EP3902648A1 - Methods and systems for welding copper and other metals using blue lasers - Google Patents
Methods and systems for welding copper and other metals using blue lasersInfo
- Publication number
- EP3902648A1 EP3902648A1 EP19907042.6A EP19907042A EP3902648A1 EP 3902648 A1 EP3902648 A1 EP 3902648A1 EP 19907042 A EP19907042 A EP 19907042A EP 3902648 A1 EP3902648 A1 EP 3902648A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- welding
- weld
- laser beam
- laser
- pieces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 273
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 206
- 239000010949 copper Substances 0.000 title claims abstract description 190
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 190
- 238000000034 method Methods 0.000 title claims description 188
- 229910052751 metal Inorganic materials 0.000 title claims description 62
- 239000002184 metal Substances 0.000 title claims description 62
- 150000002739 metals Chemical class 0.000 title claims description 29
- 239000000463 material Substances 0.000 claims abstract description 144
- 230000008569 process Effects 0.000 claims description 90
- 239000011888 foil Substances 0.000 claims description 66
- 239000007789 gas Substances 0.000 claims description 56
- 239000011324 bead Substances 0.000 claims description 37
- 239000010935 stainless steel Substances 0.000 claims description 27
- 229910001220 stainless steel Inorganic materials 0.000 claims description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 230000003647 oxidation Effects 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 12
- 239000003570 air Substances 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 10
- 229910052734 helium Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 abstract 1
- 230000035515 penetration Effects 0.000 description 50
- 238000012360 testing method Methods 0.000 description 30
- 238000010521 absorption reaction Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- 239000011889 copper foil Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 239000010953 base metal Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000004880 explosion Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- -1 copper metals Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 239000010963 304 stainless steel Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000004021 metal welding Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/244—Overlap seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present inventions relate to laser processing of materials, and in particular laser joining of copper materials using laser beams having wavelengths from about 350 nm to about 500 nm, and greater.
- the defects are a direct result of the process itself, as the laser attempts to weld the copper, it initially heats it up to the melting point and then it rapidly transitions into vaporizing the copper. Once the copper vaporizes the keyhole is formed and the laser coupling rises rapidly from the initial 5% to 100%, this transition occurs so rapidly that the amount of heat coupled in rapidly exceeds the amount of heat needed to weld the parts, resulting in the micro explosion described.
- copper based material unless expressly provided otherwise, should be given it broadest possible meaning and would include copper, copper materials, copper metal, materials electroplated with copper, metallic materials that contain from at least about 10% copper by weight to 100% copper, metals and alloys containing from at least about 10% copper by weight to 100% copper by weight, metals and alloys containing from at least about 20% copper by weight to 100% copper by weight, metals and alloys containing from at least about 10% copper by weight to 100% copper by weight, metals and alloys containing from at least about 50% copper by weight to 100% copper by weight, metals and alloys containing from at least about 70% copper by weight to 100% copper by weight, and metals and alloys containing from at least about 90% copper by weight to 100% copper by weight.
- blue laser beams should be given their broadest meaning, and in general refer to systems that provide laser beams, laser beams, laser sources, e.g., lasers and diodes lasers, that provide, e.g., propagate, a laser beam, or light having a wavelength from about 400 nm to about 500 nm.
- Typical blue lasers have wavelengths in the range of about 405-495 nm.
- Blue lasers include wavelengths of 450 nm, of about 450 nm, of 460 nm, of about 470 nm.
- Blue lasers can have bandwidths of from about 10 mm (picometer) to about 10 nm, about 5 nm, about 10 nm and about 20 nm, as well as greater and smaller values.
- Green laser beams should be given their broadest meaning, and in general refer to systems that provide laser beams, laser beams, laser sources, e.g., lasers and diodes lasers, that provide, e.g., propagate, a laser beam, or light having a wavelength from about 500 nm to about 575 nm.
- Green lasers include wavelengths of 515 nm, of about 515 nm, of 532 nm, about 532 nm, of 550 nm, and of about 550 nm.
- Green lasers can have bandwidths of from about 10 mm to 10 nm, about 5 nm, about 10 nm and about 20 nm, as well as greater and smaller values.
- a system for and a method of laser welding a plurality of cooper foils together including the steps of: positioning a plurality of pieces of cooper foil in a welding stand; wherein the foil contains at least about 50% cooper; exerting a clamping force on the plurality of pieces of cooper foil to clamp the pieces of foil together in the welding stand; directing a blue laser beam along a laser beam path at the plurality of pieces of cooper foil, wherein the laser beam has the following properties: (i) at least 500 Watts of power; (ii) a beam parameter product of about 44 mm mrad and less; (iii) a spot size of about 400 mm and less; (iv) an average intensity of at least of about 400 kW/cm 2 ; (v) a peak intensity of at least about 800 kW/cm 2 ; and the blue laser beam lap welding the plurality of pieces of cooper foil together at a welding speed; and, providing a non-oxidizing beam clearing gas in a space along the laser
- the beam is a CW beam; wherein the beam is a pulsed beam; wherein the beam has a wavelength of about 450 nm; wherein the optical element is selected from the group consisting of a lens, a fiber face, and a window; wherein the clearing gas is selected from the group consisting of Argon, Argon-CO 2 ,, Air, Helium and Nitrogen; wherein the laser beam is not wobbled; thereby providing a wobble free laser welding process; wherein the plurality of pieces of cooper foil has from 10 to 50 pieces of foil; wherein a cooper foil piece has a thickness of from about 80 mm to 500 mm; wherein each of the plurality of pieces of cooper foil has a thickness of from about 80 mm to 500 mm; and, wherein the welding speed is at least 10 m/min.
- a system for and a method of laser welding a plurality of metal pieces together including: positioning a plurality of pieces of a metal in a welding stand; exerting a clamping force on the plurality of pieces of metal to clamp the pieces of metal together in the welding stand; directing a blue laser beam along a laser beam path at the plurality of pieces of metal, wherein the laser beam has the following properties: (i) at least 500 Watts of power; (ii) a beam parameter product of about 44 mm mrad and less; (iii) a spot size of about 400 mm or less; (iv) an average intensity at least of about 400 kW/cm 2 ; (v) a peak intensity of at least about 800 kW/cm 2 ; and, the blue laser beam welding the plurality of pieces of metal together at a welding speed; and, providing a non-oxidizing beam clearing gas in a space along the laser beam path where the laser beam travels in free space from an optical element to the pluralit
- the welding speed, clamping force, and a flow rate of the non-oxidizing clearing glass are predetermined to thereby provide a weld having no visible splatter and no visible porosity.
- welds, laser systems and welding methods have one or more of the following features: wherein the welding stand has an air gap below the pieces of metal; wherein the metal is selected from the group consisting of aluminum, Stainless Steel, copper, aluminum based metals, Stainless Steel based metals, copper based metals, aluminum alloys, Stainless Steel alloys and cooper alloys; wherein the laser beam has a wavelength of about 450 nm; wherein the laser beam is not wobbled, thereby providing a wobble free laser welding process; and, wherein the weld is selected from the group of welds consisting of a lap weld, a butt weld, bead on plate weld and a conduction mode weld.
- a system for and a method of laser welding a plurality of cooper foils together including: positioning a plurality of pieces of cooper foil in a welding stand; wherein the foil contains at least about 50% cooper; wherein the cooper foil has a thickness of from about 80 mm to 500 mm; exerting a clamping force on the plurality of pieces of cooper foil to clamp the pieces of foil together in the welding stand; directing a blue laser beam along a laser beam path at the plurality of pieces of cooper foil, wherein the laser beam has the following properties: (i) at least 600 Watts of power; (ii) a beam parameter product of about 44 mm mrad and less; (iii) a spot size of about 200 mm to about 400 mm; (iv) an average intensity at least of about 2.1 MW/cm 2 ; (v) a peak intensity approaching at least about 4.5 MW/cm 2 ; the blue laser beam welding the plurality of pieces of metal together at a welding speed of
- a method of forming a perfect weld in copper based materials including: placing a work piece in a laser system; wherein the work piece includes placing a first piece of copper based material in contact with a second piece of copper material; directing a blue laser beam at the work piece, whereby a weld is formed between the first piece of copper based material and the second piece of copper based material; wherein the weld includes a HAZ and a resolidification zone; wherein a microstructure of the copper based material, the HAZ and the resolidification zone are identical.
- welds, systems and methods having one or more of the following systems; wherein the identical microstructures shows no discernable difference in the weld that would indicate a weakness in the weld; wherein the identical microstructure includes crystal growth regions of similar size; wherein the weld is formed by conduction mode welding; wherein the weld is formed by keyhole mode welding ; wherein the first and second pieces have a thickness of from about 10 mm to about 500 mm; wherein the first piece includes a plurality of layers of copper foil; wherein the first piece is copper metal; wherein the first piece is a copper alloy, having from about 10 to about 95 weight percent copper; wherein the laser beam is directed to the work piece as a focused spot having power density is less than 800 kW/cm 2 ;
- the laser beam is directed to the work piece as a focused spot having power density of is less than 500 kW/cm 2 ; wherein the laser beam is directed to the work piece as a focused spot having power density from about 100 kW/cm 2 to about 800 kW/cm 2 ; wherein the laser beam is directed to the work piece as a focused spot having power density is greater than 100 kW/cm 2 ; wherein the laser beam has a power of less than 500 W; wherein the laser beam has a power of less than 275 W; wherein the laser beam has a power of less than 150 W; wherein the laser beam has a power in the range of 150 W to about 750 W; wherein the laser beam has a power in the range of about 200W to about 500 W; wherein the laser beam is directed to the work piece as a focused spot having spot size of from about 50 mm to about 250 mm; wherein the laser beam has a wavelength from about 405 nm to about 500 nm; wherein the weld is formed is s
- a method of forming a perfect weld in copper based materials including: placing a work piece in a laser system; wherein the work piece includes placing a first piece of copper based material in contact with a second piece of copper material; directing a blue laser beam at the work piece, whereby a weld is formed between the first piece of copper based material and the second piece of copper based material; wherein the weld includes a HAZ and a resolidification zone; wherein a range of hardness for the HAZ is within a range of hardness for the copper based material.
- a microstructure of the copper based material, the HAZ and the resolidification zone are identical; wherein the identical microstructures show no discernable difference in the weld that would indicate a weakness in the weld; wherein the identical
- microstructures shows no discernable difference in the weld that would indicate a weakness in the weld; and wherein the identical microstructure includes crystal growth regions of similar size.
- a method of forming a perfect weld in copper based materials including: placing a work piece in a laser system; wherein the work piece includes placing a first piece of copper based material in contact with a second piece of copper material; directing a blue laser beam at the work piece, whereby a weld is formed between the first piece of copper based material and the second piece of copper based material; wherein the weld includes a HAZ and a resolidification zone; wherein a range of hardness for the resolidification zone is within a range of hardness for the cooper based material.
- welding copper with a blue laser with a wavelength range of 405 nm to 500 nm, and the welds and products that are produced by this welding.
- these welds, methods and systems that include one or more of the following features: wherein welding copper in a conduction mode; welding copper in a conduction mode with no vaporization of the weld puddle during the welding process; welding copper in a conduction mode producing a micro structure similar to the base metal with crystal growth regions that are similar in size to the base material; welding copper as in a conduction mode producing a micro-structure similar to the base metal in the Heat Affected Zone (HAZ); welding copper in a conduction mode producing a micro-structure similar to the base metal in the weld bead; welding copper in a conduction mode producing a hardness similar to the base metal in the Heat Affect Zone; welding copper in a conduction mode producing a harness similar to the base metal in the weld bead; welding copper where the micro structure in the weld is different from the base metal; welding copper where the micro structure in the HAZ is similar to the base metal.
- HAZ Heat Affected Zone
- welding copper with air welding copper with He assist gas; welding copper with N2 assist gas; and welding copper with an assist gas.
- the laser power is modulated from 1 Hz to 1 kHz; the laser power is modulated from 1 kHz to 50 kHz; using an elongated blue laser spot to keep the keyhole open; using a robot to rapidly move the spot in a circular, oscillatory or oblong oscillation motion; using a mirror mounted on a galvanometer to oscillate the spot parallel to the weld direction; using a mirror mounted on a
- a method of forming a keyhole weld in copper based materials including: placing a work piece in a laser system; wherein the work piece comprises placing a first piece of copper based material in contact with a second piece of copper material; and, directing a blue laser beam at the work piece, whereby a keyhole mode weld is formed between the first piece of copper based material and the second piece of copper based material; wherein the weld comprises a HAZ and a resolidification zone.
- these welds, methods and systems that include one or more of the following features: wherein the laser power is less than 1000 kW for a keyhole weld; wherein the laser power is less than 500 kW for a keyhole weld; wherein the laser power is less than 300 kW for a keyhole weld; comprising elongating the laser beam to suppress spatter from the keyhole; comprising modulating the laser power to suppress spatter from the keyhole; comprising rapidly scanning the beam to suppress spatter during the keyhole mode of welding; comprising rapidly decreasing the laser power after the weld is initiated either automatically or manually; comprising using a low atmospheric pressure to reduce entrapped gases and spatter during the welding process; comprising applying a shielding gas; comprising applying a shielding gas selected from the group consisting of He, Ar, N2 ; comprising applying a shielding gas mixture selected from the group consisting of Ar-H 2 , N2, N2-H 2 ; and, comprising applying a
- FIG. 1 is a photograph of an embodiment of a spatter-free conduction mode weld of copper in accordance wit the present inventions.
- FIG. 2 is a photograph of an embodiment of a keyhole weld on copper in accordance with the present inventions.
- FIG. 3 is a chart showing penetration depth vs speed for an
- FIG. 4 is a chart showing penetration depth vs speed for an
- FIG. 5 is a chart showing penetration depth vs speed for an
- FIG. 6 is a chart showing penetration depth at several different speeds for embodiments of the present inventions.
- FIG. 7 is an annotated photograph showing an embodiment of a conduction mode weld on a 70 mm thick copper foil in accordance with the present inventions.
- FIG. 8 is an annotated photograph of an embodiment of a keyhole mode weld cross section in accordance with the present inventions.
- FIG. 9 is the absorption curve for a variety of metals and shows the difference in the absorption between and IR laser a visible laser.
- FIG. 10 is a schematic view of an embodiment of a conduction mode weld propagation into the material in accordance with the present inventions.
- FIG. 11 is a schematic view of an embodiment of a keyhole weld propagation into the material in accordance with the present inventions.
- FIG. 12 is a perspective view of an embodiment of a part holder for laser welding in accordance with the present inventions.
- FIG. 12A is a cross sectional view of the part holder of FIG. 12.
- FIG. 13 is a perspective view of an embodiment of a part holder for to hold thin parts to make a lap weld in accordance with the present inventions.
- FIG. 13A is a cross sectional view of the part holder of FIG. 13A.
- FIG. 14 is a photograph of an embodiment of a bead on plate for a conduction mode weld in accordance with the present inventions.
- FIG. 15 is a photograph of an embodiment of a stack of foils welded with the conduction welding mode in accordance with the present inventions.
- FIG. 16 is a photograph of an embodiment of a bead on plate for a keyhole mode weld in accordance with the present inventions.
- FIG. 17 is photograph of an embodiment of a stack of 40 copper foils welded with the keyhole mode in accordance with the present inventions.
- FIG. 18 is a graph of the penetration depth in copper for embodiments of various power levels and various speeds in accordance with the present inventions.
- FIG. 19 is a schematic of an embodiment of a 150 Watt blue laser system for use in performing embodiments of the present laser welding methods in accordance with the present inventions.
- FIG. 20 is a schematic ray trace diagram of an embodiment of using two 150 Watt blue laser systems to make a 300 Watt blue laser system in accordance with the present inventions.
- FIG. 21 is a schematic ray trace diagram of an embodiment of using four 150 Watt blue laser systems to make an 800 Watt blue laser system in accordance with the present inventions.
- FIG. 22 is a graph of an embodiment of the radius of the beam caustic (microns (mm)) vs displacement from focus (mm) using a 100 mm focal length lens at 600 W for a circular aperture containing 95% of the encircled power in accordance with the present inventions.
- FIG. 23 is a graph of an embodiment of Coper 110 bead on plate (BOP) testing, showing penetration (mm) vs. speed m/min in accordance with the present inventions.
- FIG. 24 is a graph of an embodiment of Coper 110 butt weld testing, showing penetration (mm) vs. speed m/min in accordance with the present inventions.
- FIG. 25 is a graph of an embodiment of a conduction mode weld, showing the effect of the plate thickness on the penetration depth, in accordance with the present inventions.
- FIG. 26 is a graph of an embodiment of aluminum 1100 BOP testing showing penetration (mm) vs. speed m/min in accordance with the present inventions.
- FIG. 27 is a graph of an embodiment of aluminum 110 butt weld testing, showing penetration (mm) vs. speed m/min in accordance with the present inventions.
- FIG. 28 is a graph of an embodiment of Stainless Steel 304 BOP testing showing penetration (mm) vs. speed m/min in accordance with the present inventions.
- FIG. 29 is a photograph of an embodiment of a longitudinal cross section of an embodiment of a keyhole welded copper 110 plate showing the start of the full penetration region.
- FIG. 30 is a photograph of an embodiment of a 1.016 mm thick copper welded at 1.1 m/min with minimal porosity and spatter in accordance with the present inventions.
- FIG. 31 is a graph showing penetration depth (mm) vs. speed (m/min) of an embodiment of a BOP test for copper 110 welded with 600 Watts and a 200 mm spot size in accordance with the present inventions.
- FIG. 32 is photograph of an embodiment of a keyhole lap weld of four sheets of Stainless Steel 304 in accordance with the present inventions.
- FIG. 33 is a graph of an embodiment of lap welding tests on stacks of copper 110 foils in accordance with the present inventios.
- FIG. 34 is a photograph of an embodiment of a stack of 40, 10 mm thick copper 110 foils welded with a 500 Watt, 400 mm spot blue laser in accordance with the present inventions. DESCRIPTION OF THE PREFERRED EMBODIMENTS
- the present inventions relate to lasers, laser beams, systems and methods for welding metals, and in particular aluminum, stainless steel, copper, aluminum based metals, Stainless Steel based metals, copper based metals and alloys of these.
- the present inventions further relate to the method for the application of the laser beam, the beam size, the beam power, the method for holding the parts and the method for introducing the shielding gas to assist in the welding process, including to prevent oxidation of the part and managing of the plume to prevent plume interference with the laser beam.
- the present inventions provide high quality welds, high welding speeds, and both for copper based materials in many areas, including for electronic components, and further including batteries. In an embodiment, the present inventions provide high quality welds, high welding speeds, and both for copper based materials for automotive components, including automotive electronic components, including batteries.
- the present inventions provide high quality welds, high welding speeds, and both for stainless steel based materials in many areas, including for electronic components, and further including batteries. In an embodiment, the present inventions provide high quality welds, high welding speeds, and both for stainless steel based materials for automotive components, including automotive electronic components, including batteries.
- the present inventions provide high quality welds, high welding speeds, and both for aluminum based materials in many areas, including for electronic components, and further including batteries. In an embodiment, the present inventions provide high quality welds, high welding speeds, and both for aluminum based materials for automotive components, including automotive electronic components, including batteries.
- a high power blue laser source (e.g., -450 nm) solves the problems with prior copper welding techniques.
- the blue laser source provides a blue laser beam, at this wavelength the absorption of copper is at -65% enabling efficient coupling of the laser power into the material at all power levels.
- This system and method provides stable welding in many welding techniques, including the conduction and keyhole welding modes. This system and method minimizes, reduces and preferably eliminates, vaporization, spatter, micro explosions, and combinations and variations of these.
- blue laser welding of copper at power levels ranging from 150 Watts to 275 Watts with a spot size of - 200 mm achieves stable, low spatter welding over all power ranges.
- the welding is in the conduction mode with the resulting weld microstructure resembling the base material.
- the laser wavelengths can be in wavelengths from 350 nm to 500 nm
- the spot size can range from 100 microns (mm ) to 3 mm, and larger spot sizes are also contemplated.
- the spot can be circular, elliptical, linear, square or other patterns.
- the laser beam is continuous. In embodiments the laser beam can be pulsed, for example from about 1 microsecond and longer.
- FIG. 6 there is shown the penetration depth vs power at various welding speeds.
- the welds were performed using a system of the type described in Example 1 .
- the welds were made on 500 mm Copper at 275 W power for the laser beam with no assist gas.
- FIG. 7 shows a conduction mode weld on a 70 mm thick copper foil showing the micro-structure through the HAZ and weld.
- the weld was made using the parameters described in Example 1 .
- the depth of penetration of each sample was determined by first cross sectioning, then etching the sample to reveal the microstructure of the weld and HAZ areas.
- one of the samples was cross sectioned and the Vickers hardness across the base metal ranged from 133-141 HV, the weld bead was approximately 135 HV and the HAZ ranged from 1 18-132 HV.
- the conclusion is that hardness of the base material, HAZ and weld bead, e.g.,
- the micro-structure for the conduction mode weld bead, the HAZ and the base material is very similar with minor differences in the microstructure. A weld with these characteristics has never been observed before in copper when welded with a laser or any other means. This weld quality is shown in FIG. 7 where the sample has been cross sectioned transverse to the weld and etched to reveal the microstructure.
- the present inventions include the method of welding copper based materials to obtain the following welds, and the resultant welds themselves. These methods and welds would include welding two or more copper based materials together, so that in the area around the weld the following the hardness of the material (as measured by a accepted and established hardness test, e.g., Vickers hardness, ASTM test, etc.) where the weld bead hardness is within the hardness of the base material, the weld bead hardness is within 1 % of the hardness of the base materials, the weld bead hardness (e.g., resolidification zone) is within 5% of the hardness of the base materials, and the weld bead hardness is within 10% of the hardness of the base materials.
- a accepted and established hardness test e.g., Vickers hardness, ASTM test, etc.
- These methods and welds would include welding two or more copper based materials together, so that in the area around the weld the following hardness of the material (as measured by a accepted and established hardness test, e.g., Vickers hardness, ASTM test, etc.) where the HAZ hardness is within the hardness of the base material, the HAZ hardness is within 1% of the hardness of the base materials, the HAZ hardness is within 5% of the hardness of the base materials and the HAZ hardness is within 10% of the hardness of the base materials.
- a accepted and established hardness test e.g., Vickers hardness, ASTM test, etc.
- These methods and welds would include welding two or more copper based materials together, so that in the area around the weld the microstructure of the base material, the bead (e.g., the resolidification zone), and the HAZ are identical, i.e., there are no discernable difference in the microstructure that would suggest or shown a weakness in the welded structure in the area of the weld or a weakness in the area of the weld).
- FIG. 8 is the microstructure observed for a sample of the 500 mm thick copper sheet when operating in the keyhole welding mode.
- a vapor plume was clearly visible and molten copper was slowly ejected along the length of the weld.
- the keyhole mode weld cross section, of very high quality and uniformity, of the type shown in FIG. 8, is obtainable for a power density, as low as 800 kW/cm 2 and lower.
- the resolidification area [1] - [2] was from 442 mm to 301 mm and the HAZ [2] was 1314 mm.
- An embodiments of the present invention relates to methods, devices, and systems for the welding of copper to copper or other materials using a visible laser system to achieve benefits including an efficient heat transfer rate to the copper material; a stable weld puddle; and having these benefits in particular in either the conduction mode or keyhole mode of welding.
- Copper is highly absorbent in the blue wavelength range as shown in FIG. 9.
- the presently preferred blue laser beams and laser beam systems and methods couple the laser power into the copper in a very efficient manner.
- the present laser beam systems and methods heat the base material (the material to be welded, e.g., copper) faster than the heat can be conducted away from the laser spot.
- FIG. 10 shows a schematic of an embodiment of a conductive mode welding 1000, showing the direction of the weld with arrow 1004.
- the laser beam 1001 e.g., blue wavelength, is focused on to, and maintains a weld pool 1002.
- Behind the weld pool 1002 is a solid weld material 1003.
- the base material e.g., copper metal or alloy, is below the weld.
- a shielding gas stream 1005 is also used.
- An embodiment of the present inventions relates to keyhole welding of copper with a blue laser system. These methods and systems open new possibilities for welding thick copper materials as well as stacks, including thick stacks, of copper foils.
- This keyhole mode of welding occurs when the laser energy is absorbed so rapidly that it melts and vaporizes the material being welded.
- the vaporized metal creates a high pressure in the metal being welded, opening a hole or capillary where the laser beam can propagate and be absorbed.
- deep penetration welding can be achieved.
- the absorption of the laser beam changes from the initial absorption of 65% for a blue laser in copper to 100% absorption in the keyhole.
- FIG. 1 1 shows a schematic of an embodiment of a keyhole mode weld 2000, showing the direction of the weld with arrow 2007.
- the blue laser beam 2002 creates a plasma cloud 2002, a weld pool 2003, and a solid weld metal 2004.
- a shielding gas stream 2005 is also used.
- the high power laser beams for the embodiments of the present systems and methods are focused, or have the ability to be focused through the optics in the system, to a spot size of about 50 mm or more and have a power of at least 10 W or more.
- the powers for the laser beams, including the blue laser beams may be 10 W, 20 W, 50 W, 100 W, 10 - 50 W, 100 - 250 W, 200 - 500 W, and 1 ,000 W, higher and lower powers are contemplated, and all wavelengths within these ranges.
- the spot sizes (longest cross sectional distance, which for a circle is the diameter) for these powers and laser beams may be from about 20 mm to about 4 mm, less than about 3 mm, less than about 2 mm, from about 20 mm to about 1 mm, about 30 mm to about 50 mm, about 50 mm to about 250 mm, about 50 mm to about 500 mm, about 100 mm to about 4000 mm, large and smaller spots are contemplated, and all sized within these ranges.
- the power density of the laser beam spots may be from about 50 kW/cm 2 to 5 MW/cm 2 , about 100 kW/cm 2 to 4.5 MW/cm 2 , about 100 kW/cm 2 to 1000 kW/cm 2 , about 500 kW/cm 2 to 2 MW/cm 2 , greater than about 50 kW/cm 2 , greater than about 100 kW/cm 2 , greater than about 500 kW/cm 2 , greater than about 1000 kW/cm 2 , greater than about 2000 kW/cm 2 , and higher and lower power densities, and all power densities within these ranges.
- the speed depends upon the thickness of the material being welded, thus speed per thickness mm/sec/thickness in mm can be, for example, from 0.1/sec to 1000/sec for 10 mm to 1 mm thickness copper.
- Embodiments of the present methods and systems can use one, two, three or more laser beams to form the welds.
- the laser beams can be focused on the same general area to initiate the weld.
- the laser beam spots can be overlapping, and can be coincident.
- the plurality of laser beams can be used simultaneously; and coincident and simultaneous.
- a single laser beam can be used to initiate the weld followed by addition of the second laser beam.
- a plurality of laser beams can be used to initiate the weld followed by using less beams, e.g., a single beam, to continue the weld.
- the laser beams in this plurality of laser beams can be different powers or the same powers, the power densities can be different or the same, the wavelengths can be different or the same, and combinations and variations of these.
- the use of additional laser beams can be a simultaneous, or sequentially. Combinations and variations of these embodiments of using multiple laser beams may also be used.
- the use of multiple laser beams can suppress spatter from the weld, and can do so in deep penetration welding methods.
- hydrogen gas H 2
- H 2 can be mixed with an inert gas to remove oxide layers from the base material during the welding process.
- the hydrogen gas is flowed over the weld area.
- the hydrogen gas also promotes wetting of the weld.
- the hydrogen gas can be added to, or form a mixture with, the shielding gas and be applied to the weld as a part of the shielding gas.
- FIG. 18 provides examples of the penetration depth, laser beam power and welding speed on copper for various embodiments of laser system configurations and material thicknesses ranging from 127 mm to 500 mm Methods for conduction mode welding of copper, copper alloys and other metals with a blue laser system
- the present systems overcome the problems and difficulties associated with IR welding, when applied to copper based materials.
- the high absorptivity (65%) of copper at blue wavelengths of the present laser beam and beam spots overcomes the thermal diffusivity of the material, and can do so at relatively low power levels - 150 Watts.
- the present blue laser beam’s interaction with copper allows the copper to readily reach its melt point and allow a wide processing window.
- a steady conduction mode weld is performed and high-quality welds are obtained at a steady and rapid rate, through the use of a part holding devices or fixture.
- a welding fixture is used to hold the material to be welded in place during the thermal transient induced in the parts by the laser beam.
- the fixture in FIGS. 12 and 12A which are a prospective and cross-sectional view respectively, of an embodiment of a linear section of a welding clamp that can be used for lap, butt and even edge welds.
- the welding fixture 4000 has a base plate or support structure 4002. Attached to the baseplate 4002 are two clamp members, or hold downs, 4001.
- the hold downs 4001 have a tab that rests on the surface of the baseplate 4002, and a free end that contacts and holds the work piece(s) to be welded.
- the preferred material for this fixture is a low thermal conductivity material such as stainless steel because it is sufficiently stiff to apply the clamping pressure required to hold the parts in place during the weld.
- the clamps, the baseplate and both can have insulating qualities or effects on the work piece during the welding process.
- the use of a material having low thermal conductivity for the fixture prevents, minimizes and reduces the heat that is deposited into the part form being rapidly conducted away by the fixture itself. This provides added benefits when welding high thermal conductivity materials such as copper. Therefore, the material selected for the clamp, the width of the clamp and the gap under the parts are all parameters which determines the depth of penetration of the weld, the width of the weld bead and the overall quality of the weld bead.
- FIG. 14 there is shown a cross section (after etching) where the conduction mode weld can be identified by the circular shape 6001 of the weld bead in the base material, e.g., the work piece.
- the weld takes this shape because of the isotropic nature of the heat transfer process in copper or any other material when the heat is applied at the top surface of the part.
- the baseplate 4002 of the fixture 4000 is constructed of stainless steel, a 2 mm wide gap 4003 is cut into the baseplate to be positioned just below the weld zone and flooded with an inert gas such as Argon, Helium, or Nitrogen (as a covering or shielding gas) to minimize oxidization of the back surface of the weld.
- the covering gas can be a mixture of hydrogen and an inert gas.
- the clamps 4001 are designed to put pressure on the parts to be welded at 2 mm from the edges of the gap 4003 in the baseplate 4002.
- a 6 mm wide area of the parts to be welded is open to the laser beam (recognizing that the laser beam will be a slight distance away from the clamp).
- This positioning of the clamps allows the laser beam easy access to the surface as well as a tight clamping of the parts.
- This type of clamp is the preferred method for butt welding two foils or sheets of copper together varying in thickness from 50 mm to multiple mm.
- This fixture is also suited to lap welding two thicker copper plates together ranging from 200 mm to multiple mm.
- the amount of clamping pressure is very important, and depending on the amount of laser power, the speed of the weld, the thickness of the parts and the type of weld being performed the clamping bolts may be torqued to 0.05 Newton-m (Nm), up to 3 Nm, or more for thicker materials. This torque value is highly dependent on the bolt size, the thread engagement and the distance from the bolt center to the clamping point.
- the embodiment of the fixture in FIGS. 12 and 12A represents a cross section of a straight portion of a weld fixture and may be designed into any arbitrary 2-D path (e.g., - S - , -C -. -W - etc.) for welding any types of shapes together.
- the fixture may be preheated, or heated during the welding process to increase the speed or depth of penetration of the weld while reducing the parasitic heat losses to the fixture.
- the fixture when heated to a few 100 °C can improve the weld speed, or depth of penetration and quality by a factor or two or more.
- the shielding gas for the top side of the weld is delivered longitudinally from the front of the weld travel direction to the back of the weld travel direction as shown in FIG. 10.
- a bead on plate conduction mode weld is shown in FIG. 14 that was performed with this fixture 4000 on a sheet of 254 mm thick copper.
- the freeze pattern of the weld bead shows the spherical melt pattern typical of this type of weld.
- FIGS. 13 and 13A are perspective and cross-sectional view respectively of fixture 5000.
- the fixture 5000 has a baseplate 5003 and two clamps 5002.
- the clamps have four slots, e.g., 5010 that correspond to hold down bolts, e.g., 5001. In this manner the position of the clamps relative to the work piece, relative to each other can be adjusted and fixed, as well as the amount of clamping force or pressure.
- the clamps can have magnets to assist in their positioning, and fixation.
- the clamps 5002 have internal channels, e.g., 5004 for transporting shielding gas.
- the channels 5004 are in fluid communication with shielding gas outlets, e.g., 5005.
- the shielding gas outlets and the shielding gas channels from a shielding gas delivery system within the clamps.
- the gas delivery system is, and is through, a row of holes along the length of the clamp that deliver an inert gas such as Argon, Helium, or Nitrogen.
- Argon is the preferred gas because it is heavier than air and will settle on the part, displacing the oxygen and preventing oxidation of the upper surface.
- a small amount of Hydrogen can be added to the inert gas to promote scavenging of the oxide layer on the part and promote the wetting of the parts during the melting process.
- insert 5006 which is used to force the individual foils in a stack of foils to keep and maintain contact with each other in the stack.
- the insert 5006 can stretch and force the foils into tight, and uniform contact with each other.
- the insert 5006 is an inverted V shape. It can be curved, humped or other shaped depending upon the stack of foils, and their individual thicknesses.
- the insert 5006 is adjacent to, but not covered by the clamps 5002. The insert can be removed from the ends of the clamps, or one or both of the clamps may partially cover the insert.
- the baseplate 5000 is made from stainless steel, as are the clamps 5002.
- the fixation device can be made from a ceramic or thermally insulating material.
- the hump 5006 provides pressure from the bottom of the weld to keep the overlapping plates (two, three, tens, etc.) in intimate contact.
- a provision for shielding gas is built into the clamps (2) in the form of a row of holes along the length of the clamp that deliver an inert gas such as Argon, Helium, or Nitrogen.
- Argon is the preferred gas because it is heavier than air and will settle on the part, displacing the oxygen and preventing oxidation of the upper surface.
- the insert hump 5006 in the baseplate 5003 may also have a series of channels, holes or slots, to deliver a cover or shielding gas to the backside of the weld to prevent oxidation.
- the fixture 5000 as shown in the figures, represents a cross section of a straight portion of a weld and may be designed into any arbitrary 2-D path for welding arbitrary shapes together.
- the torque values for the bolts can be important, depending upon the nature of the work piece, too low of a torque value, e.g., 0.1 Nm, and the parts may not remain in contact, too high of a torque value >1 Nm and the parasitic heat transfer reduces the efficiency of the welding process, reducing penetration and weld bead width.
- the blue laser light has a much higher level of absorption than the IR laser (65%) and can initiate a keyhole weld at a relatively low power level of 275 Watts (in contrast to 2,000 to 3,000 W required for an IR system to initiate the keyhole welding process. Upon initiation the IR system will further face the problem of runaway, among other problems.) As the keyhole mode is initiated with the blue laser system, the absorption increases, now it is not a runaway process because it increases from 65% to about 90% and to 100%. Thus, the present keyhole welding process has a very different absorption time profile from IR. The present blue keyhole welding process has an absorption time profile form initiation to advancing the weld that is 35% or less.
- the startup of the blue laser welding process and the transition to a continuous weld, using the present laser welding systems, is accomplished without having to rapidly changing the power level of the laser or the weld speed, as required when using an IR laser to prevent spatter.
- a high-speed video of the start of the keyhole weld when using a blue laser shows a stable process, capable of welding multiple layers of copper foils and plates with minimal to no spatter ejected from the keyhole.
- Cross sections of two keyhole welded sample are shown in FIG. 16 and 17, where the material freeze pattern is clearly different from the shape of the conduction mode welded sample shown in FIG. 14.
- the keyhole welding process like the conduction mode welding process requires the parts to be held in a fixture to prevent any movement during the weld.
- the keyhole mode is typically used in a lap weld configuration, where the keyhole penetrates through the parts, welding a stack of two or more parts together (e.g., as see in FIG. 17).
- the laser system of FIG. 20 can produce a 275 W blue laser beam, with a power density at the spot of 800 kW/cm 2 .
- the laser system of FIG. 20 has a first laser module 1201 , and a second laser module 1202, laser beams leave the laser module and follow laser beam paths as shown by ray trace 1200.
- the laser beams go through turning mirrors 1203, 1205 and through a focusing lens configuration 1205, having a 100 mm focusing lens and 100 mm protective window.
- the focusing lens in the configuration 1205 creates spot 1250.
- the laser system shown in FIG. 21 can be used to create a 400 mm spot or a 200 mm spot.
- the laser system of FIG. 21 consists of 4 laser modules 1301 , 1302, 1303, 1304.
- the laser modules can each be of the type disclosed and taught in US Patent Publ. No. 2016/0322777, the entire disclosure of which is incorporated herein by reference.
- the modules can be of the type shown in FIG. 19, where composite beam from each of the laser diode subassemblies, 210, 210a, 201 b, 210c, propagates to a patterned mirror, e.g., 225, which is used to redirect and combine the beams from the four laser diode subassemblies into single beams.
- a patterned mirror e.g., 225
- a polarization beam folding assembly 227 folds the beam in half in the slow axis to double the brightness of the composite laser diode beam.
- the telescope assembly 228 either expands the combined laser beams in the slow axis or compresses the fast axis to enable the use of a smaller lens.
- the telescope 228 shown in this example expands the beam by a factor of 2.6x , increasing its size from 11 mm to 28.6 mm while reducing the divergence of the slow axis by the same factor of 2.6 c . If the telescope assembly compresses the fast axis then it would be a 2 c telescope to reduce the fast axis from 22 mm height (total composite beam) to 11 mm height giving a composite beam that is 11 mm*11 mm. This is the preferred embodiment, because of the lower cost.
- An aspheric lens 229 focuses the composite beam.
- the power density is >1.6 MW/cm 2 , which is substantially above the keyhole welding threshold at this wavelength.
- the blue laser has the potential to create spatter and porosity in the weld.
- the first method for suppressing the spatter is to reduce the power level once the spatter process begins, while holding the welding speed constant.
- the second method for suppressing the spatter is to elongate the weld puddle to allow the shielding gases and vaporized metal to exhaust from the keyhole, producing a spatter free, defect free weld.
- the third method for suppressing the spatter is to wobble the blue laser beam using either a set of mirrors mounted on a set of galvanometer motors or a robot.
- the fourth method for suppressing the spatter is to reduce the pressure of the welding environment including the use of a vacuum.
- the fifth method for suppressing the spatter is to modulate the laser beam power over a range of 1 Hz to 1 kHz, or as high as 50 kHz.
- the welding parameters are optimized to minimize the spatter during the process.
- embodiments of the present inventions relate to laser processing of materials, laser processing by matching preselected laser beam wavelengths to the material to be processed to have high or increased levels of absorptivity by the materials, and in particular laser welding of materials with laser beams having high absorptivity by the materials.
- An embodiment of the present invention relates to using laser beams having visible laser beams, wavelengths from 350 nm to 700 nm, to weld or otherwise join through laser processing, materials that have higher absorptivity for these wavelengths.
- laser beam wavelengths are predetermined based upon the materials to be laser processed to have absorption of at least about 30%, at least about 40%, at least about 50% and at least about 60%, or more and from about 30% to about 65%, from about 35% to 85%, about 80%, about 65%, about 50, and about 40%.
- laser beams having wavelengths from about 400 nm to about 500 nm are used to weld gold, copper, brass, silver, aluminum, nickel, alloys of these metals, stainless steel, and other metals, materials, and alloys.
- a blue laser e.g., about 405 to about 495 nm wavelength
- weld materials such as gold, copper, brass, silver, aluminum, nickel, nickel plated copper, stainless steel, and other, materials, plated materials and alloys, is preferred because of the high absorptivity of the materials at room temperature, e.g.,
- One of several advantages of the present inventions is the ability of a preselected wavelength laser beam, such as the blue laser beam, that is better able to better couple the laser energy into the material during the laser operation, e.g., the welding process.
- a preselected wavelength laser beam such as the blue laser beam
- the chance of a run away process is greatly reduced and preferably eliminated.
- Better coupling of the laser energy also allows for a lower power laser to be used, which provides cost savings.
- Better coupling also provides for greater control, higher tolerances and thus greater reproducibility of welds.
- a blue laser that operates in a CW mode is used.
- CW operation can be preferred over pulsed lasers, in many applications, because of the ability to rapidly and fully modulate the laser output and control the welding process in a feedback loop, resulting in a highly repeatable process with optimum mechanical and electrical characteristics.
- the components may be made from any type of material that absorbs the laser beam, e.g., the laser beams energy, plastics, metals, composites, amorphous materials, and other types of materials.
- the laser processing involves the soldering together of two metal components.
- the laser processing involves the welding together of two metal components.
- the tools, systems and methods wherein the laser welding operation is selected from the group consisting autogenous welding, laser-hybrid welding, keyhole welding, lap welding, filet welding, butt welding and non-autogenous welding.
- Laser welding techniques may be useful in many varied situations, and in particular where welding is needed for forming electrical connections, and in particular power storage devices, such as batteries.
- embodiments of the present laser welding operations and systems include visible wavelength, and
- lasers that can be autogenous which means only the base material is used and is common in keyhole welding, conduction welding, lap welding, filet welding and butt welding.
- Laser welding can be non-autogenous where a filler material is added to the melt puddle to“fill” the gap or to create a raised bead for strength in the weld.
- Laser welding techniques would also include laser material deposition (“LMD”).
- Embodiments of the present laser welding operations and systems include visible wavelength, and preferably blue wavelength, lasers that can be hybrid welding where electrical current is used in conjunction with a laser beam to provide more rapid feed of filler material.
- Laser Hybrid welding is by definition non-autogenous.
- active weld monitors e.g., cameras
- These monitors can include for example x-ray inspection and ultrasonic inspection systems.
- on stream beam analysis and power monitoring can be utilized to have full understanding of system characteristics and the operations characterizations.
- Embodiments of the present laser systems can be a hybrid system that combine the novel laser systems and methods with conventional milling and machining equince. In this manner material can be added and removed during the
- laser welding uses a very low flow of gas to keep the optics clean, an air knife to keep the optics clean or an inert environment to keep the optics clean.
- Laser welding can be performed in air, an inert environment, or other controlled environment, e.g., N2.
- Embodiments of the present invention can find great advantage in welding copper materials, which would include copper, pure copper, alloys of copper and all materials having sufficient amounts of copper to have at about a 40% to 75% absorption in the blue laser wavelengths, and preferably about 400 nm to about 500 nm.
- the conduction weld is when a laser beam with a low intensity ( ⁇ 100 kW/cm 2 ) is used to weld two pieces of metal together.
- the two pieces of metal may be butted up to each other, overlapping to one side and completely overlapping.
- the conduction weld tends not to penetrate as deeply as a keyhole weld and it generally produces a characteristic “spherical” shape weld joint for a butt weld, which is very strong.
- a keyhole weld occurs with a relatively high laser beam intensity (> 500 kW/cm 2 ) and this weld can penetrate deep into the material and often through multiple layers of materials when they are overlapped.
- the exact threshold for the transition from conduction mode to key-hole mode has not yet been determined for a blue laser source, but the key-hole weld has a characteristic“v” shape at the top of the material with a near parallel channel of refrozen material penetrating deep into the material.
- the key-hole process relies on the reflection of the laser beam from the sides of the molten pool of metal to transmit the laser energy deep into the material. While these types of welds can be performed with any laser, it is expected that the blue laser will have a substantially lower threshold for initiating both of these types of welds than an infrared laser.
- a welding process for copper requires that the power be coupled efficiently into the parts, and for the welding process to be stable and capable of producing a low porosity, low spatter weld.
- the present inventions accomplish these, and other objectives.
- the blue laser accomplishes the first part of these requirements by being at a wavelength that is highly absorbed by the copper (65%) compared to an IR laser ( ⁇ 5%).
- the second requirement is a function of not only the laser absorption, but also the processing ramp or time profile, fixturing, beam profile and quality and the clamping pressure used on the parts.
- the present embodiments provide that both a keyhole mode and a conduction mode weld are possible with the blue laser as a heat source. Conduction mode welding does not produce any spatter during the process or porosity in the part. The keyhole mode of welding, will allow for greater penetration.
- the embodiments of the present high-power blue CW laser source is ideal for welding copper parts with very low porosity in the part and very low spatter during the process.
- the stable welding process is observed over a wide range of welding speeds and with an Ar-C0 2 cover gas for, among other things, suppressing the surface oxidation during the welding process.
- This ability to create a stable keyhole weld can be attributed to, among other things, the high absorptivity of the copper in the blue.
- the blue laser light is uniformly absorbed by the walls of the keyhole during the welding process, however, when instabilities in the keyhole arise due to turbulence in the melt puddle, the heat input is maintained, and the keyhole remains stable.
- the laser source is a high power blue direct diode laser capable of 0- 275 Watts.
- the beam is delivered through a 1.25X beam expander and focused by a 100mm aspheric lens.
- the spot diameter on the workpiece is 200mm x 150mm which produces a power density at maximum power of 1 2MW/cm 2 .
- a stainless steel fixture is used to hold the samples in place and tests were performed with He, Ar, Ar-CO 2 , and Nitrogen, all were beneficial, with the best results achieved with Ar-CO 2 ,.
- FIG. 1 shows the chevron pattern for a conduction mode weld, the unique characteristics of this weld include; no spatter during the welding process, a microstructure that resembles the base material and hardness of the weld is like the base material.
- FIG. 1 shows the BOP formed when welding with a blue laser at 150 Watts on a 70mm thick copper foil.
- FIG. 2 shows an example of a keyhole weld on a 500 mm thick copper sample.
- the vapor pressure developed in the keyhole forces molten copper out of the weld bead. This can be seen in FIG. 2 where the ejected copper lines the edges of the weld bead. This ejection process is stable and does not result in micro-explosions in the material and consequently it does not produce the spatter patterns observed when welding copper with an IR laser source.
- FIGS. 3 - 5 summarize the results of these BOP tests.
- FIG. 3 shows full penetration up to 9 m/min at 275W followed by a falloff of the penetration depth with speed as expected.
- FIG. 4 shows BOP results with full penetration up to 0.6m/min with no-assist gas and 0.4m/min when using Ar-C0 2 cover gas.
- FIG. 5 shows depth of penetration vs. Speed for 500mm Copper at 275W.
- the fixture 5000 of FIGS. 13 and 13A is used to successfully lap weld a stack of 2 copper foils, 178 mm thick with a conduction mode weld.
- the fixture when heated to a few 100 °C results in an improvement in the weld speed and quality by a factor or two or more because the energy lost to heating the part during the weld is now provided by the pre-heat.
- the shielding gas for the top side of the weld is delivered at the front of the weld travel direction to the back of the weld travel direction as shown in FIG. 10.
- FIGS. 13 and 13A Using the fixture 5000 shown in FIGS. 13 and 13A, a stack of 40 copper foils, 10 mm thick are welded with no porosity and no defects. A cross section of this weld is shown in FIG. 17. Welding this stack depends on how the foils are prepared, how the foils are clamped and how much torque is applied to the clamps.
- the foils are sheared and flattened, then they are cleaned with alcohol to remove any manufacturing or handling oils and finally stacked in the fixture.
- the clamping bolts 5001 are torqued to 1 Nm to insure the parts are held firmly in place during the welding process.
- the laser used to weld these parts consist of four of the 150-Watt lasers shown in FIG. 19 optically combined as shown in FIG. 21 to create a 500-Watt laser system. This laser produces a 400 mm spot with an average power density of 400 kW/cm 2 , and a peak power density sufficient to initiate the keyhole welding process.
- Embodiment of the present laser beam welding techniques are evaluated using the first full penetration, bead on plate (BOP) welds of a 1 mm thick copper plate with a 600-Watt blue laser with nominal spatter remaining on the surface.
- the 600-Watt, CW laser is focused to a spot size of approximately 200 urn, resulting in an average intensity at the surface of the part of 2.1 MW/cm 2 . This intensity is well above the power density required to initiate and sustain the keyhole in the part.
- the keyhole is observed to form rapidly and once full penetration is achieved, the molten puddle exhibits a very stable surface indicating low turbulence in the weld puddle as the weld progresses.
- the stable welding process is observed over a wide range of welding speeds and with an AJ-C02 cover gas for suppressing the surface oxidation during the welding process.
- This ability to create a stable keyhole weld can be attributed to the high absorptivity of the copper in the blue and the uniformity and high quality of the laser beam.
- the blue laser light is uniformly absorbed by the walls of the keyhole during the welding process, however, when instabilities in the keyhole arise due to turbulence in the melt puddle, the heat input is maintained, and the keyhole remains stable.
- Embodiments of the present inventions use the present high power visible lasers, and in particular blue lasers, blue green lasers and green lasers, for in industrial applications, such as welding.
- power levels 500-600 Watts and spot sizes of 200 -400 urn are used.
- the wavelength for these embodiments is in the blue range.
- Stable conduction mode welding of copper is observed over a wide range of speeds for both the 400 and 200 urn spot sizes on Oxygen Free Copper (OFC). This welding mode is spatter free and fully dense with no signs of porosity throughout the welded parts.
- the stable keyhole mode welding is observed in copper with only the 200 urn spot size, however with lower conductivity materials such as Inconel and stainless steel, even the 400 urn spot size can achieve a keyhole weld.
- Modelling of the welding process reveals a significant difference in the shape and size of the weld puddle when welding copper compared to stainless steel.
- the stainless steel with the lower thermal conductivity exhibits a classic teardrop shape weld puddle, however, the copper with its high thermal conductivity exhibits a circular weld puddle much smaller in size for the same power level as used in the welding of the stainless samples.
- blue laser welding is conducted on copper having a thickness of less than 1 mm and with a blue laser beam having a wavelength of 450 nm.
- blue laser welding is conducted on aluminum having a thickness of less than 1 mm and with a blue laser beam having a wavelength of 450 nm.
- blue laser welding is conducted on stainless steel having a thickness of less than 1 mm and with a blue laser beam having a wavelength of 450 nm.
- An embodiment a 600-Watt laser having four 200-Watt blue laser modules providing a laser beam having a wavelength of 450 nm.
- the lasers diodes are individually collimated, and the beam divergence is circularized as shown in FIG. 19 resulting in a beam parameter product of 22 mm mrad for each module.
- the laser beams from the four blue laser modules are optically sheared in both the horizontal, as well as the vertical direction, to fill out the aperture of the 100 mm diameter focusing optic as shown in FIG. 21.
- This composite beam (450 nm) has a beam parameter product of 44 mm mrad and is suitable for launching into a 400 mm fiber.
- an optical fiber was not used and this blue laser beam is delivered via free space to the work piece.
- an optical breadboard having a 4' x 6' optical bench which allows the integration of real time beam diagnostics into the setup.
- the composite output beam is sampled with a 1 % beam sampler and a portion of the beam is sent to a far-field profile camera and a power meter.
- the far-field is generated with the same focal length lens as the welding lens, either a 100 mm F/1 lens or a 200 mm F/2 lens. Both lenses are BK7 aspheres from ThorLabs.
- the lenses are underfilled to about 80 mm, and the spot at the workpiece is approximately 200 mm for the 100 mm FL lens, and approximately 400 mm for the 200 mm FL lens.
- the beam caustic is measured by translating the Ophir beam profiler through the focus of the 100 mm FL lens in the beam sampling arm of the setup and measuring the diameter of the beam at the 95% encircled power point.
- the graph of the beam caustic is shown in FIG. 22. This measurement demonstrates the relatively short depth of focus for the 100 mm FL lens.
- a Fanuc 6 -axis robot (FANUC M-16 ⁇ B) is used to move the sample through the free space beam focus with the cover gas being provided by a 3/8" diameter sparger tube mounted on the robot adapter and directed along the direction of the weld.
- FIGS. 12 and 12A are drawings of the embodiment of the welding fixture.
- aluminum 6061 series
- stainless steel 316
- the aluminum welding fixture tends to take the heat out of the part rapidly, while the stainless-steel fixture allows most of the heat to stay within the part. Both materials are evaluated along with different methods for clamping the samples (e.g., work piece, part).
- An inert gas such as Argon - CO2 is flowed over the top of the part placed in the fixture to suppress any oxidation of the parts during the welding process.
- a small gap 4003 is located under the center of the sample to minimize the heat sinking at the point of the bead on plate Examples and allow an assist gas to be added to the back side of the weld.
- In the keyhole mode of welding can produce a strong plume when welding. Since the atoms and ions in the plume readily absorb the 450 mm light, this plume should be managed and preferably suppressed.
- a 3/8" diameter tube sparger is used to suppress the plume by delivering 50 scfh of Argon or Argon-CO 2 , across the top of the part.
- Welds can be conducted or made with various gasses to manage the plume and avoid oxidation of the parts, including Argon, Argon-CO 2 ,, Air, Helium and Nitrogen.
- the goals of optimizing welding processes, among others, is to achieve the greatest penetration at the highest possible speed.
- the data presented in Examples 8A to 8K use Argon as the cover gas. In other laser welding and processing applications, such as butt welding, plume management is desirable, and preferred.
- a 200 mm focal length lens is used to focus the beam to a 400 mm spot size resulting in an average intensity of -400 kW/cm ⁇ and a peak intensity approaching 800 kW/cm 2 .
- a 100 mm focal length lens is used to focus the beam to a 200 mm spot size resulting in an average intensity of approximately 2.1 MW/cm 2 and the peak intensity approaches 4.5 MW/cm .
- Example 8 bead on plate welding is conducted and evaluated with copper (OFC), Stainless Steel (304) and aluminum (1100 series) using 500 Watts, a spot size of 400 mm and an average power density of 400 kW/cm 2 .
- the samples are all cut to 10 mm x 45 mm in size with a shear and cleaned with acetone prior to processing.
- the surface finish is as supplied from McMaster Carr, which looks like a rolled finish for the thinner samples and a milled finish for the thicker samples.
- Example 8 Using the laser, processes, and set up of Example 8, Bead on plate evaluations are performed with Oxygen Free Copper (99.99% - 110) samples that ranged in thickness from 80 mm to 500 mm.
- FIG. 23 shows the weld speed at which a full penetration bead is observed on the backside of the welded sample.
- the sequence of the weld is the robot is commanded to translate the part, with enough distance between the part and the laser beam to insure the robot has reached the programmed speed, the laser is initiated just as the weld fixture crosses the position of the laser beam.
- the part is translated through the beam at a constant velocity, once the end of the weld fixture is reached, the laser beam is turned off and the robot is commanded to return to its home position.
- the samples are cross sectioned, polished and etched to reveal the microstructure. All the welds exhibited a spherical melt-freeze pattern indicative of a conduction mode weld.
- Examples 8 and 8A Using the laser, processes, and set up of Examples 8 and 8A, butt welding of samples was also evaluated.
- the parts were prepared the same as in the Example 8A and clamped with the same clamping force.
- the edge of the samples produced by the shear is the basis for the butt-welded parts. Some of the results of these tests are shown in FIG. 24.
- the weld speed is the speed at which the two parts can be joined with a full penetration weld showing on the backside of the welded parts. There is no observation of spatter during the weld or on the parts that were welded, indicating a conduction mode weld process.
- FIG. 25 shows how the penetration depth can decrease as the copper sample thickness increases. This dependence is due to the greater thermal mass of the part and the high thermal conductivity of copper which allows the heat to be dissipated rapidly away from the weld bead. This is in part because of the high thermal conductivity and the ability of the copper to effectively heat sink the laser energy during the welding process. As can be seen from FIG. 25, at a given speed the penetration depth can decrease by over a factor of four as the material thickness is increased by a factor of two.
- the penetration depth for the top case does not decrease as dramatically as the other two cases because it is at a much lower speed and it is saturating the copper’s ability to heatsink the laser energy. Consequently, when designing a welding process for copper using the conduction mode process, the finite thickness of the parts to be welded should be taken into consideration.
- Example 8A aluminum 1100 series samples are welded and evaluated.
- Aluminum 1100 series samples were prepared and mounted in the weld fixture the same as the copper parts in Example 8A.
- the weld process is similar to the cooper welding process, of Example 8A, with only the robot speed being changed.
- the weld speed shown in FIG. 26 is for the case where a full penetration bead is observed on the backside of the part of that thickness. There is no spatter from the melt puddle observed during the welding process.
- Example 8 are conducted.
- a 100 mm focal length lens is used to focus the beam to a 200 mm spot size resulting in an average intensity of approximately 2.1 MW/cm2 and the peak intensity approaches 4.5 MW/cm2.
- a series of welds are made and tests are conducted at this higher power level and with a shorter focal length lens (100 mm) to further evaluate and illustrate the penetration capabilities of this laser at various speeds.
- the average intensity is 2.1 MW/cm2, a power density that is well within the requirements to vaporize either the copper and create a keyhole.
- the part is tilted at 20 degrees, decreasing the effective power density to 1.4 MW/cm2 which is sufficient intensity to initiate the keyhole welding mode in copper, aluminum and Stainless Steel.
- the first indication of a keyhole process in copper at was a significant increase in spatter during the welding process. This spatter is observed with an on-axis camera while monitoring the weld puddle.
- the weld samples are cross sectioned, polished and etched revealing a micro structure freeze pattern typical of a keyhole weld.
- the cross section also reveals a significant amount or porosity where ever the beam did not fully penetrate the part. However, the sections where the beam fully penetrated showed nominal porosity.
- FIG. 30 is a photograph of a cross section for a bead on plate weld of copper 110 performed with the 0.6 second dwell on the sample followed by translating the sample at a speed of 1.1 m/min. A series of welds are performed at this speed to verify that the process is stable and well controlled. All samples exhibited similar results, very low porosity, and a very stable keyhole weld.
- FIG. 34 is a photo of an example of a successful weld of 40 cooper foils with no porosity and no spatter on the top surface.
- This stack of foils was welded with 500 Watts and the 200 mm FL lens which corresponds to the 400 mm spot size.
- the weld speed was 0.5 m/min.
- the manner of clamping of the sheets can effect the weld quality, and good and consistent clamping of the sheets provide consistently high- quality welds.
- these embodiments may be used with: other equince or activities that may be developed in the future; and with existing equince or activities which may be modified, in-part, based on the teachings of this specification.
- the various embodiments set forth in this specification may be used with each other in different and various combinations.
- the configurations provided in the various embodiments of this specification may be used with each other.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862786511P | 2018-12-30 | 2018-12-30 | |
PCT/US2019/068996 WO2020142458A1 (en) | 2018-12-30 | 2019-12-30 | Methods and systems for welding copper and other metals using blue lasers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3902648A1 true EP3902648A1 (en) | 2021-11-03 |
EP3902648A4 EP3902648A4 (en) | 2022-11-16 |
Family
ID=71407074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19907042.6A Pending EP3902648A4 (en) | 2018-12-30 | 2019-12-30 | Methods and systems for welding copper and other metals using blue lasers |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3902648A4 (en) |
JP (1) | JP2022518132A (en) |
KR (1) | KR20210106566A (en) |
CN (1) | CN113543921A (en) |
CA (1) | CA3125591A1 (en) |
WO (1) | WO2020142458A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230137451A1 (en) * | 2021-11-02 | 2023-05-04 | Malema Engineering Corporation | Heavy cradle for replaceable coriolis flow sensors |
DE102020128464A1 (en) | 2020-10-29 | 2022-05-05 | Trumpf Laser- Und Systemtechnik Gmbh | Process for laser welding two thin workpieces in an overlapping area |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7088749B2 (en) * | 2003-01-06 | 2006-08-08 | Miyachi Unitek Corporation | Green welding laser |
CA2734492C (en) * | 2008-08-20 | 2016-05-17 | Foro Energy Inc. | Method and system for advancement of a borehole using a high power laser |
US9089928B2 (en) * | 2008-08-20 | 2015-07-28 | Foro Energy, Inc. | Laser systems and methods for the removal of structures |
US9719302B2 (en) * | 2008-08-20 | 2017-08-01 | Foro Energy, Inc. | High power laser perforating and laser fracturing tools and methods of use |
US9604305B2 (en) * | 2011-10-26 | 2017-03-28 | GM Global Technology Operations LLC | Quality status display for a vibration welding process |
US10971896B2 (en) * | 2013-04-29 | 2021-04-06 | Nuburu, Inc. | Applications, methods and systems for a laser deliver addressable array |
CA3151421A1 (en) * | 2014-08-27 | 2016-03-03 | Nuburu, Inc. | Applications, methods and systems for materials processing with visible raman laser |
KR20230090371A (en) * | 2016-04-29 | 2023-06-21 | 누부루 인크. | Visible laser welding of electronic packaging, automotive electrics, battery and other components |
KR102404336B1 (en) * | 2017-01-31 | 2022-05-31 | 누부루 인크. | Copper Welding Method and System Using Blue Laser |
KR102416499B1 (en) * | 2017-06-13 | 2022-07-01 | 누부루 인크. | Ultra-Dense Wavelength Beam Combination Laser System |
-
2019
- 2019-12-30 JP JP2021538707A patent/JP2022518132A/en active Pending
- 2019-12-30 EP EP19907042.6A patent/EP3902648A4/en active Pending
- 2019-12-30 KR KR1020217024010A patent/KR20210106566A/en not_active Application Discontinuation
- 2019-12-30 WO PCT/US2019/068996 patent/WO2020142458A1/en active Application Filing
- 2019-12-30 CN CN201980093318.XA patent/CN113543921A/en active Pending
- 2019-12-30 CA CA3125591A patent/CA3125591A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CA3125591A1 (en) | 2020-07-09 |
CN113543921A (en) | 2021-10-22 |
JP2022518132A (en) | 2022-03-14 |
EP3902648A4 (en) | 2022-11-16 |
WO2020142458A1 (en) | 2020-07-09 |
KR20210106566A (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220331903A1 (en) | Methods and Systems for Joining Metal Based Materials Using Lasers | |
US20240058896A1 (en) | Methods and Systems for Welding Copper and Other Metals Using Blue Lasers | |
JP7392022B2 (en) | Visible laser welding of electronic packaging, automotive electrical equipment, batteries, and other components | |
CN109462986B (en) | Multiple laser spot welding of coated steels | |
TW202204075A (en) | Laser welding stacked foils | |
EP3902648A1 (en) | Methods and systems for welding copper and other metals using blue lasers | |
US20220072659A1 (en) | Methods and Systems for Reducing Hazardous Byproduct from Welding Metals Using Lasers | |
CA3163159A1 (en) | Methods and systems for reducing hazardous byproduct from welding metals using lasers | |
Miller et al. | Laser welding of aluminum alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20221017 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B23K 26/073 20060101ALI20221011BHEP Ipc: B23K 26/062 20140101ALI20221011BHEP Ipc: B23K 26/00 20140101AFI20221011BHEP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240111 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |