EP3911860A1 - Aerodynamic arm for an aircraft turbine engine casing - Google Patents

Aerodynamic arm for an aircraft turbine engine casing

Info

Publication number
EP3911860A1
EP3911860A1 EP20705409.9A EP20705409A EP3911860A1 EP 3911860 A1 EP3911860 A1 EP 3911860A1 EP 20705409 A EP20705409 A EP 20705409A EP 3911860 A1 EP3911860 A1 EP 3911860A1
Authority
EP
European Patent Office
Prior art keywords
casing
aerodynamic
arm
core
turbomachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20705409.9A
Other languages
German (de)
French (fr)
Inventor
Marc Missout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3911860A1 publication Critical patent/EP3911860A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the field of turbomachines. It relates to an aerodynamic casing arm for an aircraft turbomachine.
  • the state of the art includes in particular the documents US-A1 - 2014/193249 and US-A1 -2012/266439.
  • Figure 1 shows a turbomachine 1 with double flow which comprises, conventionally centered on a longitudinal axis X, a fan S, a low pressure compressor 1 a, a high pressure compressor 1 b, an annular combustion chamber 1c, a turbine high pressure 1d, a low pressure turbine 1 e and an exhaust nozzle 1 h.
  • the high pressure compressor 1b and the high pressure turbine 1d are connected by a high pressure shaft 2 and form with it a high pressure body (HP).
  • the low pressure compressor 1a and the low pressure turbine 1e are connected by a low pressure shaft 3 and form with it a low pressure body (LP).
  • Blower S is driven by a blower shaft 4.
  • the fan S delivers an annular air flow with a central annular part, called the primary flow FP, flowing inside a so-called primary stream delimited by an annular fairing 5a, which supplies the motor driving the fan S and an external annular part, called the secondary flow FS, which is ejected into the atmosphere while providing a large fraction of the thrust.
  • the fan S is contained in a casing 5b delimiting, with the annular shroud 5a, a so-called secondary stream in which the secondary flow FS flows.
  • the hybridization of aircraft turbomachines uses very high electrical powers (of the order of 300 to 500 kVA) compared to the powers usually used for conventional turbomachines for aircraft (of the order of 60 kVA).
  • the section of the electrical conductors which is proportional to the supply current to be passed through, is also larger.
  • the diameter of the cables usually of the order of a few millimeters for conventional turbomachines, is of the order of several tens of millimeters for hybrid turbomachines.
  • the electrical conductors must pass through the primary and secondary ducts of the turbomachine to convey the electrical energy between the electrical machines installed under the primary duct and the general aircraft electrical network.
  • the electrical conductors must pass through at least the secondary vein.
  • the electrical conductors constitute an obstacle to the flow of air at least in the secondary stream of the turbomachine, thus degrading the internal aerodynamics of the turbomachine and thus compromising the performance of the turbomachine.
  • the present invention proposes to provide a simple and effective solution to the problems mentioned above.
  • the invention relates to an aerodynamic casing arm for an aircraft turbomachine, characterized in that it comprises:
  • an outer tubular casing having a generally elongated shape extending substantially along an axis, this casing comprising axial ends for connection to a turbomachine casing;
  • an insulating material configured to occupy a space between the core and the shell.
  • the aerodynamic arm according to the invention constitutes a simple and effective solution making it possible to pass electrical conductors of large diameter for the passage of high electrical powers while preserving the aerodynamic performance of the casing which it equips and the mechanical strength without increasing its capacity. mass.
  • the aerodynamic arm being intended to equip a turbomachine casing, it is intended to be traversed by a flow of air flowing inside the turbomachine. Therefore, it has an aerodynamic profile so as to limit airflow disturbances.
  • the aerodynamic arm is tubular and is crossed by a conductive core surrounded by an insulation.
  • all of the volume available inside the arm can be used to pass a large amount of electrical energy necessary for the operation of hybrid turbomachines.
  • a thickness of the aerodynamic arm is between 2 mm and 10 mm, and a chord length of the aerodynamic arm is between 30 mm and 150 mm.
  • the insulating material has a minimum thickness of the order of 0.8 mm, preferably between 0.6 and 1.5 mm .
  • a thickness of the core is between 1 mm and 5 mm.
  • the ends of the core are configured to be connected by mechanical connections or welds to electrical conductors.
  • each of the axial ends of the casing comprises a flange for connecting or fixing to the turbomachine casing.
  • each aerodynamic arm can be attached to a turbomachine casing.
  • the insulating material is configured to withstand temperatures up to 200 ° C and is made from a liquid insulation, or an organic insulating powder polymerized by baking, or is configured to withstand temperatures. temperatures up to 800 ° C and is made from a mixture of mineral insulating powder and binder fired at high temperature.
  • the mineral insulating powder is Kapton®, Teflon® or magnesia resistant to the high temperatures of the environment of the turbomachines.
  • the binder is a ceramic binder.
  • the present invention also relates to an aircraft turbomachine, characterized in that it comprises at least ten aerodynamic arms having at least any one of the aforementioned characteristics, and preferably at least twenty aerodynamic arms, each aerodynamic arm forming part of a flow rectifier vane which crosses a secondary flow vein or a primary flow vein of the turbomachine.
  • the turbomachine according to the invention has the advantage of integrating and passing a greater amount of electrical energy through several (at least ten) aerodynamic arms of reduced dimensions.
  • at least ten aerodynamic arms of reduced thickness are configured to equip a casing of the turbomachine, while preserving the mechanical strength and without increasing the mass of this casing. This can also make it possible to avoid the use of bulky arms to convey high electrical power.
  • the present invention finally relates to a manufacturing process for producing an aerodynamic arm according to the invention, this process comprising the steps of:
  • the method according to the invention may include one or more of the following characteristics, taken in isolation from each other or in combination with each other:
  • the envelope is produced by additive manufacturing
  • the insulating material is either in the form of liquid insulation or of an insulating powder, or in the form of a mixture of inorganic insulating powder and of binder; - step c) further comprises either a polymerization of the liquid insulation or of the insulation powder, or a baking of the mixture of inorganic insulating powder and binder.
  • FIG. 1 Figure 1, already discussed, is a schematic sectional view of a turbomachine
  • Figure 2 is a perspective view of a turbomachine casing
  • Figure 3 is a detail view of an exemplary embodiment of an aerodynamic arm according to the invention.
  • Figure 4 is a cross-sectional view of the aerodynamic arm illustrated in Figure 3.
  • upstream is used with reference to the direction of gas flow in an aircraft turbomachine.
  • downstream is used with reference to the direction of gas flow in an aircraft turbomachine.
  • internal and “external” are defined with respect to a longitudinal axis of the turbomachine.
  • axial is defined with reference to the positioning of the constituent elements of the aerodynamic arm according to the invention.
  • a structural element of the turbomachine 1 designated intermediate casing 6 comprising two coaxial annular rows of blades constituting an internal vane located in the primary flow FP and an external vane located in the secondary flow FS.
  • the intermediate casing 6 comprises a hub 7 intended to be traversed by the BP shaft 3, an internal ring 8 for separating the primary FP and secondary FS flows, an external annular ring 9 located at a nacelle of the turbomachine, aerodynamic radial arms 10 in the form of fins extending radially between the ring 8 and the outer shell 9 and internal radial arms 11 for connection between the hub 7 and the ring gear 8.
  • the arms 10 form the external blade and the arms 11 form the internal blade.
  • Radial arms 12 can also be placed in the external vane and transmit part of the forces between the motor and its support, the arms 12 being structural arms.
  • the arms 10 of the intermediate casing can take the form of a flow straightening blade to straighten the secondary flow FS flowing in the secondary stream, in the X axis of the turbomachine 1 downstream of the fan s.
  • the arms 10 then constitute OGV which is the acronym in English for Outlet Guide Vane.
  • a ring of fixed fins (not shown) is generally disposed between the fan S and the arms 11 of the intermediate casing, to straighten the primary flow FP flowing in the primary stream, in the X axis of the turbomachine 1. These fins are generally referred to by the term IGV which is the acronym in English for Inlet Guide Vane.
  • the intermediate casing 6 has a structural function insofar as the forces are transmitted through it; in particular the means for fixing the turbomachine 1 to the structure of the aircraft are integral with the intermediate casing 6.
  • FIG. 3 An exemplary embodiment of the aerodynamic arm 100 according to the invention is illustrated in Figures 3 and 4.
  • the aerodynamic arm 100 comprises:
  • the envelope 110 is tubular. It has a tubular body 111 of generally elongated shape extending substantially along an axis A-A and axial ends 112 for connection to a casing, such as for example an intermediate casing 6 of a turbomachine 1.
  • the electrically conductive core 120 and the insulating material 130 are trapped in an interior cavity delimited by an interior surface of the casing 110.
  • the body 111 of the envelope 110 has an aerodynamic profile as can be seen in FIG. 4.
  • the body 111 thus has a leading edge 111 a, a trailing edge 111 b, a lower surface 111 c and an upper surface 111 d.
  • the aerodynamic arms 100 are configured to equip a casing, in particular an intermediate casing for an aircraft turbomachine.
  • each of the axial ends 112 of the casing 110 has a flange 112a for connecting or fixing to the housing.
  • each aerodynamic arm can be attached to the intermediate casing 6, for example by welding the flanges 112a of the casing 110 to the inner ring 8 and the outer shell 9 of the casing of the turbomachine.
  • the casing 100 is made of any material having the necessary abrasion resistance properties. It is for example made of metal.
  • the envelope 100 has a thickness guaranteeing the mechanical strength of the aerodynamic arm 100.
  • the core 120 extends along the axis AA inside the envelope 110. It has electrical connection ends (not shown) at each of the ends 112 of the envelope 110.
  • the connection ends of the core 120 are configured to be connected by mechanical connections or welds to electrical conductors of the turbomachine, either for example to the general electrical network of the aircraft or to electrical machines installed under the primary stream.
  • the electrical connection ends of the core 120 are either protuberances of the core 120, or separate elements that can be attached by screwing to the ends of the core 120 when the arms 100 are mounted on the casing 6 (for example at means of pods).
  • the core is made of any electrically conductive material. It is for example made of copper or aluminum, depending on the ambient temperature of the environment in which the aerodynamic arms 100 are installed.
  • the core 120 may for example consist of a metal strip of rectangular section (as illustrated in FIG. 4), with a width (thickness of the strip of rectangular section) of between 1 mm and 3 mm and a length of section of between 10 mm and 50 mm.
  • the electrical connection ends of the core 120 include mechanical connections for connection to conductors electrical of the turbomachine, these mechanical links can be formed with the core 120 by machining, by molding, or by additive manufacturing.
  • the insulating material 130 able to occupy the space between the core 120 and the casing 110 can be chosen according to the ambient temperature of the environment in which the aerodynamic arms 100 are installed.
  • the insulating material 130 can be obtained from either a liquid insulator or an organic insulating powder polymerized by baking, the insulating material thus being configured to withstand temperatures of up to at 200 ° C.
  • the insulating material 130 can be obtained from a mixture of a mineral insulating powder and a binder cooked at high temperature, the insulating material thus being configured to withstand temperatures of up to at up to 800 ° C.
  • the mineral insulating powder can be Kapton® or Teflon® which have very good dielectric properties and good temperature resistance which can withstand temperatures up to 200 ° C.
  • the insulating mineral powder can also be magnesia or aluminum oxide.
  • the mineral insulating powder has better properties of resistance to high temperatures.
  • a ceramic binder such as, for example, mineral insulating powder can withstand temperatures of up to 800 ° C.
  • the binder can be a polymer resin of the thermosetting type, and for higher temperatures, the binder can be an oxide composite in the form of a slip, such as Ox / Ox.
  • the shape of the envelope 110 is thus adapted to the flow of the air flow in the turbomachine 1 in operation, the aerodynamic profile of the envelope 110 thus providing a straightening function for the flow of air in the primary and secondary veins.
  • the arms 100 can thus take the form of flow straightening vanes thus ensuring a function of straightening the flow downstream of the fan S, in the primary stream they can constitute IGVs, or in the secondary stream they can constitute OGV, the function of conduction of electrical energy then being ensured by parts having an aerodynamic role.
  • the aerodynamic arms 100 thus have, in the configuration of the invention, both an aerodynamic function of rectifier of the secondary air flow coming from the fan S in the X axis of the turbomachine and an electrical conduction function, with possibly a structural function if at least some arms are provided sufficiently thick and / or rigid to participate in the mechanical strength of the assembly formed by the arms and the rings or rings between which the arms extend radially.
  • the volume available inside the arms 100 is used to pass electrical energy through the primary and secondary veins. , between the general electrical network of the aircraft and the electrical machines installed under the primary duct.
  • an aircraft turbomachine comprising a plurality of arms 100 according to the invention allows a large total electrical current to pass between the electrical machines and the general electrical network of the aircraft while maintaining good performance.
  • the proposed solution applies in particular to turbomachines for aircraft in which, in order to pass a large electric current through a primary or secondary flow stream, it is necessary in the current state of the art to install electrical conductors of diameter important, for example greater than 5 mm, in the passage arms of easements.
  • An aircraft turbomachine thus comprises at least ten aerodynamic arms 100 and, preferably, at least twenty aerodynamic arms 100.
  • Each aerodynamic arm 100 is part of a set of OGVs or IGVs constituting rectifier blades. of a flow which passes respectively through a secondary flow stream or a primary flow stream of the turbomachine downstream of a fan.
  • the aircraft turbomachine according to the invention comprises, more preferably, between 30 and 70 aerodynamic arms 100 according to the invention, this number varying according to the type of engine of the turbomachine.
  • a maximum thickness Ep of the aerodynamic arm 100 is preferably between 2 mm and 10 mm, and a chord length L of the aerodynamic arm 100 is preferably between 30 mm and 150 mm.
  • a thickness of the core 120 is preferably between 1 mm and 5 mm.
  • the assembly of the aerodynamic arms 100 it is sought to cause the assembly of the aerodynamic arms 100 to circulate a current of 1.8 kA (corresponding to a power of 1 MW under a supply voltage of 540 V of the turbomachine) , which requires a total conductor section of 10 cm 2 .
  • this corresponds to a section of the electrically conductive core 120 of the order of 15 mm 2 , ie for a core 120 of rectangular section as illustrated in FIG. 4 , a width of 1 mm and a length of 15 mm.
  • the electrically conductive core 120 may have a section having any shape, and in particular a shape relatively identical to that of the casing 110 of the aerodynamic arm 100.
  • the minimum thickness e to be observed of the insulating material 130 between an external surface of the core 120 and the internal surface of the casing 110 depends on the supply voltage of the turbomachine.
  • the insulating material 130 has a minimum thickness e of the order of 0.8 mm. More generally, the minimum thickness e will preferably be between 0.6 mm and 1.5 mm.
  • the aerodynamic arm 100 has, for example, a thickness Ep of the order of 5 mm and a total chord length L of between 60 mm and 80 mm.
  • the method for producing the aerodynamic arm 100 according to the invention according to the invention comprises the following steps:
  • the core 120 can be made before or after the shell 110, or simultaneously; and the step of curing the insulating material 130 differs depending on the type of insulating material 130 used.
  • the aerodynamic arm 100 according to the invention is produced according to a process comprising the following steps:
  • the core 120 is manufactured by any process known per se, such as for example by a process of drawing, machining, stamping, ...;
  • the core 120 is then positioned on an additive manufacturing support plate;
  • the casing 110 is then produced by additive manufacturing, around the electrically conductive core 120, leaving a space between an outer surface of the electrically conductive core 120 and an inner surface of the casing 110;
  • the space formed between the outer surface of the electrically conductive core 120 and the inner surface of the casing 110 is filled with the insulator which may be in the form of either a liquid insulator or an organic insulating powder , or a mixture of inorganic insulating powder and of binder, for example ceramic;
  • the assembly is then heated, this step making it possible either to polymerize the insulation in the case of a liquid insulation or an organic insulating powder, or to bake the insulation in the case of a mixture of insulating powder mineral and binder, for example ceramic in order to bind the powder and the binder, so as to form the insulating material 130.
  • this liquid state is obtained either by melting the insulating material ( in the case of thermoplastic insulation) or by nature (in the case of ceramic insulation).
  • the transition to the solid state of the material insulation is then obtained, either by cooling or by firing the ceramic slip, for example in an oven provided for this purpose.
  • the choice of one or the other solution depends on the temperature at which the aerodynamic arm 100 will be required to operate, in other words, according to the type of turbomachine that it will be required to equip (an insulating material of the thermoplastic type is not for example not withstanding a temperature higher than 100 ° C).
  • the envelope 110 and therefore the arm 100, can have complex inner and outer shapes due to the presence of several degrees of curvature giving it a twisted appearance around the axis A-A.
  • the envelope 110 can be produced by LMD (acronym for Laser Metal Deposition) technology of additive manufacturing, consisting in using a laser beam to generate on a metallic material a layer of molten material to which material is then added. to merge and grow the layer, the supply being made for example in the form of a powder or a wire made of the material. The laser thus fuses, layer after layer, the surface of the component being manufactured with the additional material added.
  • LMD cronym for Laser Metal Deposition
  • the casing 110 is produced directly around the electrically conductive core 120, leaving a space between the outer surface of the electrically conductive core 120 and the inner surface of the casing 110 intended to receive the insulating material. 130.
  • the above-mentioned steps b) and c) then being carried out simultaneously.
  • the casing 110, and therefore the arm 100 have interior and exterior shapes that are substantially rectilinear (not twisted).
  • the envelope 100 can be produced by any method known per se, such as for example by the SLM technology (acronym for Selective Laser Melting in English) of additive manufacturing, consisting in fusing the powder by means of a high energy beam such as a laser beam.
  • SLM technology an additive laser Melting in English
  • a powder bed is deposited on a support plate and is scanned by the laser beam to selectively melt the powder, and thus manufacture a part layer by layer, a third layer of fused powder being arranged above a second layer which is itself placed on top of a first layer.
  • the core 120 is then attached to the interior of the casing 110 thus produced, by leaving a space between the outer surface of the core 120 and the inner surface of the casing 110. This space is then filled as described above. and the assembly is heated so as to form the insulating material 130.
  • LMD technology in particular makes it possible to produce together two parts each formed from a different metallic material, for example. from two spools of threads made of the two materials.
  • the method for producing the aerodynamic arm 100 according to the invention may also include a step of polishing an outer surface of the casing 100.
  • the additive manufacturing technique makes it possible to create an envelope 110 having doubly complex shapes, namely at the level of the exterior surface and the interior surface of the envelope 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to an aerodynamic arm (100) for an aircraft turbine engine casing, characterised in that it comprises: - a tubular outer shell (110) having a generally elongate shape extending substantially along an axis (A-A), the shell (110) comprising axial ends (112) for connecting to a turbine engine casing; - an electrically conductive core (120) extending inside the shell (110) and having ends for electrically connecting to each of the ends (112) of the shell (110); and - an insulating material (130) configured to occupy a space provided between the core (120) and the shell (110).

Description

DESCRIPTION DESCRIPTION
TITRE : BRAS AERODYNAMIQUE DE CARTER POUR UNE TITLE: AERODYNAMIC CRANKCASE ARM FOR A
TURBOMACHINE D’AERONEF AIRCRAFT TURBOMACHINE
Domaine technique de l'invention Technical field of the invention
La présente invention concerne le domaine des turbomachines. Elle se rapporte à un bras aérodynamique de carter pour une turbomachine d’aéronef. The present invention relates to the field of turbomachines. It relates to an aerodynamic casing arm for an aircraft turbomachine.
Arrière-plan technique Technical background
L’état de la technique comprend notamment les documents US-A1 - 2014/193249 et US-A1 -2012/266439. The state of the art includes in particular the documents US-A1 - 2014/193249 and US-A1 -2012/266439.
La figure 1 montre une turbomachine 1 à double flux qui comporte, de manière classique centrés sur un axe longitudinal X, une soufflante S, un compresseur basse pression 1 a, un compresseur haute pression 1 b, une chambre annulaire de combustion 1c, une turbine haute pression 1d, une turbine basse pression 1 e et une tuyère d’échappement 1 h. Le compresseur haute pression 1 b et la turbine haute pression 1d sont reliés par un arbre haute pression 2 et forment avec lui un corps haute pression (HP). Le compresseur basse pression 1 a et la turbine basse pression 1 e sont reliés par un arbre basse pression 3 et forment avec lui un corps basse pression (BP). La soufflante S est entraînée par un arbre de soufflante 4. Figure 1 shows a turbomachine 1 with double flow which comprises, conventionally centered on a longitudinal axis X, a fan S, a low pressure compressor 1 a, a high pressure compressor 1 b, an annular combustion chamber 1c, a turbine high pressure 1d, a low pressure turbine 1 e and an exhaust nozzle 1 h. The high pressure compressor 1b and the high pressure turbine 1d are connected by a high pressure shaft 2 and form with it a high pressure body (HP). The low pressure compressor 1a and the low pressure turbine 1e are connected by a low pressure shaft 3 and form with it a low pressure body (LP). Blower S is driven by a blower shaft 4.
La soufflante S délivre un flux d’air annulaire avec une partie annulaire centrale, appelée flux primaire FP, s’écoulant à l’intérieur d’une veine dite primaire délimitée par un carénage annulaire 5a, qui alimente le moteur entraînant la soufflante S et une partie annulaire externe, appelée flux secondaire FS, qui est éjectée dans l’atmosphère tout en fournissant une fraction importante de la poussée. La soufflante S est contenue dans un carter 5b délimitant, avec le carénage annulaire 5a, une veine dite secondaire dans laquelle s’écoule le flux secondaire FS. The fan S delivers an annular air flow with a central annular part, called the primary flow FP, flowing inside a so-called primary stream delimited by an annular fairing 5a, which supplies the motor driving the fan S and an external annular part, called the secondary flow FS, which is ejected into the atmosphere while providing a large fraction of the thrust. The fan S is contained in a casing 5b delimiting, with the annular shroud 5a, a so-called secondary stream in which the secondary flow FS flows.
L’hybridation des turbomachines pour aéronefs met en œuvre des puissances électriques très élevées (de l’ordre de 300 à 500 kVA) comparativement aux puissances habituellement mises en œuvres pour les turbomachines classiques pour aéronefs (de l’ordre de 60 kVA). The hybridization of aircraft turbomachines uses very high electrical powers (of the order of 300 to 500 kVA) compared to the powers usually used for conventional turbomachines for aircraft (of the order of 60 kVA).
Malgré l’augmentation de la tension d’alimentation (par exemple dans une plage de 500V à 1500 V), les courants d’alimentation restent considérables pour une telle puissance. Par conséquent, la section des conducteurs électriques, qui est proportionnelle au courant d’alimentation à faire transiter, est également plus importante. A titre d’exemple, le diamètre des câbles habituellement de l’ordre de quelques millimètres pour les turbomachines classiques sont de l’ordre de plusieurs dizaines de millimètres pour les turbomachines hybrides. Despite the increase in the supply voltage (for example in a range of 500V to 1500V), the supply currents remain considerable for such power. Therefore, the section of the electrical conductors, which is proportional to the supply current to be passed through, is also larger. For example, the diameter of the cables, usually of the order of a few millimeters for conventional turbomachines, is of the order of several tens of millimeters for hybrid turbomachines.
Or, pour le cas de machines électriques prévues pour être installées sous la veine primaire de la turbomachine, les conducteurs électriques doivent traverser les veines primaire et secondaire de la turbomachine pour véhiculer l’énergie électrique entre les machines électriques installées sous la veine primaire et le réseau électrique général de l’aéronef. En outre, pour le cas de machines électriques prévues pour être installées dans un compartiment inter-veines de la turbomachine, également appelé « zone Core », les conducteurs électriques doivent traverser au moins la veine secondaire. Cependant, avec leur section importante, les conducteurs électriques constituent un obstacle à l’écoulement de l’air au moins dans la veine secondaire de la turbomachine, dégradant ainsi l’aérodynamique interne de la turbomachine et compromettant ainsi la performance de la turbomachine. However, in the case of electrical machines intended to be installed under the primary duct of the turbomachine, the electrical conductors must pass through the primary and secondary ducts of the turbomachine to convey the electrical energy between the electrical machines installed under the primary duct and the general aircraft electrical network. In addition, for the case of electrical machines intended to be installed in an inter-vein compartment of the turbomachine, also called “Core zone”, the electrical conductors must pass through at least the secondary vein. However, with their large section, the electrical conductors constitute an obstacle to the flow of air at least in the secondary stream of the turbomachine, thus degrading the internal aerodynamics of the turbomachine and thus compromising the performance of the turbomachine.
Il est connu de faire transiter des conducteurs d’alimentation électrique par des bras structuraux fixes, également appelés bras de passage de servitudes, qui traversent au moins la veine secondaire de la turbomachine. L’épaisseur d’un tel bras structural est typiquement supérieure à 1 ,5 cm, et plus généralement supérieure à 2,5 cm. It is known practice to pass electrical supply conductors through fixed structural arms, also called easement passage arms, which pass through at least the secondary stream of the turbomachine. The thickness of such a structural arm is typically greater than 1.5 cm, and more generally greater than 2.5 cm.
Ces bras structuraux étant généralement creux et occupés par des canalisations de fluides, l’espace disponible pour installer des conducteurs électriques de forte section est restreint et ne permet pas de faire circuler d’importants courants d’alimentation comme cela est requis par les turbomachines hybrides. De plus, le nombre de bras structuraux traversant la veine secondaire de la turbomachine est généralement réduit, typiquement de deux à quatre ou cinq bras, ce qui limite le courant d’alimentation total pouvant circuler par l’ensemble des conducteurs électriques traversant la veine secondaire. These structural arms being generally hollow and occupied by fluid pipes, the space available to install electrical conductors of large cross section is limited and does not allow the circulation of large supply currents as required by hybrid turbomachines. . In addition, the number of structural arms passing through the secondary stream of the turbomachine is generally reduced, typically from two to four or five arms, which limits the total supply current that can flow through all the electrical conductors passing through the secondary stream.
La présente invention propose de fournir une solution simple et efficace aux problèmes évoqués ci-dessus. The present invention proposes to provide a simple and effective solution to the problems mentioned above.
Résumé de l'invention Summary of the invention
A cet effet, l’invention concerne un bras aérodynamique de carter pour une turbomachine d’aéronef, caractérisé en ce qu’il comporte : To this end, the invention relates to an aerodynamic casing arm for an aircraft turbomachine, characterized in that it comprises:
- une enveloppe tubulaire extérieure ayant une forme générale allongée s’étendant substantiellement le long d’un axe, cette enveloppe comportant des extrémités axiales de liaison à un carter de turbomachine ; - an outer tubular casing having a generally elongated shape extending substantially along an axis, this casing comprising axial ends for connection to a turbomachine casing;
- une âme électriquement conductrice s’étendant à l’intérieur de l’enveloppe et présentant des extrémités de liaison électrique à chacune des extrémités de l’enveloppe ; et - an electrically conductive core extending inside the casing and having electrical connection ends at each end of the casing; and
- un matériau isolant configuré pour occuper un espace ménagé entre l’âme et l’enveloppe. - an insulating material configured to occupy a space between the core and the shell.
Le bras aérodynamique selon l’invention constitue une solution simple et efficace permettant de faire passer des conducteurs électriques de diamètre important pour le passage de puissances électriques élevées tout en préservant les performances aérodynamiques du carter qu’il équipe et la tenue mécanique sans en augmenter la masse. En effet, le bras aérodynamique étant destiné à équiper un carter de turbomachine, il est destiné à être traversé par un flux d’air s’écoulant à l’intérieur de la turbomachine. Par conséquent, il présente un profil aérodynamique de sorte à limiter les perturbations du flux d’air. The aerodynamic arm according to the invention constitutes a simple and effective solution making it possible to pass electrical conductors of large diameter for the passage of high electrical powers while preserving the aerodynamic performance of the casing which it equips and the mechanical strength without increasing its capacity. mass. Indeed, the aerodynamic arm being intended to equip a turbomachine casing, it is intended to be traversed by a flow of air flowing inside the turbomachine. Therefore, it has an aerodynamic profile so as to limit airflow disturbances.
De plus, le bras aérodynamique est tubulaire et est traversé par une âme conductrice entourée d’un isolant. Ainsi, contrairement aux solution de l’art antérieur, la totalité du volume disponible à l’intérieur du bras peut être mise à profit permettant de faire passer une importante quantité d’énergie électrique nécessaire au fonctionnement des turbomachines hybrides. In addition, the aerodynamic arm is tubular and is crossed by a conductive core surrounded by an insulation. Thus, unlike the solutions of the prior art, all of the volume available inside the arm can be used to pass a large amount of electrical energy necessary for the operation of hybrid turbomachines.
La présence de l’isolant entre l’âme et l’enveloppe empêche tout contact électrique entre l’âme conductrice et l’enveloppe extérieure du bras, garantissant ainsi l’intégrité des connexions électriques de la turbomachine. Selon l’invention, pour toute section du bras aérodynamique selon un plan perpendiculaire à l’axe de l’enveloppe, une épaisseur du bras aérodynamique est comprise entre 2 mm et 10 mm, et une longueur de corde du bras aérodynamique est comprise entre 30 mm et 150 mm. The presence of the insulation between the core and the casing prevents any electrical contact between the conductive core and the outer casing of the arm, thus ensuring the integrity of the electrical connections of the turbomachine. According to the invention, for any section of the aerodynamic arm along a plane perpendicular to the axis of the envelope, a thickness of the aerodynamic arm is between 2 mm and 10 mm, and a chord length of the aerodynamic arm is between 30 mm and 150 mm.
Avantageusement, pour toute section du bras aérodynamique selon un plan perpendiculaire à l’axe de l’enveloppe, le matériau isolant présente une épaisseur minimale de l’ordre de 0,8 mm, de préférence comprise entre 0,6 et 1 , 5 mm. Advantageously, for any section of the aerodynamic arm along a plane perpendicular to the axis of the casing, the insulating material has a minimum thickness of the order of 0.8 mm, preferably between 0.6 and 1.5 mm .
Avantageusement, pour toute section du bras aérodynamique selon un plan perpendiculaire à l’axe de l’enveloppe, une épaisseur de l’âme est comprise entre 1 mm et 5 mm. Advantageously, for any section of the aerodynamic arm along a plane perpendicular to the axis of the envelope, a thickness of the core is between 1 mm and 5 mm.
Avantageusement, les extrémités de l’âme sont configurées pour être raccordées par des liaisons mécaniques ou des soudures à des conducteurs électriques. Advantageously, the ends of the core are configured to be connected by mechanical connections or welds to electrical conductors.
Selon un exemple de réalisation, chacune des extrémités axiales de l’enveloppe comporte une collerette de liaison ou de fixation au carter de turbomachine. According to an exemplary embodiment, each of the axial ends of the casing comprises a flange for connecting or fixing to the turbomachine casing.
Ainsi, chaque bras aérodynamique peut être rapporté sur un carter de turbomachine. Thus, each aerodynamic arm can be attached to a turbomachine casing.
De préférence et avantageusement, le matériau isolant est configuré pour résister à des températures jusqu’à 200°C et est fabriqué à partir d’un isolant liquide, ou d’une poudre isolante organique polymérisés par cuisson, ou est configuré pour résister à des températures jusqu’à 800°C et est fabriqué à partir d’un mélange d’une poudre isolante minérale et d’un liant cuits à haute température. Preferably and advantageously, the insulating material is configured to withstand temperatures up to 200 ° C and is made from a liquid insulation, or an organic insulating powder polymerized by baking, or is configured to withstand temperatures. temperatures up to 800 ° C and is made from a mixture of mineral insulating powder and binder fired at high temperature.
Avantageusement, la poudre isolante minérale est du Kapton®, du Téflon® ou de la magnésie résistant aux fortes températures de l’environnement des turbomachines. Advantageously, the mineral insulating powder is Kapton®, Teflon® or magnesia resistant to the high temperatures of the environment of the turbomachines.
Avantageusement, le liant est un liant céramique. Advantageously, the binder is a ceramic binder.
La présente invention concerne encore une turbomachine d’aéronef, caractérisée en ce qu’elle comporte au moins dix bras aérodynamique présentant au moins l’une quelconque des caractéristiques susmentionnées, et de préférence au moins vingt bras aérodynamiques, chaque bras aérodynamique faisant partie d’un aubage redresseur de flux qui traverse une veine de flux secondaire ou une veine de flux primaire de la turbomachine. The present invention also relates to an aircraft turbomachine, characterized in that it comprises at least ten aerodynamic arms having at least any one of the aforementioned characteristics, and preferably at least twenty aerodynamic arms, each aerodynamic arm forming part of a flow rectifier vane which crosses a secondary flow vein or a primary flow vein of the turbomachine.
La turbomachine selon l’invention présente l’avantage d’intégrer et faire passer une plus grande quantité d’énergie électrique à travers plusieurs (au moins dix) bras aérodynamique de dimensions réduites. Ainsi, au moins dix bras aérodynamiques d’épaisseur réduite sont configurés pour équiper un carter de la turbomachine, tout en préservant la tenue mécanique et sans augmenter la masse de ce carter. Ce qui peut permettre également d’éviter l’utilisation de bras volumineux pour faire passer une puissance électrique élevée. The turbomachine according to the invention has the advantage of integrating and passing a greater amount of electrical energy through several (at least ten) aerodynamic arms of reduced dimensions. Thus, at least ten aerodynamic arms of reduced thickness are configured to equip a casing of the turbomachine, while preserving the mechanical strength and without increasing the mass of this casing. This can also make it possible to avoid the use of bulky arms to convey high electrical power.
La présente invention concerne enfin un procédé de fabrication pour réaliser un bras aérodynamique selon l’invention, ce procédé comprenant les étapes de : The present invention finally relates to a manufacturing process for producing an aerodynamic arm according to the invention, this process comprising the steps of:
a) fabrication de l’âme électriquement conductrice ; a) fabrication of the electrically conductive core;
b) fabrication de l’enveloppe ; b) manufacture of the envelope;
c) positionnement de l’âme relativement à l’enveloppe en ménageant un espace ; c) positioning of the core relative to the envelope while leaving a space;
d) ajout du matériau isolant dans l’espace ménagé entre l’enveloppe et l’âme électriquement conductrice ; d) adding the insulating material to the space between the casing and the electrically conductive core;
e) durcissement du matériau isolant pour assurer la liaison avec l’enveloppe et l’âme électriquement conductrice. e) hardening of the insulating material to bond with the casing and the electrically conductive core.
Le procédé selon l’invention peu comprendre une ou plusieurs caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres : The method according to the invention may include one or more of the following characteristics, taken in isolation from each other or in combination with each other:
- à l’étape b), l’enveloppe est réalisée par fabrication additive ; - in step b), the envelope is produced by additive manufacturing;
- les étapes b) et c) sont exécutées simultanément, en réalisant l’enveloppe directement autour de l’âme ; - steps b) and c) are performed simultaneously, making the envelope directly around the core;
- l’âme et une surface intérieure de l’enveloppe sont réalisées en même temps par fabrication additive ; - the core and an interior surface of the envelope are produced at the same time by additive manufacturing;
- à l’étape c), le matériau isolant est soit sous forme d’isolant liquide ou d’une poudre d’isolante, soit sous forme d’un mélange de poudre isolante minérale et de liant ; - l’étape c) comprend en outre soit une polymérisation de l’isolant liquide ou de la poudre d’isolante, soit une cuisson du mélange de poudre isolante minérale et de liant. - In step c), the insulating material is either in the form of liquid insulation or of an insulating powder, or in the form of a mixture of inorganic insulating powder and of binder; - step c) further comprises either a polymerization of the liquid insulation or of the insulation powder, or a baking of the mixture of inorganic insulating powder and binder.
Brève description des figures Brief description of the figures
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : Other characteristics and advantages of the invention will become apparent on reading the detailed description which follows, for the understanding of which reference is made to the appended drawings in which:
[Fig. 1] La figure 1 , déjà discutée, est une vue en coupe à caractère schématique d’une turbomachine ; [Fig. 1] Figure 1, already discussed, is a schematic sectional view of a turbomachine;
[Fig. 2] La figure 2 est une vue en perspective d’un carter de turbomachine ; [Fig. 2] Figure 2 is a perspective view of a turbomachine casing;
[Fig. 3] La figure 3 est une vue de détail d’un exemple de réalisation d’un bras aérodynamique selon l’invention ; [Fig. 3] Figure 3 is a detail view of an exemplary embodiment of an aerodynamic arm according to the invention;
[Fig. 4] La figure 4 est une vue en coupe transversale du bras aérodynamique illustré à la figure 3. [Fig. 4] Figure 4 is a cross-sectional view of the aerodynamic arm illustrated in Figure 3.
Description détaillée de l'invention Detailed description of the invention
Dans le présent exposé, les termes « amont », « aval » sont utilisés en référence au sens d’écoulement des gaz dans une turbomachine d’aéronef. Les termes « interne » et « externe » sont définis par rapport à un axe longitudinal de la turbomachine. Les termes « axial », « intérieur » et « extérieur » sont définis en référence au positionnement des éléments constitutifs du bras aérodynamique selon l’invention. In this presentation, the terms "upstream", "downstream" are used with reference to the direction of gas flow in an aircraft turbomachine. The terms “internal” and “external” are defined with respect to a longitudinal axis of the turbomachine. The terms "axial", "interior" and "exterior" are defined with reference to the positioning of the constituent elements of the aerodynamic arm according to the invention.
En référence à la figure 2, un élément structural de la turbomachine 1 désigné carter intermédiaire 6 comportant deux rangées annulaires coaxiales d’aubages constituant un aubage interne situé dans le flux primaire FP et un aubage externe situé dans le flux secondaire FS. Plus précisément, le carter intermédiaire 6 comprend un moyeu 7 destiné à être traversé par l’arbre BP 3, une couronne interne 8 de séparation des flux primaire FP et secondaire FS, une virole annulaire externe 9 située au niveau d’une nacelle de la turbomachine, des bras 10 radiaux aérodynamiques sous la forme d’ailettes s’étendant radialement entre la couronne 8 et la virole externe 9 et des bras 11 radiaux internes de liaison entre le moyeux 7 et la couronne 8. Les bras 10 forment l’aubage externe et les bras 11 forment l’aubage interne. Des bras 12 radiaux peuvent également être disposés dans l’aubage externe et transmettent une partie des efforts entre le moteur et son support, les bras 12 étant des bras structuraux. Les bras 10 du carter intermédiaire peuvent prendre l’aspect d’aube de redressement de flux pour redresser le flux secondaire FS s’écoulant dans la veine secondaire, dans l’axe X de la turbomachine 1 en aval de la soufflante s. Les bras 10 constituent alors des OGV qui est l’acronyme en langue anglaise de Outlet Guide Vane. Une couronne d’ailettes fixes (non représentées) est généralement disposée entre la soufflante S et les bras 11 du carter intermédiaire, pour redresser le flux primaire FP s’écoulant dans la veine primaire, dans l’axe X de la turbomachine 1. Ces ailettes sont désignées généralement par le terme IGV qui est l’acronyme en langue anglaise de Inlet Guide Vane. With reference to FIG. 2, a structural element of the turbomachine 1 designated intermediate casing 6 comprising two coaxial annular rows of blades constituting an internal vane located in the primary flow FP and an external vane located in the secondary flow FS. More specifically, the intermediate casing 6 comprises a hub 7 intended to be traversed by the BP shaft 3, an internal ring 8 for separating the primary FP and secondary FS flows, an external annular ring 9 located at a nacelle of the turbomachine, aerodynamic radial arms 10 in the form of fins extending radially between the ring 8 and the outer shell 9 and internal radial arms 11 for connection between the hub 7 and the ring gear 8. The arms 10 form the external blade and the arms 11 form the internal blade. Radial arms 12 can also be placed in the external vane and transmit part of the forces between the motor and its support, the arms 12 being structural arms. The arms 10 of the intermediate casing can take the form of a flow straightening blade to straighten the secondary flow FS flowing in the secondary stream, in the X axis of the turbomachine 1 downstream of the fan s. The arms 10 then constitute OGV which is the acronym in English for Outlet Guide Vane. A ring of fixed fins (not shown) is generally disposed between the fan S and the arms 11 of the intermediate casing, to straighten the primary flow FP flowing in the primary stream, in the X axis of the turbomachine 1. These fins are generally referred to by the term IGV which is the acronym in English for Inlet Guide Vane.
Le carter intermédiaire 6 a une fonction structurale dans la mesure où les efforts sont transmis par son intermédiaire ; en particulier les moyens de fixation de la turbomachine 1 à la structure de l’aéronef sont solidaires du carter intermédiaire 6. The intermediate casing 6 has a structural function insofar as the forces are transmitted through it; in particular the means for fixing the turbomachine 1 to the structure of the aircraft are integral with the intermediate casing 6.
Un exemple de réalisation du bras aérodynamique 100 selon l’invention est illustré aux figures 3 et 4. An exemplary embodiment of the aerodynamic arm 100 according to the invention is illustrated in Figures 3 and 4.
Le bras aérodynamique 100 comporte : The aerodynamic arm 100 comprises:
- une enveloppe extérieure 110 ; - an outer envelope 110;
- une âme électriquement conductrice 120 ; et - an electrically conductive core 120; and
- un matériau isolant 130. - an insulating material 130.
L’enveloppe 110 est tubulaire. Elle présente un corps tubulaire 111 de forme générale allongée s’étendant substantiellement le long d’un axe A-A et des extrémités 112 axiales de liaison à un carter, tel que par exemple un carter intermédiaire 6 de turbomachine 1. The envelope 110 is tubular. It has a tubular body 111 of generally elongated shape extending substantially along an axis A-A and axial ends 112 for connection to a casing, such as for example an intermediate casing 6 of a turbomachine 1.
L’âme électriquement conductrice 120 et le matériau isolant 130 sont emprisonnés dans une cavité intérieure délimitée par une surface intérieure de l’enveloppe 110. The electrically conductive core 120 and the insulating material 130 are trapped in an interior cavity delimited by an interior surface of the casing 110.
En section transversale, le corps 111 de l’enveloppe 110 présente un profil aérodynamique comme cela est visible sur la figure 4. Le corps 111 présente ainsi un bord d’attaque 111 a, un bord de fuite 111 b, un intrados 111 c et un extrados 111 d. In cross section, the body 111 of the envelope 110 has an aerodynamic profile as can be seen in FIG. 4. The body 111 thus has a leading edge 111 a, a trailing edge 111 b, a lower surface 111 c and an upper surface 111 d.
Les bras aérodynamiques 100 selon l’invention sont configurés pour équiper un carter, notamment un carter intermédiaire pour une turbomachine d’aéronef. Pour cela, chacune des extrémités axiales 112 de l’enveloppe 110 comporte une collerette 112a de liaison ou de fixation au carter. Ainsi, chaque bras aérodynamique peut être rapporté sur le carter intermédiaire 6, par exemple par soudage des collerettes 112a de l’enveloppe 110 sur la couronne interne 8 et la virole externe 9 du carter de la turbomachine. The aerodynamic arms 100 according to the invention are configured to equip a casing, in particular an intermediate casing for an aircraft turbomachine. For this, each of the axial ends 112 of the casing 110 has a flange 112a for connecting or fixing to the housing. Thus, each aerodynamic arm can be attached to the intermediate casing 6, for example by welding the flanges 112a of the casing 110 to the inner ring 8 and the outer shell 9 of the casing of the turbomachine.
L’enveloppe 100 est réalisée en tout matériau présentant les propriétés nécessaires de résistance à l’abrasion. Elle est par exemple réalisée en métal. The casing 100 is made of any material having the necessary abrasion resistance properties. It is for example made of metal.
L’enveloppe 100 présente une épaisseur garantissant la tenue mécanique du bras aérodynamique 100. The envelope 100 has a thickness guaranteeing the mechanical strength of the aerodynamic arm 100.
L’âme 120 s’étend le long de l’axe A-A à l’intérieur de l’enveloppe 110. Elle présente des extrémités de liaison électrique (non représentées) à chacune des extrémités 112 de l’enveloppe 110. Les extrémités de liaison électrique de l’âme 120 sont configurées pour être raccordées par des liaisons mécaniques ou des soudures à des conducteurs électriques de la turbomachine, soit par exemple au réseau électrique général de l’aéronef soit à des machines électriques installées sous la veine primaire. The core 120 extends along the axis AA inside the envelope 110. It has electrical connection ends (not shown) at each of the ends 112 of the envelope 110. The connection ends of the core 120 are configured to be connected by mechanical connections or welds to electrical conductors of the turbomachine, either for example to the general electrical network of the aircraft or to electrical machines installed under the primary stream.
Les extrémités de liaison électrique de l’âme 120 sont soit des excroissances de l’âme 120, soit des éléments distincts pouvant être rapportés par vissage aux extrémités de l’âme 120 lors du montage des bras 100 sur le carter 6 (par exemple au moyen de cosses). The electrical connection ends of the core 120 are either protuberances of the core 120, or separate elements that can be attached by screwing to the ends of the core 120 when the arms 100 are mounted on the casing 6 (for example at means of pods).
L’âme est réalisée en tout matériau électriquement conducteur. Elle est par exemple réalisée en cuivre ou en aluminium, selon la température ambiante de l’environnement dans lequel sont installés les bras aérodynamiques 100. L’âme 120 peut être par exemple constituée d’une bande métallique de section rectangulaire (telle qu’illustrée à la figure 4), avec une largeur (épaisseur de la bande de section rectangulaire) comprise entre 1 mm et 3 mm et une longueur de section comprise entre 10 mm et 50 mm. Dans le cas où les extrémités de liaison électrique de l’âme 120 comprennent des liaisons mécaniques de raccordement à des conducteurs électriques de la turbomachine, ces liaisons mécaniques peuvent être formées avec l’âme 120 par usinage, par moulage, ou par fabrication additive. The core is made of any electrically conductive material. It is for example made of copper or aluminum, depending on the ambient temperature of the environment in which the aerodynamic arms 100 are installed. The core 120 may for example consist of a metal strip of rectangular section (as illustrated in FIG. 4), with a width (thickness of the strip of rectangular section) of between 1 mm and 3 mm and a length of section of between 10 mm and 50 mm. In the case where the electrical connection ends of the core 120 include mechanical connections for connection to conductors electrical of the turbomachine, these mechanical links can be formed with the core 120 by machining, by molding, or by additive manufacturing.
Le matériau isolant 130 apte à occuper l’espace ménagé entre l’âme 120 et l’enveloppe 110 peut être choisi selon la température ambiante de l’environnement dans lequel sont installés les bras aérodynamiques 100. The insulating material 130 able to occupy the space between the core 120 and the casing 110 can be chosen according to the ambient temperature of the environment in which the aerodynamic arms 100 are installed.
Selon un exemple de réalisation, le matériau isolant 130 peut être obtenu à partir soit d’un isolant liquide, soit d’une poudre isolante organique polymérisés par cuisson, le matériau isolant étant ainsi configuré pour résister à des températures allant jusqu’à jusqu’à 200°C. According to an exemplary embodiment, the insulating material 130 can be obtained from either a liquid insulator or an organic insulating powder polymerized by baking, the insulating material thus being configured to withstand temperatures of up to at 200 ° C.
Selon un autre exemple de réalisation, le matériau isolant 130 peut être obtenu à partir d’un mélange d’une poudre isolante minérale et d’un liant cuits à haute température, le matériau isolant étant ainsi configuré pour résister à des températures allant jusqu’à jusqu’à 800°C. According to another exemplary embodiment, the insulating material 130 can be obtained from a mixture of a mineral insulating powder and a binder cooked at high temperature, the insulating material thus being configured to withstand temperatures of up to at up to 800 ° C.
La poudre isolante minérale peut être du Kapton® ou du Téflon® qui présentent de très bonnes propriétés diélectriques et une bonne résistance en température pouvant résister à des températures allant jusqu’à 200°C. The mineral insulating powder can be Kapton® or Teflon® which have very good dielectric properties and good temperature resistance which can withstand temperatures up to 200 ° C.
La poudre isolante minérale peut encore être de la magnésie ou de l’oxyde d’aluminium. La poudre isolante minérale présente de meilleures propriétés de résistance aux hautes températures. Associée à un liant céramique tel que, par exemple, la poudre isolante minérale peut résister à des températures allant jusqu’à 800°C. The insulating mineral powder can also be magnesia or aluminum oxide. The mineral insulating powder has better properties of resistance to high temperatures. Combined with a ceramic binder such as, for example, mineral insulating powder can withstand temperatures of up to 800 ° C.
Ainsi, pour des températures de l’ordre de 200°C à 300°C, le liant peut être une résine polymère de type thermodurcissable, et pour des températures plus élevées, le liant peut être un composite d’oxyde sous forme de barbotine, tel que l’Ox/Ox. Thus, for temperatures of the order of 200 ° C to 300 ° C, the binder can be a polymer resin of the thermosetting type, and for higher temperatures, the binder can be an oxide composite in the form of a slip, such as Ox / Ox.
La forme de l’enveloppe 110 est ainsi adaptée à l’écoulement du flux d’air dans la turbomachine 1 en fonctionnement, le profil aérodynamique de l’enveloppe 110 assurant ainsi une fonction de redressement pour l’écoulement de l’air dans les veines primaire et secondaire. The shape of the envelope 110 is thus adapted to the flow of the air flow in the turbomachine 1 in operation, the aerodynamic profile of the envelope 110 thus providing a straightening function for the flow of air in the primary and secondary veins.
Les bras 100 peuvent ainsi prendre l'aspect d'aubes de redressement de flux assurant ainsi une fonction de redresseur du flux en aval de la soufflante S, dans la veine primaire ils peuvent constituer des IGV, ou dans la veine secondaire ils peuvent constituer des OGV, la fonction de conduction de l’énergie électrique étant alors assurée par des pièces ayant un rôle aérodynamique. The arms 100 can thus take the form of flow straightening vanes thus ensuring a function of straightening the flow downstream of the fan S, in the primary stream they can constitute IGVs, or in the secondary stream they can constitute OGV, the function of conduction of electrical energy then being ensured by parts having an aerodynamic role.
Les bras aérodynamiques 100 ont ainsi, dans la configuration de l’invention, à la fois une fonction aérodynamique de redresseur de flux secondaire d’air provenant de la soufflante S dans l’axe X de la turbomachine et une fonction de conduction électrique, avec éventuellement une fonction structurale si certains bras au moins sont prévus suffisamment épais et/ou rigides pour participer à la tenue mécanique de l’ensemble formé par les bras et des viroles ou couronnes entre lesquelles les bras s’étendent radialement. Ainsi, conformément à l’invention, de manière avantageuse par rapport aux bras de l’art antérieur, le volume disponible à l’intérieur des bras 100 est mis à profit pour faire passer de l’énergie électrique à travers les veines primaire et secondaire, entre le réseau électrique général de l’aéronef et des machines électriques installées sous la veine primaire. The aerodynamic arms 100 thus have, in the configuration of the invention, both an aerodynamic function of rectifier of the secondary air flow coming from the fan S in the X axis of the turbomachine and an electrical conduction function, with possibly a structural function if at least some arms are provided sufficiently thick and / or rigid to participate in the mechanical strength of the assembly formed by the arms and the rings or rings between which the arms extend radially. Thus, in accordance with the invention, advantageously compared to the arms of the prior art, the volume available inside the arms 100 is used to pass electrical energy through the primary and secondary veins. , between the general electrical network of the aircraft and the electrical machines installed under the primary duct.
Ainsi, une turbomachine d’aéronef comportant une pluralité de bras 100 selon l’invention, autorise le passage d’un courant électrique total important entre les machines électriques et le réseau électrique général de l’aéronef tout en conservant de bonnes performances. Thus, an aircraft turbomachine comprising a plurality of arms 100 according to the invention allows a large total electrical current to pass between the electrical machines and the general electrical network of the aircraft while maintaining good performance.
La solution proposée s’applique notamment aux turbomachines pour aéronefs dans lesquelles pour faire passer un courant électrique important à travers une veine de flux primaire ou secondaire, il est nécessaire dans l’état de l’art actuel d’installer des conducteurs électriques de diamètre important, par exemple supérieur à 5 mm, dans des bras de passage de servitudes. The proposed solution applies in particular to turbomachines for aircraft in which, in order to pass a large electric current through a primary or secondary flow stream, it is necessary in the current state of the art to install electrical conductors of diameter important, for example greater than 5 mm, in the passage arms of easements.
Une turbomachine d’aéronef selon l’invention comprend ainsi au moins dix bras aérodynamique 100 et, de préférence, au moins vingt bras aérodynamiques 100. Chaque bras aérodynamique 100 fait partie d’un ensemble d’OGV ou d’IGV constituant des aubages redresseurs d’un flux qui traverse, respectivement, une veine de flux secondaire ou une veine de flux primaire de la turbomachine en aval d’une soufflante. An aircraft turbomachine according to the invention thus comprises at least ten aerodynamic arms 100 and, preferably, at least twenty aerodynamic arms 100. Each aerodynamic arm 100 is part of a set of OGVs or IGVs constituting rectifier blades. of a flow which passes respectively through a secondary flow stream or a primary flow stream of the turbomachine downstream of a fan.
La turbomachine d’aéronef selon l’invention comprend, de manière encore préférée, entre 30 et 70 bras aérodynamiques 100 selon l’invention, ce nombre variant selon le type de moteur de la turbomachine. The aircraft turbomachine according to the invention comprises, more preferably, between 30 and 70 aerodynamic arms 100 according to the invention, this number varying according to the type of engine of the turbomachine.
Pour toute section du bras aérodynamique 100 selon un plan perpendiculaire à l’axe A-A de l’enveloppe 110, une épaisseur Ep maximale du bras aérodynamique 100 est comprise de préférence entre 2 mm et 10 mm, et une longueur L de corde du bras aérodynamique 100 est comprise de préférence entre 30 mm et 150 mm. For any section of the aerodynamic arm 100 along a plane perpendicular to the axis AA of the envelope 110, a maximum thickness Ep of the aerodynamic arm 100 is preferably between 2 mm and 10 mm, and a chord length L of the aerodynamic arm 100 is preferably between 30 mm and 150 mm.
Pour toute section du bras aérodynamique 1 10 selon un plan perpendiculaire à l’axe A-A de l’enveloppe 1 10, une épaisseur de l’âme 120 est comprise de préférence entre 1 mm et 5 mm. For any section of the aerodynamic arm 110 along a plane perpendicular to the axis A-A of the casing 110, a thickness of the core 120 is preferably between 1 mm and 5 mm.
Selon un exemple de réalisation intéressant mais nullement limitatif, on cherche à faire circuler par l’ensemble des bras aérodynamiques 100 un courant de 1 ,8 kA (correspondant à une puissance de 1 MW sous une tension d’alimentation de 540V de la turbomachine), ce qui requiert une section totale de conducteur de 10 cm2. Dans le cas d’une turbomachine comprenant 66 bras aérodynamiques 100, ceci correspond à une section de l’âme électriquement conductrice 120 de l’ordre de 15 mm2, soit pour une âme 120 de section rectangulaire telle qu’illustrée à la figure 4, une largeur de 1 mm et une longueur de 15 mm. Toutefois, l’âme électriquement conductrice 120 peut présenter une section présentant n’importe quelle forme, et notamment une forme relativement identique à celle de l’enveloppe 1 10 du bras aérodynamique 100. According to an interesting but in no way limiting example of an embodiment, it is sought to cause the assembly of the aerodynamic arms 100 to circulate a current of 1.8 kA (corresponding to a power of 1 MW under a supply voltage of 540 V of the turbomachine) , which requires a total conductor section of 10 cm 2 . In the case of a turbomachine comprising 66 aerodynamic arms 100, this corresponds to a section of the electrically conductive core 120 of the order of 15 mm 2 , ie for a core 120 of rectangular section as illustrated in FIG. 4 , a width of 1 mm and a length of 15 mm. However, the electrically conductive core 120 may have a section having any shape, and in particular a shape relatively identical to that of the casing 110 of the aerodynamic arm 100.
L’épaisseur e minimale à respecter du matériau isolant 130 compris entre une surface externe de l’âme 120 et la surface interne de l’enveloppe 1 10 est fonction de la tension d’alimentation de la turbomachine. Ainsi, pour une tension d’alimentation de 540 V, le matériau isolant 130 présente une épaisseur e minimale de l’ordre de 0,8 mm. Plus généralement, l’épaisseur e minimale sera préférablement comprise entre 0,6 mm et 1 ,5 mm. The minimum thickness e to be observed of the insulating material 130 between an external surface of the core 120 and the internal surface of the casing 110 depends on the supply voltage of the turbomachine. Thus, for a supply voltage of 540 V, the insulating material 130 has a minimum thickness e of the order of 0.8 mm. More generally, the minimum thickness e will preferably be between 0.6 mm and 1.5 mm.
Ainsi, pour une telle configuration, le bras aérodynamique 100 présente par exemple une épaisseur Ep de l’ordre de 5 mm et une longueur de corde L totale comprise entre 60 mm et 80 mm. Thus, for such a configuration, the aerodynamic arm 100 has, for example, a thickness Ep of the order of 5 mm and a total chord length L of between 60 mm and 80 mm.
Le procédé de réalisation du bras aérodynamique 100 selon l’invention selon l’invention comprend les étapes suivantes : The method for producing the aerodynamic arm 100 according to the invention according to the invention comprises the following steps:
a) fabrication de l’âme électriquement conductrice 120 ; a) fabrication of the electrically conductive core 120;
b) fabrication de l’enveloppe 1 10 ; b) manufacture of the envelope 1 10;
c) positionnement de l’âme 120 relativement à l’enveloppe 1 10 en ménageant un espace ; d) ajout du matériau isolant 130 dans l’espace ménagé entre l’enveloppe 110 et l’âme électriquement conductrice 120 ; c) positioning of the core 120 relative to the casing 1 10 by leaving a space; d) addition of the insulating material 130 in the space formed between the casing 110 and the electrically conductive core 120;
e) durcissement du matériau isolant 130 pour assurer la liaison avec l’enveloppe 110 et l’âme électriquement conductrice 120. e) hardening of the insulating material 130 to bond with the casing 110 and the electrically conductive core 120.
Comme décrit ci-après, l’âme 120 peut être fabriquée avant ou après l’enveloppe 110, ou simultanément ; et l’étape de durcissement du matériau isolant 130 diffère selon le type de matériau isolant 130 utilisé. As described below, the core 120 can be made before or after the shell 110, or simultaneously; and the step of curing the insulating material 130 differs depending on the type of insulating material 130 used.
Selon un exemple de réalisation intéressant mais nullement limitatif, le bras aérodynamique 100 selon l’invention est réalisé selon un procédé comprenant les étapes suivantes : According to an interesting but in no way limiting embodiment, the aerodynamic arm 100 according to the invention is produced according to a process comprising the following steps:
- l’âme 120 est fabriquée par tout procédé connu en soi, tel que par exemple par un procédé d’étirage, d’usinage, de matriçage, ... ; - The core 120 is manufactured by any process known per se, such as for example by a process of drawing, machining, stamping, ...;
- l’âme 120 est ensuite positionnée sur un plateau support de fabrication additive ; - the core 120 is then positioned on an additive manufacturing support plate;
- l’enveloppe 110 est ensuite réalisée par fabrication additive, autour de l’âme électriquement conductrice 120, en ménageant un espace entre une surface extérieure de l’âme électriquement conductrice 120 et une surface intérieure de l’enveloppe 110 ; - the casing 110 is then produced by additive manufacturing, around the electrically conductive core 120, leaving a space between an outer surface of the electrically conductive core 120 and an inner surface of the casing 110;
- l’espace ménagé entre la surface extérieure de l’âme électriquement conductrice 120 et la surface intérieure de l’enveloppe 110 est rempli avec l’isolant qui peut être sous la forme soit d’un isolant liquide ou d’une poudre isolante organique, soit d’un mélange de poudre isolante minérale et de liant par exemple céramique ; - the space formed between the outer surface of the electrically conductive core 120 and the inner surface of the casing 110 is filled with the insulator which may be in the form of either a liquid insulator or an organic insulating powder , or a mixture of inorganic insulating powder and of binder, for example ceramic;
- l’ensemble est ensuite chauffé, cette étape permettant, soit de polymériser l’isolant dans le cas d’un isolant liquide ou d’une poudre isolante organique, soit de cuire l’isolant dans le cas d’un mélange de poudre isolante minérale et de liant par exemple céramique afin de lier la poudre et le liant, de sorte à former le matériau isolant 130. - the assembly is then heated, this step making it possible either to polymerize the insulation in the case of a liquid insulation or an organic insulating powder, or to bake the insulation in the case of a mixture of insulating powder mineral and binder, for example ceramic in order to bind the powder and the binder, so as to form the insulating material 130.
Selon un autre mode de mise en œuvre, lorsque le matériau isolant 130 est à l’état liquide au moment où il est coulé entre l’âme conductrice 120 et l’enveloppe 110, cet état liquide est obtenu soit par fusion du matériau isolant (dans le cas d’un isolant thermoplastique) soit par nature (dans le cas d’un isolant céramique). Le passage à l’état solide du matériau isolant est alors obtenu, soit par refroidissement, soit par cuisson de la barbotine de céramique, par exemple dans un four prévu à cet effet. According to another embodiment, when the insulating material 130 is in the liquid state when it is cast between the conductive core 120 and the casing 110, this liquid state is obtained either by melting the insulating material ( in the case of thermoplastic insulation) or by nature (in the case of ceramic insulation). The transition to the solid state of the material insulation is then obtained, either by cooling or by firing the ceramic slip, for example in an oven provided for this purpose.
Le choix de l’une ou l’autre solution est fonction de la température à laquelle le bras aérodynamique 100 sera amené à fonctionner, autrement dit, selon le type de turbomachine qu’il sera amené à équiper (un matériau isolant de type thermoplastique ne supportant par exemple pas une température supérieure à 100°C). The choice of one or the other solution depends on the temperature at which the aerodynamic arm 100 will be required to operate, in other words, according to the type of turbomachine that it will be required to equip (an insulating material of the thermoplastic type is not for example not withstanding a temperature higher than 100 ° C).
L’enveloppe 110, et par conséquent le bras 100, peuvent présenter des formes intérieure et extérieure complexes du fait de la présence de plusieurs degrés de courbure lui conférant un aspect vrillé autour de l’axe A-A. L’enveloppe 110 peut être réalisée par la technologie LMD (acronyme de Laser Métal Déposition en langue anglaise) de fabrication additive, consistant à utiliser un faisceau laser pour générer sur un matériau métallique une couche de matériau en fusion à laquelle du matériau est ensuite ajouté pour fusionner et faire croître la couche, l’apport étant réalisé par exemple sous la forme d’une poudre ou d’un fil constitués du matériau. Le laser fusionne ainsi, couche après couche, la surface du composant en cours de fabrication avec le matériau supplémentaire ajouté. The envelope 110, and therefore the arm 100, can have complex inner and outer shapes due to the presence of several degrees of curvature giving it a twisted appearance around the axis A-A. The envelope 110 can be produced by LMD (acronym for Laser Metal Deposition) technology of additive manufacturing, consisting in using a laser beam to generate on a metallic material a layer of molten material to which material is then added. to merge and grow the layer, the supply being made for example in the form of a powder or a wire made of the material. The laser thus fuses, layer after layer, the surface of the component being manufactured with the additional material added.
De la sorte, l’enveloppe 110 est directement réalisée autour de l’âme électriquement conductrice 120, en ménageant un espace entre la surface extérieure de l’âme électriquement conductrice 120 et la surface intérieure de l’enveloppe 110 destiné à recevoir le matériau isolant 130. Les étapes b) et c) susmentionnées étant alors exécutées simultanément. In this way, the casing 110 is produced directly around the electrically conductive core 120, leaving a space between the outer surface of the electrically conductive core 120 and the inner surface of the casing 110 intended to receive the insulating material. 130. The above-mentioned steps b) and c) then being carried out simultaneously.
Sur un même plateau d’un système de fabrication additive, il est possible de prévoir la fabrication simultanée de plusieurs bras aérodynamiques 100, afin d’améliorer la productivité du procédé de fabrication. On the same platform of an additive manufacturing system, it is possible to provide for the simultaneous manufacture of several aerodynamic arms 100, in order to improve the productivity of the manufacturing process.
Il est également envisagé que l’enveloppe 110, et par conséquent le bras 100, présentent des formes intérieure et extérieure sensiblement rectilignes (non vrillées). Dans ce cas, l’enveloppe 100 peut être réalisée par tout procédé connu en soi, tel que par exemple par la technologie SLM (acronyme de Sélective Laser Melting en langue anglaise) de fabrication additive, consistant à fusionner de la poudre au moyen d’un faisceau de haute énergie tel qu’un faisceau laser. En pratique, un lit de poudre est déposé sur un plateau support et est balayé par le faisceau laser pour sélectivement mettre en fusion la poudre, et fabriquer ainsi une pièce couche par couche, une troisième couche de poudre fusionnée étant disposée au- dessus d’une deuxième couche qui est elle-même disposée au-dessus d’une première couche. It is also envisioned that the casing 110, and therefore the arm 100, have interior and exterior shapes that are substantially rectilinear (not twisted). In this case, the envelope 100 can be produced by any method known per se, such as for example by the SLM technology (acronym for Selective Laser Melting in English) of additive manufacturing, consisting in fusing the powder by means of a high energy beam such as a laser beam. In practice, a powder bed is deposited on a support plate and is scanned by the laser beam to selectively melt the powder, and thus manufacture a part layer by layer, a third layer of fused powder being arranged above a second layer which is itself placed on top of a first layer.
L’âme 120 est ensuite rapportée à l’intérieur de l’enveloppe 110 ainsi réalisée, en ménageant un espace entre la surface extérieure de l’âme 120 et la surface intérieure de l’enveloppe 110. Cet espace est ensuite rempli comme décrit précédemment et l’ensemble est chauffé de sorte à former le matériau isolant 130. The core 120 is then attached to the interior of the casing 110 thus produced, by leaving a space between the outer surface of the core 120 and the inner surface of the casing 110. This space is then filled as described above. and the assembly is heated so as to form the insulating material 130.
Il est également envisageable de réaliser par fabrication additive à la fois l’âme électriquement conductrice 120 et la surface intérieure de l’enveloppe 110. La technologie LMD en particulier permet de réaliser ensemble deux pièces formées chacune d’un matériau métallique différent, par exemple à partir de deux bobines de fils constituées des deux matériaux. It is also conceivable to produce by additive manufacturing both the electrically conductive core 120 and the inner surface of the casing 110. LMD technology in particular makes it possible to produce together two parts each formed from a different metallic material, for example. from two spools of threads made of the two materials.
Par ailleurs, dans tous les cas, afin limiter la perte de charge aérodynamique, le procédé de réalisation du bras aérodynamique 100 selon l’invention peut encore comporter une étape de polissage d’une surface extérieure de l’enveloppe 100. Moreover, in all cases, in order to limit the loss of aerodynamic pressure, the method for producing the aerodynamic arm 100 according to the invention may also include a step of polishing an outer surface of the casing 100.
De plus, la technique de fabrication additive permet de créer une enveloppe 110 présentant des formes doublement complexes, à savoir au niveau de la surface extérieure et de la surface intérieure de l’enveloppe 110. In addition, the additive manufacturing technique makes it possible to create an envelope 110 having doubly complex shapes, namely at the level of the exterior surface and the interior surface of the envelope 110.

Claims

REVENDICATIONS
1. Bras aérodynamique (100) de carter pour une turbomachine (1 ) d’aéronef, comportant : 1. Aerodynamic casing arm (100) for an aircraft turbomachine (1), comprising:
- une enveloppe (110) tubulaire extérieure ayant une forme générale allongée s’étendant substantiellement le long d’un axe (A-A), cette enveloppe (110) comportant des extrémités (112) axiales de liaison à un carter (6) de la turbomachine (1 ) ; - an outer tubular casing (110) having a generally elongated shape extending substantially along an axis (AA), this casing (110) comprising axial ends (112) for connection to a casing (6) of the turbomachine (1);
- une âme (120) électriquement conductrice s’étendant à l’intérieur de l’enveloppe (110) et présentant des extrémités de liaison électrique à chacune des extrémités (112) de l’enveloppe (110) ; et - an electrically conductive core (120) extending inside the casing (110) and having electrical connection ends at each end (112) of the casing (110); and
- un matériau isolant (130) configuré pour occuper un espace ménagé entre l’âme (120) et l’enveloppe (110), caractérisé en ce que pour toute section du bras aérodynamique (100) selon un plan perpendiculaire à l’axe (A-A) de l’enveloppe (110), une épaisseur (Ep) maximale du bras aérodynamique (100) est comprise entre 2 mm et 10 mm, et une longueur (L) de corde du bras aérodynamique (100) est comprise entre 30 mm et 150 mm. - an insulating material (130) configured to occupy a space formed between the core (120) and the casing (110), characterized in that for any section of the aerodynamic arm (100) along a plane perpendicular to the axis ( AA) of the casing (110), a maximum thickness (Ep) of the aero arm (100) is between 2mm and 10mm, and a chord length (L) of the aero arm (100) is between 30mm and 150 mm.
2. Bras aérodynamique (100) selon la revendication précédente, caractérisé en ce que le matériau isolant (130) présente une épaisseur (e) minimale de l’ordre de 0,8 mm, de préférence comprise entre 0,6 et 1 , 5 mm. 2. Aerodynamic arm (100) according to the preceding claim, characterized in that the insulating material (130) has a minimum thickness (e) of the order of 0.8 mm, preferably between 0.6 and 1.5 mm.
3. Bras aérodynamique (100) selon l’une des revendications précédentes, caractérisé en ce qu’ une épaisseur de l’âme (120) est comprise entre 1 mm et 5 mm. 3. Aerodynamic arm (100) according to one of the preceding claims, characterized in that a thickness of the core (120) is between 1 mm and 5 mm.
4. Bras aérodynamique (100) selon l’une des revendications précédentes, dans lequel les extrémités de l’âme (120) sont configurées pour être raccordées par des liaisons mécaniques ou des soudures à des conducteurs électriques. 4. Aerodynamic arm (100) according to one of the preceding claims, wherein the ends of the core (120) are configured to be connected by mechanical connections or welds to electrical conductors.
5. Bras aérodynamique (100) selon l’une des revendications précédentes, dans lequel chacune des extrémités axiales (112) de l’enveloppe (110) comporte une collerette (112a) de liaison ou de fixation au carter (6) de turbomachine (1 ). 5. Aerodynamic arm (100) according to one of the preceding claims, wherein each of the axial ends (112) of the casing (110) comprises a flange (112a) for connecting or fixing to the casing (6) of the turbomachine ( 1).
6. Bras aérodynamique (100) selon l’une des revendications précédentes, dans lequel le matériau isolant (130) est configuré pour résister à des températures allant jusqu’à 200°C et est fabriqué à partir d’un isolant liquide ou d’une poudre isolante organique polymérisés par cuisson, ou est configuré pour résister à des températures allant jusqu’à 800°C et est fabriqué à partir d’un mélange d’une poudre isolante minérale et d’un liant cuits à haute température. 6. aerodynamic arm (100) according to one of the preceding claims, wherein the insulating material (130) is configured to resist at temperatures up to 200 ° C and is made from a liquid insulation or organic insulating powder cured by curing, or is configured to withstand temperatures up to 800 ° C and is manufactured at from a mixture of a mineral insulating powder and a binder cooked at high temperature.
7. Bras aérodynamique (100) selon la revendication précédente, dans lequel la poudre isolante minérale est du Kapton®, du Téflon® ou de la magnésie. 7. Aerodynamic arm (100) according to the preceding claim, wherein the mineral insulating powder is Kapton®, Teflon® or magnesia.
8. Bras aérodynamique (100) selon l’une des revendications 6 ou 7, dans lequel le liant est un liant céramique. 8. Aerodynamic arm (100) according to one of claims 6 or 7, wherein the binder is a ceramic binder.
9. Turbomachine (1 ) d’aéronef à double flux, caractérisée en ce qu’elle comporte au moins dix bras aérodynamiques (100) selon l’une quelconque des revendications 1 à 8, et de préférence au moins vingt bras aérodynamiques (100), chaque bras aérodynamique (100) faisant partie d’un aubage redresseur de flux qui traverse une veine de flux secondaire ou une veine de flux primaire de la turbomachine. 9. Turbomachine (1) of a bypass aircraft, characterized in that it comprises at least ten aerodynamic arms (100) according to any one of claims 1 to 8, and preferably at least twenty aerodynamic arms (100) , each aerodynamic arm (100) forming part of a flow rectifier blade which passes through a secondary flow stream or a primary flow stream of the turbomachine.
10. Procédé de fabrication pour réaliser un bras aérodynamique (100) de carter selon l’une des revendications 1 à 8, caractérisé en ce qu’il comprend les étapes suivantes : 10. Manufacturing process for producing an aerodynamic arm (100) of the casing according to one of claims 1 to 8, characterized in that it comprises the following steps:
a) fabrication de l’âme électriquement conductrice (120) ; a) fabrication of the electrically conductive core (120);
b) fabrication de l’enveloppe (110) ; b) manufacturing the casing (110);
c) positionnement de l’âme (120) relativement à l’enveloppe (110) en ménageant un espace ; c) positioning the core (120) relative to the casing (110) while leaving a space;
d) ajout du matériau isolant (130) dans l’espace ménagé entre l’enveloppe (110) et l’âme électriquement conductrice (120) ; d) adding the insulating material (130) to the space between the shell (110) and the electrically conductive core (120);
e) durcissement du matériau isolant (130) pour assurer la liaison avec l’enveloppe (110) et l’âme électriquement conductrice (120). e) hardening the insulating material (130) to bond with the casing (110) and the electrically conductive core (120).
11. Procédé selon la revendication précédente, caractérisé en ce qu’à l’étape b), l’enveloppe (110) est réalisée par fabrication additive. 11. Method according to the preceding claim, characterized in that in step b), the casing (110) is produced by additive manufacturing.
12. Procédé selon la revendication 10 ou 11 , caractérisé en ce que les étapes b) et c) sont exécutées simultanément, en réalisant l’enveloppe (110) directement autour de l’âme (120). 12. The method of claim 10 or 11, characterized in that steps b) and c) are performed simultaneously, by making the envelope (110) directly around the core (120).
13. Procédé selon la revendication 10, caractérisé en ce que l’âme (120) et une surface intérieure de l’enveloppe (100) sont réalisées en même temps par fabrication additive. 13. The method of claim 10, characterized in that the core (120) and an inner surface of the casing (100) are produced at the same time by additive manufacturing.
14. Procédé selon l’une des revendications 10 à 13, caractérisé en ce qu’à l’étape c), le matériau isolant (130) est soit sous forme d’isolant liquide ou d’une poudre d’isolante, soit sous forme d’un mélange de poudre isolante minérale et de liant. 14. Method according to one of claims 10 to 13, characterized in that in step c), the insulating material (130) is either in the form of liquid insulation or of an insulating powder, or in form of a mixture of mineral insulating powder and binder.
15. Procédé selon la revendication précédente, caractérisé en ce que l’étape c) comprend en outre soit une polymérisation de l’isolant liquide ou de la poudre d’isolante, soit une cuisson du mélange de poudre isolante minérale et de liant. 15. Method according to the preceding claim, characterized in that step c) further comprises either a polymerization of the liquid insulation or of the insulating powder, or a baking of the mixture of mineral insulating powder and binder.
EP20705409.9A 2019-01-14 2020-01-07 Aerodynamic arm for an aircraft turbine engine casing Pending EP3911860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900319A FR3091730B1 (en) 2019-01-14 2019-01-14 AERODYNAMIC CRANKCASE ARM FOR AN AIRCRAFT TURBOMACHINE
PCT/FR2020/050018 WO2020148493A1 (en) 2019-01-14 2020-01-07 Aerodynamic arm for an aircraft turbine engine casing

Publications (1)

Publication Number Publication Date
EP3911860A1 true EP3911860A1 (en) 2021-11-24

Family

ID=66776539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20705409.9A Pending EP3911860A1 (en) 2019-01-14 2020-01-07 Aerodynamic arm for an aircraft turbine engine casing

Country Status (6)

Country Link
US (1) US20220056804A1 (en)
EP (1) EP3911860A1 (en)
CN (1) CN113260793B (en)
CA (1) CA3123345A1 (en)
FR (1) FR3091730B1 (en)
WO (1) WO2020148493A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512115A (en) * 1983-06-07 1985-04-23 United Technologies Corporation Method for cylindrical grinding turbine engine rotor assemblies
US20080145694A1 (en) * 2006-12-19 2008-06-19 David Vincent Bucci Thermal barrier coating system and method for coating a component
US8087874B2 (en) * 2009-02-27 2012-01-03 Honeywell International Inc. Retention structures and exit guide vane assemblies
GB0914502D0 (en) * 2009-08-19 2009-09-30 Rolls Royce Plc Electrical conductor paths
EP2511030B1 (en) * 2011-04-15 2019-05-08 MTU Aero Engines GmbH Method for producing a component with at least one construction element in the component and a component with at least one construction element
FR2978196B1 (en) * 2011-07-20 2016-12-09 Snecma TURBOMACHINE AUB COMPRISING A PLATE REPORTED ON A MAIN PART
CN202176550U (en) * 2011-08-30 2012-03-28 哈尔滨汽轮机厂有限责任公司 Intermediate stage guide vane of compressor for large-power gas turbine
GB201119045D0 (en) * 2011-11-04 2011-12-14 Rolls Royce Plc Electrical harness
US9650898B2 (en) * 2012-12-27 2017-05-16 United Technologies Corporation Airfoil with variable profile responsive to thermal conditions
CN103423193A (en) * 2013-04-18 2013-12-04 哈尔滨汽轮机厂有限责任公司 Secondary first-stage blade for transonic compressor on high-speed gas turbine
US10344623B2 (en) * 2014-12-16 2019-07-09 United Technologies Corporation Pre-diffuser strut for gas turbine engine
US10760589B2 (en) * 2015-12-29 2020-09-01 General Electric Company Turbofan engine assembly and methods of assembling the same
GB201703422D0 (en) * 2017-03-03 2017-04-19 Rolls Royce Plc Gas turbine engine vanes
US10822099B2 (en) * 2017-05-25 2020-11-03 General Electric Company Propulsion system for an aircraft

Also Published As

Publication number Publication date
FR3091730A1 (en) 2020-07-17
CA3123345A1 (en) 2020-07-23
CN113260793A (en) 2021-08-13
FR3091730B1 (en) 2021-04-02
US20220056804A1 (en) 2022-02-24
CN113260793B (en) 2024-01-16
WO2020148493A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
EP3416930B1 (en) Turbine shroud sector with environmental barrier doped by an electrically conductive element
EP2896796B1 (en) Stator of an axial turbomachine and corresponding turbomachine
EP4069944A1 (en) Electrical connection of an electrical machine in an aircraft turbine engine
EP2681004A1 (en) Method for producing a metal component such as a turbomachine blade reinforcement
EP3009826B1 (en) Insulating test engine hood for a turbine engine on a test bench
FR2944839A1 (en) INTERMEDIATE CARTRIDGE OF AIRCRAFT TURBOMACHINE COMPRISING STRUCTURAL CONNECTING ARMS WITH DISSOCATED MECHANICAL AND AERODYNAMIC FUNCTIONS
CA2879052A1 (en) Method for manufacturing a turbomachine casing from a composite material and associated casing
EP3803127B1 (en) Thermal architecture of an air compressor
EP3911860A1 (en) Aerodynamic arm for an aircraft turbine engine casing
EP3898157B1 (en) Preform with one-piece woven fibrous reinforcement for inter-blade platform
EP4028645A1 (en) Attachment of an acoustic shroud to a housing shell for an aircraft turbine engine
WO2021111059A1 (en) Rigid bar for electrically connecting a machine in an aircraft turbine engine
WO2022208002A1 (en) Vane comprising a structure made of composite material, and associated manufacturing method
WO2020157405A1 (en) Turbomachine stator sector having flexible regions subjected to high stress
EP3918204A1 (en) Fan casing for an aircraft turbomachine
WO2023084176A1 (en) Method for manufacturing a metal protection device for the leading edge of a blade incorporating a de-icing system and protection device obtained by this method
FR3086001A1 (en) AIRCRAFT PROPULSION SYSTEM WITH BLOWER PROVIDED AT REAR END OF FUSELAGE
FR3138468A1 (en) METAL LEADING EDGE SHIELD FOR TURBOMACHINE BLADE, TURBOMACHINE BLADE, METHOD OF MANUFACTURING AND USE
WO2023099853A1 (en) Auxiliary arm for a turbomachine exhaust casing
FR3141722A1 (en) BLADE MADE OF COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
EP4237665A1 (en) Assembly for a turbine comprising sectors with laminated sealing tongues
BE1024756B1 (en) ELECTRICAL SYSTEM DEGIVING AXIAL TURBOMACHINE
WO2023203293A1 (en) Method for producing a blade made from composite material
FR3134135A1 (en) Improved Coolant Turbine Ring Assembly
WO2023111419A1 (en) Method for producing a part, in particular a part made from a composite material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230720