relative Luftfeuchte).For the supply of the gas ballast, a worst-case assumption can again be made, namely that the gas ballast is ambient air, with the ambient air having the maximum temperature and/or humidity permitted for the (environment of the) vacuum pump (e.g. 40° C and 30% relative humidity).

Gemäß einer weiteren Ausführungsform ist das Steuergerät ausgebildet, während des Zuführens des Gasballasts den Einlass zu schließen oder grundsätzlich die Kammer vom Pumpraum abzutrennen. Wie oben bereits ausgeführt, kann durch das Schließen des Einlasses während des Zuführens des Gasballasts eine lediglich geringe Veränderung des minimalen Drucks in der Kammer erzielt werden. Ein solcher Betrieb kann auch als getakteter Betrieb bezeichnet werden.According to a further embodiment, the control device is designed to close the inlet while supplying the gas ballast or to fundamentally separate the chamber from the pump space. As already stated above, by closing the inlet while supplying the gas ballast, only a small change in the minimum pressure in the chamber can be achieved. Such operation can also be referred to as clocked operation.

Alternativ kann der Einlass geöffnet sein, während gleichzeitig Gasballast zugeführt wird (Gasballastventil offen). In diesem Fall kann dann kontinuierlich weiterberechnet werden, wie viel neue Feuchtigkeit aus der Kammer in den Pumpraum eingetragen wurde und welche Wassermenge ausgepumpt wurde. Die berechnete Ballastpumpdauer kann sich dann während des Betriebs verlängern, sodass auch die Zuführdauer verlängert werden kann.Alternatively, the inlet can be open while simultaneously supplying gas ballast (gas ballast valve open). In this case, it can then be continuously calculated how much new moisture was introduced from the chamber into the pump room and what amount of water was pumped out. The calculated one Ballast pumping time can then be extended during operation, so that the delivery time can also be extended.

Gemäß einer weiteren Ausführungsform mündet in den Pumpraum ein Kanal zum Zuführen des Gasballasts, wobei der Kanal bevorzugt zwischen dem Einlass und dem Auslass in dem Pumpraum mündet und insbesondere näher am Auslass als am Einlass angeordnet ist. Der Kanal ist also zu Einlass und Auslass ein separater Zugang zum Pumpraum. Insbesondere kann sich der Kanal näher am Auslass befinden, da sich dort wegen dem höheren Druck die Feuchtigkeit niederschlägt bzw. kondensiert.According to a further embodiment, a channel for supplying the gas ballast opens into the pump chamber, the channel preferably opening between the inlet and the outlet in the pump chamber and in particular being arranged closer to the outlet than to the inlet. The channel is therefore a separate access to the pump room for the inlet and outlet. In particular, the channel can be located closer to the outlet because the moisture precipitates or condenses there due to the higher pressure.

Gemäß einer weiteren Ausführungsform ist die Vakuumpumpe eine Scroll-Pumpe. Dementsprechend kann die Vakuumpumpe zwei parallele Kammern aufweisen, die das zu fördernde Gas in Richtung des Inneren bzw. in Richtung des Auslasses der Vakuumpumpe verdichten. Die Vakuumpumpe kann zwei ineinander verkämmte Spiralen aufweisen, die durch gegenläufige Bewegung das zu fördernde Gas und auch den zugeführten Gasballast in Richtung des Auslasses verdichten und fördern. Der Pumpkörper kann dementsprechend eine oder mehrere der Spiralen umfassen. Eine mit dem Gasballastventil verbundene Gasballastbohrung kann so positioniert sein, dass zu einem Zeitpunkt jeweils zumindest eine der zwei parallelen Kammern oder beide Kammern mit dem Gasballast beaufschlagt werden können.According to a further embodiment, the vacuum pump is a scroll pump. Accordingly, the vacuum pump can have two parallel chambers that compress the gas to be pumped towards the interior or towards the outlet of the vacuum pump. The vacuum pump can have two interlocking spirals, which compress and convey the gas to be pumped and also the supplied gas ballast in the direction of the outlet by moving in opposite directions. The pump body can accordingly comprise one or more of the spirals. A gas ballast bore connected to the gas ballast valve can be positioned so that at least one of the two parallel chambers or both chambers can be supplied with the gas ballast at a time.

Alternativ kann es sich bei der Vakuumpumpe auch um eine Drehschiebervakuumpumpe, vorzugsweise eine ölgeschmierte Drehschiebervakuumpumpe, handeln. Insbesondere kann der Pumpkörper durch eine Rotorwelle und wenigstens einen Drehschieber gebildet sein.Alternatively, the vacuum pump can also be a rotary vane vacuum pump, preferably an oil-lubricated rotary vane vacuum pump. In particular, the pump body can be formed by a rotor shaft and at least one rotary valve.

Grundsätzlich kann die Vakuumpumpe einstufig oder mehrstufig, beispielsweise zweistufig, ausgebildet sein.In principle, the vacuum pump can be designed in one or more stages, for example in two stages.

Weiterer Gegenstand der Erfindung ist ein Verfahren zum Betreiben einer Vakuumpumpe gemäß Anspruch 10.A further subject of the invention is a method for operating a vacuum pump according to claim 10.

Schließlich betrifft die Erfindung auch ein Vakuumpumpsystem mit einer Vakuumpumpe wie hierin beschrieben, wobei das Vakuumpumpsystem eine zu evakuierende Kammer umfasst, welche an den Einlass der Vakuumpumpe gekoppelt ist.Finally, the invention also relates to a vacuum pumping system with a vacuum pump as described herein, the vacuum pumping system comprising a chamber to be evacuated, which is coupled to the inlet of the vacuum pump.

Für das erfindungsgemäße Verfahren und das erfindungsgemäße Vakuumpumpsystem gelten die Ausführungen zur erfindungsgemäßen Vakuumpumpe entsprechend. Dies gilt insbesondere für Vorteile und Ausführungsformen.The statements regarding the vacuum pump according to the invention apply accordingly to the method according to the invention and the vacuum pump system according to the invention. This applies in particular to advantages and embodiments.

Es versteht sich, dass sämtliche hierin genannten Weiterbildungen und Ausführungsform miteinander kombinierbar sind, sofern nicht explizit etwas gegenteiliges angegeben ist.It goes without saying that all of the developments and embodiments mentioned herein can be combined with one another, unless something to the contrary is explicitly stated.

Nachfolgend wird die Erfindung rein beispielhaft unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigen:

Fig. 1
eine Vakuumpumpe mit einer angeschlossenen zu evakuierenden Kammer in schematischer Ansicht; und
Fig. 2
ein Ablaufdiagramm für das Auspumpen von Wasser aus einem Pumpraum.
The invention is described below purely by way of example with reference to the drawings. Show it:
Fig. 1
a schematic view of a vacuum pump with a connected chamber to be evacuated; and
Fig. 2
a flow chart for pumping out water from a pump room.

Fig. 1 zeigt eine Vakuumpumpe 10, welche als Scroll-Pumpe ausgebildet ist. In der Vakuumpumpe 10 ist ein Pumpraum 12 angeordnet, in welchem mittels eines spiralförmigen (nicht explizit gezeigten) Pumpkörpers 14 ein zu förderndes Gas von einem Einlass 16 zu einem Auslass 18 gepumpt bzw. gefördert wird. An dem Einlass 16 ist eine zu evakuierende Kammer 20 angeschlossen, in welcher im vorliegenden Beispiel 200 Liter Luft bei 40 °C und 80 % Luftfeuchte vorhanden sind. Fig. 1 shows a vacuum pump 10, which is designed as a scroll pump. A pump chamber 12 is arranged in the vacuum pump 10, in which a gas to be pumped is pumped or conveyed from an inlet 16 to an outlet 18 by means of a spiral-shaped pump body 14 (not explicitly shown). A chamber 20 to be evacuated is connected to the inlet 16, in which in the present example there are 200 liters of air at 40 ° C and 80% humidity.

Am Einlass 16 der Vakuumpumpe 10 ist ein Drucksensor 22 angeordnet, welcher den Druck der über den Einlass 16 aus der Kammer 20 einströmenden Luft bestimmt. Der Drucksensor 22 ist mit einem Steuergerät 24 der Vakuumpumpe 10 gekoppelt und übermittelt seine Messergebnisse an das Steuergerät 24. Das Steuergerät 24 erhält überdies Messergebnisse eines Temperatursensors 26, welcher am Auslass 18 angeordnet ist.At the inlet 16 of the vacuum pump 10, a pressure sensor 22 is arranged, which determines the pressure of the air flowing in from the chamber 20 via the inlet 16. The pressure sensor 22 is coupled to a control device 24 of the vacuum pump 10 and transmits its measurement results to the control device 24. The control device 24 also receives measurement results from a temperature sensor 26, which is arranged at the outlet 18.

An der Vakuumpumpe 10 ist zudem ein Gasballastventil 28 angeordnet, welches Umgebungsluft 30 zwischen dem Einlass 16 und dem Auslass 18 in den Pumpraum 12 einbringen kann. Das Steuergerät 24 ist mit dem Gasballastventil 28 gekoppelt, um das Gasballastventil 28 öffnen zu können.A gas ballast valve 28 is also arranged on the vacuum pump 10, which can introduce ambient air 30 between the inlet 16 and the outlet 18 into the pump chamber 12. The control device 24 is coupled to the gas ballast valve 28 in order to be able to open the gas ballast valve 28.

Außerdem ist das Steuergerät 24 mit einer Leistungsmessung 32 verbunden, wobei die Leistungsmessung 32 die jeweils momentan von der Vakuumpumpe 10 benötigte Leistung erfasst, sodass das Steuergerät 24 Rückschlüsse über das jeweilige Saugvermögen und die Pumpdauer/Auspumpzeit der Vakuumpumpe 10 treffen kann.In addition, the control device 24 is connected to a power measurement 32, the power measurement 32 recording the power currently required by the vacuum pump 10, so that the control device 24 can draw conclusions about the respective pumping speed and the pumping time/pump-out time of the vacuum pump 10.

Der Betrieb der Vakuumpumpe 10 wird nun mit Bezug auf das Ablaufdiagramm von Fig. 2 erläutert. Im Schritt 100 beginnt die Auspumpzeit. Hierbei wird über den Drucksensor 22 zunächst der Anfangsdruck am Einlass 16 bzw. in der Kammer 20 festgestellt und die Vakuumpumpe 10 beginnt mit dem Pumpen des zu fördernden Gases aus der Kammer 20. Während einer Auspumpzeit 110 wird die Kammer 20 weiter evakuiert, wobei das Gasballastventil 28 geschlossen ist. Durch das Evakuieren der Kammer kondensiert Wasser aus der Kammer 20 im Pumpraum 12. Wird nun in der Kammer 20 bzw. am Einlass 16 ein vorbestimmter Mindestdruck unterschritten, so endet die Auspumpzeit mit Schritt 120. Der dann am Einlass anliegende Druck wird über den Drucksensor 22 ermittelt. Zudem kann die Temperatur der Pumpe am Auslass 18 über den Temperatursensor 26 gemessen werden. Anhand der Leistungsmessung 32 kann das Steuergerät 24 zudem feststellen, mit welchem Saugvermögen die Vakuumpumpe 10 wie lange betrieben wurde. Auf diese Weise kann das Steuergerät 24 das Volumen der am Einlass 16 angeschlossenen Kammer 20 oder das ausgepumpte Volumen ermitteln. Für diese Ermittlung wird die Druckdifferenz zwischen den Schritten 100 und 120 zusätzlich herangezogen.The operation of the vacuum pump 10 will now be described with reference to the flowchart of Fig. 2 explained. In step 100 the pump-out time begins. Here, the initial pressure at the inlet 16 or in the chamber 20 is first determined via the pressure sensor 22 and the vacuum pump 10 begins pumping the gas to be pumped out of the chamber 20. During a pump-out time 110, the chamber 20 is further evacuated, with the gas ballast valve 28 is closed. By evacuating the chamber, water condenses from the chamber 20 in the pumping chamber 12. If a predetermined minimum pressure is now fallen below in the chamber 20 or at the inlet 16, the pumping out time ends with step 120. The pressure then present at the inlet is measured via the pressure sensor 22 determined. In addition, the temperature of the pump at the outlet 18 can be measured via the temperature sensor 26. Based on the performance measurement 32, the control unit 24 can also determine at what suction speed the vacuum pump 10 was operated and for how long. In this way, the control device 24 can determine the volume of the chamber 20 connected to the inlet 16 or the volume pumped out. The pressure difference between steps 100 and 120 is also used for this determination.

Aus dem ausgepumpten Volumen der Kammer 20 und einer Worst-Case-Annahme für die Temperatur und Luftfeuchtigkeit des Gases in der Kammer 20 berechnet das Steuergerät 24 im Schritt 130 die im Pumpraum 12 potentiell vorhandene (insbesondere vermutete) Wassermenge.From the pumped out volume of the chamber 20 and a worst-case assumption for the temperature and humidity of the gas in the chamber 20, the control device 24 calculates in step 130 the amount of water potentially present (in particular suspected) in the pump chamber 12.

Aus der Wassermenge wird dann im Schritt 140 mithilfe der Wasserdampfkapazität der Vakuumpumpe die Ballastpumpdauer berechnet. Liegt die Wasserdampfkapazität der Vakuumpumpe 10 beispielsweise bei 44,7 g/h und wurde die Wassermenge mit 8 g berechnet, so ergibt sich die Ballastpumpdauer zu 11 min.The ballast pumping duration is then calculated from the amount of water in step 140 using the water vapor capacity of the vacuum pump. If the water vapor capacity of the vacuum pump 10 is, for example, 44.7 g/h and the amount of water was calculated as 8 g, the ballast pumping time is 11 minutes.

Im anschließenden Schritt 150 öffnet das Steuergerät 24 dann das Gasballastventil 28 und schließt den Einlass 16. Im Schritt 150 wird also Gasballast (in diesem Beispiel Umgebungsluft) gepumpt, um die Wassermenge aus dem Pumpraum 12 zu entfernen. Die Dauer des Pumpens von Gasballast, das heißt die Zuführdauer, kann dabei entsprechend der Ballastpumpdauer von 11 min gewählt werden, sodass nach 11 min das Pumpen von Gasballast beendet wird. Zu diesem Zeitpunkt kann davon ausgegangen werden, dass sämtliches Wasser bzw. sämtliche Feuchtigkeit aus dem Pumpraum 12 entfernt wurde. Anschließend kann neu bei Schritt 100 begonnen werden.In the subsequent step 150, the control device 24 then opens the gas ballast valve 28 and closes the inlet 16. In step 150, gas ballast (in this Example ambient air) is pumped to remove the amount of water from the pump room 12. The duration of the pumping of gas ballast, i.e. the supply time, can be selected according to the ballast pumping time of 11 minutes, so that the pumping of gas ballast is stopped after 11 minutes. At this point it can be assumed that all water or moisture has been removed from the pump room 12. You can then start again at step 100.

Erfindungsgemäß wird also durch Worst-Case-Annahmen die Sicherheit geschaften, dass praktisch sämtliches Wasser aus dem Pumpraum während der Zuführdauer des Gasballasts entfernt wird.According to the invention, worst-case assumptions ensure that practically all water is removed from the pump room during the supply period of the gas ballast.

BezugszeichenlisteReference symbol list

1010
Vakuumpumpevacuum pump
1212
PumpraumPump room
1414
Pumpkörperpump body
1616
Einlassinlet
1818
Auslassoutlet
2020
Kammerchamber
2222
DrucksensorPressure sensor
2424
SteuergerätControl unit
2626
TemperatursensorTemperature sensor
2828
GasballastventilGas ballast valve
3030
UmgebungsluftAmbient air
3232
LeistungsmessungPerformance measurement
100100
Beginn der AuspumpzeitStart of pumping out time
110110
AuspumpzeitPump out time
120120
Ende der AuspumpzeitEnd of pumping out time
130130
Berechnung WassermengeCalculation of water quantity
140140
Berechnung BallastpumpdauerCalculation of ballast pumping time
150150
Pumpen von Gasballast für die ZuführdauerPumping gas ballast for the delivery period

Claims (11)

  1. A vacuum pump (10) comprising a pump space (12), an inlet (16) connected to the pump space (12) and an outlet (18) connected to the pump space (12), wherein a gas to be conveyed can be conveyed in the pump space (12) from the inlet (16) to the outlet (18), wherein a chamber (20) to be evacuated can be connected to the inlet (16),
    wherein the vacuum pump (10) is configured for supplying a gas ballast into the pump space (12),
    characterized in that
    the vacuum pump (10) comprises a control device (24) which is configured to calculate a ballast pumping duration that indicates how long gas ballast has to be pumped in order to pump out water present or presumed to be present in the pump space (12), with the control device (24) further being configured to bring about a supply of the gas ballast for a supply duration, with the supply duration depending on the calculated ballast pumping duration,
    wherein the control device (24) is configured to calculate the amount of water present in the pump space (12),
    wherein the amount of water present in the pump space (12) is determined based on the volume of a chamber (20) connected to the inlet (16) and the volume of the chamber (20) is determined based on a previous pump-out time, the suction capacity of the pump and/or a pressure difference over the pump-out time.
  2. A vacuum pump (10) according to claim 1,
    wherein it is assumed for the determination of the amount of water present in the pump space (12) that, in the connected chamber (20), the gas to be conveyed has the maximum permitted temperature for the vacuum pump (10) and/or the maximum permitted moisture for the vacuum pump (10), wherein it is preferably likewise assumed that all the moisture of the gas to be conveyed or of the conveyed gas remains as water in the pump space (12).
  3. A vacuum pump (10) according to one of the claims 1 to 2,
    wherein the control device (24) is configured to calculate the ballast pumping duration from the water vapor capacity of the vacuum pump (10) and from the amount of water.
  4. A vacuum pump (10) according to claim 3,
    wherein the control device (24) is configured to determine the water vapor capacity of the vacuum pump (10) based on the moisture of the gas ballast and/or based on the partial pressure of the water vapor in the gas ballast and/or based on the temperature at the outlet (18).
  5. A vacuum pump (10) according to any one of the preceding claims,
    wherein the supply duration corresponds to between 70% and 110%, preferably between 80% and 100%, particularly preferably between 90% and 100%, of the ballast pumping duration.
  6. A vacuum pump (10) according to any one of the preceding claims,
    wherein the control device (24) is configured to bring about the opening of a gas ballast valve (28) and thus the supply of the gas ballast, wherein the gas ballast valve (28) is preferably opened when a predetermined pressure is fallen below at the inlet (16).
  7. A vacuum pump (10) according to any one of the preceding claims,
    wherein the control device (24) is configured to close the inlet (16) and/or to separate the chamber (20) from the pump space (12) during the supply of the gas ballast.
  8. A vacuum pump (10) according to any one of the preceding claims,
    wherein a channel for supplying the gas ballast leads into the pump space (12), wherein the channel preferably leads into the pump space (12) between the inlet (16) and the outlet (18) and is in particular arranged closer to the outlet (18) than to the inlet (16).
  9. A vacuum pump (10) according to any one of the preceding claims,
    wherein the vacuum pump (10) is a scroll pump.
  10. A method of operating a vacuum pump (10) comprising a pump space (12), in which
    a ballast pumping duration is calculated that indicates how long gas ballast has to be pumped to pump out water present or presumed to be present in the pump space (12) and a supply of the gas ballast is brought about for a supply duration, wherein the supply duration depends on the calculated ballast pumping duration,
    wherein the amount of water present in the pump space (12) is calculated, wherein the amount of water present in the pump space (12) is determined based on the volume of a chamber (20) connected to an inlet (16) and the volume of the chamber (20) is determined based on a previous pump-out time, the suction capacity of the pump and/or a pressure difference over the pump-out time.
  11. A vacuum pump system comprising a vacuum pump (10) according to any one of the claims 1 to 9, wherein the vacuum pump system comprises a chamber (20) to be evacuated that is coupled to the inlet (16) of the vacuum pump (10).
EP21199985.9A 2021-09-29 2021-09-29 Vacuum pump Active EP3916225B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21199985.9A EP3916225B1 (en) 2021-09-29 2021-09-29 Vacuum pump
JP2022134087A JP7492999B2 (en) 2021-09-29 2022-08-25 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21199985.9A EP3916225B1 (en) 2021-09-29 2021-09-29 Vacuum pump

Publications (3)

Publication Number Publication Date
EP3916225A2 EP3916225A2 (en) 2021-12-01
EP3916225A3 EP3916225A3 (en) 2022-03-09
EP3916225B1 true EP3916225B1 (en) 2023-12-13

Family

ID=78073831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21199985.9A Active EP3916225B1 (en) 2021-09-29 2021-09-29 Vacuum pump

Country Status (2)

Country Link
EP (1) EP3916225B1 (en)
JP (1) JP7492999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102598332B1 (en) * 2023-07-31 2023-11-03 한국표준과학연구원 System and Method for evaluating water vapor pumping performance of a vacuum pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE702480C (en) * 1935-12-22 1941-02-08 Wolfgang Gaede Dr Single or multi-stage vacuum pump for generating low pressures for extracting fumes and gas-steam mixtures
DE10255792C5 (en) * 2002-11-28 2008-12-18 Vacuubrand Gmbh + Co Kg Method for controlling a vacuum pump and vacuum pump system
DE102007043350B3 (en) * 2007-09-12 2009-05-28 Oerlikon Leybold Vacuum Gmbh Vacuum pump and method for controlling a gas ballast supply to a vacuum pump
DE102007059938A1 (en) * 2007-12-12 2009-06-18 Pfeiffer Vacuum Gmbh Vacuum pump and method of operation
JP2014238020A (en) 2013-06-06 2014-12-18 エドワーズ株式会社 Vacuum pump
DE102013213257A1 (en) * 2013-07-05 2015-01-08 Pfeiffer Vacuum Gmbh Diaphragm vacuum pump

Also Published As

Publication number Publication date
EP3916225A3 (en) 2022-03-09
EP3916225A2 (en) 2021-12-01
JP7492999B2 (en) 2024-05-30
JP2023050104A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
EP2362102B1 (en) Metering pump aggregate
DE60218029T2 (en) REGENERATION OF AN AIR DRYER
EP3916225B1 (en) Vacuum pump
DE112006003136B4 (en) Fuel cell system and method for shutting it down
EP1833622B1 (en) Method for cleaning a vacuum screw-type pump
WO2016177544A1 (en) Method for operating a device for injecting water into an internal combustion engine
EP2205846B1 (en) Method for controlling a fuel injection system of an internal combustion engine
DE3106980A1 (en) COMPRESSOR
EP2821650B1 (en) Membrane vacuum pump
EP2791511B1 (en) Liquid ring vacuum pump with cavitation regulation
EP1567770B1 (en) Screw compressor
EP3653882B1 (en) Virtual sensor for the water content in oil circuit
DE102016206285A1 (en) Method for regulating a pressure in a crankcase
EP2551620A1 (en) Dental oven
WO2015074865A1 (en) Vacuum pump system and method for operating a vacuum pump system
EP0401399A1 (en) Two-stage or multistage high-vacuum pump
WO2015158478A1 (en) Method for purging a fuel cell and device for carrying out said method
DE202014005279U1 (en) Vacuum system
DE112020001762T5 (en) Dry vacuum pump and pumping system
DE102014111835A1 (en) Compressor unit and method for its operation
EP2507102B1 (en) Method for actuating a switching valve in a hydraulic motor vehicle brake system
EP0541989B1 (en) Multi-stage vacuum pumping system
EP2191137B1 (en) Vacuum pump and method for controlling a gas ballast supply to a vacuum pump
WO2003033319A2 (en) Hydrodynamic braking system provided with a retarder
DE10255792A1 (en) Vacuum pump control method in which a gas ballast valve is controlled in a manner dependent on the detected formation of condensation within the container being pumped down

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 37/14 20060101AFI20220131BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220823

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20230614

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20230720

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230920

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002168

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213