EP3898377B1 - Valve assembly and method for controlling the air suspension level of a rail vehicle - Google Patents

Valve assembly and method for controlling the air suspension level of a rail vehicle Download PDF

Info

Publication number
EP3898377B1
EP3898377B1 EP19839315.9A EP19839315A EP3898377B1 EP 3898377 B1 EP3898377 B1 EP 3898377B1 EP 19839315 A EP19839315 A EP 19839315A EP 3898377 B1 EP3898377 B1 EP 3898377B1
Authority
EP
European Patent Office
Prior art keywords
control
valve
car body
valve arrangement
dynamics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19839315.9A
Other languages
German (de)
French (fr)
Other versions
EP3898377A1 (en
Inventor
Christian Busch
Thomas Paeth
Heinz-Hermann Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventics GmbH
Original Assignee
Aventics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventics GmbH filed Critical Aventics GmbH
Publication of EP3898377A1 publication Critical patent/EP3898377A1/en
Application granted granted Critical
Publication of EP3898377B1 publication Critical patent/EP3898377B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes

Definitions

  • the invention relates to a valve arrangement and a method for controlling the air suspension level of a rail vehicle.
  • air suspension systems are usually implemented in rail vehicles in the form of air spring bellows arranged between the car body and the running gear or bogie of a car and serve as secondary suspension for the elastic mounting of the car body relative to the running gear or bogie. They largely decouple the car body from unevenness in the track system through the passive suspension properties and compressibility of the statically loaded air spring bellows and/or their actively controlled loading and venting during driving. Actively controlled pressurization and venting of the spring bellows also makes it possible to compensate for changes in the level caused by changes in the load on a wagon, i.e. the relative height of the wagon body relative to the chassis frame.
  • the DE 22 16 544 C3 discloses air suspension for rail vehicles in which the loading and venting of an air suspension device is controlled by means of a level control valve actuated mechanically via a lever and a measuring linkage connected to the car body and the running gear.
  • a level control valve actuated mechanically via a lever and a measuring linkage connected to the car body and the running gear.
  • the AU 001983018195B discloses a comparable technical solution with an air control valve actuated mechanically via a lever and a linkage connected to the car body and the running gear.
  • the DE 296 20 200 U1 discloses an electronic control for air suspension for rail vehicles with an electropneumatic valve, in which the height of a vehicle body relative to a bogie or chassis is detected by means of a height sensor that delivers an electrical measurement signal to control electronics.
  • the response time or characteristics of the system in stationary operation versus driving operation are switched by means of control electronics.
  • the functioning of the control device should be designed in such a way that, on the one hand, when the vehicle is stationary (static loads), a very precise height position of the vehicle body can be set, while on the other hand, while driving (dynamic loads), a non-reaction to, for example, rolling movements is achieved.
  • a concrete control model for the two operating modes is from the DE 296 20 200 U1 not disclosed for this.
  • the Austrian publication AT 503 256 B1 and the documents associated with it as a common priority application WO2007/104370 A1 and EP 1 993 862 B1 disclose various designs of an electronic air spring control for a rail vehicle with a valve that can be actuated mechanically via a linkage.
  • the documents disclose the additional arrangement of a control valve or a controllable switching means in the connecting line between the mechanically actuated valve and at least one air spring to enable a Throttling of the air exchange between the mechanically operable valve and the at least one air spring.
  • the documents also disclose the arrangement of two control valves or controllable switching means, each in the supply and exhaust air line of the mechanically actuated valve.
  • the air spring controls disclosed by these publications are structurally relatively complex and require a relatively large amount of space because the electrically or electronically controllable switching means or control valves are only provided as additional means in addition to the mechanically actuatable valve.
  • the pressurization and venting is primarily controlled by the valve, which can be actuated mechanically via a linkage, as a result of which the system is designed to be relatively inflexible in terms of function and construction. For example, it is not possible to act on the air spring independently of the existing carriage lift, for example for pure leveling on high platforms.
  • WO2007/104370 A1 and EP 1 993 862 B1 disclosed prior art to be developed.
  • the Austrian publication AT 508 044 A1 and the documents associated with it as a common priority application WO2010/115739 A1 and EP 2 416 997 B1 disclose a method for controlling an air spring arrangement of a vehicle, in which a height control behavior assigned to a specific state of the vehicle is set by activating at least one valve of the air spring arrangement, which can be an electronically controllable proportional valve.
  • Discrete status parameters are derived from the status of the vehicle and are combined into parameter sets, with each parameter set being assigned a defined height control behavior.
  • the height control behavior is specified and set in a targeted manner by changing a defined step-like progression of valve characteristics of the proportional valve on the basis of the limited number of parameter sets.
  • the behavior of the proportional valve is shown here in the simulation of a mechanically actuated valve exclusively as a function of the control deviation.
  • the realization of an electronic control with non-linear valve characteristics with a The step-like progression defined requires the prior modeling of corresponding control profiles as a series of fixed values in relation to the discretized state parameters, with the corresponding measured values having to be collected in time-consuming preliminary tests and the required manipulated variables for each desired valve characteristic curve having to be determined iteratively, for example.
  • the specification of a fixed control profile as a series of fixed values has the further disadvantage that disturbance variables not covered by the respective control profile (e.g. changed ambient and system temperatures or component tolerances caused by wear effects) cannot or only insufficiently be taken into account.
  • the invention is based on the object of avoiding the disadvantages presented.
  • a system for controlling the air suspension level of a rail vehicle that is simple in terms of design and can be easily parameterized is to be provided.
  • the core of the invention is a valve arrangement for controlling the air suspension level of a rail vehicle, comprising a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between a car body and a chassis or bogie of the rail vehicle, and a digital control device, the control device being set up by programming is used to determine a control deviation based on the actual distance detected by the sensor means and a comparison with a predeterminable target distance and for the continuous generation of manipulated variables as a linear function of the determined control deviation and the car body travel speed.
  • a suitable sensor means continuously detects a distance variable representing the distance between a car body and a chassis or bogie of the rail vehicle and converts this into a suitable electrical signal that can be processed by the digital control device.
  • Such an angle sensor can continuously output the distance variable electrically as an analog signal or as an incremental signal to the control device.
  • the sensor signal is then discretized by the digital control device.
  • Other suitable sensor means continuously detect the distance variable, for example inductively or optically, and output this to the control device as an analog or incremental electrical signal value.
  • the control deviation is determined by continuously comparing the actual distance detected by the sensor means—which represents the controlled variable within the closed control loop—with the definable target distance—which represents the reference variable within the closed control loop.
  • the control deviation can be taken into account within the linear control function, for example as a proportional component (P element or P component).
  • P element or P component The car body travel speed corresponds to the change in the control deviation over time (rate of change) and can be taken into account within the linear control function, for example as a differential quotient corresponding to the change in the control deviation over time and therefore as a differential component (D element or D component).
  • the invention has recognized that this provides a system for controlling the air suspension level of a rail vehicle that is structurally simple and easy to parameterize.
  • a proportional directional control valve With a proportional directional control valve, all the pneumatic control functions required to control the air suspension level of a rail vehicle can be easily mapped in a single component, namely both the controlled pressurization of the air suspension device and the controlled venting of the air suspension device and finally also any desired shut-off of the air exchange in one certain loading or venting condition, for example when driving.
  • the relative height of the vehicle body relative to the chassis frame or bogie is guaranteed without the need for complex parameterization.
  • no complex modeling of a profile as a series of fixed values is required.
  • the control deviation is determined in the simplest case by comparing the recorded actual distance with a single, fixed, definable value for the target distance, only one parameterization of this single fixed value (target distance) is required when using a standardized linear function at the same time.
  • a closed control circuit also referred to as a closed effective circuit
  • the technical solution also has a very dynamic correction torque for compensating for disturbance variables that are not immediately detected.
  • the digital control device required to implement the electronic control can also be easily integrated in a space-saving manner as a corresponding microcontroller in the housing of the proportional directional valve or a common housing for all components of the valve arrangement, for example as a "single-board computer (SBC)" in which all The electronic components required for operation (CPU, memory, input and output interfaces, A/D converters, DMA controllers, etc.) are combined on a single printed circuit board.
  • SBC single-board computer
  • the valve arrangement according to the invention can also be used to regulate the level of all pneumatically controllable air suspension devices for the suspension of a vehicle body or body in relation to a running gear or a chassis of vehicles, which allow regulated loading or venting, such as an air spring bellows, an arrangement of several air spring bellows or, for example, also an arrangement of one or more pneumatic suspension cylinders.
  • regulated loading or venting such as an air spring bellows, an arrangement of several air spring bellows or, for example, also an arrangement of one or more pneumatic suspension cylinders.
  • the car body travel acceleration corresponds to the change in the car body travel speed over time and can be taken into account within the linear control function, for example, as a further differential quotient corresponding to the change in the car body displacement speed over time and therefore as a further differential component.
  • the control behavior of the valve arrangement is made more flexible by the dynamics of the control function being selectable, specifiable or adjustable by changing the parameterization of individual control parameters or by setting a modification factor for the control effect, the manipulated variable or the detected actual distance.
  • the changed parameterization takes place, for example, by setting a different target distance or setting or changing coefficients for one or more control parameters, i.e. the target distance, the control deviation, and/or the car body travel speed and/or the car body travel acceleration.
  • the dynamics of the control effect can alternatively be selected, specified or adjusted by setting a global modification factor for the control effect, the manipulated variable to be generated or the detected actual distance.
  • the modification factor can be chosen to be damping or strengthening, so that the target dynamics of the regulation are reduced or increased as a percentage.
  • a more flexible control behavior of the valve arrangement is also achieved or further increased by the dynamics of the control function being selectable, specifiable or adjustable by intensity- and/or time-related filtering of the actual distance or the control deviation.
  • filtering eliminates, for example, all actual distances or deviations below a definable size.
  • the control responds only from a determinable actual distance or a determinable control deviation.
  • the filtering can be designed as a temporal filtering, in which actual intervals or control deviations lead to control activity only after a determinable period of time.
  • control only responds to changes in the actual distances or control deviations with a specific time duration, as a result of which, for example, disturbance variables that only occur briefly (for example brief jolts when driving) are filtered out.
  • Both filtering variants can also be combined with one another, so that the regulation only starts from an actual distance or a control deviation with a determinable size and a determinable time duration.
  • the dynamics of the control functions or the filtering can be selected, specified or adjusted based on the operating mode or the travel speed of the rail vehicle, a simple, automated assignment of different control dynamics to different operating modes is made possible. For example, a different target distance for stationary operation and driving operation can be specified automatically. Furthermore, increased control dynamics to compensate for load changes when stationary and slower control behavior with reduced air consumption when driving can be easily automated.
  • the proportional directional control valve is a 3-way proportional valve which has a venting position and an application position, each with continuously variable opening cross sections, and a blocking position.
  • all useful pneumatic control functions can be mapped simply and effectively, namely regulated pressurization of the air suspension device, regulated venting of the air suspension device and finally also blocking of the air exchange in a specific pressurized state of the air suspension device, for example to reduce the air consumption in the driving operation.
  • the air exchange is shut off while driving, the current loading of the air suspension device with a determinable pressure is "frozen" and this is limited to its passive suspension properties.
  • a so-called "failsafe" function may be desired to ensure operational safety to prevent the system from venting in the event of a power failure.
  • the vent connection of the proportional directional valve or the 3-way proportional valve is electronically controllable switching means downstream, which assumes a blocked position in the de-energized state and an open position in the actuated state. This reliably prevents unwanted venting of the valve and thus also of the entire system in the de-energized state.
  • a switching means can be about a 2/2 switching valve.
  • a working connection of the proportional directional valve or the 3-way proportional valve is connected via a connecting line to a combined charging/venting connection of at least one air suspension device and at the same time to the connecting line a measuring linkage that can be actuated mechanically via a lever and a measuring linkage connected to the car body and the running gear Switching means are arranged, which assumes a blocked position in its rest position and which switches from a lever position representing a determinable actual distance into an open position, connecting the connecting line to a vent outlet.
  • the control device is designed with at least one data communication interface that is compatible with at least one industrial protocol standard.
  • This can be, for example, a wired fieldbus interface compatible with the industry standards Profibus, DeviceNet/ControlNet or CANopen, or a wired network interface (Industrial Ethernet) compatible with the industry standards Profinet, EtherNet/IP, Ethernet Powerlink or EtherCat.
  • a data communication interface can be designed to be compatible with several protocol standards (data transmission protocols) at the same time.
  • the data communication interface can also be in the form of a wireless data communication interface, such as an industrial WLAN interface (IWLAN).
  • IWLAN industrial WLAN interface
  • the control device For functional integration into external electronic control systems, for example a higher-level train control, the control device is set up in terms of programming for parameterization or for selecting, specifying or setting the dynamics of the control function or filtering via the data communication interface. This on the one hand enables remote parameterization or remote setting of the control dynamics via a higher-level train control. Furthermore, the functional integration of the valve arrangement enables a higher-level train control in that the control device receives the information about the current operating mode (driving mode/stationary mode) via the data communication interface and adjusts the control dynamics accordingly. Finally, this also enables interventions in the control dynamics at runtime by the higher-level train control system, for example by specifying a changed parameterization or dynamics of the control function or filtering for the control device at runtime.
  • a further safety function is provided by the fact that the proportional directional valve or 3/3-way proportional valve is designed with a sensor means for detecting the valve outlet pressure and the control device is programmed to determine a definable pressure drop and to generate an error signal and transmit it via the data communication interface.
  • a defect in the air suspension device e.g. a leak or the bursting of an air bag
  • This can be detected with a sensor means integrated into the valve for detecting the valve outlet pressure.
  • the control device generates an error signal and transmits this via the data communication interface, for example to a higher-level train controller, as a result of which the vehicle driver or a control center are automatically informed of the defect.
  • a further core of the invention is a method for controlling the air suspension level of a rail vehicle with a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between the car body and a chassis or bogie, and a digital control device, with the control device using a comparison a control deviation is determined from the actual distances detected by the sensor means with a predeterminable target distance and a manipulated variable is continuously generated as a linear function of the determined control deviation and the car body travel speed becomes.
  • the method ensures highly effective and rapid adjustment of the changes in the level of the air suspension caused by changes in the loading of a wagon, ie the relative height of the wagon body relative to the chassis frame or bogie, without the need for complex parameterization.
  • An increase in the possible dynamics and sensitivity of the response behavior of the control method is achieved by including the car body travel acceleration as an additional control parameter of the linear function.
  • a more flexible control behavior is achieved in that the dynamics of the control function can be selected, specified or adjusted by changing the parameterization of individual control parameters or by setting a modification factor for the control effect, the manipulated variable or the actual distance.
  • a further flexibilization of the control behavior is achieved in that the dynamics of the control function can be selected, specified or adjusted by intensity- and/or time-related filtering of the actual distance or the control deviation.
  • a simple, automated assignment of different control dynamics to different operating modes is made possible by the dynamics of the control functions and/or the filtering being selectable, specifiable or adjustable based on the operating mode or the traveling speed of the rail vehicle.
  • the valve arrangement 1 shows a portion of a rail vehicle in a schematic rear view.
  • the valve arrangement 1 is arranged in the lower area of a car body 2 . It is mechanically connected to the chassis frame 5 via the lever 3 and the measuring linkage 4 .
  • the chassis frame 5 can also be designed as a bogie.
  • An air suspension device which is formed by the two air spring bellows 6 and 6', is arranged as secondary suspension between the chassis frame 5 and the car body 2.
  • the current stroke h of the secondary suspension 6 is therefore identical to the respective distance of the car body 2 from the chassis frame 5.
  • the secondary suspension can also be designed as a single spring bellows.
  • the current stroke h of the secondary suspension 6 depends on the current loading of the car body 2 and is mechanically represented by the respective position of the measuring linkage 4 and the lever 3 connected to it.
  • FIG. 2 shows a schematic circuit diagram of the valve assembly 1 with the lever 3 and the in 2 measuring linkage 4 shown only partially and the air spring bellows 6 and 6'.
  • the components of the valve arrangement 1 are in a common housing—designated by a dashed frame.
  • the measuring linkage 4 is articulated via the lever 3 on this housing.
  • the 3/3-way proportional valve 11 is arranged inside the connecting line 10 for pressurizing and venting the two air spring bellows 6 and 6 ′ which are arranged outside the housing of the valve arrangement 1 and are connected to it via the connecting line 10 .
  • the 3/3-way proportional valve 11 can be controlled via the proportional magnet 12 against the spring load of the mechanical return spring 13 and connects the air spring bellows 6 and 6' via the connecting line 10, each with variable valve opening cross sections in a switching position with the compressed air source 14 and in its initial and rest position with the vent outlet 15.
  • the compressed air source 14 can be a compressed air pump, a compressor or, for example, an intermediate compressed air reservoir.
  • the 3/3-way proportional valve 11 can also be switched to a blocked center position via the proportional magnet 12, in which the connecting line 10 is completely shut off. In its rest position in the de-energized state, the 3/3-way proportional valve 11 is fully switched to its venting position, in which the connecting line 10 is connected to the venting outlet 15 without being throttled.
  • the electronic control of the proportional magnet 12 takes place via a control device which is integrated into the valve arrangement 1 as a microcontroller 16 .
  • the microcontroller 16 is designed as a "single-board computer (SBC)" in which all the electronic components required for operation (CPU, memory, input and output interfaces, A/D converters, DMA controllers, etc.) are on a single Circuit board are summarized.
  • SBC single-board computer
  • the microcontroller 16 receives a continuous electrical signal from the angle sensor 17, which represents the current distance h of the car body 2 from the running gear frame 5.
  • the angle sensor 17 is mechanically connected to the lever 3 and detects the current actual distance via its respective position.
  • the microcontroller 16 is programmed to determine a control deviation e based on the actual distance recorded and transmitted by the angle sensor by comparing it with a definable setpoint distance and for continuously generating manipulated variables u for actuating the proportional magnet 12 of the 3/3-way proportional valve 11 as a linear function of the determined control deviation e and the vehicle body travel speed ⁇ that can be derived from the change in the actual distance over time. If the target distance specified at runtime is constant over time, the vehicle body travel speed can also be derived directly from the change over time in the determined control deviation e.
  • the car body acceleration ⁇ which can be derived from the change in the car body travel speed x over time, can also be taken into account as a further control parameter.
  • the valve arrangement 1 also includes the electrically actuated switching valve 18.
  • the switching valve 18 is switched open via the microcontroller 16.
  • the switching valve 18 blocks automatically and thus prevents the venting of the 3/3-way proportional valve 11 and thus also of the entire system (including the air spring bellows 6 and 6' and the compressed air source 14, which can also be an intermediate pressure accumulator, for example ).
  • valve arrangement 1 comprises the mechanically actuatable shut-off valve 22. This valve is closed in its resting state, but switches to an open position via mechanical actuation via the lever 3 from a lever position representing a specific stroke h, whereby the connecting line 10 is connected to the vent outlet 15 connects.
  • the microcontroller 16 is designed with a data communication interface 23 .
  • the data communication point 23 is used for the data connection with a higher-level train control (in 2 not shown) via the data communication line 24.
  • the data communication interface 23 can be used as a fieldbus interface (e.g. compatible with Profibus, DeviceNet/ControlNet or CANopen) or as an Industrial Ethernet interface (e.g. compatible with Profinet, EtherNet/IP, Ethernet Powerlink or EtherCat) configured. It can be designed to be compatible with several protocol standards at the same time.
  • the microcontroller 16 can be integrated into a higher-level train control via the data communication interface 23, for example by the parameterization or setting of the dynamics of the control function or the filtering for the program-technical setup of the microcontroller 16 being selectable, specifiable or adjustable by the higher-level train control. Conversely, the microcontroller 16 can also be programmed to report process values to the higher-level train control, such as the actual distance.
  • the control behavior of an exemplary linear control function for determining the manipulated variable by the correspondingly programmed microcontroller 16 is in 3 shown as characteristic surface 25.
  • the characteristic surface 25 represents the control space for the manipulated variable values u as a function of determined control deviation values e as a proportional element and car body travel speed values ⁇ (dx) as a differential element of the exemplary linear control function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Technisches Gebiettechnical field

Die Erfindung betrifft eine Ventilanordnung und ein Verfahren zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs.The invention relates to a valve arrangement and a method for controlling the air suspension level of a rail vehicle.

Stand der TechnikState of the art

Im Stand der Technik ist der Einsatz von Luftfederungen für Schienenfahrzeuge grundsätzlich bekannt. Derartige Luftfederungen sind bei Schienenfahrzeugen üblicherweise in Form von zwischen dem Wagenkasten und dem Fahrwerk oder Drehgestell eines Wagons angeordneten Luftfederbälgen realisiert und dienen als Sekundärfederung zur elastischen Lagerung des Wagenkastens gegenüber dem Fahrwerk oder Drehgestell. Sie entkoppeln den Wagenkasten weitestgehend von Unebenheiten der Gleisanlage durch die passiven Federungseigenschaften und Kompressibilität der statisch beaufschlagten Luftfederbälge und/oder deren aktiv gesteuerten Beaufschlagung und Entlüftung im Fahrtbetrieb. Durch eine aktiv gesteuerte Beaufschlagung und Entlüftung der Federbälge ist gleichzeitig grundsätzlich ein Ausregeln von durch Beladungsänderungen eines Wagons hervorgerufenen Änderungen des Niveaus, d.h. der relativen Höhenlage des Wagenkastens relativ zum Fahrwerkrahmen ermöglicht.In the prior art, the use of air suspension for rail vehicles is known in principle. Such air suspension systems are usually implemented in rail vehicles in the form of air spring bellows arranged between the car body and the running gear or bogie of a car and serve as secondary suspension for the elastic mounting of the car body relative to the running gear or bogie. They largely decouple the car body from unevenness in the track system through the passive suspension properties and compressibility of the statically loaded air spring bellows and/or their actively controlled loading and venting during driving. Actively controlled pressurization and venting of the spring bellows also makes it possible to compensate for changes in the level caused by changes in the load on a wagon, i.e. the relative height of the wagon body relative to the chassis frame.

Die DE 22 16 544 C3 offenbart eine Luftfederung für Schienenfahrzeuge, bei der die Beaufschlagung und Entlüftung einer Luftfederungseinrichtung mittels eines mechanisch über einen Hebel und ein mit dem Wagenkasten und dem Fahrwerk verbundenes Messgestänge betätigtes Niveauregelungsventil gesteuert ist. Eine solche rein mechanische Ventilsteuerungsanordnung ist konstruktiv relativ aufwendig und aufgrund der mechanischen Ansteuerung im Steuerungsverhalten gleichzeitig unflexibel und nur konstruktiv aufwendig veränderbar. Bei der steuerungstechnischen Auslegung einer solchen rein mechanischen Ventilsteuerungsanordnung besteht zudem in einem Auslegungskonflikt zwischen einem möglichst schnellen Steuerungsverhalten bei signifikanten Beladungsänderungen - etwa bei der Beladung eines Wagons oder dem Personenzutritt im Standbetrieb am Bahnsteig - einerseits und einer möglichst luftsparenden, eher reaktionsträge ausgelegten Steuerung im Fahrtbetrieb - zum Beispiel bei rein kurzfristigen Stoßerschütterungen aufgrund von Unebenheiten der Gleisanlage - andererseits. Die AU 001983018195B offenbart eine insoweit vergleichbare technische Lösung mit einem mechanisch über einen Hebel und ein mit dem Wagenkasten und dem Fahrwerk verbundenen Gestänge betätigten Luftsteuerungsventil.the DE 22 16 544 C3 discloses air suspension for rail vehicles in which the loading and venting of an air suspension device is controlled by means of a level control valve actuated mechanically via a lever and a measuring linkage connected to the car body and the running gear. Such a purely mechanical valve control arrangement is structurally relatively complex and due to the mechanical control in the control behavior at the same time inflexible and only constructively changeable. In the technical control design of such a purely mechanical valve control arrangement, there is also a design conflict between the fastest possible control behavior in the event of significant changes in the load - for example when loading a wagon or when people enter the platform while stationary - on the one hand and a control that is as air-saving as possible and designed to be rather slow-acting when driving - for example in the case of purely short-term shocks due to unevenness in the track system - on the other hand. the AU 001983018195B discloses a comparable technical solution with an air control valve actuated mechanically via a lever and a linkage connected to the car body and the running gear.

Die DE 296 20 200 U1 offenbart eine elektronische Steuerung für eine Luftfederung für Schienenfahrzeuge mit einem elektropneumatischen Ventil, bei der die Höhenlage eines Fahrzeugsaufbaus gegenüber einem Drehgestell oder Fahrwerk mittels eines durch einen ein elektrisches Messsignal an eine Steuerelektronik liefernden Höhengebers erfasst wird. Zur Vermeidung des bereits dargelegten Auslegungskonflikts erfolgt mittels einer Steuerelektronik ein Umschalten der Ansprechzeit oder Charakteristik des Systems im Standbetrieb gegenüber dem Fahrtbetrieb. Die Funktionsweise der Steuerungseinrichtung soll hierbei derart ausgebildet sein, dass einerseits bei stehendem Fahrzeug (statische Belastungen) eine sehr genaue Höhenlage des Fahrzeugaufbaues einstellbar ist, wobei andererseits während der Fahrt (dynamische Belastungen) ein Nichtreagieren auf beispielsweise Wankbewegungen erreicht wird. Ein konkretes Steuerungsmodell für die beiden Betriebsmodi wird von der DE 296 20 200 U1 hierfür nicht offenbart.the DE 296 20 200 U1 discloses an electronic control for air suspension for rail vehicles with an electropneumatic valve, in which the height of a vehicle body relative to a bogie or chassis is detected by means of a height sensor that delivers an electrical measurement signal to control electronics. In order to avoid the design conflict already explained, the response time or characteristics of the system in stationary operation versus driving operation are switched by means of control electronics. The functioning of the control device should be designed in such a way that, on the one hand, when the vehicle is stationary (static loads), a very precise height position of the vehicle body can be set, while on the other hand, while driving (dynamic loads), a non-reaction to, for example, rolling movements is achieved. A concrete control model for the two operating modes is from the DE 296 20 200 U1 not disclosed for this.

Die österreichische Druckschrift AT 503 256 B1 und die mit ihr als gemeinsame Prioritätsanmeldung verbundenen Druckschriften WO2007/104370 A1 und EP 1 993 862 B1 offenbaren verschiedene Ausführungen einer elektronischen Luftfedersteuerung für ein Schienenfahrzeug mit einem mechanisch über ein Gestänge betätigbaren Ventil. Zur Vermeidung des Auslegungskonflikts zwischen einem möglichst schnellen Steuerungsverhalten bei Beladungsänderungen im Standbetrieb und einer luftsparenden Steuerung im Fahrtbetrieb offenbaren die Druckschriften die zusätzliche Anordnung eines Regelventils oder eines steuerbaren Schaltmittels in der Verbindungsleitung zwischen dem mechanisch betätigbaren Ventil und zumindest einer Luftfeder zur Ermöglichung einer Drosselung des Luftaustauschs zwischen dem mechanisch betätigbaren Ventil und der zumindest einer Luftfeder. Alternativ offenbaren die Druckschriften insoweit ferner die Anordnung zweier Regelventile oder steuerbaren Schaltmittel, jeweils in der Zu- und Abluftleitung des mechanisch betätigbaren Ventils. Die von diesen Druckschriften offenbarten Luftfedersteuerungen sind konstruktiv relativ aufwendig und erfordern einen relativ großen Bauraum, weil die elektrisch oder elektronisch steuerbaren Schaltmittel oder Regelventile lediglich als zusätzliche Mittel neben dem mechanisch betätigbaren Ventil vorgesehen sind. Die Steuerung der Beaufschlagung und Entlüftung erfolgt primär durch das mechanisch über ein Gestänge betätigbare Ventil wodurch das System funktional und konstruktiv relativ unflexibel ausgelegt ist. So ist beispielsweise keine vom jeweils bestehenden Wagenhub unabhängige Beaufschlagung der Luftfeder ermöglicht, etwa zum reinen Niveauausgleich an hohen Bahnsteigen. Die mechanische Betätigung über ein Gestänge und Hebel unterliegt zudem konstruktionsbedingt einem relativ hohen Verschleiß. Schließlich offenbaren die Druckschriften kein Steuerungsmodell für die elektrische oder elektronische Betätigung der zusätzlichen Regelventile oder steuerbaren Schaltmittel zur Drosselung des Luftaustauschs. Ein solches muss ausgehend von dem durch die AT 503256 B1 ,The Austrian publication AT 503 256 B1 and the documents associated with it as a common priority application WO2007/104370 A1 and EP 1 993 862 B1 disclose various designs of an electronic air spring control for a rail vehicle with a valve that can be actuated mechanically via a linkage. In order to avoid the design conflict between the fastest possible control behavior in the event of load changes when stationary and air-saving control when driving, the documents disclose the additional arrangement of a control valve or a controllable switching means in the connecting line between the mechanically actuated valve and at least one air spring to enable a Throttling of the air exchange between the mechanically operable valve and the at least one air spring. Alternatively, the documents also disclose the arrangement of two control valves or controllable switching means, each in the supply and exhaust air line of the mechanically actuated valve. The air spring controls disclosed by these publications are structurally relatively complex and require a relatively large amount of space because the electrically or electronically controllable switching means or control valves are only provided as additional means in addition to the mechanically actuatable valve. The pressurization and venting is primarily controlled by the valve, which can be actuated mechanically via a linkage, as a result of which the system is designed to be relatively inflexible in terms of function and construction. For example, it is not possible to act on the air spring independently of the existing carriage lift, for example for pure leveling on high platforms. The mechanical actuation via a linkage and lever is also subject to relatively high wear due to the design. Finally, the documents do not disclose any control model for the electrical or electronic actuation of the additional control valves or controllable switching means for throttling the air exchange. Such must be based on the by the AT503256B1 ,

WO2007/104370 A1 und EP 1 993 862 B1 offenbarten Stand der Technik erst entwickelt werden. WO2007/104370 A1 and EP 1 993 862 B1 disclosed prior art to be developed.

Die österreichische Druckschrift AT 508 044 A1 und die mit ihr als gemeinsame Prioritätsanmeldung verbundenen Druckschriften WO2010/115739 A1 und EP 2 416 997 B1 offenbaren ein Verfahren zur Steuerung einer Luftfederanordnung eines Fahrzeuges, bei welchem durch Ansteuerung zumindest eines Ventils der Luftfederanordnung, welches ein elektronisch steuerbares Proportionalventil sein kann, ein einem bestimmten Zustand des Fahrzeuges zugeordnetes Höhenregelungsverhalten eingestellt wird. Aus dem Zustand des Fahrzeuges werden diskrete Zustandsparameter abgeleitet, die zu Parametersätzen zusammengefasst werden, wobei jedem Parametersatz ein definiertes Höhenregelungsverhalten zugeordnet wird. Das Höhenregelungsverhalten wird durch Veränderung eines definierten stufenförmigen Verlaufs von Ventilkennlinien des Proportionalventils auf Basis der begrenzten Anzahl von Parametersätzen gezielt vorgegeben und eingestellt. Das Verhalten des Proportionalventils ist hierbei in Nachbildung eines mechanisch betätigten Ventils jeweils ausschließlich als Funktion der Regelabweichung abgebildet. Die Realisierung einer elektronischen Steuerung mit nicht-linearen Ventilkennlinien mit einem definierten stufenförmigen Verlauf erfordert die vorherige Modellierung entsprechender Steuerungsprofile als Reihen von Festwerten in Bezug auf die diskretisierten Zustandsparameter, wobei in zeitaufwendigen Vorfeldversuchen zunächst entsprechende Messwerte erhoben und die erforderlichen Stellgrößen für jede gewünschte Ventilkennlinie zum Beispiel iterativ ermittelt werden müssen. Ferner birgt die Vorgabe eines festen Steuerungsprofils als Reihe von Festwerten den weiteren Nachteil, dass vom jeweiligen Steuerungsprofil nicht erfasste Störgrößen (bspw. veränderte Umgebungs- und Systemtemperaturen oder durch Verschleißeffekte bedingte Bauteiltoleranzen) nicht oder nur unzureichend berücksichtigt werden können.The Austrian publication AT 508 044 A1 and the documents associated with it as a common priority application WO2010/115739 A1 and EP 2 416 997 B1 disclose a method for controlling an air spring arrangement of a vehicle, in which a height control behavior assigned to a specific state of the vehicle is set by activating at least one valve of the air spring arrangement, which can be an electronically controllable proportional valve. Discrete status parameters are derived from the status of the vehicle and are combined into parameter sets, with each parameter set being assigned a defined height control behavior. The height control behavior is specified and set in a targeted manner by changing a defined step-like progression of valve characteristics of the proportional valve on the basis of the limited number of parameter sets. The behavior of the proportional valve is shown here in the simulation of a mechanically actuated valve exclusively as a function of the control deviation. The realization of an electronic control with non-linear valve characteristics with a The step-like progression defined requires the prior modeling of corresponding control profiles as a series of fixed values in relation to the discretized state parameters, with the corresponding measured values having to be collected in time-consuming preliminary tests and the required manipulated variables for each desired valve characteristic curve having to be determined iteratively, for example. Furthermore, the specification of a fixed control profile as a series of fixed values has the further disadvantage that disturbance variables not covered by the respective control profile (e.g. changed ambient and system temperatures or component tolerances caused by wear effects) cannot or only insufficiently be taken into account.

Offenbarung der ErfindungDisclosure of Invention

Der Erfindung liegt die Aufgabe zu Grunde, die dargestellten Nachteile zu vermeiden. Insbesondere soll ein konstruktiv einfach aufgebautes und einfach parametrierbares System zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs bereitgestellt werden.The invention is based on the object of avoiding the disadvantages presented. In particular, a system for controlling the air suspension level of a rail vehicle that is simple in terms of design and can be easily parameterized is to be provided.

Die Aufgabe wird erfindungsgemäß durch eine Ventilanordnung nach Anspruch 1 und ein Verfahren nach Anspruch 12 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved according to the invention by a valve arrangement according to claim 1 and a method according to claim 12. Advantageous developments of the invention are specified in the dependent claims.

Der Kern der Erfindung bildet eine Ventilanordnung zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs, umfassend ein Proportional-Wegeventil, ein Sensormittel zur kontinuierlichen Erfassung einer den Abstand eines Wagenkastens von einem Fahr- oder Drehgestell des Schienenfahrzeugs repräsentierenden Abstandsgröße und eine digitale Regelungseinrichtung, wobei die Regelungseinrichtung programmtechnisch eingerichtet ist zur Ermittlung einer Regelabweichung anhand des vom Sensormittel erfassten Ist-Abstands und einen Vergleich mit einem vorgebbaren Soll-Abstand und zur kontinuierlichen Generierung von Stellgrößen als lineare Funktion der ermittelten Regelabweichung und der Wagenkasten-Verfahrgeschwindigkeit. Ein hierfür geeignetes Sensormittel erfasst kontinuierlich eine den Abstand eines Wagenkastens von einem Fahr- oder Drehgestell des Schienenfahrzeugs repräsentierende Abstandsgröße und wandelt diese in ein geeignetes elektrisches Signal um, das von der digitalen Regelungseinrichtung verarbeitbar ist. Dies kann beispielsweise ein Winkelsensor sein, der den Abstand des Wagenkastens von dem Fahr- oder Drehgestell über ein mechanisches Gestänge mittels eines Hebels erfasst, wie dies von der DE 296 20 200 U1 oder der WO2010/115739 A1 offenbart ist. Ein solcher Winkelsensor kann die Abstandsgröße hierbei fortlaufend elektrisch als Analogsignal oder als inkrementales Signal an die Regelungseinrichtung ausgeben. Im ersten Fall erfolgt eine anschließende Diskretisierung des Sensorsignals durch die digitale Regelungseinrichtung. Andere geeignete Sensormittel erfassen die Abstandsgröße beispielsweise fortlaufend induktiv oder optisch und geben diese als analogen oder inkrementalen elektrischen Signalwert an die Regelungseinrichtung aus. Die Ermittlung der Regelabweichung erfolgt durch fortlaufenden Vergleich des vom Sensormittel erfassten Ist-Abstands - der innerhalb des geschlossenen Regelkreises die Regelgröße darstellt - mit dem vorgebbaren Soll-Abstand - der innerhalb des geschlossenen Regelkreises die Führungsgröße darstellt. Die Regelabweichung ist innerhalb der linearen Regelungsfunktion beispielsweise als Proportionalanteil (P-Glied oder P-Anteil) berücksichtigbar. Die Wagenkasten-Verfahrgeschwindigkeit entspricht der zeitlichen Veränderung der Regelabweichung (Änderungsgeschwindigkeit) und ist innerhalb der linearen Regelungsfunktion beispielsweise als Differentialquotient entsprechend der zeitlichen Veränderung der Regelabweichung und mithin als Differentialanteil (D-Glied oder D-Anteil) berücksichtigbar.The core of the invention is a valve arrangement for controlling the air suspension level of a rail vehicle, comprising a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between a car body and a chassis or bogie of the rail vehicle, and a digital control device, the control device being set up by programming is used to determine a control deviation based on the actual distance detected by the sensor means and a comparison with a predeterminable target distance and for the continuous generation of manipulated variables as a linear function of the determined control deviation and the car body travel speed. A suitable sensor means continuously detects a distance variable representing the distance between a car body and a chassis or bogie of the rail vehicle and converts this into a suitable electrical signal that can be processed by the digital control device. This can be, for example, an angle sensor that detects the distance of the car body from the chassis or bogie via a mechanical linkage by means of a lever, as is shown by the DE 296 20 200 U1 or the WO2010/115739 A1 is revealed. Such an angle sensor can continuously output the distance variable electrically as an analog signal or as an incremental signal to the control device. In the first case, the sensor signal is then discretized by the digital control device. Other suitable sensor means continuously detect the distance variable, for example inductively or optically, and output this to the control device as an analog or incremental electrical signal value. The control deviation is determined by continuously comparing the actual distance detected by the sensor means—which represents the controlled variable within the closed control loop—with the definable target distance—which represents the reference variable within the closed control loop. The control deviation can be taken into account within the linear control function, for example as a proportional component (P element or P component). The car body travel speed corresponds to the change in the control deviation over time (rate of change) and can be taken into account within the linear control function, for example as a differential quotient corresponding to the change in the control deviation over time and therefore as a differential component (D element or D component).

Die Erfindung hat erkannt, dass hierdurch ein konstruktiv einfach aufgebautes und einfach parametrierbares System zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs bereitgestellt wird. Mit einem Proportional-Wegeventil sind grundsätzlich sämtliche zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs erforderlichen pneumatischen Regelungsfunktionen in einem einzigen Bauteil einfach abbildbar, nämlich sowohl die geregelte Beaufschlagung der Luftfederungseinrichtung, als auch die geregelte Entlüftung der Luftfederungseinrichtung und schließlich auch eine etwaig gewünschte Absperrung des Luftaustausch in einem bestimmten Beaufschlagungs- oder Entlüftungszustand, zum Beispiel im Fahrtbetrieb. Aufgrund der Umsetzung als lineare elektronische Regelungsfunktion der ermittelten Regelabweichung und der Wagenkasten-Verfahrgeschwindigkeit ist gleichzeitig eine effektive und schnelle Ausregelung der durch Beladungsänderungen eines Wagons hervorgerufenen Änderungen des Niveaus der Luftfederung, d.h. der relativen Höhenlage des Wagenkastens relativ zum Fahrwerkrahmen oder Drehgestell gewährleistet, ohne dass es hierzu einer aufwendigen Parametrierung bedarf. Insbesondere ist keine aufwendige Modellierung eines Profils als Reihe von Festwerten erforderlich. Indem die Ermittlung der Regelabweichung im einfachsten Fall durch den Vergleich des erfassten Ist-Abstands mit einem einzelnen fest vorgebbaren Wert für den Soll-Abstand erfolgt, ist bei gleichzeitiger Verwendung einer standardisierten linearen Funktion nur eine Parametrierung dieses einzelnen Festwertes (Soll-Abstand) erforderlich. Aufgrund der Ausgestaltung als geschlossener Regelkreis (auch als geschlossener Wirkungskreis bezeichnet) und der zusätzlichen Berücksichtigung der Wagenkasten-Verfahrgeschwindigkeit besitzt die technische Lösung gleichzeitig ein sehr dynamisches Korrekturmoment für den Ausgleich nicht unmittelbar erfasster Störgrößen. Die zur Umsetzung der elektronischen Regelung erforderliche digitale Regelungseinrichtung ist hierbei ebenfalls bauraumsparend einfach als entsprechender Mikrocontroller in das Gehäuse des Proportional-Wegeventils oder ein gemeinsames Gehäuse für sämtliche Komponenten der Ventilanordnung integrierbar, etwa als "single-board computer (SBC)", bei dem sämtliche zum Betrieb nötigen elektronischen Komponenten (CPU, Speicher, Ein- und Ausgabeschnittstellen, A/D-Wandler, DMA-Controller, usw.) auf einer einzigen Leiterplatte zusammengefasst sind. Gleiches gilt für das Sensormittel, das beispielsweise als Winkelsensor unmittelbar in das Gehäuse des Proportional-Wegeventils oder ein gemeinsames Gehäuse für sämtliche Komponenten der Ventilanordnung integrierbar ist, der über einen mit einem mechanischen Messgestänge verbundenen Hebel betätigbar ist. Die erfindungsgemäße Ventilanordnung ist ferner zur Niveauregelung sämtlicher pneumatisch ansteuerbarer Luftfederungseinrichtungen zur Federung eines Fahrzeugsaufbaus oder einer Karosserie gegenüber einem Fahrwerk oder einem Fahrgestell von Fahrzeugen einsetzbar, die eine geregelte Beaufschlagung oder Entlüftung ermöglichen, wie zum Beispiel ein Luftfederbalg, eine Anordnung von mehreren Luftfederbälgen oder beispielweise auch einer Anordnung ein oder mehrerer pneumatischer Federungszylinder.The invention has recognized that this provides a system for controlling the air suspension level of a rail vehicle that is structurally simple and easy to parameterize. With a proportional directional control valve, all the pneumatic control functions required to control the air suspension level of a rail vehicle can be easily mapped in a single component, namely both the controlled pressurization of the air suspension device and the controlled venting of the air suspension device and finally also any desired shut-off of the air exchange in one certain loading or venting condition, for example when driving. Due to the implementation as a linear electronic control function of the determined control deviation and the vehicle body travel speed, there is also an effective and rapid adjustment of the changes in the level of the air suspension caused by changes in the loading of a wagon, i.e. the relative height of the vehicle body relative to the chassis frame or bogie is guaranteed without the need for complex parameterization. In particular, no complex modeling of a profile as a series of fixed values is required. Since the control deviation is determined in the simplest case by comparing the recorded actual distance with a single, fixed, definable value for the target distance, only one parameterization of this single fixed value (target distance) is required when using a standardized linear function at the same time. Due to the design as a closed control circuit (also referred to as a closed effective circuit) and the additional consideration of the vehicle body travel speed, the technical solution also has a very dynamic correction torque for compensating for disturbance variables that are not immediately detected. The digital control device required to implement the electronic control can also be easily integrated in a space-saving manner as a corresponding microcontroller in the housing of the proportional directional valve or a common housing for all components of the valve arrangement, for example as a "single-board computer (SBC)" in which all The electronic components required for operation (CPU, memory, input and output interfaces, A/D converters, DMA controllers, etc.) are combined on a single printed circuit board. The same applies to the sensor means, which can be integrated directly into the housing of the proportional directional valve or a common housing for all components of the valve arrangement, for example as an angle sensor, which can be actuated via a lever connected to a mechanical measuring linkage. The valve arrangement according to the invention can also be used to regulate the level of all pneumatically controllable air suspension devices for the suspension of a vehicle body or body in relation to a running gear or a chassis of vehicles, which allow regulated loading or venting, such as an air spring bellows, an arrangement of several air spring bellows or, for example, also an arrangement of one or more pneumatic suspension cylinders.

Indem als zusätzlicher Regelparameter der linearen Funktion die Wagenkasten-Verfahrbeschleunigung einbezogen ist, wird eine weiter erhöhte Dynamik und Sensibilität des Ansprechverhaltens der Ventilanordnung erreicht. Die Wagenkasten-Verfahrbeschleunigung entspricht der zeitlichen Veränderung der Wagenkasten-Verfahrgeschwindigkeit und ist innerhalb der linearen Regelungsfunktion beispielsweise als weiterer Differentialquotient entsprechend der zeitlichen Veränderung der Wagenkasten-Verfahrgeschwindigkeit und mithin als weiterer Differentialanteil berücksichtigbar.By including the car body travel acceleration as an additional control parameter of the linear function, a further increased dynamic and sensitivity of the response behavior of the valve arrangement is achieved. The car body travel acceleration corresponds to the change in the car body travel speed over time and can be taken into account within the linear control function, for example, as a further differential quotient corresponding to the change in the car body displacement speed over time and therefore as a further differential component.

Eine Flexibilisierung des Regelungsverhaltens der Ventilanordnung wird erreicht, indem die Dynamik der Regelungsfunktion durch eine geänderte Parametrierung einzelner Regelparameter oder das Setzen eines Modifikationsfaktors für die Regelungswirkung, die Stellgröße oder den erfassten Ist-Abstand wählbar, vorgebbar oder einstellbar ist. Die geänderte Parametrierung erfolgt beispielsweise durch das Setzen eines abweichenden Soll-Abstands oder das Setzen oder Verändern von Beiwerten für einzelne oder mehrere Regelparameter, also den Soll-Abstand, die Regelabweichung, und/oder die Wagenkasten-Verfahrgeschwindigkeit und/oder die Wagenkasten-Verfahrbeschleunigung. Gleichfalls ist die Dynamik der Regelungswirkung alternativ durch das das Setzen eines globalen Modifikationsfaktors für die Regelungswirkung, die zu generierende Stellgröße oder den erfassten Ist-Abstand wählbar, vorgebbar oder einstellbar. Der Modifikationsfaktor kann hierbei dämpfend oder verstärkend gewählt sein, so dass die die Zieldynamik der Regelung prozentual abgesenkt oder erhöht wird.The control behavior of the valve arrangement is made more flexible by the dynamics of the control function being selectable, specifiable or adjustable by changing the parameterization of individual control parameters or by setting a modification factor for the control effect, the manipulated variable or the detected actual distance. The changed parameterization takes place, for example, by setting a different target distance or setting or changing coefficients for one or more control parameters, i.e. the target distance, the control deviation, and/or the car body travel speed and/or the car body travel acceleration. Likewise, the dynamics of the control effect can alternatively be selected, specified or adjusted by setting a global modification factor for the control effect, the manipulated variable to be generated or the detected actual distance. In this case, the modification factor can be chosen to be damping or strengthening, so that the target dynamics of the regulation are reduced or increased as a percentage.

Eine Flexibilisierung des Regelungsverhaltens der Ventilanordnung wird ebenfalls erreicht oder weiter erhöht, indem die Dynamik der Regelungsfunktion durch eine intensitäts- und/oder zeitbezogene Filterung des Ist-Abstands oder der Regelabweichung wählbar, vorgebbar oder einstellbar ist. Eine solche Filterung eliminiert beispielsweise sämtliche Ist-Abstände oder Regelabweichungen unterhalb einer definierbaren Größe. Die Regelung spricht in diesem Fall nur ab einem bestimmbaren Ist-Abstand oder einer bestimmbaren Regelabweichung an. Alternativ oder kumulativ kann die Filterung als zeitliche Filterung ausgestaltet sein, bei der Ist-Abstände oder Regelabweichungen erst ab einer bestimmbaren zeitlichen Dauer zu einer Regelungsaktivität führen. Die Regelung spricht in diesem Fall nur auf Veränderungen der Ist-Abstände oder Regelabweichungen mit einer bestimmten zeitlichen Dauer an, wodurch beispielsweise lediglich kurzzeitig auftretende Störgrößen (zum Beispiel kurzfristige Stöße im Fahrtbetrieb) ausgefiltert werden. Beide Filterungsvarianten sind auch miteinander kombinierbar, so dass die Regelung erst ab einem Ist-Abstand oder einer Regelabweichung mit einer bestimmbaren Größe und einer bestimmbaren zeitlichen Dauer anspricht.A more flexible control behavior of the valve arrangement is also achieved or further increased by the dynamics of the control function being selectable, specifiable or adjustable by intensity- and/or time-related filtering of the actual distance or the control deviation. Such filtering eliminates, for example, all actual distances or deviations below a definable size. In this case, the control responds only from a determinable actual distance or a determinable control deviation. Alternatively or cumulatively, the filtering can be designed as a temporal filtering, in which actual intervals or control deviations lead to control activity only after a determinable period of time. In this case, the control only responds to changes in the actual distances or control deviations with a specific time duration, as a result of which, for example, disturbance variables that only occur briefly (for example brief jolts when driving) are filtered out. Both filtering variants can also be combined with one another, so that the regulation only starts from an actual distance or a control deviation with a determinable size and a determinable time duration.

Indem die Dynamik der Regelungsfunktionen oder die Filterung anhand der Betriebsart oder der Fahrtgeschwindigkeit des Schienenfahrzeugs wählbar, vorgebbar oder einstellbar ist, wird eine einfache automatisierte Zuweisung unterschiedlicher Regelungsdynamiken zu unterschiedlichen Betriebsarten ermöglicht. So ist beispielsweise ein unterschiedlicher Soll-Abstand für den Standbetrieb und den Fahrtbetrieb automatisiert vorgebbar. Ferner ist eine erhöhte Regelungsdynamik zum Ausgleich von Beladungsänderungen im Standbetrieb und ein trägeres Regelungsverhalten mit einem reduzierten Luftverbrauch im Fahrtbetrieb einfach automatisierbar.Since the dynamics of the control functions or the filtering can be selected, specified or adjusted based on the operating mode or the travel speed of the rail vehicle, a simple, automated assignment of different control dynamics to different operating modes is made possible. For example, a different target distance for stationary operation and driving operation can be specified automatically. Furthermore, increased control dynamics to compensate for load changes when stationary and slower control behavior with reduced air consumption when driving can be easily automated.

In einer konstruktiv vorteilhaften Ausgestaltung der Ventilanordnung ist das Proportional-Wegeventil ein 3-Wege-Proportionalventil, welches eine Entlüftungsstellung und eine Beaufschlagungsstellung mit jeweils kontinuierlich veränderbaren Öffnungsquerschnitten sowie eine Sperrstellung aufweist. Mit einem derartigen Wegeventil lassen sich sämtliche sinnvollen pneumatischen Regelungsfunktion einfach und effektiv abbilden, nämlich eine geregelte Beaufschlagung der Luftfederungseinrichtung, eine geregelte Entlüftung der Luftfederungseinrichtung und schließlich auch eine Absperrung des Luftaustausch in einem bestimmten Beaufschlagungszustand der Luftfederungs-einrichtung, zum Beispiel zur Reduzierung des Luftverbrauchs im Fahrtbetrieb. Bei einer Absperrung des Luftaustauschs im Fahrbetrieb wird die aktuelle Beaufschlagung der Luftfederungseinrichtung mit einem bestimmbaren Druck "eingefroren" und diese auf ihre passiven Federungseigenschaften beschränkt.In a structurally advantageous embodiment of the valve arrangement, the proportional directional control valve is a 3-way proportional valve which has a venting position and an application position, each with continuously variable opening cross sections, and a blocking position. With such a directional control valve, all useful pneumatic control functions can be mapped simply and effectively, namely regulated pressurization of the air suspension device, regulated venting of the air suspension device and finally also blocking of the air exchange in a specific pressurized state of the air suspension device, for example to reduce the air consumption in the driving operation. When the air exchange is shut off while driving, the current loading of the air suspension device with a determinable pressure is "frozen" and this is limited to its passive suspension properties.

Bei der Verwendung eines Proportional-Wegeventils oder eines 3-Wege-Proportionalventils, welches in seiner Ruhestellung und damit auch im stromlosen Zustand eine Öffnungsstellung einnimmt und die mit ihm verbundene Luftfederungseinrichtung entlüftet, kann zur Gewährleistung der Betriebssicherheit eine so genannte "failsafe"-Funktion gewünscht sein, um zu verhindern, dass das System im Falle eines Stromausfalls entlüftet. Zur Realisierung einer solchen failsafe-Funktion ist dem Entlüftungsanschluss des Proportional-Wegeventils oder des 3-Wege-Proportionalventils ein elektronisch steuerbares Schaltmittel nachgeordnet, welches im stromlosen Zustand eine Sperrstellung und im betätigten Zustand eine Öffnungsstellung einnimmt. Damit ist ungewollte Entlüftung des Ventils und damit auch des Gesamtsystems im stromlosen Zustand sicher verhindert. Ein solches Schaltmittel kann etwa ein 2/2-Schaltventil sein.When using a proportional directional valve or a 3-way proportional valve, which assumes an open position in its rest position and thus also in the de-energized state and vents the air suspension device connected to it, a so-called "failsafe" function may be desired to ensure operational safety to prevent the system from venting in the event of a power failure. To implement such a fail-safe function, the vent connection of the proportional directional valve or the 3-way proportional valve is electronically controllable switching means downstream, which assumes a blocked position in the de-energized state and an open position in the actuated state. This reliably prevents unwanted venting of the valve and thus also of the entire system in the de-energized state. Such a switching means can be about a 2/2 switching valve.

Ferner kann zur weiteren Erhöhung der Betriebssicherheit eine ausfallsichere Überdruckentlastung gewünscht sein. Hierzu ist ein Arbeitsanschluss des Proportional-Wegeventils oder des 3-Wege-Proportionalventils über eine Verbindungsleitung mit einem kombinierten Beschaufschlagungs-/Entlüftungsanschluss mindestens einer Luftfederungseinrichtung verbunden und mit der Verbindungsleitung gleichzeitig ein mechanisch über einen Hebel und ein mit dem Wagenkasten und dem Fahrwerk verbundenes Messgestänge betätigbares Schaltmittel angeordnet, welches in seiner Ruhestellung eine Sperrstellung einnimmt und welches ab einer einen bestimmbaren Ist-Abstand repräsentierenden Hebelstellung in eine Öffnungsstellung schaltet, wobei es die Verbindungsleitung mit einem Entlüftungsausgang verbindet.Furthermore, fail-safe overpressure relief may be desired to further increase operational reliability. For this purpose, a working connection of the proportional directional valve or the 3-way proportional valve is connected via a connecting line to a combined charging/venting connection of at least one air suspension device and at the same time to the connecting line a measuring linkage that can be actuated mechanically via a lever and a measuring linkage connected to the car body and the running gear Switching means are arranged, which assumes a blocked position in its rest position and which switches from a lever position representing a determinable actual distance into an open position, connecting the connecting line to a vent outlet.

Zur Verbindung mit externen elektronischen Steuerungssystemen, beispielsweise einer übergeordneten Zugsteuerung, ist die Regelungseinrichtung mit mindestens einer, zu wenigstens einem industriellen Protokollstandard kompatiblen Datenkommunikationsschnittstelle ausgebildet. Dies kann beispielsweise eine zu den Industriestandards Profibus, DeviceNet / ControlNet oder CANopen kompatible drahtgebundene Feldbus-Schnittstelle oder eine zu den Industriestandards Profinet, EtherNet/IP, Ethernet Powerlink oder EtherCat kompatible drahtgebundene Netzwerkschnittstelle (Industrial Ethernet) sein. Eine solche Datenkommunikationsschnittstelle kann gleichzeitig zu mehreren Protokollstandards (Datenübertragungsprotokolle) kompatibel ausgestaltet sein. Die Datenkommunikationsschnittstelle kann ferner als drahtlose Datenkommunikationsschnittstelle, etwa als Industrial WLAN-Schnittstelle (IWLAN), ausgestaltet sein.For connection to external electronic control systems, for example a higher-level train control, the control device is designed with at least one data communication interface that is compatible with at least one industrial protocol standard. This can be, for example, a wired fieldbus interface compatible with the industry standards Profibus, DeviceNet/ControlNet or CANopen, or a wired network interface (Industrial Ethernet) compatible with the industry standards Profinet, EtherNet/IP, Ethernet Powerlink or EtherCat. Such a data communication interface can be designed to be compatible with several protocol standards (data transmission protocols) at the same time. The data communication interface can also be in the form of a wireless data communication interface, such as an industrial WLAN interface (IWLAN).

Zur funktionalen Integration in externe elektronische Steuerungssysteme, beispielsweise eine übergeordnete Zugsteuerung, ist die Regelungseinrichtung programmtechnisch eingerichtet zur Parametrierung oder zur Wahl, Vorgabe oder Einstellung der Dynamik der Regelungsfunktion oder der Filterung über die Datenkommunikationsschnittstelle. Dies ermöglicht zum einen die Femparametrierung oder Ferneinstellung der Regelungsdynamik über eine übergeordnete Zugsteuerung. Ferner ermöglicht dies die funktionale Einbindung der Ventilanordnung eine übergeordnete Zugsteuerung, indem die Regelungseinrichtung über die Datenkommunikationsschnittstelle die Information über die aktuelle Betriebsart (Fahrtbetrieb/Standbetrieb) erhält und die Regelungsdynamik entsprechend einstellt. Schließlich ermöglicht dies auch Eingriffe in die Regelungsdynamik zur Laufzeit durch die übergeordnete Zugsteuerung, indem der Regelungseinrichtung zur Laufzeit beispielsweise eine geänderte Parametrierung oder Dynamik der Regelungsfunktion oder Filterung vorgeben wird.For functional integration into external electronic control systems, for example a higher-level train control, the control device is set up in terms of programming for parameterization or for selecting, specifying or setting the dynamics of the control function or filtering via the data communication interface. This on the one hand enables remote parameterization or remote setting of the control dynamics via a higher-level train control. Furthermore, the functional integration of the valve arrangement enables a higher-level train control in that the control device receives the information about the current operating mode (driving mode/stationary mode) via the data communication interface and adjusts the control dynamics accordingly. Finally, this also enables interventions in the control dynamics at runtime by the higher-level train control system, for example by specifying a changed parameterization or dynamics of the control function or filtering for the control device at runtime.

Eine weitere Sicherheitsfunktion ist gegeben, indem das Proportional-Wegeventil oder 3/3-Wege-Proportionalventil mit einem Sensormittel zur Erfassung des Ventilausgangsdrucks ausgebildet und die Regelungseinrichtung programmtechnisch eingerichtet ist zur Ermittlung eines definierbaren Druckabfalls und zur Generierung eines Fehlersignals und dessen Übermittlung über die Datenkommunikationsschnittstelle. Ein Defekt der Luftfederungseinrichtung (zum Beispiel eine Leckage oder das Platzen eines Luftfederbalgs) hat einen Druckabfall auf der Arbeitsseite des Proportional-Wegeventils oder 3-Wege-Proportionalventils zur Folge. Dieser lässt sich mit einem in das Ventil integrierten Sensormittel zur Erfassung des Ventilausgangsdrucks detektieren. In diesem Fall generiert die Regelungseinrichtung ein Fehlersignal und übermittelt dies über die Datenkommunikationsschnittstelle beispielsweise an eine übergeordnete Zugsteuerung, wodurch der Fahrzeugführer oder eine Leitstelle über den Defekt automatisch informiert werden.A further safety function is provided by the fact that the proportional directional valve or 3/3-way proportional valve is designed with a sensor means for detecting the valve outlet pressure and the control device is programmed to determine a definable pressure drop and to generate an error signal and transmit it via the data communication interface. A defect in the air suspension device (e.g. a leak or the bursting of an air bag) results in a pressure drop on the working side of the proportional directional valve or 3-way proportional valve. This can be detected with a sensor means integrated into the valve for detecting the valve outlet pressure. In this case, the control device generates an error signal and transmits this via the data communication interface, for example to a higher-level train controller, as a result of which the vehicle driver or a control center are automatically informed of the defect.

Einen weiteren Kern der Erfindung bildet ein Verfahren zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs mit einem Proportional-Wegeventil, einem Sensormittel zur kontinuierlichen Erfassung einer den Abstand des Wagenkastens vom einem Fahr- oder Drehgestell repräsentierenden Abstandsgröße und einer digitalen Regelungseinrichtung, wobei mittels der Regelungseinrichtung anhand eines Vergleichs der vom Sensormittel erfassten Ist-Abstände mit einem vorgebbaren Soll-Abstand eine Regelabweichung ermittelt und kontinuierlich eine Stellgröße als lineare Funktion der ermittelten Regelabweichung und der Wagenkasten-Verfahrgeschwindigkeit generiert wird. Mit dem Verfahren ist eine hocheffektive und schnelle Ausregelung der durch Beladungsänderungen eines Wagons hervorgerufenen Änderungen des Niveaus der Luftfederung, d.h. der relativen Höhenlage des Wagenkastens relativ zum Fahrwerkrahmen oder Drehgestell gewährleistet, ohne dass es hierzu einer aufwendigen Parametrierung bedarf.A further core of the invention is a method for controlling the air suspension level of a rail vehicle with a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between the car body and a chassis or bogie, and a digital control device, with the control device using a comparison a control deviation is determined from the actual distances detected by the sensor means with a predeterminable target distance and a manipulated variable is continuously generated as a linear function of the determined control deviation and the car body travel speed becomes. The method ensures highly effective and rapid adjustment of the changes in the level of the air suspension caused by changes in the loading of a wagon, ie the relative height of the wagon body relative to the chassis frame or bogie, without the need for complex parameterization.

Eine Erhöhung der möglichen Dynamik und Sensibilität des Ansprechverhaltens des Regelungsverfahrens wird erreicht, indem als zusätzlicher Regelparameter der linearen Funktion die Wagenkasten-Verfahrbeschleunigung einbezogen ist.An increase in the possible dynamics and sensitivity of the response behavior of the control method is achieved by including the car body travel acceleration as an additional control parameter of the linear function.

Eine Flexibilisierung des Regelungsverhaltens wird erreicht, indem die Dynamik der Regelungsfunktion durch eine geänderte Parametrierung einzelner Regelparameter oder das Setzen eines Modifikationsfaktors für die Regelungswirkung, die Stellgröße oder den Ist-Abstand wählbar, vorgebbar oder einstellbar ist.A more flexible control behavior is achieved in that the dynamics of the control function can be selected, specified or adjusted by changing the parameterization of individual control parameters or by setting a modification factor for the control effect, the manipulated variable or the actual distance.

Eine weitere Flexibilisierung des Regelungsverhaltens wird erreicht, indem die Dynamik der Regelungsfunktion durch eine intensitäts- und/oder zeitbezogene Filterung des Ist-Abstands oder der Regelabweichung wählbar, vorgebbar oder einstellbar ist.A further flexibilization of the control behavior is achieved in that the dynamics of the control function can be selected, specified or adjusted by intensity- and/or time-related filtering of the actual distance or the control deviation.

Eine einfache automatisierte Zuweisung unterschiedlicher Regelungsdynamiken zu unterschiedlichen Betriebsarten wird ermöglicht, indem die Dynamik der Regelungsfunktionen und/oder die Filterung anhand der Betriebsart oder der Fahrtgeschwindigkeit des Schienenfahrzeugs wählbar, vorgebbar oder einstellbar ist oder sind.A simple, automated assignment of different control dynamics to different operating modes is made possible by the dynamics of the control functions and/or the filtering being selectable, specifiable or adjustable based on the operating mode or the traveling speed of the rail vehicle.

Weitere Vorteile der Erfindung sind nachstehend gemeinsam mit der Beschreibung bevorzugter Ausführungsbeispiele der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Fig. 1
eine schematische Rückansicht eines Teilbereichs eines Schienenfahrzeugs mit einer Luftfederung und einer Ventilanordnung;
Fig. 2
ein schematisches Schaltbild einer Ventilanordnung gemäß Fig. 1 zur Regelung des Luftfederungsniveaus eines Schienenfahrzeugs;
Fig. 3
Fig. 2 ein Diagramm mit einem Kennfeld des Regelungsverhaltens der Ventilanordnung.
Further advantages of the invention are presented in more detail below together with the description of preferred exemplary embodiments of the invention with reference to the figures. Show it:
1
a schematic rear view of a portion of a rail vehicle with an air suspension and a valve assembly;
2
a schematic circuit diagram of a valve assembly according to 1 for controlling the air suspension level of a rail vehicle;
3
2 a diagram with a map of the control behavior of the valve arrangement.

Fig. 1 zeigt einen Teilbereich eines Schienenfahrzeugs in einer schematischen rückwärtigen Ansicht. Die Ventilanordnung 1 ist im unteren Bereich eines Wagenkastens 2 angeordnet. Sie ist mechanisch über den Hebel 3 und das Messgestänge 4 mit dem Fahrwerkrahmen 5 verbunden. Der Fahrwerkrahmen 5 kann hierbei auch als Drehgestell ausgeführt sein. Zwischen dem Fahrwerkrahmen 5 und dem Wagenkasten 2 ist als Sekundärfederung eine Luftfederungseinrichtung angeordnet, die durch die beiden Luftfederbälge 6 und 6' gebildet ist. Der jeweils aktuelle Hub h der Sekundärfederung 6 ist damit identisch dem jeweiligen Abstand des Wagenkastens 2 vom Fahrwerkrahmen 5. Alternativ kann die Sekundärfederung hierbei auch als ein einziger Federbalg ausgebildet sein. Unterhalb des Fahrwerkrahmens 5 ist die Primärfederung 7 angeordnet, durch welche die Radachse 8 und die beiden Räder 9 und 9' federnd gegenüber dem Fahrwerk 5 gelagert sind. Der jeweils aktuelle Hub h der Sekundärfederung 6 ist abhängig von der jeweils aktuellen Beladung des Wagenkastens 2 und ist durch die jeweilige Stellung des Messgestänges 4 und des mit diesem verbundenen Hebels 3 mechanisch repräsentiert. 1 shows a portion of a rail vehicle in a schematic rear view. The valve arrangement 1 is arranged in the lower area of a car body 2 . It is mechanically connected to the chassis frame 5 via the lever 3 and the measuring linkage 4 . The chassis frame 5 can also be designed as a bogie. An air suspension device, which is formed by the two air spring bellows 6 and 6', is arranged as secondary suspension between the chassis frame 5 and the car body 2. The current stroke h of the secondary suspension 6 is therefore identical to the respective distance of the car body 2 from the chassis frame 5. Alternatively, the secondary suspension can also be designed as a single spring bellows. Below the chassis frame 5, the primary suspension 7 is arranged, through which the wheel axle 8 and the two wheels 9 and 9' are resiliently mounted relative to the chassis 5. The current stroke h of the secondary suspension 6 depends on the current loading of the car body 2 and is mechanically represented by the respective position of the measuring linkage 4 and the lever 3 connected to it.

Fig. 2 zeigt ein schematisches Schaltbild der Ventilanordnung 1 mit dem Hebel 3 und dem in Fig. 2 lediglich angeschnitten dargestellten Messgestänge 4 sowie den Luftfederbälgen 6 und 6'. Die Komponenten der Ventilanordnung 1 sind in einem gemeinsamen - durch eine gestrichelte Umrahmung symbolisierten - Gehäuse ausgebildet. Das Messgestänge 4 ist über den Hebel 3 an diesem Gehäuse angelenkt. Zur Beaufschlagung und Entlüftung der beiden extern des Gehäuses der Ventilanordnung 1 angeordneten und über die Verbindungsleitung 10 mit dieser verbundenen Luftfederbälge 6 und 6' ist innerhalb der Verbindungsleitung 10 das 3/3-Wege-Proportionalventil 11 angeordnet. Das 3/3-Wege-Proportionalventil 11 ist über den Proportionalmagneten 12 entgegen der Federbelastung der mechanischen Rückstellfeder 13 ansteuerbar und verbindet die Luftfederbälge 6 und 6' über die Verbindungsleitung 10 jeweils mit veränderbaren Ventilöffnungsquerschnitten in einer Schaltstellung mit der Druckluftquelle 14 und in seiner Ausgangs- und Ruhestellung mit dem Entlüftungsausgang 15. Die Druckluftquelle 14 kann hierbei eine Druckluftpumpe, ein Kompressor oder beispielsweise auch ein zwischengeschalter Druckluftspeicher sein. Das 3/3-Wege-Proportionalventil 11 ist über den Proportionalmagneten 12 ferner in eine gesperrte Mittelstellung schaltbar, in der die Verbindungsleitung 10 vollständig abgesperrt ist. In seiner Ruhestellung im stromlosen Zustand ist das 3/3-Wege-Proportionalventil 11 vollständig in seine Entlüftungsstellung geschaltet, in der die Verbindungsleitung 10 ungedrosselt mit dem Entlüftungsausgang 15 verbunden ist. Die elektronische Ansteuerung des Proportionalmagneten 12 erfolgt über eine Regelungseinrichtung, die als Mikrocontroller 16 in die Ventilanordnung 1 integriert ist. Der Mikrocontroller 16 ist als "single-board computer (SBC)" ausgebildet, bei dem sämtliche zum Betrieb nötigen elektronischen Komponenten (CPU, Speicher, Ein- und Ausgabeschnittstellen, A/D-Wandler, DMA-Controller, usw.) auf einer einzigen Leiterplatte zusammengefasst sind. Der Mikrocontroller 16 erhält vom Winkelsensor 17 ein kontinuierliches elektrisches Signal, das den jeweils aktuellen Abstand h des Wagenkastens 2 vom Fahrwerkrahmen 5 repräsentiert. Der Winkelsensor 17 ist hierzu mechanisch mit dem Hebel 3 verbunden und erfasst über dessen jeweilige Stellung den jeweils aktuellen Ist-Abstand. Der Mikrocontroller 16 ist programmtechnisch eingerichtet zur Ermittlung einer Regelabweichung e anhand des vom Winkelsensor jeweils erfassten und übermittelten Ist-Abstandsdurch dessen Vergleich mit einem vorgebbaren Soll-Abstand und zur kontinuierlichen Generierung von Stellgrößen u für die Betätigung des Proportionalmagneten 12 des 3/3-Wege-Proportionalventils 11 als lineare Funktion der ermittelten Regelabweichung e und der anhand der zeitlichen Veränderung des Ist-Abstands ableitbaren Wagenkasten-Verfahrgeschwindigkeit . Ist der zur Laufzeit vorgegebene Soll-Abstand zeitlich konstant, ist die Wagenkasten-Verfahrgeschwindigkeit auch unmittelbar anhand der zeitlichen Veränderung der ermittelten Regelabweichung e ableitbar. Als weiterer Regelparameter kann zusätzlich die anhand der zeitlichen Veränderung der Wagenkasten-Verfahrgeschwindigkeit x ableitbaren Wagenkasten-Beschleunigung berücksichtigt sein. Hierbei kann jeder Regelungsparameter über Beiwerte k 1 , k 2 , k 3 parametrierbar ausgebildet sein, so dass gilt u = f (k 1 e, k 2 ẋ, k 3 ). 2 shows a schematic circuit diagram of the valve assembly 1 with the lever 3 and the in 2 measuring linkage 4 shown only partially and the air spring bellows 6 and 6'. The components of the valve arrangement 1 are in a common housing—designated by a dashed frame. The measuring linkage 4 is articulated via the lever 3 on this housing. The 3/3-way proportional valve 11 is arranged inside the connecting line 10 for pressurizing and venting the two air spring bellows 6 and 6 ′ which are arranged outside the housing of the valve arrangement 1 and are connected to it via the connecting line 10 . The 3/3-way proportional valve 11 can be controlled via the proportional magnet 12 against the spring load of the mechanical return spring 13 and connects the air spring bellows 6 and 6' via the connecting line 10, each with variable valve opening cross sections in a switching position with the compressed air source 14 and in its initial and rest position with the vent outlet 15. The compressed air source 14 can be a compressed air pump, a compressor or, for example, an intermediate compressed air reservoir. The 3/3-way proportional valve 11 can also be switched to a blocked center position via the proportional magnet 12, in which the connecting line 10 is completely shut off. In its rest position in the de-energized state, the 3/3-way proportional valve 11 is fully switched to its venting position, in which the connecting line 10 is connected to the venting outlet 15 without being throttled. The electronic control of the proportional magnet 12 takes place via a control device which is integrated into the valve arrangement 1 as a microcontroller 16 . The microcontroller 16 is designed as a "single-board computer (SBC)" in which all the electronic components required for operation (CPU, memory, input and output interfaces, A/D converters, DMA controllers, etc.) are on a single Circuit board are summarized. The microcontroller 16 receives a continuous electrical signal from the angle sensor 17, which represents the current distance h of the car body 2 from the running gear frame 5. For this purpose, the angle sensor 17 is mechanically connected to the lever 3 and detects the current actual distance via its respective position. The microcontroller 16 is programmed to determine a control deviation e based on the actual distance recorded and transmitted by the angle sensor by comparing it with a definable setpoint distance and for continuously generating manipulated variables u for actuating the proportional magnet 12 of the 3/3-way proportional valve 11 as a linear function of the determined control deviation e and the vehicle body travel speed that can be derived from the change in the actual distance over time. If the target distance specified at runtime is constant over time, the vehicle body travel speed can also be derived directly from the change over time in the determined control deviation e. The car body acceleration , which can be derived from the change in the car body travel speed x over time, can also be taken into account as a further control parameter. In this case, each control parameter can be designed to be parameterizable via coefficients k 1 , k 2 , k 3 , so that u=f( k 1 e, k 2 ẋ, k 3 ) applies.

Die Ventilanordnung 1 umfasst ferner das elektrisch betätigbare Schaltventil 18. Das Schaltventil 18 ist über den Schaltmagneten 19 entgegen der Federbelastung durch die mechanische Rückstellfeder 20 schaltbar und verbindet den Entlüftungsanschluss 21 des 3/3-Wege-Proportionalventils 11 in seinem Schaltzustand mit dem Entlüftungsausgang 15 und sperrt den Entlüftungsausgang 21 in seiner unbestromten Ausgangs- und Ruhestellung ab ("normal closed" = NC). Im normalen Betrieb ist das Schaltventil 18 über den Mikrocontroller 16 geöffnet geschaltet. Im Falle eines Stromausfalls sperrt das Schaltventil 18 selbsttätig und verhindert so die Entlüftung des 3/3-Wege-Proportionalventils 11 und damit auch des Gesamtsystems (mithin auch der Luftfederbälge 6 und 6' und der Druckluftquelle 14, die beispielsweise auch ein zwischengeschalter Druckspeicher sein kann).The valve arrangement 1 also includes the electrically actuated switching valve 18. The switching valve 18 can be switched via the switching magnet 19 against the spring load by the mechanical return spring 20 and connects the vent connection 21 of the 3/3-way proportional valve 11 in its switching state with the vent outlet 15 and blocks the venting outlet 21 in its de-energized starting and resting position ("normal closed" = NC). In normal operation, the switching valve 18 is switched open via the microcontroller 16. In the event of a power failure, the switching valve 18 blocks automatically and thus prevents the venting of the 3/3-way proportional valve 11 and thus also of the entire system (including the air spring bellows 6 and 6' and the compressed air source 14, which can also be an intermediate pressure accumulator, for example ).

Schließlich umfasst die Ventilanordnung 1 das mechanisch betätigbare Absperrventil 22. Dieses Ventil ist in seinem Ruhezustand geschlossen, jedoch über eine mechanische Betätigung über den Hebel 3 ab einer einen bestimmten Hub h repräsentierenden Hebelstellung in eine Öffnungsstellung schaltend, wobei es die Verbindungsleitung 10 mit dem Entlüftungsausgang 15 verbindet.Finally, the valve arrangement 1 comprises the mechanically actuatable shut-off valve 22. This valve is closed in its resting state, but switches to an open position via mechanical actuation via the lever 3 from a lever position representing a specific stroke h, whereby the connecting line 10 is connected to the vent outlet 15 connects.

Der Microcontroller 16 ist mit einer Datenkommunikationsschnittstelle 23 ausgebildet. Die Datenkommunikationsstelle 23 dient der Datenverbindung mit einer übergeordneten Zugsteuerung (in Fig. 2 nicht abgebildet) über die Datenkommunikationsleitung 24. Die Datenkommunikationsschnittstelle 23 ist hierzu je nach Bedarf beispielsweise als Feldbus-Schnittstelle (beispielsweise kompatibel zu Profibus, DeviceNet / ControlNet oder CANopen) oder als Industrial Ethernet-Schnittstelle (beispielsweise kompatibel zu Profinet, EtherNet/IP, Ethernet Powerlink oder EtherCat) ausgestaltet. Sie kann gleichzeitig zu mehreren Protokollstandards kompatibel ausgestaltet sein. Durch die Datenkommunikationsschnittstelle 23 ist der Mikrocontroller 16 in eine übergeordnete Zugsteuerung integrierbar, indem beispielsweise die Parametrierung oder Einstellung der Dynamik der Regelungsfunktion oder der Filterung für die programmtechnische Einrichtung des Mikrocontrollers 16 durch die übergeordnete Zugsteuerung wählbar, vorgebbar oder einstellbar sind. Umgekehrt kann der Mikrocontroller 16 auch programmtechnisch dazu eingerichtet sein, Prozesswerte an die übergeordnete Zugsteuerung zu melden, wie beispielsweise den Ist-Abstand.The microcontroller 16 is designed with a data communication interface 23 . The data communication point 23 is used for the data connection with a higher-level train control (in 2 not shown) via the data communication line 24. The data communication interface 23 can be used as a fieldbus interface (e.g. compatible with Profibus, DeviceNet/ControlNet or CANopen) or as an Industrial Ethernet interface (e.g. compatible with Profinet, EtherNet/IP, Ethernet Powerlink or EtherCat) configured. It can be designed to be compatible with several protocol standards at the same time. The microcontroller 16 can be integrated into a higher-level train control via the data communication interface 23, for example by the parameterization or setting of the dynamics of the control function or the filtering for the program-technical setup of the microcontroller 16 being selectable, specifiable or adjustable by the higher-level train control. Conversely, the microcontroller 16 can also be programmed to report process values to the higher-level train control, such as the actual distance.

Das Regelungsverhalten einer beispielhaften linearen Regelungsfunktion zur Ermittlung der Stellgröße durch den entsprechend programmtechnisch eingerichteten Mikrocontroller 16 ist in Fig. 3 als Kennfläche 25 abgebildet. Hierbei stellt die Kennfläche 25 den Regelungsraum für die Stellgrößenwerte u in Abhängigkeit von ermittelten Regelabweichungswerten e als Proportionalglied und Wagenkasten-Verfahrgeschwindigkeitswerten (dx) als Differentialglied der beispielhaften linearen Regelungsfunktion dar.The control behavior of an exemplary linear control function for determining the manipulated variable by the correspondingly programmed microcontroller 16 is in 3 shown as characteristic surface 25. In this case, the characteristic surface 25 represents the control space for the manipulated variable values u as a function of determined control deviation values e as a proportional element and car body travel speed values ẋ (dx) as a differential element of the exemplary linear control function.

BezugszeichenlisteReference List

11
Ventilanordnungvalve assembly
22
Wagenkastencar body
33
Hebellever
44
Messgestängemeasuring linkage
55
FahrwerkrahmenChassis & frame
6, 6'6, 6'
Luftfederbalgair bag
77
Primärfederungprimary suspension
88th
Radachsewheel axle
9,9'9.9'
Radwheel
1010
Verbindungsleitungconnection line
1111
3/3-Wege-Proportionalventil3/3-way proportional valve
1212
Proportionalmagnetproportional solenoid
13,2013.20
Rückstellfederreturn spring
1414
Druckluftquellecompressed air source
1515
Entlüftungsausgangvent outlet
1616
Mikrocontrollermicrocontroller
1717
Winkelsensorangle sensor
1818
Schaltventilswitching valve
1919
Schaltmagnetshift magnet
2121
Entlüftungsanschlussvent port
2222
Absperrventilshut-off valve
2323
Datenkommunikationsschnittstelledata communication interface
2424
Datenkommunikationsleitungdata communication line
2525
Kennflächecharacteristic surface

Claims (16)

  1. Valve arrangement (1) for controlling the air suspension level of a rail vehicle, comprising a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between a car body (2) and a chassis or bogie of the rail vehicle, and a digital control device, characterized in that the control device is programmed to determine a control deviation on the basis of the actual distance detected by the sensor means and a comparison with a specifiable target distance, and to continuously generate manipulated variables as a linear function of the determined control deviation and the car body travel speed.
  2. Valve arrangement (1) according to claim 1, characterized in that the car body travel acceleration is included as an additional control parameter of the linear function.
  3. Valve arrangement (1) according to either claim 1 or claim 2, characterized in that the dynamics of the control function can be selected, specified or adjusted by modified parameterization of individual control parameters or by setting a modification factor for the control action, the manipulated variable or the actual distance.
  4. Valve arrangement (1) according to any of claims 1 to 3, characterized in that the dynamics of the control function can be selected, specified or adjusted by intensity-related and/or time-related filtering of the actual distance or the control deviation.
  5. Valve arrangement (1) according to either claim 3 or claim 4, characterized in that the dynamics of the control functions or the filtering can be selected, specified or adjusted on the basis of the operating mode or the travel speed of the rail vehicle.
  6. Valve arrangement (1) according to any of claims 1 to 5, characterized in that the proportional directional valve is a 3-way proportional valve which has a venting position and an acting position, each with continuously variable opening cross sections, and a blocking position.
  7. Valve arrangement (1) according to any of claims 1 to 6, characterized in that the proportional directional valve or the 3-way proportional valve assumes a venting position in the de-energized state and an electronically controllable switching means is arranged downstream of its venting connection, which switching means has a blocking position in the de-energized state and assumes an open position in the actuating position.
  8. Valve arrangement (1) according to any of claims 1 to 7, characterized in that a working connection of the proportional directional valve or of the 3-way proportional valve is connected via a connecting line to a combined acting/venting connection of at least one air suspension device, and arranged together with the connecting line is a switching means, which can be mechanically actuated via a lever and a measuring linkage connected to the car body and the chassis, and which in its rest position assumes a blocking position, and which is switched from a lever position representing a definable actual distance into an open position, the switching means connecting the connecting line to a venting outlet.
  9. Valve arrangement (1) according to any of claims 1 to 8, characterized in that the control device has at least one data communication interface which is compatible with at least one industrial protocol standard.
  10. Valve arrangement (1) according to any of claims 3 to 5 and claim 9, characterized in that the control device is programmed to parameterize or to select, specify or adjust the dynamics of the control function or the filtering via the data communication interface.
  11. Valve arrangement (1) according to either claim 9 or claim 10, characterized in that the proportional directional valve or the 3-way proportional valve has a sensor means for detecting the valve outlet pressure and the control device is programmed to determine a definable pressure drop and to generate an error signal and to transmit the signal via the data communication interface.
  12. Method for controlling the air suspension level of a rail vehicle by means of a proportional directional control valve, a sensor means for continuously detecting a distance variable representing the distance between the car body (2) and a chassis or bogie, and a digital control device, characterized in that by means of the control device a control deviation is determined on the basis of a comparison of the actual distances detected by the sensor means with a specifiable target distance and a manipulated variable is continuously generated as a linear function of the determined control deviation and the car body travel speed.
  13. Method according to claim 12, characterized in that the car body travel acceleration is included as an additional control parameter of the linear function.
  14. Method according to either claim 12 or claim 13, characterized in that the dynamics of the control function can be selected, specified or adjusted by modified parameterization of individual control parameters or by setting a modification factor for the control action, the manipulated variable or the actual distance.
  15. Method according to any of claims 12 to 14, characterized in that the dynamics of the control function can be selected, specified or adjusted by intensity-related and/or time-related filtering of the actual distance or the control deviation.
  16. Method according to either claim 14 or claim 15, characterized in that the dynamics of the control functions and/or the filtering can be selected, specified or adjusted on the basis of the operating mode or the traveling speed of the rail vehicle.
EP19839315.9A 2018-12-20 2019-12-02 Valve assembly and method for controlling the air suspension level of a rail vehicle Active EP3898377B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018009962.9A DE102018009962B3 (en) 2018-12-20 2018-12-20 Valve arrangement and method for regulating the air suspension level of a rail vehicle
PCT/DE2019/000308 WO2020125830A1 (en) 2018-12-20 2019-12-02 Valve assembly and method for controlling the air suspension level of a rail vehicle

Publications (2)

Publication Number Publication Date
EP3898377A1 EP3898377A1 (en) 2021-10-27
EP3898377B1 true EP3898377B1 (en) 2022-06-22

Family

ID=69182437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19839315.9A Active EP3898377B1 (en) 2018-12-20 2019-12-02 Valve assembly and method for controlling the air suspension level of a rail vehicle

Country Status (5)

Country Link
US (1) US20220048547A1 (en)
EP (1) EP3898377B1 (en)
CN (1) CN113474232B (en)
DE (1) DE102018009962B3 (en)
WO (1) WO2020125830A1 (en)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216544C3 (en) 1972-04-06 1975-06-26 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Level control linkage for scanning the vertical distance between a preferably cradle-free bogie and a car body, particularly of rail vehicles, which can be rotated about a vertical axis relative to this and is sprung by air springs with level control
AU558363B2 (en) 1982-08-23 1987-01-29 Ani Corporation Limited, The Pneumatic suspension control
JPH02106419A (en) * 1988-10-14 1990-04-18 Fuji Heavy Ind Ltd Automobile height adjustment device
WO1994003340A1 (en) 1992-07-30 1994-02-17 Man Ghh Schienenverkehrstechnik Gmbh Secondary suspension system for rail vehicles
DE19546728A1 (en) * 1995-12-14 1997-06-19 Wabco Gmbh Level control device
DE29620200U1 (en) 1996-11-20 1998-03-19 Duewag Ag, 47829 Krefeld Air spring for rail vehicles
JP2000052985A (en) * 1998-08-17 2000-02-22 Sumitomo Metal Ind Ltd Rolling stock vibration control method and its device
DE19853126B4 (en) 1998-11-18 2005-03-03 Daimlerchrysler Ag Method for level control and wheeled vehicle with a level control system
DE19944873C1 (en) 1999-09-18 2001-01-04 Haldex Brake Prod Gmbh Control unit for lifting and lowering vehicle structures of air-sprung vehicles has between compressed air source and air spring bellows two parallel branch pipes with locking valve
EP1178892A1 (en) 2000-03-20 2002-02-13 Intech Thüringen GmbH Pneumatic shock-absorber
DE10157368A1 (en) * 2001-11-23 2003-06-12 Bombardier Transp Gmbh Position adjustment of a vehicle body
AT411349B (en) 2001-12-11 2003-12-29 Siemens Sgp Verkehrstech Gmbh SUSPENSION DEVICE
DE102004035691B4 (en) * 2003-11-19 2021-04-29 Zf Cv Systems Hannover Gmbh Air suspension device for a vehicle
AT505315A1 (en) 2004-06-24 2008-12-15 Siemens Transportation Systems SWITCHING SPRING
CN2708034Y (en) * 2004-07-07 2005-07-06 重庆大学 Vibration damper for vehicle suspension
DE102006005471B4 (en) * 2005-02-10 2008-09-25 Gudzulic, Miro, Dipl.-Ing. (FH) Valve unit for a decentralized level suspension system for motor vehicles, rail vehicles and industrial applications
AT503256B1 (en) 2006-03-13 2011-10-15 Siemens Ag Oesterreich ELECTRONIC AIR SPRING CONTROL TO REDUCE AIR CONSUMPTION AND FAST ADJUSTMENT OF THE SOLELIVE LEVEL
CN100436221C (en) * 2006-03-29 2008-11-26 上海磁浮交通工程技术研究中心 Height regulating method and system for air spring suspension system of urban railway magnetic suspension train
JP5038960B2 (en) * 2008-03-31 2012-10-03 公益財団法人鉄道総合技術研究所 Method for controlling body tilt angle of pendulum vehicle and control system for body tilt angle of pendulum vehicle
CN101269618B (en) * 2008-04-25 2010-06-02 江苏大学 Control method for damping value of electronic control air spring damping apparatus with three-gear
AT508044A1 (en) * 2009-04-07 2010-10-15 Siemens Ag Oesterreich METHOD FOR CONTROLLING AN AIR SPRING ARRANGEMENT OF A VEHICLE
DE102010008540A1 (en) * 2010-02-18 2011-08-18 Bombardier Transportation GmbH, 10785 Active coupling between chassis and body in a vehicle
CN104097482B (en) * 2013-04-07 2016-07-06 陕西重型汽车有限公司 Automobile ECAS control method and device
EP2990294B1 (en) * 2014-08-25 2017-10-18 Schweizerische Bundesbahnen SBB Device and method of controlling the suspension of railway vehicles
AT519187A1 (en) 2016-09-29 2018-04-15 Siemens Ag Oesterreich Air spring control arrangement for a rail vehicle

Also Published As

Publication number Publication date
CN113474232B (en) 2023-11-10
EP3898377A1 (en) 2021-10-27
DE102018009962B3 (en) 2020-04-23
US20220048547A1 (en) 2022-02-17
CN113474232A (en) 2021-10-01
WO2020125830A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP3507154B1 (en) Electronic controllable pneuatic brake system and method for controlling
DE102006016989B4 (en) Method for leveling a vehicle body by regulating the air mass in the bellows
EP3145737B1 (en) Method for level control of a motor vehicle with air suspension
DE102013105759B4 (en) Vehicle gas suspension system and method for level control of a motor vehicle
EP1778508A1 (en) Suspension system
EP2416997B1 (en) Method for controlling a pneumatic spring assembly of a motor vehicle
DE102005030467B4 (en) Air suspension device for vehicles with throttle
EP2106937B1 (en) Commercial vehicle with a gas suspension, in particular pneumatic suspension and gas suspension system
WO2019215046A1 (en) Pneumatic spring control system, pneumatic spring system, vehicle comprising same, and method for same
DE102018112846A1 (en) Control device and method for controlling an actuator for actuating brake means of a vehicle, in particular a rail vehicle
WO2020057874A9 (en) Method for determining jumps and/or break points in an actuation characteristic of an actuation unit, evaluation module and vehicle
EP3455111B1 (en) Automated calibratable brake system and method for automated calibration of a brake system
DE102008051546A1 (en) Valve assembly and spring system for a vehicle
EP1647425A2 (en) Control device for a pneumatic suspension system for a vehicle
EP3898377B1 (en) Valve assembly and method for controlling the air suspension level of a rail vehicle
DE10107644B4 (en) Hydropneumatic suspension for vehicles with heavily varying axle loads
EP1769951B1 (en) Arrangement and cab suspension
DE102018221158B4 (en) Length-adjustable pendulum support and method for controlling a roll stabilizer
DE3300662A1 (en) Level control device for vehicles
DE102015202624A1 (en) Control device with control module
DE102007028633A1 (en) Method for checking the function of motion sensors
DE102010064460B4 (en) Level control system
DE102010018606A1 (en) Device for sensing three pressures, particularly in pilot unit for relay valve of vehicle system of vehicle, has valve arrangement for selective adjustment of three pressures in sensor pressure fluid line and pressure sensor
DE10314251A1 (en) chassis control
WO2020048714A1 (en) Distributed regulator structure for achieving optimised regulator properties and increased valve service life

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20220214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004755

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1499609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004755

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221231

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 5

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622