EP3904766B1 - Process for the plausibility check of a gaseous flow rate in a burner and gas boiler for carrying out the process - Google Patents

Process for the plausibility check of a gaseous flow rate in a burner and gas boiler for carrying out the process Download PDF

Info

Publication number
EP3904766B1
EP3904766B1 EP21167561.6A EP21167561A EP3904766B1 EP 3904766 B1 EP3904766 B1 EP 3904766B1 EP 21167561 A EP21167561 A EP 21167561A EP 3904766 B1 EP3904766 B1 EP 3904766B1
Authority
EP
European Patent Office
Prior art keywords
time
point
gas
measured value
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21167561.6A
Other languages
German (de)
French (fr)
Other versions
EP3904766A1 (en
Inventor
Dennis Flegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3904766A1 publication Critical patent/EP3904766A1/en
Application granted granted Critical
Publication of EP3904766B1 publication Critical patent/EP3904766B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the present invention relates to a method for checking the plausibility of a gas mixture volume flow in a burner.
  • a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process, wherein the combustion process is monitored by evaluating a measured value V of at least one sensor.
  • the measured value V is related to the combustion process in such a way that the quality of the combustion of the fuel gas can be detected.
  • the invention relates to a gas boiler with a burner in which a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process.
  • burners are defined in their performance parameters via previously known setpoints for gas and fuel gas supply.
  • the present invention is therefore based on the object of proposing a method for checking the plausibility of a gas mixture volume flow in a burner or a gas boiler with a burner, in which the effort for checking the plausibility of the gas mixture volume flow is reduced and the reliability of the plausibility is increased.
  • the time t start (302) and the time t 2 (301) are set at the same time. This ensures that all relevant information is included in the measured value time series V(t).
  • pulse-like modulation in the form of a predefined, in particular stored, theoretical signal.
  • the exact course of the pulse-like modulation is thus known and can be used for the calculation without any time delay, which means that the calculation can be carried out more quickly.
  • the pulse-like modulation is a measured signal, in particular an ionization signal from the burner. This ensures a signal that can be measured reliably.
  • the time interval between a point in time t i and a point in time t i+i is set between 0.1 ms and 20 ms, in particular between 0.5 ms and 5 ms.
  • a pulse-like modulation is understood to mean a time-limited signal change of any shape, comprising a triangular pulse, a rectangular pulse and a sinusoidal oscillation.
  • the index "i" stands for a continuous number of measuring points that take place one after the other.
  • FIG. 1 a gas boiler is shown which can be operated by means of the method according to the invention.
  • a fuel gas 3 is let into a gas mixture blower 6 via a fuel gas control valve 2 and mixed there with a gas 4.
  • the fuel gas control valve 2 is secured with a fuel gas safety valve 1 in order to prevent the inflow of fuel gas 3 in the event of an undesirable operating state and to ensure operational safety.
  • the gas mixture blower 6 blows the fuel gas 3 with the gas 4 into the combustion chamber 11.
  • the combustion chamber 11 is closed on the exhaust side by means of a check valve 9, so that the combustion process is protected from external influences.
  • the combustion process can now be monitored by means of a measured value from a sensor, for example an ionization electrode 8 shown in this design variant.
  • the ionization electrode 8 provides measured values with the help of which the volume flow of the gas mixture 5, consisting of fuel gas 3 and gas 4, is checked for plausibility.
  • the control unit 10 can be used to influence, for example, the gas mixture blower 6, the gas safety valve 1 and/or the gas control valve 2.
  • the required burner output can be regulated according to a given heat requirement by changing a required amount of gas 4 with the speed-controlled gas mixture blower 6 of the control unit 10.
  • FIG. 2 a diagram is shown, based on which the method according to the invention is described.
  • a pulse-like modulation in the form of a volume flow change G is impressed on the volume flow of the fuel gas 3.
  • This takes place according to a time series G(t) 305, which is in particular a predefined and preferably a stored theoretical signal.
  • the theoretical signal can now in particular a fuel gas volume flow signal or a control signal for a servomotor, a valve or the like.
  • a measured value V is measured and a measured value time series V(t) 304 is recorded.
  • suitable electronics form a product P from this value and each value of the known time series G(t) 305.
  • a sum S i is formed from the set of these products and stored in a buffer.
  • the respective value of the measured value time series V(t) 304 is deleted after the respective calculation and/or overwritten with the subsequent value of the measured value time series V(t) 304 in order to save storage space in the electronics.
  • the time intervals between a time t i and a time t i+i are between 0.1 ms and 20 ms, in particular between 0.5 ms and 5 ms. From all the sums S i to S i+n formed, the largest sum S max is then selected and the corresponding time t i+x is determined.
  • a time difference between t start 302 and t i+x can be determined as the running time t run 303. This corresponds to the time that the pulse-like modulation by the volume flow of the gas mixture 5 (not shown here) takes.
  • Figure 1 shown) to the combustion chamber 11 (not shown here) (in Figure 1 shown). This can be compared with a setpoint value t setpoint of a theoretical volume flow from a storage tank. This comparison allows conclusions to be drawn about the combustion process and this can be monitored in order to make a gas mixture volume flow plausible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Plausibilisierung eines Gasgemisch-Volumenstroms in einem Brenner. Dabei wird in dem Brenner ein Gasgemisch, welches ein Gas und ein Brenngas umfasst, in einer Brennkammer durch einen Brennprozess verbrannt, wobei eine Überwachung des Brennprozesses durch Auswertung eines Messwertes V, wenigstens eines Sensors erfolgt. Der Messwert V steht dabei mit dem Brennprozess derart in Beziehung, dass die Qualität der Verbrennung des Brenngases erfassbar ist.The present invention relates to a method for checking the plausibility of a gas mixture volume flow in a burner. In the burner, a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process, wherein the combustion process is monitored by evaluating a measured value V of at least one sensor. The measured value V is related to the combustion process in such a way that the quality of the combustion of the fuel gas can be detected.

Des Weiteren betrifft die Erfindung eine Gastherme mit einem Brenner, in welchem ein Gasgemisch, welches ein Gas und ein Brenngas umfasst, in einer Brennkammer durch einen Brennprozess verbrannt wird.Furthermore, the invention relates to a gas boiler with a burner in which a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process.

Üblicherweise sind derartige Brenner über vorbekannte Sollwerte für Gas- und Brenngaszufuhr in ihren Leistungsparametern definiert.Typically, such burners are defined in their performance parameters via previously known setpoints for gas and fuel gas supply.

Es ist aus der WO 2012/004211 A2 bekannt, zur Erfassung eines Volumenstroms von Gas- und/oder Brenngaszufuhr sich einer Laufzeitmessung im Volumenstrom zu bedienen. Hierbei wird einem Volumenstrom eines Brenngases eine impulsartige Modulation aufgeprägt und eine Laufzeit dieser Modulation bis zu einer auf sie zurückzuführenden Wirkung im Brenner gemessen.It is from the WO 2012/004211 A2 It is known to use a transit time measurement in the volume flow to record a volume flow of gas and/or fuel gas supply. In this case, a pulse-like modulation is imposed on a volume flow of a fuel gas and a transit time of this modulation is measured until an effect attributable to it occurs in the burner.

In Bezug auf die Verwendung von solchen Verfahren ist problematisch, dass schnell ändernde Umgebungsbedingungen, wie Druckschwankungen, oder abrupte Abweichungen im Volumenstrom durch sich vor der Brennkammer, oder im Abgassystem befindlichen Rückschlagklappen nicht als solche erkannt werden können, sondern zu verfälschten Vergleichswerten führen. Zur genaueren Volumenstrombestimmung sind somit mehrere hintereinander folgende Messreihen mit anschließender Mittelwertbildung erforderlich. Darüber hinaus werden für die Auswertung Signal-Antwort-Schleifen in Mikroprozessoren mit vergleichsweise hohem Speicherbedarf und Rechenaufwand zur Verarbeitung der Messdaten benötigt.The problem with the use of such methods is that rapidly changing environmental conditions, such as pressure fluctuations or abrupt deviations in the volume flow cannot be recognized as such by check valves located in front of the combustion chamber or in the exhaust system. but lead to falsified comparison values. To determine the volume flow more precisely, several consecutive series of measurements with subsequent averaging are therefore required. In addition, signal-response loops in microprocessors with comparatively high memory requirements and computing effort are required for the evaluation to process the measurement data.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Plausibilisierung eines Gasgemisch-Volumenstroms in einem Brenner bzw. eine Gastherme mit einem Brenner vorzuschlagen, bei welchem der Aufwand für die Plausibilisierung des Gasgemisch-Volumenstroms reduziert ist und die Zuverlässigkeit der Plausibilisierung erhöht ist.The present invention is therefore based on the object of proposing a method for checking the plausibility of a gas mixture volume flow in a burner or a gas boiler with a burner, in which the effort for checking the plausibility of the gas mixture volume flow is reduced and the reliability of the plausibility is increased.

Erfindungsgemäß wird diese Aufgabe in Verbindung mit dem Oberbegriff des Patentanspruchs 1 bzw. 8 durch die kennzeichnenden Merkmale des Patentanspruchs 1 bzw. 8 gelöst. In den Unteransprüchen sind vorteilhafte und zweckmäßige Weiterbildungen angegeben.According to the invention, this object is achieved in conjunction with the preamble of patent claim 1 or 8 by the characterizing features of patent claim 1 or 8. Advantageous and expedient further developments are specified in the subclaims.

Das erfindungsgemäße Verfahren zur Plausibilisierung eines Gasgemisch-Volumenstroms in einem Brenner, in welchem ein Gasgemisch, welches ein Gas und ein Brenngas umfasst, in einer Brennkammer durch einen Brennprozess verbrannt wird, wobei eine Überwachung des Brennprozesses durch Auswertung eines Messwertes V, wenigstens eines Sensors erfolgt, wobei der Messwert V mit dem Brennprozess derart in Beziehung steht, dass die Qualität der Verbrennung des Brenngases erfassbar ist, sieht die folgenden Verfahrensschritte vor:

  • a) zunächst wird eine impulsartige Modulation auf einen Volumenstrom des Brenngases, insbesondere einer Volumenstromänderung G auf einen Volumenstrom des Brenngases, zu einem ersten Zeitpunkt tstart gemäß einer Zeitreihe G(t) aufgeprägt, wobei hierdurch ein bekanntes Signal in das System des Brenners eingespeist wird, das später wiedererkannt werden kann und wobei die impulsartige Modulation beispielsweise ein Volumenstromsignal oder ein Steuersignal für einen Stellmotor, ein Ventil oder der Gleichen sein kann;
  • b) ab einem zweiten Zeitpunkt t2 wird ein Messwert V gemessen und eine Messwert-Zeitreihe V(t) erfasst, wobei sich hierdurch die Möglichkeit ergibt, die Auswirkung des Signals, beispielsweise ein Anstieg der Energieabgabe des Verbrenners, oder eine Erhöhung eines Ionisationssignals einer Ionisationselektrode innerhalb der Brennkammer in Abhängigkeit der Zeit zu messen;
  • c) sodann wird jeweils ein Produkt P aus dem ersten Wert der Zeitreihe V(t) zum Zeitpunkt ti und einem jeden Wert der Zeitreihe G(t) berechnet und nachfolgend eine Summe Si aller berechneten Produkte gebildet;
  • d) die erste Summe Si wird in einem Zwischenspeicher gespeichert, wodurch eine spätere Nutzung dieser Daten ermöglicht wird;
  • e) es wird jeweils ein Produkt P aus dem zweiten Wert aus der Zeitreihe V(t) zu einem Zeitpunkt ti+i und einem jeden Wert der Zeitreihe G(t) berechnet und nachfolgend eine Summe Si+1 aller berechneter Produkte gebildet;
  • f) die Summe Si+1 wird ebenfalls in einem Zwischenspeicher gespeichert und somit für eine darauf folgende Datenverarbeitung vorgehalten;
  • g) es erfolgt ein Wiederholen der beiden Schritte e) und f) für die nachfolgenden Zeitpunkte ti+n bis zu einem vorgegebenen Zeitpunkt tstop;
  • h) aus den gespeicherten Summen Si bis Si+n erfolgt eine Selektion der größten Summe, des Maximums Smax, der gespeicherten Summen Si bis Si+n und ein Ermitteln des Zeitpunktes ti+x zu der Summe Smax;
  • i) aus der Zeitdifferenz zwischen tstart und ti+x wird die Laufzeit tlauf der impulsartigen Modulation durch den Volumenstrom des Gasgemisches zur Brennkammer bestimmt;
  • j.) die Laufzeit tlauf wird mit einem Sollwert tsoll bei einem theoretischen Volumenstrom aus einem Speicher verglichen und darauf aufbauend ein Rückschluss auf den aktuell vorliegenden Volumenstrom des Brenners im aktuellen Zustand gezogen.
The method according to the invention for checking the plausibility of a gas mixture volume flow in a burner in which a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process, wherein the combustion process is monitored by evaluating a measured value V of at least one sensor, wherein the measured value V is related to the combustion process in such a way that the quality of the combustion of the fuel gas can be detected, provides the following method steps:
  • a) first, a pulse-like modulation is applied to a volume flow of the fuel gas, in particular a Volume flow change G is impressed on a volume flow of the combustion gas at a first time t start according to a time series G(t), whereby a known signal is fed into the system of the burner which can be recognised later and whereby the pulse-like modulation can be, for example, a volume flow signal or a control signal for a servo motor, a valve or the like;
  • b) starting from a second point in time t 2 , a measured value V is measured and a measured value time series V(t) is recorded, whereby this makes it possible to measure the effect of the signal, for example an increase in the energy output of the combustor, or an increase in an ionisation signal of an ionisation electrode within the combustion chamber as a function of time;
  • c) then a product P is calculated from the first value of the time series V(t) at time t i and each value of the time series G(t) and subsequently a sum S i of all calculated products is formed;
  • d) the first sum S i is stored in a buffer, allowing later use of this data;
  • e) a product P is calculated from the second value from the time series V(t) at a time t i+i and each value of the time series G(t) and subsequently a sum S i+1 of all calculated products is formed;
  • f) the sum S i+1 is also stored in a buffer and thus kept available for subsequent data processing;
  • g) the two steps e) and f) are repeated for the subsequent times t i+n up to a predetermined time t stop ;
  • h) from the stored sums S i to S i+n, a selection is made of the largest sum, the maximum S max , of the stored sums S i to S i+n and a determination of the time t i+x for the sum S max ;
  • i) the running time t run of the pulse-like modulation by the volume flow of the gas mixture to the combustion chamber is determined from the time difference between t start and t i+x ;
  • j.) the running time t run is compared with a setpoint t set at a theoretical volume flow from a storage tank and, based on this, a conclusion is drawn about the current volume flow of the burner in the current state.

Durch die Anwendung dieses Verfahrens erfolgt eine Plausibilisierung des tatsächlichen Volumenstroms und es entfällt eine Speicherung des gesamten Antwortsignals V(t), da die einzelnen Messwerte unmittelbar verarbeitet, und im Nachgang für die Auswertung nicht mehr benötigt werden. Hierdurch sind die Anforderungen an eine Elektronik des Steuergeräts reduziert, da weniger Daten zur Speicherung anfallen und weniger Daten ausgewertet werden müssen.By applying this method, the actual volume flow is checked for plausibility and the entire response signal V(t) does not need to be stored, as the individual measured values are processed immediately and are no longer required for subsequent evaluation. This reduces the requirements for the control unit's electronics, as less data is required to be stored and less data needs to be evaluated.

In einer vorteilhaften Ausbildung ist vorgesehen den Zeitpunkt tstart (302) und den Zeitpunkt t2 (301) auf einen gemeinsamen Zeitpunkt zu legen. Hiermit wird sichergestellt, dass alle relevanten Informationen in der Messwert-Zeitreihe V(t) aufgenommen werden.In an advantageous embodiment, the time t start (302) and the time t 2 (301) are set at the same time. This ensures that all relevant information is included in the measured value time series V(t).

Weiterhin ist vorgesehen, den Messwert der Messwert-Zeitreihe V(t) zum Zeitpunkt ti, also V(ti), aus einem Zwischenspeicher nach der Berechnung der Summe Si zu löschen und/oder zu überschreiben. Dadurch, dass die Messwerte nicht dauerhaft gespeichert bleiben, kann wertvoller Speicherplatz der Elektronik gespart werden.Furthermore, it is intended to delete and/or overwrite the measured value of the measured value time series V(t) at time t i , i.e. V(t i ), from a buffer after calculating the sum S i . Because the measured values are not stored permanently, valuable storage space in the electronics can be saved.

Außerdem ist vorgesehen, die impulsartige Modulation in Form eines vordefinierten, insbesondere gespeicherten theoretischen Signals zu gestalten. Der genaue Verlauf der impulsartigen Modulation ist somit bekannt und kann ohne Zeitverzögerung zur Berechnung herangezogen werden, wodurch diese schneller durchgeführt werden kann.It is also planned to design the pulse-like modulation in the form of a predefined, in particular stored, theoretical signal. The exact course of the pulse-like modulation is thus known and can be used for the calculation without any time delay, which means that the calculation can be carried out more quickly.

Es ist auch vorgesehen, dass die impulsartige Modulation ein gemessenes Signal, insbesondere ein Ionisationssignal des Brenners ist. Dadurch kann ein zuverlässig zu messendes Signal gewährleistet werden.It is also intended that the pulse-like modulation is a measured signal, in particular an ionization signal from the burner. This ensures a signal that can be measured reliably.

Weiterhin ist vorgesehen, die Messwert Zeitreihe V(t) komplett in einem Speicher zu erfassen. Das Erfassen der Zeitreihe im Ganzen ermöglicht das flexible Nutzen der Daten für weitere Berechnungen.It is also planned to record the entire time series V(t) in a memory. Recording the entire time series enables the flexible use of the data for further calculations.

In einer vorteilhaften Ausbildung ist vorgesehen, das Zeitintervall zwischen einem Zeitpunkt ti und einem Zeitpunkt ti+i zwischen 0,1ms und 20ms, insbesondere zwischen 0,5ms und 5ms zu legen. Durch kurze Zeitintervalle zwischen dem Zeitpunkt Zeitpunkt ti und einem Zeitpunkt ti+i wird die Auflösung der Messwert Zeitreihe V(t) vergrößert, was eine genauere Auswertung der Daten erlaubt.In an advantageous embodiment, the time interval between a point in time t i and a point in time t i+i is set between 0.1 ms and 20 ms, in particular between 0.5 ms and 5 ms. By using short time intervals between the point in time t i and a point in time t i+i, the resolution of the measured value time series V(t) is increased, which allows a more precise evaluation of the data.

Schließlich ist vorgesehen an einer Gastherme mit einem Brenner in welchem ein Gasgemisch, welches ein Gas und ein Brenngas umfasst, in einer Brennkammer durch einen Brennprozess verbrannt wird, das Verfahren zur Plausibilisierung eines Gasgemisch-Volumenstroms nach den oben genannten Ausführungen auszuführen. Hiermit wird der Betrieb einer Gastherme mittels Plausibilisierung des Volumenstroms überwacht, wodurch die Anforderungen an die Auswerteelektronik optimiert und verringert werden.Finally, it is intended to carry out the method for checking the plausibility of a gas mixture volume flow according to the above-mentioned statements on a gas boiler with a burner in which a gas mixture comprising a gas and a fuel gas is burned in a combustion chamber by a combustion process. This monitors the operation of a gas boiler by checking the plausibility of the volume flow, which optimizes and reduces the requirements for the evaluation electronics.

Im Sinne der Erfindung ist unter einer impulsartiger Modulation eine zeitlich begrenzte Signaländerung mit beliebiger Form zu verstehen, umfassend ein Dreiecksimpuls, ein Rechteckimpuls und eine Sinusschwingung.For the purposes of the invention, a pulse-like modulation is understood to mean a time-limited signal change of any shape, comprising a triangular pulse, a rectangular pulse and a sinusoidal oscillation.

Außerdem steht im Sinne der Erfindung der Index "i" für eine fortlaufende Anzahl an Messpunkten, die nacheinander stattfinden.Furthermore, in the sense of the invention, the index "i" stands for a continuous number of measuring points that take place one after the other.

Zusätzliche Erfindungsdetails sind anhand schematischer Ausführungsbeispiele den Zeichnungen zu entnehmen.Additional details of the invention can be found in the drawings using schematic embodiments.

Hierbei zeigt:

Figur 1
eine schematische Darstellung einer Gastherme, welche mittels des erfindungsgemäßen Verfahrens betreibbar ist und
Figur 2
ein schematisches Diagramm des erfindungsgemäßen Verfahrens.
This shows:
Figure 1
a schematic representation of a gas boiler which can be operated by means of the method according to the invention and
Figure 2
a schematic diagram of the process according to the invention.

In Figur 1 ist eine Gastherme gezeigt, welche mittels des erfindungsgemäßen Verfahrens betrieben werden kann. Entsprechend eines elektronischen Verbrennungsregelverfahrens eines Steuergerätes 10 wird über ein Brenngasregelventil 2 ein Brenngas 3 in ein Gasgemisch-Gebläse 6 eingelassen und hier mit einem Gas 4 gemischt. Das Brenngasregelventil 2 ist mit einem Brenngassicherheitsventil 1 gesichert, um den Zufluss von Brenngas 3 im Falle eines ungewollten Betriebszustandes zu unterbinden und die Betriebssicherheit zu gewährleisten. Mittels des Gasgemisch-Gebläses 6 wird das Brenngas 3 mit dem Gas 4 in die Brennkammer 11 eingeblasen. Hierin befindet sich der Brenner 7, welcher das Gasgemisch 5 aus Gas 4 und Brenngas 3 in einem Brennprozess verbrennt. Die Brennkammer 11 ist abgasseitig mittels einer Rückschlagklappe 9 verschlossen, sodass der Brennprozess vor externen Einflüssen geschützt ist. Der Brennprozess kann nun mittels eines Messwerts eines Sensors, beispielsweise einer in dieser Ausführungsvariante gezeigten Ionisationselektrode 8, überwacht werden. Die Ionisationselektrode 8 liefert Messwerte, mit deren Hilfe der Volumenstrom des Gasgemischs 5, bestehend aus Brenngas 3 und Gas 4, plausibilisiert wird. Hierdurch kann in Folge davon über das Steuergerät 10 Einfluss, beispielsweise auf das Gasgemisch-Gebläse 6, das Gassicherheitsventil 1 und/oder das Gasregelventil 2 genommen werden. Außerdem kann entsprechend eines gegebenen Wärmebedarfs, die benötigte Brennerleistung geregelt werden, indem eine erforderliche Menge an Gas 4 mit dem drehzahlgeregelten Gasgemisch-Gebläse 6 vom Steuergerät 10 verändert wird.In Figure 1 a gas boiler is shown which can be operated by means of the method according to the invention. According to an electronic combustion control method of a Control unit 10, a fuel gas 3 is let into a gas mixture blower 6 via a fuel gas control valve 2 and mixed there with a gas 4. The fuel gas control valve 2 is secured with a fuel gas safety valve 1 in order to prevent the inflow of fuel gas 3 in the event of an undesirable operating state and to ensure operational safety. The gas mixture blower 6 blows the fuel gas 3 with the gas 4 into the combustion chamber 11. This contains the burner 7, which burns the gas mixture 5 of gas 4 and fuel gas 3 in a combustion process. The combustion chamber 11 is closed on the exhaust side by means of a check valve 9, so that the combustion process is protected from external influences. The combustion process can now be monitored by means of a measured value from a sensor, for example an ionization electrode 8 shown in this design variant. The ionization electrode 8 provides measured values with the help of which the volume flow of the gas mixture 5, consisting of fuel gas 3 and gas 4, is checked for plausibility. As a result, the control unit 10 can be used to influence, for example, the gas mixture blower 6, the gas safety valve 1 and/or the gas control valve 2. In addition, the required burner output can be regulated according to a given heat requirement by changing a required amount of gas 4 with the speed-controlled gas mixture blower 6 of the control unit 10.

In Figur 2 ist ein Diagramm gezeigt anhand dessen das erfindungsgemäße Verfahren beschrieben wird. Dem Volumenstrom des Brenngases 3 wird zu einem ersten Zeitpunkt tstart 302 eine impulsartige Modulation in Form einer Volumenstromänderung G aufgeprägt. Diese erfolgt gemäß einer Zeitreihe G(t) 305, die insbesondere ein vordefiniertes und bevorzugt ein gespeichertes theoretisches Signal ist. Das theoretische Signal kann nun insbesondere ein Brenngas-Volumenstromsignal oder ein Steuersignal für einen Stellmotor, ein Ventil oder dergleichen sein. Ab einem zweiten Zeitpunkt t2 301, der bevorzugt zeitgleich mit tstart 302 ist, wird durch wenigstens einen Sensor, beispielsweise der in Figur 1 dargestellten Ionisationselektrode 8 (hier nicht dargestellt), ein Messwert V gemessen und eine Messwert-Zeitreihe V(t) 304 erfasst. Sobald der erste Wert der Messwert-Zeitreihe V(t) 304 vorliegt, wird durch geeignete Elektronik ein Produkt P aus diesem Wert und einem jeden Wert der bekannten Zeitreihe G(t) 305 gebildet. Aus der Menge dieser Produkte wird eine Summe Si gebildet, welche in einem Zwischenspeicher gespeichert wird. Bevorzugt wird der jeweilige Wert der Messwert-Zeitreihe V(t) 304 im Anschluss an die jeweilige Berechnung gelöscht und/oder mit dem darauffolgenden Wert der Messwert-Zeitreihe V(t) 304 überschrieben, um Speicherplatz der Elektronik zu sparen. Diese Schritte geschehen nun für jeden einzelnen Wert der Messwert-Zeitreihe V(t) 304 bis zu einem Zeitpunkt tstop 306. Bevorzugt sind die Zeitintervalle zwischen einem Zeitpunkt ti und einem Zeitpunkt ti+i zwischen 0,1ms und 20ms, insbesondere zwischen 0,5ms und 5ms lang. Aus all den gebildeten Summen Si bis Si+n wird daraufhin die größte Summe Smax selektiert und der hierzu entsprechende Zeitpunkt ti+x ermittelt. Hieraus kann eine Zeitdifferenz zwischen tstart 302 und ti+x als Laufzeit tlauf 303 bestimmt werden. Diese entspricht der Zeit, welche die impulsartige Modulation durch den Volumenstrom des hier nicht dargestellten Gasgemisches 5 (in Figur 1 dargestellt) zur hier nicht dargestellten Brennkammer 11 (in Figur 1 dargestellt) benötigt. Diese kann mit einem Sollwert tsoll eines theoretischen Volumenstrom aus einem Speicher verglichen werden kann. Durch diesen Vergleich können Rückschlüsse auf den Brennprozess gezogen und dieser Überwacht werden, um einen Gasgemisch-Volumenstrom zu plausibilisieren.In Figure 2 a diagram is shown, based on which the method according to the invention is described. At a first time t start 302, a pulse-like modulation in the form of a volume flow change G is impressed on the volume flow of the fuel gas 3. This takes place according to a time series G(t) 305, which is in particular a predefined and preferably a stored theoretical signal. The theoretical signal can now in particular a fuel gas volume flow signal or a control signal for a servomotor, a valve or the like. From a second time t 2 301, which is preferably the same time as t start 302, at least one sensor, for example the one in Figure 1 shown ionization electrode 8 (not shown here), a measured value V is measured and a measured value time series V(t) 304 is recorded. As soon as the first value of the measured value time series V(t) 304 is available, suitable electronics form a product P from this value and each value of the known time series G(t) 305. A sum S i is formed from the set of these products and stored in a buffer. Preferably, the respective value of the measured value time series V(t) 304 is deleted after the respective calculation and/or overwritten with the subsequent value of the measured value time series V(t) 304 in order to save storage space in the electronics. These steps now take place for each individual value of the measured value time series V(t) 304 up to a time t stop 306. Preferably, the time intervals between a time t i and a time t i+i are between 0.1 ms and 20 ms, in particular between 0.5 ms and 5 ms. From all the sums S i to S i+n formed, the largest sum S max is then selected and the corresponding time t i+x is determined. From this, a time difference between t start 302 and t i+x can be determined as the running time t run 303. This corresponds to the time that the pulse-like modulation by the volume flow of the gas mixture 5 (not shown here) takes. Figure 1 shown) to the combustion chamber 11 (not shown here) (in Figure 1 shown). This can be compared with a setpoint value t setpoint of a theoretical volume flow from a storage tank. This comparison allows conclusions to be drawn about the combustion process and this can be monitored in order to make a gas mixture volume flow plausible.

Bezugszeichenliste:List of reference symbols:

11
BrenngassicherheitsventilFuel gas safety valve
22
BrenngasregelventilFuel gas control valve
33
BrenngasFuel gas
44
Gasgas
55
GasgemischGas mixture
66
Gasgemisch-GebläseGas mixture blower
77
Brennerburner
88th
IonisationselektrodeIonization electrode
99
RückschlagklappeCheck valve
1010
SteuergerätControl unit
1111
BrennkammerCombustion chamber
301301
Zeitpunkt t2 Time t 2
302302
Startzeit tstart Start time t start
303303
Laufzeit tlauf Running time t run
304304
Messwert-Zeitreihe V(t)Measured value time series V(t)
305305
Zeitreihe G(t)Time series G(t)
306306
Zeitpunkt tstop Time t stop

Claims (8)

  1. Method for checking plausibility of a gas mixture volumetric flow rate in a burner in which a gas mixture (5) comprising a gas (4) and a fuel gas (3) is burned by a combustion process in a combustion chamber (11), wherein the combustion process is monitored by evaluation of a measured value V, from at least one sensor, wherein the measured value V is related to the combustion process in such a way that the quality of the combustion of the fuel gas is detectable, wherein the method comprises the following method steps:
    a. imposing a pulse-like modulation on a volumetric flow rate of the fuel gas (3), in particular a volumetric flow rate change G on a volumetric flow rate of the fuel gas (3), at a first point in time tstart (302) in accordance with a time series G(t) (305);
    b. measuring the measured value V starting from a second point in time t2 (301) and capturing a measured value time series V(t) (304);
    c. calculating in each case a product P of the first value from the measured value time series V(t) (304) at a point in time ti and each value of the time series G(t) (305) and subsequently forming a sum Si of all the calculated products;
    d. storing the first sum Si in a buffer memory;
    e. calculating in each case a product P of the second value from the measured value time series V(t) (304) at a point in time ti+1 and each value of the time series G(t) (305) and subsequently forming a sum Si+1 of all the calculated products;
    f. storing the first sum Si+1 in a buffer memory;
    g. repeating the two steps e. and f. for the points in time ti+n until a predefined point in time tstop (306);
    h. selecting the maximum Smax of the stored sums Si to Si+n and ascertaining the point in time ti+x with respect to the sum Smax;
    i. determining the time difference between tstart (302) and ti+x as a delay time tlauf (303) of the pulse-like modulation through the volumetric flow rate of the gas mixture to the combustion chamber;
    j. comparing the delay time tlauf (303) with a target value tsoll for a theoretical volumetric flow rate from a memory and deducing the given volumetric flow rate.
  2. Method according to Claim 1, characterized in that the point in time tstart (302) and the point in time t2 (301) are a common point in time.
  3. Method according to Claim 1 or 2, characterized in that, after the calculation of the sum Si, the measured value of the measured value time series V(t) at the point in time ti, i.e. V(ti), is erased from a buffer memory and/or overwritten.
  4. Method according to any of the preceding claims, characterized in that the pulse-like modulation is a predefined, in particular stored theoretical signal.
  5. Method according to any of the preceding Claims 1 to 3, characterized in that the pulse-like modulation is a measured signal, in particular an ionization signal of the burner (7).
  6. Method according to any of the preceding claims, characterized in that the measured value time series V(t) (304) is captured completely in a memory.
  7. Method according to any of the preceding claims, characterized in that the time interval between a point in time ti and a point in time ti+i is between 0.1 ms and 20 ms, in particular between 0.5 ms and 5 ms.
  8. Gas boiler with a burner, the gas boiler comprising a control device (10), the burner being designed to burn a gas mixture (5) comprising a gas (4) and a fuel gas (3) by a combustion process in a combustion chamber (11), characterized in that the control device (10) is designed to carry out a method for checking plausibility of a gas mixture volumetric flow rate according to any of the preceding claims.
EP21167561.6A 2020-04-29 2021-04-09 Process for the plausibility check of a gaseous flow rate in a burner and gas boiler for carrying out the process Active EP3904766B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020111637.3A DE102020111637A1 (en) 2020-04-29 2020-04-29 Cross travel time

Publications (2)

Publication Number Publication Date
EP3904766A1 EP3904766A1 (en) 2021-11-03
EP3904766B1 true EP3904766B1 (en) 2024-05-08

Family

ID=75441747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21167561.6A Active EP3904766B1 (en) 2020-04-29 2021-04-09 Process for the plausibility check of a gaseous flow rate in a burner and gas boiler for carrying out the process

Country Status (2)

Country Link
EP (1) EP3904766B1 (en)
DE (1) DE102020111637A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639598A (en) 1985-05-17 1987-01-27 Santa Barbara Research Center Fire sensor cross-correlator circuit and method
DE102010026389B4 (en) 2010-07-07 2012-08-09 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
DE102012006767B4 (en) * 2012-04-03 2020-04-16 Audi Ag Method for operating an internal combustion engine and corresponding internal combustion engine
US10509124B2 (en) * 2015-04-09 2019-12-17 Siemens Energy, Inc. Method for estimating time of flight for acoustic pyrometry
EP3539109B8 (en) * 2016-11-11 2024-02-14 Carrier Corporation High sensitivity fiber optic based detection

Also Published As

Publication number Publication date
EP3904766A1 (en) 2021-11-03
DE102020111637A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3111061B1 (en) Method for determining the aging of an oxidation catalyst in an exhaust gas aftertreatment system of an internal combustion engine, method for detecting ash in a particle filter of an exhaust gas aftertreatment system, control device, and internal combustion engine
WO2017194283A1 (en) Method for fault diagnosis in an internal combustion engine
DE102018206451A1 (en) Method for operating an internal combustion engine with 3-way catalytic converter and lambda control via NOx emission detection
WO2018001675A1 (en) Method for determining a correction value for metering fuel for a fuel injector
DE19961159A1 (en) Method for determining a loading state of a particle filter of an internal combustion engine
DE102017205361A1 (en) Method and computer program product for diagnosing a particulate filter
DE102019206682A1 (en) Method for operating a particle filter in an exhaust gas aftertreatment system of an internal combustion engine
DE102016219536B4 (en) Method and device for monitoring a pressure sensor in a hydraulic system of a motor vehicle
EP3904766B1 (en) Process for the plausibility check of a gaseous flow rate in a burner and gas boiler for carrying out the process
DE102012010177A1 (en) Diagnostic system for determining wear of spark plug in internal combustion engine of motor car, has evaluation unit calculating overall wear of spark plug, where calculation of total wear is carried out with respect to operating parameters
EP2184473A2 (en) Method and device for testing a pressure sensor of a fuel injection device
DE19857971A1 (en) Controlling an IC engine esp. for IC engine with common rail fuel injection system so that at least one pump delivers fuel in storage
EP3740682B1 (en) Method of self-diagnosing the mechanical or hydraulic status of a centrifugal pump
DE102016214464A1 (en) Method for determining a correction value for a fuel metering of a fuel injector
EP1664508B1 (en) Method for quantifying a pre-injection in a fuel injection system of a combustion engine, and device
EP2019195B1 (en) Method for determining the amount of fuel injected
DE102018205542A1 (en) Method for measuring and operating an electric fluid pump
DE102008004218A1 (en) Dynamic soot emission determining method for internal-combustion engine i.e. diesel engine, involves forming stationary model, determining stationary soot emission and determining dynamic soot emission
DE10232164B3 (en) Heating device for automobile, ship or aircraft has flame monitor coupled to control device for evaluating flame monitor resistance value
EP3290681B1 (en) Method for operating an exhaust gas recycle system
DE102016200991A1 (en) Method for fault diagnosis for the pressure sensor and common rail fuel injection control device
DE102014220846A1 (en) Method and device for self-diagnosis of a arranged in the exhaust line of an internal combustion engine particle sensor
DE102019122779A1 (en) Model-based monitoring of machine components
EP0579967B1 (en) Method and apparatus to establish the fuel quantity fed to an internal combustion engine
DE102020100968B4 (en) Method and device for evaluating measured values determined during practical driving of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220421

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230504

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003636

Country of ref document: DE