EP3900494A1 - Power supply for lamp - Google Patents

Power supply for lamp

Info

Publication number
EP3900494A1
EP3900494A1 EP18938325.0A EP18938325A EP3900494A1 EP 3900494 A1 EP3900494 A1 EP 3900494A1 EP 18938325 A EP18938325 A EP 18938325A EP 3900494 A1 EP3900494 A1 EP 3900494A1
Authority
EP
European Patent Office
Prior art keywords
power supply
controller
adjustment signal
signal
supply according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18938325.0A
Other languages
German (de)
French (fr)
Other versions
EP3900494A4 (en
EP3900494B1 (en
Inventor
Cui ZHOU
Xingming HE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3900494A1 publication Critical patent/EP3900494A1/en
Publication of EP3900494A4 publication Critical patent/EP3900494A4/en
Application granted granted Critical
Publication of EP3900494B1 publication Critical patent/EP3900494B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges

Definitions

  • Embodiments of the present disclosure generally relate to the field of electrical apparatus, and more particularly to a power supply for a lamp.
  • the power supply isolates the input side (primary side) and output side (secondary side) , thus it is safer for users to use.
  • some power supplies have dimming function, the users may change an output state of the power supply according to various applications.
  • electrical signals may be transmitted between the primary side and the secondary side by using the coupling characteristics of isolation components.
  • the first solution is as follows: a feedback signal is detected by a detection circuit on the secondary side, and the feedback signal is transmitted to a control circuit on the primary side via an isolator. The control circuit adjusts the work state according to the feedback signal, until the output state of the power supply is in accordance with the state of the input adjustment signal.
  • the second solution is as follows: a feedback signal on the secondary side is encoded by a modulator and transmitted to a control circuit on the primary side by means of a preferably electrically isolated signal transformer. Then the signal decoded by a demodulator and transmission through a filter or a frequency discriminator to the control circuit. And the control circuit outputs an adjustment signal to a main circuit according to the feedback signal. By detecting the operation state of the secondary side and coupling the feedback signal to the primary side, then the main control circuit adjusts the working state according to the feedback signal, so that the working state of the power supply is consistent with requirements.
  • embodiments of the present disclosure provide a power supply for a lamp.
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.
  • a power supply for a lamp including: a first controller on a primary side of the power supply; a second controller on a secondary side of the power supply; and an isolator between the primary side and the secondary side, the first controller detects and processes an adjustment signal, and transmits the processed adjustment signal to the second controller via the isolator.
  • the second controller adjusts an output state of the power supply according to the adjustment signal.
  • the first controller translates and encodes the adjustment signal, to obtain the processed adjustment signal
  • the second controller decodes and translates the processed adjustment signal, to obtain the adjustment signal.
  • the isolator includes an optocoupler.
  • an input voltage and an output voltage of the optocoupler are square waves with a same frequency and different duty cycles.
  • the isolator includes a capacitor.
  • an input voltage and an output voltage of the capacitor are square waves with different frequencies and a same duty cycle.
  • the first controller comprises a first MCU (Microcontroller Unit) .
  • the second controller comprises a second MCU.
  • the adjustment signal is a variable signal, a digital signal, e. g. a DALI (Digital Addressable Lighting Interface) signal or an analog signal, e.g. a 0 –10 V signal.
  • a digital signal e. g. a DALI (Digital Addressable Lighting Interface) signal
  • an analog signal e.g. a 0 –10 V signal.
  • the lamp is a LED light.
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.
  • Fig. 1 is a diagram of a power supply for a lamp with an embodiment of the present disclosure
  • Fig. 2 is another diagram of a power supply for a lamp with an embodiment of the present disclosure
  • Fig. 3 is a diagram of the voltages of the processed adjustment signal before input into the optocoupler and output from it with an embodiment of the present disclosure
  • Fig. 4 is another diagram of a power supply for a lamp with an embodiment of the present disclosure
  • Fig. 5 is a diagram of the voltages of the processed adjustment signal before input into the capacitor and output from it with an embodiment of the present disclosure
  • Fig. 6 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a power supply for a lamp is provided in a first embodiment.
  • Fig. 1 is a diagram of a power supply for a lamp with an embodiment of the present disclosure. As shown in Fig. 1, a power supply 100 includes:
  • the first controller 101 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second controller 102 via the isolator 103.
  • the power supply 100 may be any type of dimmable power supply.
  • the power supply 100 is dimmable with PWM (Pulse Width Modulation) , or amplitude modulation or a combination of PWM and amplitude modulation.
  • PWM Pulse Width Modulation
  • amplitude modulation or a combination of PWM and amplitude modulation.
  • the power supply 100 may further include a rectifier 104 and a flyback circuit 105.
  • the rectifier 104 may be a bridge rectifier (BR) , which includes a diode D1.
  • BR bridge rectifier
  • the flyback circuit 105 may include a switch S1, a transformer T, capacitors C1 and C2 and a diode D2.
  • the lamp 10 may be any type of lamp.
  • the lamp 10 is a LED light.
  • the first controller 101 and the second controller 102 may be any type of controller.
  • the first controller 101 includes a first MCU (Microcontroller Unit)
  • the second controller 102 includes a second MCU.
  • the adjustment signal is detected by the first controller 101 on the primary side.
  • the adjustment signal may be various types of signals.
  • the adjustment signal is a variable signal, a digital signal, e.g. DALI (Digital Addressable Lighting Interface) signal or an analog signal, e.g. a 0 –10 V signal.
  • the adjustment signal could be sent also over the AC power lines of the power supply 100.
  • the voltage of the variable signal may be changed in a range of 0 –10V.
  • the first controller 101 may translate and encode the adjustment signal, to obtain the processed adjustment signal. And the processed adjustment signal is transmitted to the second controller 102 via the isolator 103.
  • the second controller may decode and translate the processed adjustment signal, to obtain the adjustment signal.
  • the adjustment signal may be transmitted from the primary side to the secondary side with good quality and without any additional circuit for translating and encoding or decoding signals.
  • the second controller 102 may adjust the output state of the power supply according to the adjustment signal.
  • the second controller 102 may use an existing method for adjusting the output state of the power supply.
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.
  • a power supply for a lamp is provided in a second embodiment.
  • Fig. 2 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • a power supply 200 includes:
  • the first MCU 201 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second MCU 202 via the optocoupler 203.
  • the optocoupler 203 is applied as an isolator.
  • first MCU 201, the second MCU 202 and the optocoupler 203 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • constructions and functions of other parts of the power supply 200 may be similar to those in the related art, and shall not be described herein any further.
  • the adjustment signal is input and detected by the first MCU 201, and the processed adjustment signal is output by the first MCU 201.
  • Vp1 is the voltage of the processed adjustment signal and is input into the optocoupler 203.
  • Vs1 is the voltage of the processed adjustment signal output from the optocoupler 203.
  • Fig. 3 is a diagram of the voltages of the processed adjustment signal before input into the optocoupler and output from it with an embodiment of the present disclosure.
  • Vp1 and Vs1 are square waves with a same frequency and different duty cycles.
  • the duty cycle of the Vp1 may be in a range of 1%to 100%.
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.
  • a power supply for a lamp is provided in a third embodiment.
  • Fig. 4 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • a power supply 300 includes:
  • the first MCU 301 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second MCU 302 via the capacitor 303.
  • the capacitor 303 is applied as an isolator.
  • Functions of the first MCU 301, the second MCU 302 and the capacitor 303 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • constructions and functions of other parts of the power supply 300 may be similar to those in the related art, and shall not be described herein any further.
  • the adjustment signal is input and detected by the first MCU 301, and the processed adjustment signal is output by the first MCU 301.
  • Vp2 is the voltage of the processed adjustment signal and is input into the capacitor 303.
  • Vs2 is the voltage of the processed adjustment signal output from the capacitor 303.
  • Fig. 5 is a diagram of the voltages of the processed adjustment signal before input into the capacitor and output from it with an embodiment of the present disclosure.
  • Vp2 and Vs2 are square waves with different frequencies and a same duty cycle.
  • the duty cycle of the Vp2 and VS2 may be 50%.
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.
  • a power supply for a lamp is provided in a fourth embodiment.
  • Fig. 6 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • a power supply 400 includes:
  • the first MCU 401 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second MCU 402 via the optocoupler 403.
  • the optocoupler 403 is applied as an isolator.
  • first MCU 401, the second MCU 402 and the optocoupler 403 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • a switching regulator e.g. a half bridge converter, supplied from a DC voltage V DC with a high switch HS and a low switch LS connected in a half bridge.
  • the switches of the half bridge can be transistors, e.g. FETs or MOSFETs .
  • LS an LLC series is connected with capacity Cr followed by an inductivity Lr (forming a resonant LC circuit) and the primary side inductivity Lm of the transformer.
  • the secondary side inductivity Lt of the transformer is shown connected to diodes Dl and D2 providing a DC LED current I LED to the lighting means, in this case the LED.
  • the LED current I LED is shunt to ground via shunt resistor R sns .
  • an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator.
  • the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side.
  • no additional circuit for translating and encoding or decoding signals is needed.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A power supply for a lamp is provided. An adjustment signal is detected and processed by a first controller (101) on a primary side, and the processed adjustment signal is transmitted to a second controller (102) on a secondary side via an isolator (103). Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller (102) on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.

Description

    POWER SUPPLY FOR LAMP TECHNICAL FIELD
  • Embodiments of the present disclosure generally relate to the field of electrical apparatus, and more particularly to a power supply for a lamp.
  • BACKGROUND
  • This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
  • Nowadays, power supplies for lamps are becoming more and more intelligent and safe. For example, the power supply isolates the input side (primary side) and output side (secondary side) , thus it is safer for users to use. Furthermore, some power supplies have dimming function, the users may change an output state of the power supply according to various applications.
  • In an existing isolated power supply, electrical signals may be transmitted between the primary side and the secondary side by using the coupling characteristics of isolation components.
  • To change the output state of the power supply, there are two existing solutions. The first solution is as follows: a feedback signal is detected by a detection circuit on the secondary side, and the feedback signal is transmitted to a control circuit on the primary side via an isolator. The control circuit adjusts the work state according to the feedback signal, until the output state of the power supply is in accordance with the state of the input adjustment signal.
  • The second solution is as follows: a feedback signal on the secondary side is encoded by a modulator and transmitted to a control circuit on the primary side by means of a preferably electrically isolated signal transformer. Then the signal decoded by a demodulator and transmission through a filter or a frequency discriminator to the control  circuit. And the control circuit outputs an adjustment signal to a main circuit according to the feedback signal. By detecting the operation state of the secondary side and coupling the feedback signal to the primary side, then the main control circuit adjusts the working state according to the feedback signal, so that the working state of the power supply is consistent with requirements.
  • SUMMARY
  • Inventors of this disclosure found that in the above existing solutions, the working state of the power supply is adjusted on the primary side. Thus, the control of the output state of the power supply is not very accurate.
  • In general, embodiments of the present disclosure provide a power supply for a lamp. In the embodiments, an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • In a first aspect, there is provided a power supply for a lamp, including: a first controller on a primary side of the power supply; a second controller on a secondary side of the power supply; and an isolator between the primary side and the secondary side, the first controller detects and processes an adjustment signal, and transmits the processed adjustment signal to the second controller via the isolator.
  • In an embodiment, the second controller adjusts an output state of the power supply according to the adjustment signal.
  • In an embodiment, the first controller translates and encodes the adjustment signal, to obtain the processed adjustment signal, the second controller decodes and translates the processed adjustment signal, to obtain the adjustment signal.
  • In an embodiment, the isolator includes an optocoupler.
  • In an embodiment, an input voltage and an output voltage of the optocoupler are square waves with a same frequency and different duty cycles.
  • In an embodiment, the isolator includes a capacitor.
  • In an embodiment, an input voltage and an output voltage of the capacitor are square waves with different frequencies and a same duty cycle.
  • In an embodiment, the first controller comprises a first MCU (Microcontroller Unit) .
  • In an embodiment, the second controller comprises a second MCU.
  • In an embodiment, the adjustment signal is a variable signal, a digital signal, e. g. a DALI (Digital Addressable Lighting Interface) signal or an analog signal, e.g. a 0 –10 V signal.
  • In an embodiment, the lamp is a LED light.
  • According to various embodiments of the present disclosure, an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
  • Fig. 1 is a diagram of a power supply for a lamp with an embodiment of the present disclosure;
  • Fig. 2 is another diagram of a power supply for a lamp with an embodiment of the present disclosure;
  • Fig. 3 is a diagram of the voltages of the processed adjustment signal before input into the optocoupler and output from it with an embodiment of the present disclosure;
  • Fig. 4 is another diagram of a power supply for a lamp with an embodiment of the present disclosure;
  • Fig. 5 is a diagram of the voltages of the processed adjustment signal before input into the capacitor and output from it with an embodiment of the present disclosure;
  • Fig. 6 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure will now be discussed with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
  • As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another  embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
  • First embodiment
  • A power supply for a lamp is provided in a first embodiment.
  • Fig. 1 is a diagram of a power supply for a lamp with an embodiment of the present disclosure. As shown in Fig. 1, a power supply 100 includes:
  • a first controller 101 on a primary side of the power supply;
  • a second controller 102 on a secondary side of the power supply; and
  • an isolator 103 between the primary side and the secondary side,
  • the first controller 101 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second controller 102 via the isolator 103.
  • In an embodiment, the power supply 100 may be any type of dimmable power supply. For example, the power supply 100 is dimmable with PWM (Pulse Width Modulation) , or amplitude modulation or a combination of PWM and amplitude modulation.
  • In an embodiment, the power supply 100 may further include a rectifier 104 and a flyback circuit 105.
  • As shown in Fig. 1, the rectifier 104 may be a bridge rectifier (BR) , which includes a diode D1.
  • As shown in Fig. 1, the flyback circuit 105 may include a switch S1, a transformer T, capacitors C1 and C2 and a diode D2.
  • In an embodiment, other constructions and functions of the rectifier 104 and the flyback circuit 105 may be similar to those in the related art, and more details of these parts shall not be described herein any further.
  • In an embodiment, the lamp 10 may be any type of lamp. For example, the lamp  10 is a LED light.
  • In an embodiment, the first controller 101 and the second controller 102 may be any type of controller.
  • For example, the first controller 101 includes a first MCU (Microcontroller Unit) , and the second controller 102 includes a second MCU.
  • In an embodiment, the adjustment signal is detected by the first controller 101 on the primary side.
  • The adjustment signal may be various types of signals. For example, the adjustment signal is a variable signal, a digital signal, e.g. DALI (Digital Addressable Lighting Interface) signal or an analog signal, e.g. a 0 –10 V signal. The adjustment signal could be sent also over the AC power lines of the power supply 100.
  • When the adjustment signal is a variable signal, the voltage of the variable signal may be changed in a range of 0 –10V.
  • When the adjustment signal is detected by the first controller 101, the first controller 101 may translate and encode the adjustment signal, to obtain the processed adjustment signal. And the processed adjustment signal is transmitted to the second controller 102 via the isolator 103.
  • When the processed adjustment signal is received, the second controller may decode and translate the processed adjustment signal, to obtain the adjustment signal.
  • Therefore, the adjustment signal may be transmitted from the primary side to the secondary side with good quality and without any additional circuit for translating and encoding or decoding signals.
  • When the processed adjustment signal is decoded and translated the adjustment signal is acquired by the second controller 102, the second controller 102 may adjust the output state of the power supply according to the adjustment signal.
  • The second controller 102 may use an existing method for adjusting the output state of the power supply.
  • As can be seen from the above embodiments, an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • Second embodiment
  • A power supply for a lamp is provided in a second embodiment.
  • Fig. 2 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • As shown in Fig. 2, a power supply 200 includes:
  • a first MCU 201 on a primary side of the power supply;
  • a second MCU 202 on a secondary side of the power supply; and
  • an optocoupler 203 between the primary side and the secondary side,
  • the first MCU 201 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second MCU 202 via the optocoupler 203.
  • In an embodiment, the optocoupler 203 is applied as an isolator.
  • Functions of the first MCU 201, the second MCU 202 and the optocoupler 203 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • In an embodiment, constructions and functions of other parts of the power supply 200 may be similar to those in the related art, and shall not be described herein any further.
  • As shown in Fig. 2, the adjustment signal is input and detected by the first MCU  201, and the processed adjustment signal is output by the first MCU 201. Vp1 is the voltage of the processed adjustment signal and is input into the optocoupler 203. Vs1 is the voltage of the processed adjustment signal output from the optocoupler 203.
  • Fig. 3 is a diagram of the voltages of the processed adjustment signal before input into the optocoupler and output from it with an embodiment of the present disclosure.
  • As shown in Fig. 3, Vp1 and Vs1 are square waves with a same frequency and different duty cycles.
  • For example, the duty cycle of the Vp1 may be in a range of 1%to 100%.
  • As can be seen from the above embodiments, an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • Third embodiment
  • A power supply for a lamp is provided in a third embodiment.
  • Fig. 4 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • As shown in Fig. 4, a power supply 300 includes:
  • a first MCU 301 on a primary side of the power supply;
  • a second MCU 302 on a secondary side of the power supply; and
  • a capacitor 303 between the primary side and the secondary side,
  • the first MCU 301 detects and processes an adjustment signal, and transmits the  processed adjustment signal to the second MCU 302 via the capacitor 303.
  • In an embodiment, the capacitor 303 is applied as an isolator.
  • Functions of the first MCU 301, the second MCU 302 and the capacitor 303 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • In an embodiment, constructions and functions of other parts of the power supply 300 may be similar to those in the related art, and shall not be described herein any further.
  • As shown in Fig. 4, the adjustment signal is input and detected by the first MCU 301, and the processed adjustment signal is output by the first MCU 301. Vp2 is the voltage of the processed adjustment signal and is input into the capacitor 303. Vs2 is the voltage of the processed adjustment signal output from the capacitor 303.
  • Fig. 5 is a diagram of the voltages of the processed adjustment signal before input into the capacitor and output from it with an embodiment of the present disclosure.
  • As shown in Fig. 5, Vp2 and Vs2 are square waves with different frequencies and a same duty cycle.
  • For example, the duty cycle of the Vp2 and VS2 may be 50%.
  • As can be seen from the above embodiments, an adjustment signal is detected and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • Fourth embodiment
  • A power supply for a lamp is provided in a fourth embodiment.
  • Fig. 6 is another diagram of a power supply for a lamp with an embodiment of the present disclosure.
  • As shown in Fig. 6, a power supply 400 includes:
  • a first MCU 401 on a primary side of the power supply;
  • a second MCU 402 on a secondary side of the power supply; and
  • an optocoupler 403 between the primary side and the secondary side,
  • the first MCU 401 detects and processes an adjustment signal, and transmits the processed adjustment signal to the second MCU 402 via the optocoupler 403.
  • In an embodiment, the optocoupler 403 is applied as an isolator.
  • Functions of the first MCU 401, the second MCU 402 and the optocoupler 403 may be similar to those of the first controller 101, the second controller 102 and the isolator 103 in the first embodiment, and shall not be described herein any further.
  • As shown in Fig. 6, a switching regulator, e.g. a half bridge converter, supplied from a DC voltage V DC with a high switch HS and a low switch LS connected in a half bridge. The switches of the half bridge can be transistors, e.g. FETs or MOSFETs .
  • From a midpoint between the half bridge switches HS, LS an LLC series is connected with capacity Cr followed by an inductivity Lr (forming a resonant LC circuit) and the primary side inductivity Lm of the transformer.
  • On the secondary side, the secondary side inductivity Lt of the transformer is shown connected to diodes Dl and D2 providing a DC LED current I LED to the lighting means, in this case the LED. The LED current I LED is shunt to ground via shunt resistor R sns.
  • In an embodiment, other constructions and functions of these parts may be similar to those in the related art, and more details shall not be described herein any further.
  • As can be seen from the above embodiments, an adjustment signal is detected  and processed by a first controller on a primary side, and the processed adjustment signal is transmitted to a second controller on a secondary side via an isolator. Thus, the quality of the adjustment signal is ensured in the transmission, and the output state of the power supply may be adjusted accurately by the second controller on the secondary side. Furthermore, no additional circuit for translating and encoding or decoding signals is needed.
  • Generally, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
  • Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (12)

  1. A power supply for a lamp, comprising:
    a first controller on a primary side of the power supply;
    a second controller on a secondary side of the power supply; and
    an isolator between the primary side and the secondary side,
    the first controller detects and processes an adjustment signal, and transmits the processed adjustment signal to the second controller via the isolator.
  2. The power supply according to claim 1, wherein,
    the second controller adjusts an output state of the power supply according to the adjustment signal.
  3. The power supply according to claim 2, wherein,
    the first controller translates and encodes the adjustment signal, to obtain the processed adjustment signal,
    the second controller decodes and translates the processed adjustment signal, to obtain the adjustment signal.
  4. The power supply according to claim 1, wherein,
    the isolator comprises an optocoupler.
  5. The power supply according to claim 4, wherein,
    an input voltage and an output voltage of the optocoupler are square waves with a same frequency and different duty cycles.
  6. The power supply according to claim 1, wherein,
    the isolator comprises a capacitor.
  7. The power supply according to claim 6, wherein,
    an input voltage and an output voltage of the capacitor are square waves with different frequencies and a same duty cycle.
  8. The power supply according to any one of claims 1-7, wherein,
    the first controller comprises a first MCU (Microcontroller Unit) .
  9. The power supply according to any one of claims 1-8, wherein,
    the second controller comprises a second MCU.
  10. The power supply according to any one of claims 1-9, wherein,
    the adjustment signal is a variable signal, a digital signal or an analog signal.
  11. The power supply according to claim 10, wherein,
    the digital signal is a DALI (Digital Addressable Lighting Interface) signal,
    the analog signal is a 0 –10 V signal.
  12. The power supply according to any one of claims 1-11, wherein,
    the lamp is a LED light.
EP18938325.0A 2018-10-29 2018-10-29 Power supply for lamp Active EP3900494B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112333 WO2020087199A1 (en) 2018-10-29 2018-10-29 Power supply for lamp

Publications (3)

Publication Number Publication Date
EP3900494A1 true EP3900494A1 (en) 2021-10-27
EP3900494A4 EP3900494A4 (en) 2022-05-18
EP3900494B1 EP3900494B1 (en) 2023-09-20

Family

ID=70462301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18938325.0A Active EP3900494B1 (en) 2018-10-29 2018-10-29 Power supply for lamp

Country Status (3)

Country Link
EP (1) EP3900494B1 (en)
CN (1) CN112970334B (en)
WO (1) WO2020087199A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160964A3 (en) * 2000-06-01 2004-05-06 Sony Corporation Power supplying apparatus and methods
US7460604B2 (en) * 2004-06-03 2008-12-02 Silicon Laboratories Inc. RF isolator for isolating voltage sensing and gate drivers
CN101339747B (en) * 2007-07-03 2011-07-06 尼克森微电子股份有限公司 Primary side driven liquid crystal panel backlight circuit
US7885084B2 (en) * 2007-10-03 2011-02-08 System General Corp. Control circuit for synchronous rectifying and soft switching of power converters
US7764516B2 (en) * 2008-02-21 2010-07-27 System General Corporation Method and apparatus of providing synchronous regulation circuit for offline power converter
US8269432B2 (en) * 2009-09-14 2012-09-18 System General Corporation Offline LED lighting circuit with dimming control
US8203277B2 (en) * 2009-10-26 2012-06-19 Light-Based Technologies Incorporated Efficient electrically isolated light sources
CN102300359A (en) * 2010-06-25 2011-12-28 首利实业股份有限公司 Power supply device of light emitting diode (LED) lamp
US8274242B2 (en) * 2010-07-19 2012-09-25 Solytech Enterprise Corporation Power supply apparatus for an LED lamp
WO2013014607A1 (en) * 2011-07-25 2013-01-31 Koninklijke Philips Electronics N.V. System and method for implementing mains-signal-based dimming of a solid state lighting module
US9118392B2 (en) * 2013-04-16 2015-08-25 Silicon Laboratories Inc. Isolated serializer-deserializer
US9089012B2 (en) * 2013-05-24 2015-07-21 Terralux, Inc. Secondary-side sensing of phase-dimming signal
CN104597822B (en) * 2013-10-31 2017-05-17 施耐德电器工业公司 Digital input line break detection method and circuit
DE102014202665A1 (en) * 2014-02-13 2015-08-27 Tridonic Gmbh & Co Kg Driver circuit for LEDs
TWI551022B (en) * 2014-11-11 2016-09-21 Dynamic drive capability adjustment of the power control device
DE102015109692A1 (en) * 2015-06-17 2016-12-22 Infineon Technologies Austria Ag Switching converter with signal transmission from secondary side to primary side
CN106714410B (en) * 2015-11-13 2019-11-29 台达电子工业股份有限公司 Light adjustable OnNow stabilizer light adjusting and controlling device
CN106992664B (en) * 2016-01-21 2019-05-21 产晶积体电路股份有限公司 Isolated power conversion system
JP6615873B2 (en) * 2016-02-05 2019-12-04 オッポ広東移動通信有限公司 Charging method, adapter and mobile terminal
CN108063555B (en) * 2016-11-07 2020-04-03 台达电子工业股份有限公司 Multi-stage power converter and control method thereof
CN107579670B (en) * 2017-09-19 2020-02-18 东南大学 Constant voltage output control system of synchronous rectification primary side feedback flyback power supply
CN107766279B (en) * 2017-11-27 2023-09-05 惠州市蓝微电子有限公司 Battery communication isolation circuit and device

Also Published As

Publication number Publication date
CN112970334A (en) 2021-06-15
CN112970334B (en) 2023-09-29
WO2020087199A1 (en) 2020-05-07
EP3900494A4 (en) 2022-05-18
EP3900494B1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
US9999106B2 (en) Dimming circuit, control circuit and dimming method
US9192004B2 (en) High-efficiency LED driver and driving method
US8569963B2 (en) Cascade boost and inverting buck converter with independent control
CN103763830B (en) Light-emitting component driving system, driving control circuit and driving method
US10090750B1 (en) Isolating switch circuit and control method thereof
US7656687B2 (en) Modulated transformer-coupled gate control signaling method and apparatus
KR101756546B1 (en) Secondary side control of resonant dc/dc converters
US9166484B2 (en) Resonant converter
US20160044755A1 (en) Dimming circuit and method for leds
US9125259B1 (en) Constant current drive circuit for multi-channel LED lighting
TW201935838A (en) Quasi-resonant flyback converter controller
US11602020B2 (en) Dimming signal generation circuit, dimming signal generation method and LED driver
WO2016057395A1 (en) Circuit and method for a resonant tank
CN109039093A (en) Isolation type switching power supply and its control method
WO2021051240A1 (en) Power converter having capacitors for data transmission
RU2017126982A (en) DRIVED DRIVER AND EXCITATION METHOD
EP3900494B1 (en) Power supply for lamp
US20090244930A1 (en) Electrical dc-dc power converter with magnetically coupled switch control circuit
CN102904647A (en) Light receiving module, light signal processing circuit and light signal processing method
CN110168890B (en) Control circuit with two-point regulator for regulating clock-driven converter
CN207022249U (en) One kind 0 10V dim signal converters of isolation
US9426854B1 (en) Electronic driver for controlling an illumination device
TW202341607A (en) Switching power supply and method for use in switching power supply
CN208971395U (en) Isolation type switching power supply
CN202918301U (en) Optical receiving module, optical signal processing circuit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20220422

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/382 20200101ALI20220414BHEP

Ipc: H05B 45/32 20200101ALI20220414BHEP

Ipc: H05B 47/00 20200101AFI20220414BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018058108

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 6

Ref country code: DE

Payment date: 20231027

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1614432

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231029