EP3906198A1 - Threaded tamper evidence finish and closure for container - Google Patents

Threaded tamper evidence finish and closure for container

Info

Publication number
EP3906198A1
EP3906198A1 EP20736213.8A EP20736213A EP3906198A1 EP 3906198 A1 EP3906198 A1 EP 3906198A1 EP 20736213 A EP20736213 A EP 20736213A EP 3906198 A1 EP3906198 A1 EP 3906198A1
Authority
EP
European Patent Office
Prior art keywords
tamper evidence
container
threads
valley
closure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20736213.8A
Other languages
German (de)
French (fr)
Other versions
EP3906198A4 (en
Inventor
Jay Clarke Hanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niagara Bottling LLC
Original Assignee
Niagara Bottling LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niagara Bottling LLC filed Critical Niagara Bottling LLC
Publication of EP3906198A1 publication Critical patent/EP3906198A1/en
Publication of EP3906198A4 publication Critical patent/EP3906198A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/023Neck construction
    • B65D1/0246Closure retaining means, e.g. beads, screw-threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/32Caps or cap-like covers with lines of weakness, tearing-strips, tags, or like opening or removal devices, e.g. to facilitate formation of pouring openings
    • B65D41/34Threaded or like caps or cap-like covers provided with tamper elements formed in, or attached to, the closure skirt
    • B65D41/3423Threaded or like caps or cap-like covers provided with tamper elements formed in, or attached to, the closure skirt with flexible tabs, or elements rotated from a non-engaging to an engaging position, formed on the tamper element or in the closure skirt
    • B65D41/3428Threaded or like caps or cap-like covers provided with tamper elements formed in, or attached to, the closure skirt with flexible tabs, or elements rotated from a non-engaging to an engaging position, formed on the tamper element or in the closure skirt the tamper element being integrally connected to the closure by means of bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0777Tamper-evident band retaining ring

Definitions

  • Embodiments of the present disclosure generally relate to the field of plastic bottles and preforms. More specifically, embodiments of the disclosure relate to tamper evidence container caps and preforms that provide visible indications of removal of the container caps after installation by a manufacturer.
  • PET containers have been used as a replacement for glass or metal containers in the packaging of beverages for several decades.
  • the most common plastic used in making beverage containers today is polyethylene terephthalate (PET).
  • Containers made of PET are transparent, thin walled, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by their contents.
  • PET resins are also reasonably priced and easy to process.
  • PET bottles are generally made by a process that includes the blowmolding of plastic preforms which have been made by injection molding of the PET resin.
  • plastic packaging include lighter weight and decreased breakage as compared to glass, and lower costs overall when taking both production and transportation into account.
  • plastic packaging is lighter in weight than glass, there is still great interest in creating the lightest possible plastic packaging so as to maximize the cost savings in both transportation and manufacturing by making and using containers that contain less plastic.
  • a plastic container for storing liquid contents typically includes a base that extends up to a grip portion suitable for affixing a label, as well as providing a location for grasping the container.
  • the grip portion generally transitions into a shoulder, which connects to a bell.
  • the bell has a diameter that generally decreases as the bell extends upward from the shoulder to a neck and a finish.
  • the finish is adapted to receive a closure, such as a bottle cap, to seal the contents within the interior of the plastic container.
  • the closure includes a tamper evidence band that is disposed around the perimeter of the finish.
  • the tamper evidence band generally remains positioned on the finish when an end-user loosens the closure to access the contents within the container.
  • the tamper evidence band and the finish cooperate to indicate to the end-user whether or not the closure has been previously loosened after being installed by the manufacturer.
  • a drawback to conventional tamper evidence bands is that in some instances the tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the closure may be separated from the tamper evidence band, the container may be refilled, and another closure may be installed onto the container, giving little visual indication to the end-user that the container has been reused.
  • a container preform and a tamper evidence closure are provided for reliably providing a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
  • the container preform includes a finish portion for rotatably engaging with the tamper evidence closure to seal contents within an interior of a container formed from the preform.
  • the finish portion comprises a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge.
  • One or more threads are configured to provide a means to fasten the tamper evidence closure to the container.
  • a valley is disposed between the one or more threads and has an inner diameter.
  • a handling valley is disposed between the one or more threads and the tamper evidence ledge.
  • a finish portion of a preform for rotatably engaging with a tamper evidence closure to seal contents within an interior of a container formed from the preform comprises: a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge; one or more threads configured to provide a means to fasten the tamper evidence closure to the container; a valley disposed between the one or more threads having an inner diameter; and a handling valley disposed between the one or more threads and the tamper evidence ledge.
  • the tamper evidence ledge is configured to cooperate with a tamper evidence band of the closure to indicate whether or not the closure has been loosened after being installed by a manufacturer.
  • the tamper evidence closure includes a tamper evidence band disposed around the circumference of the tamper evidence closure and attached thereto by way of a multiplicity of thin connections.
  • the handling valley and a neck portion of the container are configured to enable gripping fingers to engage with and support the container during air- conveying the container along a manufacturing assembly.
  • the handling valley provides a separation between the tamper evidence ledge and the one or more threads suitable for receiving a pair of gripping fingers of an air conveyor system.
  • the valley disposed between the one or more threads has an inner diameter that is greater than the diameter of the handling valley. In another exemplary embodiment, the valley disposed between the one or more threads has an inner diameter that is equal to the diameter of the handling valley.
  • Figure 1 illustrates a side plan view of an exemplary embodiment of a preform suitable for being blow-molded to form a container in accordance with the present disclosure
  • Figure 2 illustrates a cross-sectional slice view of the preform illustrated in Fig. 1 , taken along a line 2-2, according to the present disclosure
  • Figure 3 illustrates an isometric view of a finish portion comprising the preform of Figs. 1-2;
  • Figure 4 illustrates a cross-sectional view of a tamper evidence closure suitable for being threadably engaged with the finish portion of Fig. 3;
  • Figure 5 illustrates a cross-sectional view of an exemplary embodiment of a finish portion of a preform
  • Figure 6 illustrates a perspective isometric view of a finish portion of the preform of Figs. 1 and 2.
  • the terms“about,”“approximately,” or“substantially” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein.
  • articles, including preforms and tamper evidence closures for containers In some instances, conventional tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the end-user has little visual indication of whether the container has been reused.
  • Embodiments disclosed herein provide a preform and a tamper evidence closure that reliably provides a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
  • Figure 1 illustrates an exemplary embodiment of a preform 100 suitable for being blow-molded to form a container, or a plastic bottle, according to the present disclosure.
  • the preform 100 preferably is made of material approved for contact with food and beverages such as virgin PET and can be of any of a wide variety of shapes and sizes.
  • the preform 100 shown in Fig. 1 is of the type which will form a 12-16 oz. beverage bottle, but as will be understood by those skilled in the art, other preform configurations may be used depending upon the desired configuration, characteristics and use of the final article.
  • the preform 100 may be made by injection molding methods, without limitation.
  • Figure 2 illustrates a cross-sectional slice view ofthe preform 100 illustrated in Fig. 1, taken along a line 2-2.
  • the preform 100 includes a finish portion 104 and a body portion 108, formed monolithically (i.e., as a single, or unitary, structure).
  • the monolithic arrangement of the preform 100 when blow-molded into a bottle, provides greater dimensional stability and improved physical properties in comparison to a preform constructed of separate neck and body portions that are bonded together.
  • the finish portion 104 begins at an opening 112 to an interior of the preform 100 and extends to and includes a tamper evidence ledge 116.
  • the finish portion 104 is further characterized by the presence of one or more threads 120 configured to provide a means to fasten a closure, such as a cap, to the bottle produced from the preform 100.
  • the threads 120 are configured to rotatably engage with similar threads disposed within the cap to provide a way to seal contents within the bottle.
  • each of the threads 120 generally extends along a section of the circumference of the finish portion 104 and approaches the tamper evidence ledge 116.
  • each of the one or more threads 120 begins at a thread start 124 and extends along an angular section of the finish portion 104.
  • the thread start 124 is configured to guide the thread 120 into a space, or valley 128, between adjacent threads of the cap so as to threadably engage the cap with the finish portion 104.
  • the threads 120 generally are disposed adjacently to one another and are spaced uniformly around the circumference of the finish portion 104.
  • the thread starts 124 of adjacent threads 120 are spaced at substantially 120-degree intervals around the perimeter of the finish portion 104.
  • more or less than three threads 120 may be incorporated into the finish portion 104 without deviating beyond the scope of the present disclosure.
  • the body portion 108 includes a neck portion 132 that extends to a tapered portion 136 of the body portion 108.
  • the tapered portion 136 comprises a smooth transition from a diameter of the neck portion 132 to a relatively smaller diameter of a cylindrical portion 140 of the preform 100.
  • the cylindrical portion 140 is a generally elongate member that culminates in an end cap 144.
  • the body portion 108 may be generally cylindrical, and the end cap 144 may be conical or frustoconical and may also be hemispherical, and the very terminus of the end cap 144 may be flattened or rounded.
  • a wall thickness of the cylindrical portion 140 is substantially uniform throughout the cylindrical portion 140 and the end cap 144.
  • a wall thickness of the tapered portion 136 generally decreases from the wall thickness of the cylindrical portion 140 to a relatively thinner wall thickness of the neck portion 132.
  • the wall thickness of the cylindrical portion 140 is relatively greater than the wall thickness of the neck portion 132 so as to provide a wall thickness at the desired dimensions of a finished product after the preform 100 is blow-molded into the shape and size of a bottle.
  • the wall thickness throughout most of the body portion 108 will depend upon the overall size of the preform 100 and the wall thickness and overall size of the resulting container.
  • Figure 3 illustrates an isometric view of the finish portion 104 comprising the preform 100 illustrated in Figs. 1-2, according to the present disclosure.
  • the finish portion 104 includes one or more threads 120 extending along sections of the circumference of the finish portion 104 and approaching the tamper evidence ledge 1 16.
  • the threads 120 generally extend outward from the finish portion 104 such that a valley 128 is disposed between adjacent threads.
  • the cross-sectional profile of the threads 120 is configured such that the threads advantageously engage with similar threads disposed within the cap for sealing contents within the container formed by blow-molding the preform 100.
  • the valley 128 is configured to allow passage of a thread disposed in the cap to pass between adjacent threads 120 during tightening of the cap onto the finish portion 104.
  • the finish portion 104 includes a bevel 148 disposed at the beginning of the opening 112.
  • the bevel 148 is configured to enter into sliding contact with a sealing flange of a suitable cap so as to prevent contents from leaking out of the container formed from the preform 100.
  • the bevel 148 may compress the sealing flange to a predetermined degree, thereby forming a tight seal suitable to retain pressurized contents within the container.
  • the tamper evidence ledge 116 comprises a rounded upper portion 152 and a substantially flat lower portion 156.
  • the rounded upper portion 152 facilitates passing a tamper evidence band of the cap over the tamper evidence ledge 116 during assembly of the cap onto the container.
  • the flat lower portion 156 is configured to retain the tamper evidence band positioned below the tamper evidence ledge 116 during loosening of the cap. For example, when the cap is initially installed onto the container by a manufacturer, the tamper evidence band easily passes over the tamper evidence ledge 116 due to the rounded upper portion 152.
  • the flat lower portion 156 When an end-user later loosens the cap, the flat lower portion 156 retains the tamper evidence band below the tamper evidence ledge 116, causing the tamper evidence band to break loose from the cap.
  • the flat lower portion 156 of the tamper evidence ledge 116 and the tamper evidence band of the cap cooperate to indicate to the end-user that the cap has not been previously loosened after being installed by the manufacturer.
  • the tamper evidence ledge 116 is not limited to being coupled with tamper evidence bands, as described above, but rather the tamper evidence ledge 1 16 may be configured to operate with any of various devices for indicating whether or not the container has been previously opened.
  • valley 128 disposed between the tamper evidence ledge 116 and the threads 120 and further between the threads of the finish portion 104.
  • the valley 128 comprises a portion of the finish portion 104 that has a wall thickness and a diameter that may be substantially similar to the wall thickness and diameter of the neck portion 132, and in an alternative may have a wall thickness and a diameter that is smaller than the wall thickness and diameter of the cylindrical portion 140 and the neck portion 132.
  • a handling valley 160 is also utilized to enable gripping fingers to engage with and support the container during air-conveying the container along a manufacturing assembly.
  • a first pair of gripping fingers can extend into the handling valley 160 to support the container at a first station of a manufacturing line. Then, upon being conveyed to a second station, a second pair of gripping fingers can extend around the neck portion 132, below the tamper evidence ledge 116, while the first pair of gripping fingers are removed from the handling valley 160. Similarly, upon arriving at a third station, a third pair of gripping fingers can engage with the handling valley 160 while the second pair of gripping fingers are removed from the neck portion 132.
  • the container can be transported along the manufacturing line by altematingly engaging gripping fingers with the handling valley 160 and the neck portion 132.
  • the handling valley 160 provides a separation between the tamper evidence ledge 1 16 and the threads 120 suitable for receiving the pair of gripping fingers, as described above.
  • the separation must be large enough to allow the gripping fingers to easily pass between the tamper evidence ledge 116 and the threads 120.
  • any of various separations, greater than the width of the gripping fingers may be disposed between the tamper evidence ledge 116 and the threads 120, without limitation and without deviating beyond the scope of the present disclosure.
  • Figure 4 illustrates a cross-sectional view of a tamper evidence closure 164 suitable for being threadably engaged with the finish portion 104 of Fig. 3 to provide an indication of whether or not the closure 164 has been loosened after being installed by a manufacturer.
  • the closure 164 includes interior threads 176 that are configured to engage with the threads 120 of the finish portion 104, as described above. As such, the interior threads 176 extend into the thread valleys 128 extending around the finish portion 104.
  • a plug seal 168 of the closure 164 is configured to extend into the opening 1 12 and enter into a pressed relationship with the finish portion 104 whereby contents are sealed in the interior of a container formed from the preform 100 (hereinafter “container 100”).
  • the closure 164 includes a tamper evidence band 166 that includes a segmented cam 200 and is disposed around the perimeter of the closure 164. The tamper evidence band 166 is attached to the closure 164 by a multiplicity of thin connections 204.
  • the segmented ca 200 generally comprises an angled lower surface 208 configured to facilitate passing the tamper evidence band 166 over the threads 120 and the rounded upper portion 152 of the tamper evidence ledge 1 16 during assembly of the closure 164 onto the container 100.
  • a relatively flat upper surface 212 of the segmented cam 200 is configured to engage with the flat lower portion of the tamper evidence ledge 116 and thus retain the tamper evidence band 166 engaged with the tamper evidence ledge 116 during loosening of the closure 164.
  • the segmented cam 200 presses against the flat lower portion 156 of the tamper evidence ledge 116, breaking the thin connections 204 between tamper evidence band 166 and the closure 164.
  • the tamper evidence band 166 remains positioned on the tamper evidence ledge 116 after the closure 164 is removed from the container 100.
  • Multiple overhang portions 216 disposed above the segmented cam 200 of the closure 164 are configured to press against the rounded upper portion 152 of the tamper evidence ledge 116.
  • the overhang portions 216 ensure that the tamper evidence band 166, once free of the closure 164, does not fall below the tamper evidence ledge 116 and reside around the neck portion 132 of the container 100.
  • the tamper evidence band 166 cooperates with the tamper evidence ledge 116 to indicate to the end-user whether or not the closure 164 has been previously loosened after being installed by the manufacturer.
  • Figure 5 illustrates a cross-sectional view of an exemplary embodiment of a finish portion 104 of a preform 100.
  • a plurality of threads 120 are disposed around the finish portion 104 to threadably engage the cap with the finish portion 104.
  • the plurality of threads 120 are configured such that the threads advantageously engage with similar threads disposed within the cap for sealing contents within the container formed by blow-molding the container 100.
  • Between the plurality of threads 120 is at least a valley 128 that extends inwardly away from the outside edge of the thread 120 to form an inner edge 180 on the outside wall 182 of the finish portion 104.
  • the inner edge 180 of the valley 128 has a diameter that is equal and/or greater than the diameter of the handling valley 160 immediately above the tamper evidence ledge 1 16.
  • the valley 128 has a diameter that is equal to the diameter of the handling valley 160.
  • the inner diameter of the valley 128 is greater than the inner diameter of the handling valley 160 between the tamper evidence ledge 1 16 and the threads 120.
  • the articles described herein may be made from any suitable thermoplastic material, such as polyesters including polyethylene terephthalate (PET), polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (monomers or portion thereof having another group as a side group, e.g. olefin-modified polyesters). These materials may be used alone or in conjunction with each other.
  • PET polyethylene terephthalate
  • polyolefins including polypropylene and polyethylene
  • polycarbonate polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (mono
  • More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1 ,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly( cyclohexylenedimethylene terephthalate ), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-l , poly( methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile- butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra- fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene
  • polypropylene also refers to clarified polypropylene.
  • clarified polypropylene is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene. The inclusion of nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene. Alternatively, nucleation inhibitors may be added to polypropylene.
  • IP A-modified PET refers to PET in which the IP A content is preferably more than about 2% by weight, including about 2-10% IP A by weight, also including about 5-10% IP A by weight.
  • CHDM cylohexane dimethanol
  • Additives may be included in articles herein to provide functional properties to the resulting containers. Such additives include those providing enhanced gas barrier, UV protection, scuff resistance, impact resistance and/or chemical resistance. Preferred additives may be prepared by methods known to those of skill in the art. For example, the additives may be mixed directly with a particular material, or they may be dissolved/dispersed separately and then added to a particular material. Additives may be present in an amount up to about 40% of the material, also including up to about 30%, 20%, 10%, 5%, 2% and 1% by weight of the material.
  • additives may be present in an amount less than or equal to 1 % by weight, such ranges of materials including, but not limited to, about 0.01% to about 1%, about 0.01% to about 0.1%, and about 0.1% to about 1% by weight.
  • microparticulate clay or graphene based materials comprise tiny, micron or sub-micron size (diameter), particles of materials which enhance the barrier and/or mechanical properties of a material by creating a more tortuous path for migrating gas molecules, such as oxygen or carbon dioxide, to take as they permeate a material and/or providing added stiffness.
  • nanoparticulate material is present in amounts ranging from 0.05 to 1% by weight, including 0.1%, 0.5% by weight and ranges encompassing these amounts.
  • nanoparticles comprise monmorillonite that may be modified with a ternary or quaternary ammonium salt.
  • such particles comprise organoclays as described in U.S.
  • Other suitable organic and inorganic microparticulate clay based or nano-sized products may also be used. Both man-made and natural products are also suitable.
  • the UV protection properties of the material may be enhanced by the addition of one or more additives.
  • the UV protection material used provides UV protection up to about 350 nm or less, preferably about 370 nm or less, more preferably about 400 nm or less.
  • the UV protection material may be used as an additive with layers providing additional functionality or applied separately as a single layer.
  • additives providing enhanced UV protection are present in the material from about 0.05 to 20% by weight, but also including about 0.1%, 0.5%, 1%, 2%, 3%, 5%, 10%, and 15% by weight, and ranges encompassing these amounts.
  • the UV protection material is added in a form that is compatible with the other materials.
  • a preferred UV protection material comprises a polymer grafted or modified with a UV absorber that is added as a concentrate.
  • Other preferred UV protection materials include, but are not limited to, benzotriazoles, phenothiazines, and azaphenothiazines. UV protection materials may be added during the melt phase process prior to use, such as prior to injection molding or extrusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Closures For Containers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

A tamper evidence container is provided for sealing contents within an interior of a container formed by blow-molding a container preform. The container includes threads disposed around a neck portion to threadably engage a cap with the finish of the container. The threads advantageously engage with similar threads within the cap for sealing contents within the container. Between the threads is a valley that extends inwardly to form an inner edge on the outside wall of the container finish. The inner edge of the valley has a diameter that is equal and/or greater than the diameter of the handling valley immediately above the tamper evidence ledge. In an exemplary embodiment, the valley has a diameter that is equal to the diameter of the handling valley. In another exemplary embodiment, the diameter of the valley is greater than the handling valley between the tamper evidence ledge and the threads.

Description

THREADED TAMPER EVIDENCE FINISH AND CLOSURE FOR CONTAINER
PRIORITY
[0001] This application claims the benefit of and priority to U.S. Patent Application No. 16/729,981, filed December 30, 2019, which claims priority to U.S. Provisional Application No. 62/788,051, filed January 3, 2019, the entirety of which are incorporated herein by reference.
FIELD
[0002] Embodiments of the present disclosure generally relate to the field of plastic bottles and preforms. More specifically, embodiments of the disclosure relate to tamper evidence container caps and preforms that provide visible indications of removal of the container caps after installation by a manufacturer.
BACKGROUND
[0003] Plastic containers have been used as a replacement for glass or metal containers in the packaging of beverages for several decades. The most common plastic used in making beverage containers today is polyethylene terephthalate (PET). Containers made of PET are transparent, thin walled, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by their contents. PET resins are also reasonably priced and easy to process. PET bottles are generally made by a process that includes the blowmolding of plastic preforms which have been made by injection molding of the PET resin.
[0004] Advantages of plastic packaging include lighter weight and decreased breakage as compared to glass, and lower costs overall when taking both production and transportation into account. Although plastic packaging is lighter in weight than glass, there is still great interest in creating the lightest possible plastic packaging so as to maximize the cost savings in both transportation and manufacturing by making and using containers that contain less plastic.
[0005] A plastic container for storing liquid contents typically includes a base that extends up to a grip portion suitable for affixing a label, as well as providing a location for grasping the container. The grip portion generally transitions into a shoulder, which connects to a bell. The bell has a diameter that generally decreases as the bell extends upward from the shoulder to a neck and a finish. The finish is adapted to receive a closure, such as a bottle cap, to seal the contents within the interior of the plastic container.
[0006] In many instances, the closure includes a tamper evidence band that is disposed around the perimeter of the finish. The tamper evidence band generally remains positioned on the finish when an end-user loosens the closure to access the contents within the container. As such, the tamper evidence band and the finish cooperate to indicate to the end-user whether or not the closure has been previously loosened after being installed by the manufacturer.
[0007] A drawback to conventional tamper evidence bands, however, is that in some instances the tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the closure may be separated from the tamper evidence band, the container may be refilled, and another closure may be installed onto the container, giving little visual indication to the end-user that the container has been reused.
[0008] What is needed, therefore, is a tamper evidence closure that reliably provides a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
SUMMARY
[0009] A container preform and a tamper evidence closure are provided for reliably providing a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container. The container preform includes a finish portion for rotatably engaging with the tamper evidence closure to seal contents within an interior of a container formed from the preform. The finish portion comprises a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge. One or more threads are configured to provide a means to fasten the tamper evidence closure to the container. A valley is disposed between the one or more threads and has an inner diameter. A handling valley is disposed between the one or more threads and the tamper evidence ledge. The inner diameter of the valley may be equal and/or greater than an inner diameter of the handling valley. [0010] In an exemplary embodiment, a finish portion of a preform for rotatably engaging with a tamper evidence closure to seal contents within an interior of a container formed from the preform comprises: a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge; one or more threads configured to provide a means to fasten the tamper evidence closure to the container; a valley disposed between the one or more threads having an inner diameter; and a handling valley disposed between the one or more threads and the tamper evidence ledge.
[0011] In another exemplary embodiment, the tamper evidence ledge is configured to cooperate with a tamper evidence band of the closure to indicate whether or not the closure has been loosened after being installed by a manufacturer. In another exemplary embodiment, the tamper evidence closure includes a tamper evidence band disposed around the circumference of the tamper evidence closure and attached thereto by way of a multiplicity of thin connections.
[0012] In another exemplary embodiment, the handling valley and a neck portion of the container are configured to enable gripping fingers to engage with and support the container during air- conveying the container along a manufacturing assembly. In another exemplary embodiment, the handling valley provides a separation between the tamper evidence ledge and the one or more threads suitable for receiving a pair of gripping fingers of an air conveyor system.
[0013] In another exemplary embodiment, the valley disposed between the one or more threads has an inner diameter that is greater than the diameter of the handling valley. In another exemplary embodiment, the valley disposed between the one or more threads has an inner diameter that is equal to the diameter of the handling valley.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The drawings refer to embodiments of the present disclosure in which:
[0015] Figure 1 illustrates a side plan view of an exemplary embodiment of a preform suitable for being blow-molded to form a container in accordance with the present disclosure;
[0016] Figure 2 illustrates a cross-sectional slice view of the preform illustrated in Fig. 1 , taken along a line 2-2, according to the present disclosure; [0017] Figure 3 illustrates an isometric view of a finish portion comprising the preform of Figs. 1-2;
[0018] Figure 4 illustrates a cross-sectional view of a tamper evidence closure suitable for being threadably engaged with the finish portion of Fig. 3;
[0019] Figure 5 illustrates a cross-sectional view of an exemplary embodiment of a finish portion of a preform; and
[0020] Figure 6 illustrates a perspective isometric view of a finish portion of the preform of Figs. 1 and 2.
[0021] While the present disclosure is subject to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. The invention should be understood to not be limited to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.
DETAILED DESCRIPTION
[0022] In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, to one of ordinary skill in the art that the invention disclosed herein may be practiced without these specific details. In other instances, specific numeric references such as“first preform,” may be made. However, the specific numeric reference should not be interpreted as a literal sequential order but rather interpreted that the“first preform” is different than a“second preform.” Thus, the specific details set forth are merely exemplary. The specific details may be varied from and still be contemplated to be within the spirit and scope of the present disclosure. The term “coupled” is defined as meaning connected either directly to the component or indirectly to the component through another component. Further, as used herein, the terms“about,”“approximately,” or“substantially” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. [0023] Disclosed herein are articles, including preforms and tamper evidence closures for containers. In some instances, conventional tamper evidence bands fail to detach from the closure upon being loosened, thereby making it difficult for an end-user to directly observe whether or not the closure has been previously separated from the container. Consequently, the end-user has little visual indication of whether the container has been reused. Embodiments disclosed herein provide a preform and a tamper evidence closure that reliably provides a visible indication about whether or not a manufacturer-installed closure has been previously removed from a plastic container.
[0024] Figure 1 illustrates an exemplary embodiment of a preform 100 suitable for being blow-molded to form a container, or a plastic bottle, according to the present disclosure. The preform 100 preferably is made of material approved for contact with food and beverages such as virgin PET and can be of any of a wide variety of shapes and sizes. The preform 100 shown in Fig. 1 is of the type which will form a 12-16 oz. beverage bottle, but as will be understood by those skilled in the art, other preform configurations may be used depending upon the desired configuration, characteristics and use of the final article. The preform 100 may be made by injection molding methods, without limitation.
[0025] Figure 2 illustrates a cross-sectional slice view ofthe preform 100 illustrated in Fig. 1, taken along a line 2-2. The preform 100 includes a finish portion 104 and a body portion 108, formed monolithically (i.e., as a single, or unitary, structure). Advantageously, the monolithic arrangement of the preform 100, when blow-molded into a bottle, provides greater dimensional stability and improved physical properties in comparison to a preform constructed of separate neck and body portions that are bonded together.
[0026] The finish portion 104 begins at an opening 112 to an interior of the preform 100 and extends to and includes a tamper evidence ledge 116. The finish portion 104 is further characterized by the presence of one or more threads 120 configured to provide a means to fasten a closure, such as a cap, to the bottle produced from the preform 100. As such, the threads 120 are configured to rotatably engage with similar threads disposed within the cap to provide a way to seal contents within the bottle. In the embodiment illustrated in Fig. 1, each of the threads 120 generally extends along a section of the circumference of the finish portion 104 and approaches the tamper evidence ledge 116. Thus, when the threads of a cap are engaged with the threads 120, and the cap is rotated in a clockwise direction, the cap advances toward the tamper evidence ledge 116. [0027] As best shown in Fig. 1, each of the one or more threads 120 begins at a thread start 124 and extends along an angular section of the finish portion 104. The thread start 124 is configured to guide the thread 120 into a space, or valley 128, between adjacent threads of the cap so as to threadably engage the cap with the finish portion 104. Further, the threads 120 generally are disposed adjacently to one another and are spaced uniformly around the circumference of the finish portion 104. In some embodiments, wherein three threads 120 are disposed around the finish portion 104, the thread starts 124 of adjacent threads 120 are spaced at substantially 120-degree intervals around the perimeter of the finish portion 104. As will be appreciated, however, more or less than three threads 120 may be incorporated into the finish portion 104 without deviating beyond the scope of the present disclosure.
[0028] The body portion 108 includes a neck portion 132 that extends to a tapered portion 136 of the body portion 108. The tapered portion 136 comprises a smooth transition from a diameter of the neck portion 132 to a relatively smaller diameter of a cylindrical portion 140 of the preform 100. The cylindrical portion 140 is a generally elongate member that culminates in an end cap 144. In some embodiments the body portion 108 may be generally cylindrical, and the end cap 144 may be conical or frustoconical and may also be hemispherical, and the very terminus of the end cap 144 may be flattened or rounded.
[0029] As best shown in Fig. 2, a wall thickness of the cylindrical portion 140 is substantially uniform throughout the cylindrical portion 140 and the end cap 144. A wall thickness of the tapered portion 136, however, generally decreases from the wall thickness of the cylindrical portion 140 to a relatively thinner wall thickness of the neck portion 132. As will be appreciated, the wall thickness of the cylindrical portion 140 is relatively greater than the wall thickness of the neck portion 132 so as to provide a wall thickness at the desired dimensions of a finished product after the preform 100 is blow-molded into the shape and size of a bottle. As such, the wall thickness throughout most of the body portion 108 will depend upon the overall size of the preform 100 and the wall thickness and overall size of the resulting container.
[0030] Figure 3 illustrates an isometric view of the finish portion 104 comprising the preform 100 illustrated in Figs. 1-2, according to the present disclosure. As described hereinabove, the finish portion 104 includes one or more threads 120 extending along sections of the circumference of the finish portion 104 and approaching the tamper evidence ledge 1 16. The threads 120 generally extend outward from the finish portion 104 such that a valley 128 is disposed between adjacent threads. The cross-sectional profile of the threads 120 is configured such that the threads advantageously engage with similar threads disposed within the cap for sealing contents within the container formed by blow-molding the preform 100. As will be recognized by those skilled in the art, the valley 128 is configured to allow passage of a thread disposed in the cap to pass between adjacent threads 120 during tightening of the cap onto the finish portion 104.
[0031] With continuing reference to Fig. 3, the finish portion 104 includes a bevel 148 disposed at the beginning of the opening 112. The bevel 148 is configured to enter into sliding contact with a sealing flange of a suitable cap so as to prevent contents from leaking out of the container formed from the preform 100. In some embodiments, the bevel 148 may compress the sealing flange to a predetermined degree, thereby forming a tight seal suitable to retain pressurized contents within the container.
[0032] As further shown in Fig. 3, the tamper evidence ledge 116 comprises a rounded upper portion 152 and a substantially flat lower portion 156. As will be appreciated, the rounded upper portion 152 facilitates passing a tamper evidence band of the cap over the tamper evidence ledge 116 during assembly of the cap onto the container. The flat lower portion 156 is configured to retain the tamper evidence band positioned below the tamper evidence ledge 116 during loosening of the cap. For example, when the cap is initially installed onto the container by a manufacturer, the tamper evidence band easily passes over the tamper evidence ledge 116 due to the rounded upper portion 152. When an end-user later loosens the cap, the flat lower portion 156 retains the tamper evidence band below the tamper evidence ledge 116, causing the tamper evidence band to break loose from the cap. Thus, the flat lower portion 156 of the tamper evidence ledge 116 and the tamper evidence band of the cap cooperate to indicate to the end-user that the cap has not been previously loosened after being installed by the manufacturer. It should be understood, however, that the tamper evidence ledge 116 is not limited to being coupled with tamper evidence bands, as described above, but rather the tamper evidence ledge 1 16 may be configured to operate with any of various devices for indicating whether or not the container has been previously opened.
[0033] As further illustrated in Figs. 5 and 6, disposed between the tamper evidence ledge 116 and the threads 120 and further between the threads of the finish portion 104 is a plurality of valleys 128 that extends circumferentially around the finish portion 104. Further, the valley 128 comprises a portion of the finish portion 104 that has a wall thickness and a diameter that may be substantially similar to the wall thickness and diameter of the neck portion 132, and in an alternative may have a wall thickness and a diameter that is smaller than the wall thickness and diameter of the cylindrical portion 140 and the neck portion 132. As such, a handling valley 160 is also utilized to enable gripping fingers to engage with and support the container during air-conveying the container along a manufacturing assembly. For example, a first pair of gripping fingers can extend into the handling valley 160 to support the container at a first station of a manufacturing line. Then, upon being conveyed to a second station, a second pair of gripping fingers can extend around the neck portion 132, below the tamper evidence ledge 116, while the first pair of gripping fingers are removed from the handling valley 160. Similarly, upon arriving at a third station, a third pair of gripping fingers can engage with the handling valley 160 while the second pair of gripping fingers are removed from the neck portion 132. Thus, the container can be transported along the manufacturing line by altematingly engaging gripping fingers with the handling valley 160 and the neck portion 132.
[0034] As will be appreciated, the handling valley 160 provides a separation between the tamper evidence ledge 1 16 and the threads 120 suitable for receiving the pair of gripping fingers, as described above. In general, the separation must be large enough to allow the gripping fingers to easily pass between the tamper evidence ledge 116 and the threads 120. As such, any of various separations, greater than the width of the gripping fingers, may be disposed between the tamper evidence ledge 116 and the threads 120, without limitation and without deviating beyond the scope of the present disclosure.
[0035] Figure 4 illustrates a cross-sectional view of a tamper evidence closure 164 suitable for being threadably engaged with the finish portion 104 of Fig. 3 to provide an indication of whether or not the closure 164 has been loosened after being installed by a manufacturer. The closure 164 includes interior threads 176 that are configured to engage with the threads 120 of the finish portion 104, as described above. As such, the interior threads 176 extend into the thread valleys 128 extending around the finish portion 104. During tightening of the closure 164 onto the finish portion 104, a plug seal 168 of the closure 164 is configured to extend into the opening 1 12 and enter into a pressed relationship with the finish portion 104 whereby contents are sealed in the interior of a container formed from the preform 100 (hereinafter “container 100”). [0036] As further shown in Fig. 4, the closure 164 includes a tamper evidence band 166 that includes a segmented cam 200 and is disposed around the perimeter of the closure 164. The tamper evidence band 166 is attached to the closure 164 by a multiplicity of thin connections 204. The segmented ca 200 generally comprises an angled lower surface 208 configured to facilitate passing the tamper evidence band 166 over the threads 120 and the rounded upper portion 152 of the tamper evidence ledge 1 16 during assembly of the closure 164 onto the container 100. A relatively flat upper surface 212 of the segmented cam 200 is configured to engage with the flat lower portion of the tamper evidence ledge 116 and thus retain the tamper evidence band 166 engaged with the tamper evidence ledge 116 during loosening of the closure 164.
[0037] Once the closure 164 is installed onto the finish portion 104 by a manufacturer and later an end-user loosens the closure 164, the segmented cam 200 presses against the flat lower portion 156 of the tamper evidence ledge 116, breaking the thin connections 204 between tamper evidence band 166 and the closure 164. The tamper evidence band 166 remains positioned on the tamper evidence ledge 116 after the closure 164 is removed from the container 100. Multiple overhang portions 216 disposed above the segmented cam 200 of the closure 164 are configured to press against the rounded upper portion 152 of the tamper evidence ledge 116. The overhang portions 216 ensure that the tamper evidence band 166, once free of the closure 164, does not fall below the tamper evidence ledge 116 and reside around the neck portion 132 of the container 100. Thus, the tamper evidence band 166 cooperates with the tamper evidence ledge 116 to indicate to the end-user whether or not the closure 164 has been previously loosened after being installed by the manufacturer.
[0038] Figure 5 illustrates a cross-sectional view of an exemplary embodiment of a finish portion 104 of a preform 100. As illustrated in the view, a plurality of threads 120 are disposed around the finish portion 104 to threadably engage the cap with the finish portion 104. The plurality of threads 120 are configured such that the threads advantageously engage with similar threads disposed within the cap for sealing contents within the container formed by blow-molding the container 100. Between the plurality of threads 120 is at least a valley 128 that extends inwardly away from the outside edge of the thread 120 to form an inner edge 180 on the outside wall 182 of the finish portion 104. The inner edge 180 of the valley 128 has a diameter that is equal and/or greater than the diameter of the handling valley 160 immediately above the tamper evidence ledge 1 16. In an exemplary embodiment, the valley 128 has a diameter that is equal to the diameter of the handling valley 160. In another preferred exemplary embodiment, the inner diameter of the valley 128 is greater than the inner diameter of the handling valley 160 between the tamper evidence ledge 1 16 and the threads 120.
[0039] The articles described herein may be made from any suitable thermoplastic material, such as polyesters including polyethylene terephthalate (PET), polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (monomers or portion thereof having another group as a side group, e.g. olefin-modified polyesters). These materials may be used alone or in conjunction with each other. More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1 ,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly( cyclohexylenedimethylene terephthalate ), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-l , poly( methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile- butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra- fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene terephthalate and ethylene isophthalate. In certain embodiments preferred materials may be virgin, pre-consumer, post-consumer, re grind, recycled, and/or combinations thereof.
[0040] In some embodiments, polypropylene also refers to clarified polypropylene. As used herein, the term“clarified polypropylene” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene. The inclusion of nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene. Alternatively, nucleation inhibitors may be added to polypropylene.
[0041] As used herein,“PET” includes, but is not limited to, modified PET as well as PET blended with other materials. One example of a modified PET is IP A-modified PET, which refers to PET in which the IP A content is preferably more than about 2% by weight, including about 2-10% IP A by weight, also including about 5-10% IP A by weight. In another modified PET, an additional comonomer, cylohexane dimethanol (CHDM) is added in significant amounts (e.g. approximately 40% by weight or more) to the PET mixture during manufacture of the resin.
[0042] Additives may be included in articles herein to provide functional properties to the resulting containers. Such additives include those providing enhanced gas barrier, UV protection, scuff resistance, impact resistance and/or chemical resistance. Preferred additives may be prepared by methods known to those of skill in the art. For example, the additives may be mixed directly with a particular material, or they may be dissolved/dispersed separately and then added to a particular material. Additives may be present in an amount up to about 40% of the material, also including up to about 30%, 20%, 10%, 5%, 2% and 1% by weight of the material. In some embodiments, additives may be present in an amount less than or equal to 1 % by weight, such ranges of materials including, but not limited to, about 0.01% to about 1%, about 0.01% to about 0.1%, and about 0.1% to about 1% by weight.
[0043] Another possible additive is microparticulate clay or graphene based materials. These materials comprise tiny, micron or sub-micron size (diameter), particles of materials which enhance the barrier and/or mechanical properties of a material by creating a more tortuous path for migrating gas molecules, such as oxygen or carbon dioxide, to take as they permeate a material and/or providing added stiffness. In some embodiments, nanoparticulate material is present in amounts ranging from 0.05 to 1% by weight, including 0.1%, 0.5% by weight and ranges encompassing these amounts. In some embodiments, nanoparticles comprise monmorillonite that may be modified with a ternary or quaternary ammonium salt. In some embodiments, such particles comprise organoclays as described in U.S. Patent No. 5,780,376, the entire disclosure of which is hereby incorporated by reference and forms part of the disclosure of this application. Other suitable organic and inorganic microparticulate clay based or nano-sized products may also be used. Both man-made and natural products are also suitable.
[0044] In some embodiments, the UV protection properties of the material may be enhanced by the addition of one or more additives. In one embodiment, the UV protection material used provides UV protection up to about 350 nm or less, preferably about 370 nm or less, more preferably about 400 nm or less. The UV protection material may be used as an additive with layers providing additional functionality or applied separately as a single layer. In some embodiments, additives providing enhanced UV protection are present in the material from about 0.05 to 20% by weight, but also including about 0.1%, 0.5%, 1%, 2%, 3%, 5%, 10%, and 15% by weight, and ranges encompassing these amounts. In some embodiments, the UV protection material is added in a form that is compatible with the other materials. In some embodiments, a preferred UV protection material comprises a polymer grafted or modified with a UV absorber that is added as a concentrate. Other preferred UV protection materials include, but are not limited to, benzotriazoles, phenothiazines, and azaphenothiazines. UV protection materials may be added during the melt phase process prior to use, such as prior to injection molding or extrusion.
[0045J While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. To the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Therefore, the present disclosure is to be understood as not limited by the specific embodiments described herein, but only by scope of the appended claims.

Claims

CLAIMS What is claimed is:
1. A finish portion of a preform for rotatably engaging with a tamper evidence closure to seal contents within an interior of a container formed from the preform, the finish portion comprising:
a cylindrical body that begins at an opening to the interior of the container and extends to and includes a tamper evidence ledge;
one or more threads configured to provide a means to fasten the tamper evidence closure to the container;
a valley disposed between the one or more threads having an inner diameter; and a handling valley disposed between the one or more threads and the tamper evidence ledge.
2. The finish portion of claim 1, wherein the tamper evidence ledge is configured to cooperate with a tamper evidence band of the closure to indicate whether or not the closure has been loosened after being installed by a manufacturer.
3. The finish portion of claim 1 , wherein the handling valley and a neck portion of the container are configured to enable gripping fingers to engage with and support the container during air-conveying the container along a manufacturing assembly.
4. The finish portion of claim 1, wherein the handling valley provides a separation between the tamper evidence ledge and the one or more threads suitable for receiving a pair of gripping fingers of an air conveyor system.
5. The finish portion of claim 1, wherein the tamper evidence closure includes a tamper evidence band disposed around the circumference of the tamper evidence closure and attached thereto by way of a multiplicity of thin connections.
6. The finish portion of claim 1, wherein the valley disposed between the one or more threads has an inner diameter that is greater than the diameter of the handling valley.
7. The finish portion of claim 1, wherein the valley disposed between the one or more threads has an inner diameter that is equal to the diameter of the handling valley.
EP20736213.8A 2019-01-03 2020-01-03 Threaded tamper evidence finish and closure for container Withdrawn EP3906198A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962788051P 2019-01-03 2019-01-03
US16/729,981 US20200216213A1 (en) 2019-01-03 2019-12-30 Threaded Tamper Evidence Finish and Closure for Container
PCT/US2020/012147 WO2020142663A1 (en) 2019-01-03 2020-01-03 Threaded tamper evidence finish and closure for container

Publications (2)

Publication Number Publication Date
EP3906198A1 true EP3906198A1 (en) 2021-11-10
EP3906198A4 EP3906198A4 (en) 2023-01-04

Family

ID=71404148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20736213.8A Withdrawn EP3906198A4 (en) 2019-01-03 2020-01-03 Threaded tamper evidence finish and closure for container

Country Status (6)

Country Link
US (1) US20200216213A1 (en)
EP (1) EP3906198A4 (en)
AU (1) AU2020204683A1 (en)
CA (1) CA3125199A1 (en)
MX (1) MX2021008124A (en)
WO (1) WO2020142663A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214410B2 (en) 2016-02-02 2022-01-04 Niagara Bottling, Llc Tamper evidence container closure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9012041D0 (en) * 1990-05-30 1990-07-18 Beeson & Sons Ltd Improvements in or relating to containers
US5097974A (en) * 1991-02-07 1992-03-24 Oleg Rozenberg Tamper-evident closures
US7637384B2 (en) * 2002-08-09 2009-12-29 Crown Packaging Technology, Inc. Tamper evident closure with locking band and container therefor
US20080116162A1 (en) * 2006-11-17 2008-05-22 Penny Michael E Container with tamper evident band
ITRM20070552A1 (en) * 2007-10-23 2009-04-24 Acqua Minerale S Benedetto S P PLASTIC CONTAINER
US9790005B2 (en) * 2010-10-15 2017-10-17 Closure Systems International Inc. Plastic closure with enhanced performance
BR112013010969A2 (en) * 2010-11-12 2016-08-30 Niagara Bottling Llc "plastic preforms and bottles or containers"
US10829260B2 (en) * 2010-11-12 2020-11-10 Niagara Bottling, Llc Preform extended finish for processing light weight ecologically beneficial bottles
JP2019503313A (en) * 2016-02-02 2019-02-07 ナイアガラ・ボトリング・リミテツド・ライアビリテイー・カンパニー Tamper evidence bridge
US10569924B2 (en) * 2016-10-21 2020-02-25 Amcor Rigid Plastics Usa, Llc Lightweight polymeric container finish

Also Published As

Publication number Publication date
AU2020204683A1 (en) 2021-07-22
CA3125199A1 (en) 2020-07-09
US20200216213A1 (en) 2020-07-09
EP3906198A4 (en) 2023-01-04
MX2021008124A (en) 2021-09-23
WO2020142663A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US11873141B2 (en) Threaded tamper evidence finish and closure for container
US11738902B2 (en) Container preform with stepped interior finish
US20230069550A1 (en) Container preform with threaded tamper evidence finish
US10329043B2 (en) Preform extended finish for processing light weight ecologically beneficial bottles
US10829260B2 (en) Preform extended finish for processing light weight ecologically beneficial bottles
US20210039823A1 (en) Pressurized contents container preform with mirror polished sealing area
EP3411206B1 (en) Preform extended finish for processing light weight ecologically beneficial bottles
US11142364B2 (en) Preform extended finish for processing light weight ecologically beneficial bottles
US20200216213A1 (en) Threaded Tamper Evidence Finish and Closure for Container
US20200031020A1 (en) Blank container preform
AU2020402630A1 (en) Tethered container closure
WO2020040888A1 (en) Preform extended finish for processing light weight ecologically beneficial bottles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B65D0039000000

Ipc: B65G0047860000

A4 Supplementary search report drawn up and despatched

Effective date: 20221202

RIC1 Information provided on ipc code assigned before grant

Ipc: B65D 1/02 20060101ALI20221128BHEP

Ipc: B29C 49/42 20060101ALI20221128BHEP

Ipc: B65G 47/86 20060101AFI20221128BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230701