EP3897692A1 - Procédé de filtration du fibrinogène - Google Patents

Procédé de filtration du fibrinogène

Info

Publication number
EP3897692A1
EP3897692A1 EP19848895.9A EP19848895A EP3897692A1 EP 3897692 A1 EP3897692 A1 EP 3897692A1 EP 19848895 A EP19848895 A EP 19848895A EP 3897692 A1 EP3897692 A1 EP 3897692A1
Authority
EP
European Patent Office
Prior art keywords
fibrinogen
filter
filtration
carried out
elution buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19848895.9A
Other languages
German (de)
English (en)
Inventor
Damien BATAILLE
Monique Ollivier
Michel Tellier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LFB SA
Original Assignee
LFB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LFB SA filed Critical LFB SA
Publication of EP3897692A1 publication Critical patent/EP3897692A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/75Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0017Filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0023Heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0035Gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3847Multimodal interactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2697Chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/16Diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration

Definitions

  • the present invention relates to a fibrinogen filtration process, as well as the preparations obtained.
  • Fibrinogen is an essential protein for blood coagulation, because its polymerization into insoluble fibrin formed at the end of the cascade of reactions which govern coagulation, results in the formation of a clot closing the vascular breach, responsible for bleeding. The placement of the clot is thus essential to ensure the cessation of bleeding.
  • the fibrin formed at the level of the wound constitutes a fibrillar network which ensures tissue repair, therefore scarring.
  • Congenital fibrinogen deficiencies can lead to serious pathologies. To treat these deficiencies, it is necessary to have fibrinogen concentrates which can be administered to patients in treatment. Other pathologies can also be treated by fibrinogen contributions, in particular in the event of massive blood loss, in the event of surgery or trauma for example, or following a decompensated consumption coagulopathy, for example the CIVD ( disseminated intravascular coagulation).
  • CIVD disseminated intravascular coagulation
  • compositions comprising fibrinogen in particular for therapeutic purposes, requires purification techniques leading to a product which is not only sufficiently purified of contaminants of diverse nature, such as the accompanying or co-purified proteins. , antibodies or proteases, but moreover virally secure and in terms of the ATNC covering the prion.
  • certain conventional viral inactivation treatments consist of a heat treatment, for example pasteurization at 60 ° C. for 20 hours in the presence of protective stabilizers or dry heating of the lyophilized product, and / or a chemical treatment, such as as solvent-detergent, intended to make the fibrinogen compositions compatible with a therapeutic use.
  • a heat treatment for example pasteurization at 60 ° C. for 20 hours in the presence of protective stabilizers or dry heating of the lyophilized product
  • a chemical treatment such as as solvent-detergent
  • the other biological security methods use viral elimination techniques, in particular using filtering.
  • these filtration techniques require filters with a small pore size ( ⁇ 35 nanometers) which are hardly compatible with fibrinogen.
  • Application EP1457497 describes a nanofiltration step requiring a preliminary freezing and thawing step followed by filtration which must be applied in order to remove aggregates, polymers or undesirable contaminants such as fibronectin, such a process also requires a prior dilution of the solution to less than 2 g / L to limit early clogging of the filters, which represents significant obstacles to the industrialization of such processes.
  • low porosity filters such as the Planova 20N filter, which is conventionally used in the industry for biological safety, do not make it possible to achieve a charge on the filter sufficient to ensure an acceptable yield and industrial cost price.
  • the methods using filters under such conditions therefore do not allow easy industrial implementation or use at high capacity, and represent a prohibitive cost in the implementation of a purification process on an industrial scale using batches of departure of several hundred or thousands of liters.
  • such methods do not allow more than 0.2 kg of fibrinogen to be treated per m 2 of nanofilter membrane without including a preliminary stage of freezing / thawing and filtration of the product to be nanofiltrated.
  • the development of a nanofiltration step of fibrinogen under conditions allowing its industrial implementation (sufficient flow rate, little clogging, acceptable cost price) is therefore known to be a difficulty.
  • fibrinogen compositions must contain arginine to ensure their stability.
  • the processes for obtaining fibrinogen compositions thus use arginine at different stages of the process, including during the elution of chromatography.
  • application US2015 / 0366947 (Example 7) teaches that the nanofiltration of fibrinogen compositions obtained by elution from chromatography in a buffer comprising arginine would not be facilitated compared to the nanofiltration of fibrinogen compositions obtained by elution from chromatography in buffer not comprising arginine.
  • the Applicant has therefore sought to develop a process for removing viruses and other undesirable contaminants (such as polymers, aggregates or prions) from a composition comprising fibrinogen, by filtration, which allows the obtaining a highly secure fibrinogen composition, said process being easy to implement on an industrial scale, and having good yield and an acceptable industrial cost price.
  • the invention therefore relates to a method of filtering a fibrinogen composition, comprising the following steps: a) purification by chromatography of the fibrinogen composition using an elution buffer comprising arginine;
  • step b) optionally, at least one step of filtering the fibrinogen composition obtained by elution from chromatography in step a), on a filter having a pore size of between 0.08 ⁇ m and 0.22 ⁇ m,
  • step a) filtration of the fibrinogen composition obtained by elution from chromatography in step a), or optionally obtained in b), on a symmetrical filter having a pore size of between 15 nm and 25 nm, preferably between 18 nm and 22 nm, and
  • said filtration process being carried out without adding arginine after step a), at a capacity of at least 0.2 kg of fibrinogen / m 2 and said fibrinogen composition not being previously frozen and / or thawed.
  • the method according to the invention does not require the addition of an adjustment step with arginine of the composition obtained after the chromatography step.
  • Increasing concentrations of arginine in the elution buffer have been shown to increase the filtration capacity and do not clog the filter.
  • a subsequent adjustment step with arginine is therefore not necessary, thus simplifying the industrial implementation of the process.
  • the method according to the invention therefore advantageously allows filterability, on a symmetrical filter with a pore size of about 20 nm, of a composition comprising fibrinogen without prior freezing / thawing step, or prior dilution from a fibrinogen solution pre-purified by chromatography and eluted by buffer comprising arginine, and without addition of arginine after the purification step by chromatography.
  • FIG. 1 shows the capacity in g of fibrinogen / m 2 of membrane as a function of the flow rate (L / H / m 2 ) of the process according to the invention (symmetrical filter) compared to a previous process (asymmetric filter)
  • high capacity means a fibrinogen load per membrane surface, expressed in kg of fibrinogen per m 2 of membrane, greater than or equal to 0.2, preferably greater than or equal to 0 , 25, preferably greater than or equal to 0.3, preferably greater than or equal to 0.35, preferably greater than or equal to 0.4, preferably greater than or equal to 0.45, preferably greater than or equal to 0 , 5, preferably greater than or equal to 1, preferably greater than or equal to 2, preferably greater than or equal to 3, preferably greater than or equal to 5 kg / m 2 .
  • the high capacity corresponds to a fibrinogen load per membrane surface of between 0.2 and 5 kg / m 2 , even more advantageously between 0.2 and 2.5 kg / m 2 .
  • the Applicant has found that it was possible to obtain, on an industrial scale, fibrinogen compositions, highly secure, free of viruses, and in particular of small viruses, in particular non-enveloped, such than B19, and other undesirable contaminants (such as polymers, aggregates or prions), by the implementation of a flexible and simple filtration process which allows securing with a nanofiltration step of fibrinogen retaining its molecular integrity at an acceptable cost of production.
  • a simple process, fast and at an acceptable industrial cost price is easily implemented on an industrial scale, which leads to increased optimization of the biological security of compositions comprising fibrinogen.
  • a filtration process allows a high protein load with a high yield after filtration.
  • the method according to the invention thus uses a fibrinogen composition, in particular from different sources.
  • the fibrinogen composition can thus be obtained from blood plasma, preferably from plasma fractions, cell culture supernatant or milk from transgenic animals.
  • the composition comprising fibrinogen (or fibrinogen composition) subjected to the process of the invention is blood plasma or a plasma fraction, preferably a plasma fraction obtained from pre-purified blood plasma .
  • plasma fraction obtained from prepurified blood plasma means any part or sub-part of human blood plasma, having undergone one or more purification steps. Said plasma fractions thus include the supernatant of cryoprecipitate plasma, the cryoprecipitate of plasma (resuspended), fraction I obtained by ethanolic fractionation (according to the method of Cohn or of Kistler & Nitschmann), the eluates of chromatography and the non-adsorbed fractions of the chromatography columns, including multicolumn chromatographies, and the filtrates.
  • the fibrinogen composition subjected to the process of the invention undergoes an additional chromatography step.
  • the fibrinogen composition subjected to the process according to the invention is a chromatography eluate or a non-adsorbed fraction of a chromatography column, including multicolumn chromatography.
  • the fibrinogen composition subjected to the method of the invention is a plasma fraction obtained from cryosupernatant or resuspended cryoprecipitate.
  • the cryoprecipitate plasma supernatant corresponds to the liquid phase obtained after thawing of frozen plasma (cryoprecipitation).
  • the cryosupernatant can be obtained by freezing blood plasma at a temperature between - 10 ° C and -40 ° C, then gentle thawing at a temperature between 0 ° C and + 6 ° C, preferably between 0 ° C and +1 ° C, followed by centrifugation of the thawed plasma to separate the cryoprecipitate and the cryosupernatant.
  • Cryoprecipitate is a concentrate of fibrinogen, fibronectin, von Willebrand factor and factor VIII, while the cryosupernatant contains complement factors, dependent vitamin K factors such as protein C, protein S, protein Z, factor II, factor Vil, factor IX and factor X, fibrinogen, immunoglobulins and albumin.
  • fibrinogen composition not being previously frozen and / or thawed
  • fibrinogen composition which is subjected to step b) if it applies, or by default subjected directly to the 'step c), is not frozen and / or thawed before this step b) or c).
  • the plasma fraction subjected to the method of the invention can be obtained according to the method described by the Applicant in application EP1739093.
  • the plasma fraction used is preferably obtained as follows:
  • human plasma cryosupernatant is used.
  • This plasma cryosupernatant is subjected to ethanolic precipitation by Cohn's method, according to conditions known to those skilled in the art, in particular such that the concentration of ethanol in the plasma considered is 8 to 10% (v / v).
  • the supernatant and the precipitate thus obtained are then centrifuged.
  • the precipitate constitutes fraction I of Cohn consisting mainly of fibrinogen (purity about 70%).
  • This prepurified Cohn fraction I is resuspended and washed by dispersion.
  • the purified precipitate paste (fraction I of purified Cohn) is recovered and then dissolved.
  • the solution thus obtained is then subjected to an elimination of the procoagulant factors by treatment with alumina gel at a pH of 6.9-7.1.
  • this prepurified solution is subjected to a first viral inactivation treatment by solvent-detergent in the presence of Tween®-TnBP.
  • the prepurified solution thus obtained is injected onto a chromatographic column filled with an DEAE Macroprep anion exchange gel (Bio-Rad, France), previously balanced in a buffer consisting of sodium chloride and trisodium citrate, adjusted to a pH of 8 , 0.
  • DEAE Macroprep anion exchange gel Bio-Rad, France
  • the fibrinogen is eluted by an appropriate elution buffer, for example containing 1 M sodium chloride and a mixture consisting of trisodium citrate, lysine, glycine, arginine and isoleucine, adjusted to a pH 7.5.
  • the eluate thus recovered constitutes the plasma fraction used for nanofiltration.
  • the chromatography step is carried out by affinity, mixed-mode or ion exchange chromatography.
  • the chromatographic purification is an ion exchange chromatography.
  • it is carried out on an ion exchange matrix based on natural or synthetic polymer, resin or gel, onto which anion exchange groups of weak base type, preferably DEAE, are grafted.
  • the chromatographic purification comprises a first step of loading a composition of fibrinogen, in particular of the solubilized plasma fraction, on an anion exchanger of weak base type, said exchanger being beforehand balanced by a buffer of predetermined ionic strength of basic pH. Said buffer is called a balancing buffer.
  • the elution buffer comprises arginine in arginine is preferably at least 200 mM, at least 300 mM, at least 400 mM, at least 500 mM, at least 600 mM , at least 700 mM, at least 800 mM, at least 900 mM, at least 1 M.
  • the arginine concentration of the elution buffer is preferably between 200 and 800 mM, between 200 and 700 mM, between 200 and 600 mM, between 200 and 500 mM, between 200 and 400 mM, between 200 and 300 mM.
  • the arginine concentration of the elution buffer is preferably between 300 and 800 mM, between 400 and 800 mM, between 500 and 800 mM, between 600 and 800 mM, between 700 and 800 mM.
  • the arginine concentration of the elution buffer is preferably between 300 and 800 mM, between 400 and 700 mM, between 400 and 600 mM.
  • the elution buffer can also contain other suitable excipients, such as salts and / or amino acids, for example trisodium citrate, Tris, lysine, glycine, and / or isoleucine.
  • suitable excipients such as salts and / or amino acids, for example trisodium citrate, Tris, lysine, glycine, and / or isoleucine.
  • the protein concentration in the eluate is of the order of 2 to 5 g / l.
  • the chromatographic purification is an affinity chromatography.
  • the chromatographic purification comprises a first step of loading a fibrinogen composition, obtained from the cryosupernatant or from the resuspended cryoprecipitate, onto an affinity resin, said resin being beforehand balanced by a buffer of predetermined ionic strength of pH adapted. Said buffer is called a balancing buffer.
  • the solubilized plasma fraction is loaded onto any affinity matrix, resin or gel, onto which are grafted chemical or synthetic ligands such as antibodies, antibody fragments, antibody derivatives or chemical ligands such as peptides, mimetic peptides, peptoids, nanofitins or even oligonucleotide ligands such as aptamers.
  • the chromatographic support is available under the name CaptureSelect Fibrinogen (Life Technologies).
  • the chromatographic support is obtained according to the method described in application WO2018007530.
  • the plasma fraction subjected to the method of the invention can thus be obtained according to the method described by the Applicant in application WO2015 / 136217 or application WO2018007530.
  • the affinity chromatography can be carried out by continuous chromatography of the SMB (Simulated Moving Bed) type, for example with the NOVASEP SMCC technology (Sequential MultiColumns Chromatography).
  • SMB Simulated Moving Bed
  • NOVASEP SMCC Sequential MultiColumns Chromatography
  • the size of the columns and of the chromatography equipment is reduced significantly (on the order of 10 times).
  • the need for resin per batch of fibrinogen can be reduced by 10 to 50% in general.
  • the eluates generated in continuous chromatography can either be used continuously for the following stages with or without in-line concentration using in-line concentration equipment of the Cadence Pall type or equivalent from other suppliers.
  • a variant consists in pooling the eluates before the continuation of the process, with a possible reconcentration of the eluates before their use.
  • the affinity chromatography is carried out on the fibrinogen solution having undergone the viral inactivation treatment, thus the viral inactivation solution is found in the non-adsorbed fraction of chromatography and is removed at the same time as the fibrinogen is purified.
  • the elution buffer comprises arginine; the arginine concentration is preferably at least 200 mM at least 300 mM, at least 400 mM, at least 500 mM, at least 600 mM, at least 700 mM, at least 800 mM, at least 900 mM, at least 1 Mr.
  • the arginine concentration of the elution buffer is preferably between 200 and 800 mM, between 200 and 700 mM, between 200 and 600 mM, between 200 and 500 mM, between 200 and 400 mM , between 200 and 300 mM.
  • the arginine concentration of the elution buffer is preferably between 300 and 800 mM, between 400 and 800 mM, between 500 and 800 mM, between 600 and 800 mM, between 700 and 800 mM.
  • the arginine concentration of the elution buffer is preferably between 300 and 800 mM, between 400 and 700 mM, between 400 and 600 mM.
  • the elution buffer can also contain other suitable excipients, such as salts and / or amino acids, for example trisodium citrate, Tris, lysine, glycine, and / or isoleucine.
  • suitable excipients such as salts and / or amino acids, for example trisodium citrate, Tris, lysine, glycine, and / or isoleucine.
  • the elution buffer can consist either of a modification of the pH and / or of the ionic strength.
  • the composition comprising fibrinogen comes from milk of transgenic animals, for example obtained according to the method described in WO00 / 17234 or in WO00 / 17239.
  • the fibrinogen composition subjected to the process according to the invention has a purity greater than or equal to 70%, preferably greater than or equal to 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%.
  • the fibrinogen composition subjected to the method according to the invention advantageously does not comprise other co-purified proteins, advantageously no FXIII and / or fibronectin and / or prothrombin (Fil) and / or thrombin, and / or plasminogen and / or plasmin.
  • the fibrinogen composition subjected to the process according to the invention is advantageously devoid of FXIII.
  • the fibrinogen composition subjected to the process according to the invention can also comprise one or more accompanying proteins, optionally co-purified.
  • the fibrinogen composition subjected to the process according to the invention advantageously comprises FXIII.
  • the fibrinogen composition subjected to the process according to the invention does not include multimeric forms of fibrinogen, advantageously no fibrinogen polymers or fibrinogen aggregates.
  • the fibrinogen composition subjected to the process according to the invention is concentrated to more than 1 g of fibrinogen / L of solution, preferably to more than 2 g of fibrinogen / L of solution, even more so preferred to more than 3g of fibrinogen / L of solution, to more than 3.5g of fibrinogen / L of solution, to more than 4g of fibrinogen / L of solution, to more than 4.5g of fibrinogen / L of solution.
  • the fibrinogen composition subjected to the process according to the invention is concentrated between 2g and 5g of fibrinogen / L of solution.
  • it is used without prior dilution. Indeed, preferably, the method according to the invention does not require a prior dilution step of the fibrinogen composition.
  • the method according to the invention optionally comprises a step b), according to which at least one fibrinogen filtration step is carried out on a filter having a pore size between 0.08pm and 0.22pm.
  • step b) comprises two stages of filtration of fibrinogen on a filter having a pore size of between 0.08pm and 0.22pm.
  • the first filtration is carried out on a filter having a pore size of between 0.15 ⁇ m and 0.22 ⁇ m, preferably around 0.2 ⁇ m.
  • the second filtration is carried out on a filter having a pore size of between 0.08 ⁇ m and 0.15 ⁇ m, preferably around 0.1 ⁇ m.
  • PES polyethersulfone
  • the sequence of filters is, prior to step b), balanced with the buffer of the preliminary purification steps, in particular with the elution buffer for the chromatography optionally supplemented with amino acids.
  • a fibrinogen composition is recovered.
  • the method according to the invention comprises filtering the fibrinogen composition optionally obtained in b), on a symmetrical filter having a pore size between 15 nm and 25 nm: this is step c).
  • step b) If step b) is carried out, then the fibrinogen solution obtained in b) is passed through a symmetrical filter having pores with a diameter between 15 nm and 25 nm, preferably 20 nm, and the resulting solution of fibrinogen is recovered. If step b) is not carried out, then the fibrinogen composition obtained by elution from chromatography in step a) is directly passed through a symmetrical filter having pores of diameter between 15 nm and 25 nm, preferably 20 nm, and the resulting fibrinogen solution is recovered.
  • step c) is typically carried out at a pressure between 200 and 4000 mbar.
  • the nanofiltration of step b) is typically carried out at a pressure between 200 and 1000 mbar, or between 2000 and 4000 mbar.
  • the filters used can be defined by their average pore size in nm, by the viruses retained by the filter, by a molecular weight threshold or by the type of symmetry of their membrane.
  • the filters used can therefore be filters or any other equivalent filter sold:
  • filters from the Planova® range made up of a hollow fiber membrane formed from cellulose regenerated with cuprammonium and marketed by Asahi-Kasei (Planova® 15N, Planova® 20N), and those of the Ultipor® range, composed of a polyvinylidene fluoride membrane modified on the surface and are marketed by Pall (Ultipor DV20, Pegasus SV4), or any other equivalent filter marketed;
  • Such filters defined by the viruses retained by the filter, include the Planova BioEX PVDF filters (retention of parvoviruses, modified hydrophilic polyvinylidene fluoride membrane) sold by the company Asahi Kasei Bioprocess, the Pegasus SV4 filters, or Ultipor VF (retention parvoviruses, modified hydrophilic polyvinylidene fluoride membrane) marketed by Pall, Viresolve® NFP filters (retention of parvoriruses, surface-modified polyvinylidene fluoride membrane), Viresolve Pro (retention of parvoriruses, double-layer polyethersulfone membrane) and Viresolve® NFR (retention of retroviruses, polyethersulfone membrane) marketed by Millipore, and Virosart® CPV (retention of canine
  • asymmetric filters such as filters from the Planova® range, marketed by Asahi-Kasei (Planova® 15N, Planova® 20N, Planova BioEx), Viresolve NFP and Viresolve Pro (marketed by Merck Millipore), Virosart HF (marketed by Sartorius Stedim) .
  • symmetrical filters such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall), the Virosart CPV filter (marketed by Sartorius Stedim).
  • symmetrical filter means a filter having an equivalent porosity between the internal surface (in contact with the solution to be filtered) and external of the filter. This is in contrast to asymmetric filters for which the internal surface of the filter is often more porous than the external surface.
  • the pore size in nm can be measured by a person skilled in the art according to known techniques.
  • the nanofiltration carried out in step c) is carried out using a symmetrical type filter.
  • the nanofiltration of step c) is carried out using a symmetrical filter, such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall), the Virosart CPV filter (marketed by Sartorius Stedim).
  • a symmetrical filter such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall), the Virosart CPV filter (marketed by Sartorius Stedim).
  • the symmetrical filter is in pleated mounting.
  • the symmetrical filter is advantageously characterized by a hydrophilic polyvinylidenedifluoride membrane (PVDF).
  • PVDF hydrophilic polyvinylidenedifluoride membrane
  • the symmetrical filter in pleated assembly characterized by a hydrophilic polyvinylidenedifluoride membrane (PVDF) is a Pegasus SV4 filter (sold by Pall).
  • the Applicant has advantageously demonstrated that the symmetrical type filters, such as filters similar to the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall) or Virosart CPV (marketed by Sartorius Stedim) made it possible to carry out nanofiltration of fibrinogen with a load of at least 0.2 kg of fibrinogen / m 2 of membrane and said fibrinogen composition not being previously frozen and / or thawed and obtaining better results than with an asymmetric type filter such as filters from the Planova® range, marketed by Asahi-Kasei (Planova® 15N, Planova® 20N).
  • an asymmetric type filter such as filters from the Planova® range, marketed by Asahi-Kasei (Planova® 15N, Planova® 20N).
  • this step c) makes it possible to filter a substantial volume of fibrinogen solution, with a very good yield, ie at least 90%.
  • This substantial volume corresponds to a capacity of at least 0.2 kg of fibrinogen per m 2 and can go up to at least 5 kg per m 2 .
  • the filtration capacity of a fibrinogen composition is advantageously increased by adding increasing concentrations of arginine in the elution buffer for the chromatography carried out prior to the filtration sequence .
  • the chromatography elution buffer carried out in step a) comprises an arginine concentration of at least 200 mM and said filtration method has a capacity of at least 0.25 kg / m 2 .
  • the chromatography elution buffer carried out in step a) comprises an arginine concentration of at least 200 mM and said filtration method has a capacity of at least 0.30 kg / m 2
  • the elution buffer for the chromatography carried out in step a) comprises an arginine concentration of at least 200 mM and said filtration process has a capacity of at least 0.35 kg / m 2 .
  • the chromatography elution buffer carried out in step a) comprises an arginine concentration of at least 400 mM and said filtration process has a capacity of at least 0.25 kg / m 2
  • the chromatography elution buffer carried out in step a) comprises an arginine concentration of at least 400 mM and said filtration process has a capacity of at least 0.30 kg / m 2 .
  • the chromatography elution buffer carried out in step a) comprises an arginine concentration of at least 400 mM and said filtration process has a capacity of at least 0.35 kg / m 2 .
  • the filtration capacity is measured by any method known to those skilled in the art. Typically, this is determined as follows: The fibrinogen solution to be nanofiltered is prepurified by chromatography according to the method described in EP1739093. The concentration of the starting fibrinogen solution is 3 g / L.
  • the filtration capacity of the filter is determined by analyzing the clogging profile; the maximum filtration capacity corresponds to the quantity of fibrinogen associated with a filtration rate less than 25% of the initial rate.
  • the process for filtering a fibrinogen composition according to the invention comprises the following steps:
  • A) obtaining the fibrinogen composition said fibrinogen composition being chosen from a cell culture supernatant, milk from transgenic animals, the cryoprecipitate plasma supernatant, the resuspended plasma cryoprecipitate, the fraction I obtained by ethanolic fractionation according to the method of Cohn or of Kistler & Nitschmann, the supernatant and the precipitate obtained after precipitation of a plasma fraction with aluminum hydroxide and / or precipitation at low temperature, and the chromatography eluates and the non-adsorbed fractions chromatography columns obtained from a plasma fraction, a cell culture supernatant or a milk from transgenic animals,
  • said filtration process being carried out, without adding arginine after step a), at high capacity and said fibrinogen composition not being previously frozen and / or thawed.
  • the process for filtering a fibrinogen composition according to the invention comprises the following steps:
  • said filtration process being carried out without adding arginine after step a), at high capacity and said fibrinogen composition not being previously frozen and / or thawed.
  • the fibrinogen solution optionally obtained in b) is passed through a filter having pores of diameter between 15 nm and 50 nm prior to step c): this is step b ').
  • the filters used can be defined by their average pore size in nm, by the viruses retained by the filter, by a molecular weight threshold or by the type of symmetry of their membrane.
  • the filters used can therefore be filters or any other equivalent filter sold:
  • filters from the Planova® range made up of a hollow fiber membrane formed from cellulose regenerated with cuprammonium and marketed by Asahi-Kasei (Planova® 15N, Planova® 20N), and those of the Ultipor® range, composed of a membrane of polyvinylidene fluoride modified on the surface and are sold by Pall (Ultipor DV20, Pegasus SV4), or any other equivalent filter sold;
  • Such filters defined by the viruses retained by the filter, include the Planova BioEX PVDF filters (retention of parvoviruses, modified hydrophilic polyvinylidene fluoride membrane) sold by the company Asahi Kasei Bioprocess, the Pegasus SV4 filters, or Ultipor VF (retention parvoviruses, modified hydrophilic polyvinylidene fluoride membrane) marketed by Pall, Viresolve® NFP filters (retention of parvoriruses, surface-modified polyvinylidene fluoride membrane), Viresolve Pro (retention of parvoriruses, double-layer polyethersulfone membrane) and Viresolve® NFR (retention of retroviruses, polyethersulfone membrane) marketed by Millipore, and Virosart® CPV (retention of canine
  • asymmetric filters such as filters from the Planova® range, marketed by Asahi-Kasei (Planova® 15N, Planova® 20N, Planova BioEx), Viresolve NFP and Viresolve Pro (marketed by Merck Millipore), Virosart HF (marketed by Sartorius Stedim) .
  • symmetrical filters such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall), the Virosart CPV filter (marketed by Sartorius Stedim).
  • symmetrical filter is meant a filter having an equivalent porosity between the internal surface (in contact with the solution to be filtered) and the external surface of the filter.
  • the nanofiltration of step b ') is carried out using filters having pores with a diameter between 25 nm and 50 nm, preferably 35 nm.
  • the nanofiltration of step b ') is then carried out using the Planova 35 N filter sold by Asahi Kasei Bioprocess or STyLUX by Meissner (40 nm).
  • the nanofiltration of step b ’) is carried out using symmetrical filters having pores with a diameter between 15 nm and 25 nm, preferably 20 nm.
  • the nanofiltration of step b ’) is then carried out using a symmetrical membrane filter, such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall) or Virosart CPV (marketed by Sartorius Stedim).
  • the nanofiltration of step b ') and of step c) is carried out on filters of decreasing porosity, advantageously on a filter of porosity 35 nm followed by a symmetrical filter with a porosity of 20 nm.
  • the nanofiltration of step b ') is then carried out using the Planova 35 N filter marketed by Asahi Kasei Bioprocess then a symmetrical membrane filter, such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall) or Virosart CPV (marketed by Sartorius Stedim).
  • the nanofiltration of step b ’) and of step c) is carried out on filters of the same pore size, advantageously on 2 identical filters.
  • the nanofiltration of step b ’) is then carried out using a symmetrical membrane filter, such as the Pegasus SV4 or Ultipor DV20 filter (marketed by Pall) or Virosart CPV (marketed by Sartorius Stedim).
  • the nanofiltration of step b ’) is typically carried out at a pressure between 200 and 4000 mbar.
  • the nanofiltration of step b ’) is typically carried out at a pressure between 200 and 1000 mbar, or between 2000 and 4000 mbar.
  • the invention relates to a process for filtering a fibrinogen composition, comprising the following steps:
  • said filtration process being carried out without adding arginine after step a), at high capacity and said fibrinogen composition not being previously frozen and / or thawed.
  • the solution obtained comprises fibrinogen, and is highly secure.
  • step c) of the method according to the invention allows the elimination of at least 2log, advantageously at least 3log, even more advantageously at least 4log, preferably at at least 5 log or at least 6log of small viruses such as parvovirus B19.
  • the process for filtering a fibrinogen composition according to the invention comprises the following steps:
  • A) obtaining the fibrinogen composition said fibrinogen composition being chosen from a cell culture supernatant, milk from transgenic animals, the cryoprecipitate plasma supernatant, the resuspended plasma cryoprecipitate, the fraction I obtained by ethanolic fractionation according to the method of Cohn or Kistler & Nitschmann, the supernatant and the precipitate obtained after precipitation of a plasma fraction with aluminum hydroxide and / or precipitation at low temperature, and the chromatography eluates and the non-adsorbed fractions chromatography columns obtained from a plasma fraction, a cell culture supernatant or a milk from transgenic animals,
  • said filtration process being carried out without adding arginine after step a), at high capacity and said fibrinogen composition not being previously frozen and / or thawed.
  • the process for filtering a fibrinogen composition according to the invention comprises the following steps:
  • said filtration process being carried out without adding arginine after step a), at high capacity and said fibrinogen composition not being previously frozen and / or thawed.
  • the solution obtained in step d) can then be concentrated, for example by ultrafiltration, to contents typically between 10 and 40, preferably between 15 and 25 g of total protein / l, determined by measurements. classics known to those skilled in the art.
  • the fibrinogen solution obtained, optionally concentrated, can be subjected to a diafiltration step.
  • This step is intended to remove any excess inorganic salt used to obtain solutions having a ionic strength of at most 0.2 M.
  • This step may also prove necessary in order to formulate the fibrinogen under optimal conditions.
  • the buffer is advantageously suitable either for keeping the fibrinogen composition in liquid form (ready-to-use liquid formulation) or for keeping in lyophilized form (formulation suitable for preservation during the lyophilization step and optionally for 'dry heating step). This allows in this case on the one hand, dry heating of the fibrinogen without risk of denaturation, and, on the other hand, rapid solubilization when the fibrinogen is lyophilized thereafter, typically in 3 to 8 minutes.
  • the respective solutions can optionally be lyophilized according to conventional methods and usual conditions.
  • the lyophilisates can then be reconstituted in an aqueous medium compatible with clinical use, preferably in purified water for injection (PPI), and directly injected intravenously.
  • PPI purified water for injection
  • Viral inactivation often includes treatment with chemicals, for example by solvent and / or detergent and / or by heat (pasteurization and / or dry heating) and / or by irradiation (gamma rays and / or UVC )
  • This step can be carried out by a conventional chemical viral inactivation treatment, preferably consisting of a solvent-detergent treatment (generally called S / D treatment).
  • the viral inactivation chemical agents are preferably mixtures of polysorbate and Tri (n-butyl) phosphate (TnBP), or mixtures of Triton (octoxynol) and TnBP, whose typical concentrations are between 0.1 and 2 %.
  • This viral inactivation can be integrated at any stage of the process, but it is judiciously carried out before stage a) of chromatographic purification. In this way, it will contribute to the effective elimination of inactivating agents.
  • an additional step of dry viral inactivation heat treatment can be used, carried out on the fibrinogen lyophilisates obtained after the lyophilization step.
  • the operating conditions are typically around 80 ° C for 72 hours.
  • the elimination of infectious agents can also be carried out by means of deep filtration.
  • the filters available are for example filters composed of regenerated cellulose, in which filter aids may have been added, such as cellite, perlite or Kieselguhr earth.
  • filters are sold in particular by Cuno (Zeta + VR serial filters), Pall-Seitz (P-series Depth Filter) or Sartorius Sartoclear P depth filters).
  • the implementation of the method leads to highly secure fibrinogen solutions, free of viral particles and / or ATNC type contaminants.
  • the invention therefore relates to a fibrinogen solution capable of being obtained by the method described above.
  • the fibrinogen solution capable of being obtained by the process described above advantageously has a purity greater than or equal to 95% and is advantageously stable without the addition of stabilizing protein such as albumin.
  • the fibrinogen solution capable of being obtained by the process described above advantageously has an integral fibrinogen activity with in particular a coagulable fibrinogen / antigenic fibrinogen ratio> 0.9, or even equal to 1.0.
  • Example 1 Evaluation of the fibrinogen filtration on a 20 nm symmetrical filter according to the invention
  • composition comprising prepurified fibrinogen is obtained according to the method described in application EP1739093.
  • Pegasus SV4 filter from Pall Life Sciences, surface 0.00096 m 2 (Pegasus VF SV4, 10MCFSV4, surface 9.6 cm 2 ).
  • the solution comprising fibrinogen is concentrated at 3g / L and more than 90% pure
  • the filtration pressure was kept constant at 2.1 Bar on the 20 nm filter during all of the filtration.
  • the filtration sequence is balanced in the elution buffer of the ion exchange chromatography described in patent EP1739093 comprising arginine.
  • the clogging profile of fibrinogen on the 20 nm pore size filter is linear with a decrease proportional to the filtered volume up to 181 L / m 2 .
  • the filtration sequence applied made it possible to filter an amount equivalent to 0.5 kg of fibrinogen per m 2 of 20 nm pore size membrane in 6 hours. Higher filterability could have been achieved by extending the filtration time.
  • the yield of this nanofiltration is greater than 90%.
  • the method according to the invention therefore allows filterability, on a symmetrical filter with a pore size of approximately 20 nm, of a composition comprising fibrinogen without prior freezing / thawing step, or prior dilution from a fibrinogen solution pre-purified by chromatography and eluted by buffer comprising arginine.
  • Example 2 Evaluation of the fibrinogen filtration on a 20 nm symmetrical filter Pali DV 20 according to the invention
  • composition comprising prepurified fibrinogen is obtained according to the method described in application EP1739093.
  • the solution comprising fibrinogen is concentrated to 3.1 g / L and more than 90% pure
  • the filtration pressure was kept constant at 2.0 Bar on the 20 nm filter throughout the filtration.
  • the filtration sequence is balanced in the elution buffer for the ion exchange chromatography described in patent EP1739093 comprising arginine.
  • the clogging profile of fibrinogen on the 20 nm pore size filter is linear with a decrease proportional to the filtered volume up to 136 L / m 2 .
  • the filtration sequence applied made it possible to filter an amount equivalent to 0.4 kg of fibrinogen per m 2 of 20 nm pore size membrane in 15 hours. Higher filterability could have been achieved by extending the filtration time.
  • Example 3 Evaluation of the fibrinogen filtration on a 20 nm symmetrical filter according to the invention with 20-50 nm prefiltration
  • composition comprising prepurified fibrinogen is obtained according to the method described in application EP1739093.
  • Pegasus SV4 filter from Pall Life Sciences, surface 0.00096 m 2 (Pegasus VF SV4, 10MCFSV4, surface 9.6 cm 2 ).
  • the solution comprising fibrinogen is concentrated to 3g / L and more than 90% pure
  • the filtration pressure was kept constant at 2.1 Bar on the 20 nm filter during all of the filtration.
  • the filtration sequence is balanced in the elution buffer for the ion exchange chromatography described in patent EP1739093.
  • the clogging profile of fibrinogen on the 20 nm pore size filter is linear with a decrease proportional to the filtered volume up to 276 L / m 2 .
  • the filtration sequence applied made it possible to filter an amount equivalent to 0.8 kg of fibrinogen per m 2 of 20 nm pore size membrane in 18 hours.
  • the yield of this nanofiltration is greater than 90%.
  • the method according to the invention therefore allows filterability, on a symmetrical filter with a pore size of approximately 20 nm, of a composition comprising fibrinogen without prior freezing / thawing step, or prior dilution from a fibrinogen solution pre-purified by chromatography and eluted by buffer comprising arginine.
  • Example 4 Comparison of the method according to the invention with a method of the prior art on an asymmetric filter of about 20 nm
  • composition comprising pre-purified fibrinogen is obtained according to the method described in application EP1739093.
  • the chromatography eluate obtained according to EP1739093 is eluted in a buffer comprising 200 mM of arginine.
  • the fibrinogen composition is prefiltered using a PES (Polyether sulfone) model Sartopore 2 filter with a porosity of 0.2 - 0.1 pm (100 nm).
  • PES Polyether sulfone
  • the prefiltered composition is then filtered:
  • Planova 20N filter sold by the company Asahi at 395 ⁇ 23 mbar.
  • the asymmetric nanofilters tested on a solution of fibrinogen prepurified by chromatography having a concentration of at least 2 g / L show filterabilities of less than 0.1 Kg of fibrinogen per m 2 while the method according to the invention on a symmetrical filter allows achieve filterability greater than 0.2 kg of fibrinogen per m 2 .
  • composition comprising pre-purified fibrinogen is obtained according to the method described in application EP1739093. [0166] III - Preparation of the filter balancing buffer:
  • the fibrinogen composition is prefiltered using a Minisart High flow model PES (Polyether sulfone) filter with a porosity of 0.2 - 0.1 pm (100 nm).
  • PES Polyether sulfone
  • Nanofiltration is carried out on the Pegasus SV4 filter from Pall Life Sciences at a pressure of 2.1 +/- 0.1 bar.
  • the viral load is measured and produced using the PPV Ultrapure Gold 1% (v / v) product.
  • a sample is taken from the nanofiltered fraction after filtration of 79.2 L / m 2 of solution (loaded volume).
  • Example 7 Evaluation of the fibrinogen filtration capacity on a 20 nm symmetrical filter as a function of increasing concentrations of arginine in the elution buffer for the chromatography step
  • the fibrinogen compositions tested are prepurified by affinity chromatography according to the method described in application EP1739093, using an elution buffer comprising 50 mM of sodium citrate and increasing concentrations of arginine HCL (150 mM, 200 mM , 400 mM)
  • a filtration sequence as described in Example 1 is then carried out on the eluate in order to study the clogging profile of fibrinogen on the nanofilter with a porosity of 20 nm.
  • composition eluted by buffer chromatography comprising increasing concentrations of arginine, without additional addition of arginine before the nanofiltration step, allows an increase in the nanofiltration capacity 20 nm of fibrinogen.
  • increasing concentrations of arginine in the elution buffer according to the invention do not cause clogging of the filter and allow the nanofiltration capacity of the process to be increased, without adding any arginine after the purification step by chromatography. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Procédé de filtration d'une composition de fibrinogène, comprenant les étapes suivantes: a) purification par chromatographie de la composition de fibrinogène à l'aide d'un tampon d'élution comprenant de l'arginine; b) optionnellement, au moins une étape de filtration de la composition de fibrinogène obtenue par élution de chromatographie à l'étape a), sur filtre ayant une taille de pores comprise entre 0,08 µm et 0,22 µm, c) filtration de la composition de fibrinogène obtenue par élution de chromatographie à l'étape a),ou optionnellement obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, de préférence comprise entre 18 nm et 22 nm, et d) récupération de la solution résultante de fibrinogène, ledit procédé de filtration étant réalisé sans ajout d'arginine après l'étape a), à une capacité élevée et sans étape préalable de congélation et/ou décongélation.

Description

Description
Titre : Procédé de filtration du fibrinogène
Domaine technique
[0001] La présente invention concerne un procédé de filtration du fibrinogène, ainsi que les préparations obtenues.
Technique antérieure
[0002] Le fibrinogène est une protéine essentielle de la coagulation sanguine, car sa polymérisation en fibrine insoluble formée au terme de la cascade de réactions qui gouvernent la coagulation, aboutit à la formation d'un caillot obturant la brèche vasculaire, responsable du saignement. La mise en place du caillot est ainsi essentielle pour assurer l'arrêt du saignement. De plus, la fibrine formée au niveau de la plaie constitue un réseau fibrillaire qui assure la réparation tissulaire, donc la cicatrisation.
[0003] Des déficiences congénitales en fibrinogène peuvent conduire à de graves pathologies. Pour soigner ces déficiences, il est nécessaire de disposer de concentrés de fibrinogène pouvant être administrés à des patients en traitement. D'autres pathologies peuvent également être soignées par des apports de fibrinogène, notamment en cas de pertes massives de sang, en cas de chirurgie ou de traumatismes par exemple, ou à la suite d'une coagulopathie de consommation décompensée, par exemple la CIVD (coagulation intravasculaire disséminée).
[0004] Par conséquent, la mise à disposition de compositions comprenant du fibrinogène, notamment à des fins thérapeutiques, requiert des techniques de purification conduisant à un produit non seulement suffisamment purifié de contaminants de nature diverse, tels que les protéines accompagnantes ou co- purifiées, les anticorps ou les protéases, mais de surcroît sécurisé sur le plan viral et sur le plan des ATNC couvrant le prion.
[0005] L'isolement de fractions enrichies en fibrinogène à partir du plasma est connu et a été décrit initialement par les travaux de Cohn et Nitschmann (Cohn et al, J. Am. Chem. Soc., 68, 459, 1946 et Kistler et al, Vox Sang., 7, 1962, 414-424). Des méthodes plus récentes incorporent notamment des techniques de préparation par précipitation, chromatographie avec des étapes dédiées de sécurisation biologique.
[0006] Notamment, certains traitements d'inactivation virale classiques consistent en un traitement thermique, par exemple une pasteurisation à 60°C pendant 20h en présence de stabilisants protecteurs ou un chauffage à sec du produit lyophilisé, et/ou un traitement chimique, tel que par solvant-détergent, destinés à rendre les compositions de fibrinogène compatibles avec un usage thérapeutique. Cependant, ils ne permettent pas d’assurer une totale inactivation des virus, notamment des virus non enveloppés tels que le parvovirus B19 ou le virus de l’hépatite A ou B sans impacter la protéine. En particulier, si ces traitements ne sont pas parfaitement maîtrisés, ils peuvent entraîner la dégradation de la protéine (perte d’activité biologique, dénaturation par action enzymatique) et la formation de fragments, d’agrégats et de polymères.
[0007] Les autres méthodes de sécurisation biologique utilisent des techniques d’élimination virale, notamment à l’aide de filtrations. Néanmoins, ces techniques de filtration nécessitent des filtres de faible taille de pores (<35 nanomètres) qui sont difficilement compatibles avec le fibrinogène. La demande EP1457497 décrit une étape de nanofiltration nécessitant une étape préliminaire de congélation et de décongélation suivie d’une filtration qui doit être appliquée afin d’éliminer les agrégats, les polymères ou les contaminants indésirables tels que la fibronectine, un tel procédé nécessite également une dilution préalable de la solution à moins de 2 g/L pour limiter le colmatage précoce des filtres, ce qui représente des freins importants à l’industrialisation de tels procédés. Ainsi, les filtres de faible porosité tel que le filtre Planova 20N, qui est classiquement utilisé dans l’industrie pour la sécurisation biologique, ne permettent pas d’atteindre une charge sur le filtre suffisante pour assurer un rendement et un coût de revient industriel acceptable. Les procédés utilisant des filtres dans de telles conditions ne permettent donc pas une mise en oeuvre industrielle aisée ni une utilisation à capacité élevée, et représentent un coût rédhibitoire dans l’implémentation d’un procédé de purification à l’échelle industrielle utilisant des lots de départ de plusieurs centaines ou milliers de litres. [0008] En particulier de tels procédés ne permettent pas de traiter plus de 0,2 kg de fibrinogène par m2 de membrane de nanofiltre sans inclure une étape préliminaire de congélation/décongélation et filtration du produit à nanofiltrer. Pour l’homme du métier la mise au point d’une étape de nanofiltration du fibrinogène dans des conditions permettant sa mise en oeuvre industrielle (débit suffisant, peu colmatante, prix de revient acceptable) est donc connue comme étant une difficulté.
[0009] Par ailleurs, il est connu de l’homme du métier que les compostions de fibrinogène doivent contenir de l’arginine pour assurer leur stabilité. Les procédés d’obtention de compositions de fibrinogène utilisent ainsi l’arginine à différentes étapes du procédé, y compris lors de l’élution de chromatographie. Toutefois, la demande US2015/0366947 (exemple 7) enseigne que la nanofiltration de compositions de fibrinogène obtenues par élution de chromatographie en tampon comprenant de l’arginine ne serait pas facilitée par rapport à la nanofiltration de compositions de fibrinogène obtenues par élution de chromatographie en tampon ne comprenant pas d’arginine. En effet, selon ce procédé, l’utilisation d’un tampon d’élution de chromatographie comprenant de l’arginine entraine le colmatage du filtre et nécessite l’ajout d’une étape d’ajustement avec de l’arginine de la composition obtenue après l’étape de chromatographie, afin de surmonter l’impossibilité de nanofiltrer la composition. Un procédé plus simple à mettre en œuvre présenterait donc un avantage.
Problème technique
[0010] La Demanderesse a donc cherché à mettre au point un procédé d'élimination des virus et d'autres contaminants indésirables (tels que les polymères, agrégats ou prion) d’une composition comprenant du fibrinogène, par filtration, qui permette l'obtention d’une composition de fibrinogène hautement sécurisée, ledit procédé étant facile à mettre en œuvre à l’échelle industrielle, et présentant un bon rendement et un prix de revient industriel acceptable.*
Exposé de l’invention
[0011] L'invention concerne, par conséquent, un procédé de de filtration d’une composition de fibrinogène, comprenant les étapes suivantes: a) purification par chromatographie de la composition de fibrinogène à l’aide d’un tampon d’élution comprenant de l’arginine ;
b) optionnellement, au moins une étape de filtration de la composition de fibrinogène obtenue par élution de chromatographie à l’étape a), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
c) filtration de la composition de fibrinogène obtenue par élution de chromatographie à l’étape a), ou optionnellement obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, de préférence comprise entre 18 nm et 22 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à une capacité d’au moins 0,2 kg de fibrinogène/m2 et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0012] Une telle solution permet de résoudre les problèmes posés par les solutions connues de l’état de la technique et notamment d’obtenir une solution en fin d’étape d) hautement sécurisée biologiquement.
[0013] En effet et avantageusement, le procédé selon l’invention ne nécessite pas l’ajout d’une étape d’ajustement avec de l’arginine de la composition obtenue après l’étape de chromatographie. Il a été en effet démontré que des concentrations croissantes d’arginine dans le tampon d’élution permettent d’augmenter la capacité de filtration et n’entrainent pas de colmatage du filtre. Une étape d’ajustement ultérieur avec de l’arginine n’est donc pas nécessaire, simplifiant ainsi la mise en œuvre industrielle du procédé.
[0014] Le procédé selon l’invention permet donc avantageusement la filtrabilité, sur filtre symétrique de taille de pores d’environ 20 nm, d’une composition comprenant du fibrinogène sans étape de congélation/décongélation préalable, ni dilution préalable à partir d’une solution de fibrinogène pré-purifié par chromatographie et éluée par tampon comprenant de l’arginine, et sans ajout d’arginine après l’étape de purification par chromatographie.
Brève description des dessins [0015] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0016] [Fig. 1 ] montre la capacité en g de fibrinogène/m2 de membrane en fonction du débit (L/H/m2) du procédé selon l’invention (filtre symétrique) comparativement à un procédé antérieur (filtre asymétrique)
Description des modes de réalisation
[0017] Les dessins et la description ci-après contiennent, pour l’essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
[0018] Dans la présente demande, par « capacité élevée » on entend une charge de fibrinogène par surface de membrane, exprimée en kg de fibrinogène par m2 de membrane, supérieure ou égale à 0,2, de préférence supérieure ou égale à 0,25, de préférence supérieure ou égale à 0,3, de préférence supérieure ou égale à 0,35, de préférence supérieure ou égale à 0,4, de préférence supérieure ou égale à 0,45, de préférence supérieure ou égale à 0,5, de préférence supérieure ou égale à 1 , de préférence supérieure ou égale à 2, de préférence supérieure ou égale à 3, de préférence supérieure ou égale à 5 kg/m2.
[0019] De manière particulièrement avantageuse, la capacité élevée correspond à une charge de fibrinogène par surface de membrane comprise entre 0,2 et 5 kg/m2, encore plus avantageusement entre 0,2 et 2,5 kg/m2.
[0020] Ainsi, la Demanderesse a trouvé qu'il était possible d'obtenir, à l'échelle industrielle, des compositions de fibrinogène, hautement sécurisées, exemptes de virus, et en particulier de virus de petite taille, notamment non enveloppés, tel que le B19, et d'autres contaminants indésirables (tels que les polymères, agrégats ou prion), par la mise en oeuvre d'un procédé de filtration flexible et simple qui permet une sécurisation avec une étape de nanofiltration du fibrinogène conservant son intégrité moléculaire à un coût de production acceptable. Un tel procédé simple, rapide et à prix de revient industriel acceptable, est aisément mis en œuvre à l'échelle industrielle, ce qui conduit à une optimisation accrue de la sécurisation biologique de compositions comprenant du fibrinogène. Enfin, un tel procédé de filtration permet une charge protéique élevée avec un rendement important après filtration.
[0021] En outre, un tel procédé est optimal, car il ne nécessite pas notamment :
- des étapes préalables de congélation/décongélation destinées à éliminer les agrégats ou contaminants indésirables,
- et/ou des étapes de dilution préalable, qui diminuent la concentration protéique et rallongent les temps de filtration,
- et/ou des étapes d’élimination de l’arginine dans les étapes précédentes de purification, ce qui permet de garder un fibrinogène stabilisé,
- et/ou une étape d’ajustement avec de l’arginine de la composition obtenue après l’étape de purification par chromatographie réalisée à l’aide d’un tampon d’élution comprenant de l’arginine.
[0022] Selon l'invention, on peut utiliser plusieurs sources de matière première contenant du fibrinogène. Le procédé selon l’invention utilise ainsi une composition de fibrinogène, notamment de différentes sources. La composition de fibrinogène peut ainsi être issue de plasma sanguin, de préférence de fractions plasmatiques, de surnageant de culture cellulaire ou de lait d’animaux transgéniques.
[0023] Dans un mode de réalisation particulier, la composition comprenant du fibrinogène (ou composition de fibrinogène) soumise au procédé de l’invention est du plasma sanguin ou une fraction plasmatique, de préférence une fraction plasmatique obtenue à partir de plasma sanguin pré purifié.
[0024] Par « fraction plasmatique obtenue à partir de plasma sanguin prépurifié», on entend toute partie ou sous-partie du plasma sanguin humain, ayant fait l’objet d’une ou plusieurs étapes de purification. Lesdites fractions plasmatiques incluent ainsi le surnageant de plasma cryoprécipité, le cryoprécipité de plasma (remis en suspension), la fraction I obtenue par fractionnement éthanolique (selon la méthode de Cohn ou de Kistler & Nitschmann), les éluats de chromatographies et les fractions non adsorbées des colonnes de chromatographie, y compris des chromatographies multicolonnes, et les filtrats.
[0025] Dans un mode de réalisation de l’invention, la composition de fibrinogène soumise au procédé de l’invention subie une étape supplémentaire de chromatographie. Ainsi, selon un mode de réalisation, la composition de fibrinogène soumise au procédé selon l’invention est un éluat de chromatographie ou une fraction non adsorbée de colonne de chromatographie, y compris de chromatographie multicolonnes.
[0026] Ainsi, dans un mode de réalisation préféré de l’invention, la composition de fibrinogène soumise au procédé de l’invention est une fraction plasmatique obtenue à partir de cryosurnageant ou de cryoprécipité remis en suspension.
[0027] Selon l’invention, le « surnageant de plasma cryoprécipité », ou « cryosurnageant », correspond à la phase liquide obtenue après décongélation de plasma congelé (cryoprécipitation). Notamment, le cryosurnageant peut être obtenu par congélation de plasma sanguin à une température comprise entre - 10°C et -40°C, puis décongélation douce à une température comprise entre 0°C et +6°C, préférentiellement entre 0°C et +1 °C, suivie d’une centrifugation du plasma décongelé pour séparer le cryoprécipité et le cryosurnageant. Le cryoprécipité est un concentré en fibrinogène, fibronectine, facteur von Willebrand et facteur VIII, tandis que le cryosurnageant contient les facteurs du complément, les facteurs vitamine K dépendants tels que la protéine C, la protéine S, la protéine Z, le facteur II, le facteur Vil, le facteur IX et le facteur X, du fibrinogène, les immunoglobulines et l’albumine.
[0028] Par « composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée », il est entendu que la composition de fibrinogène qui est soumise à l’étape b) si elle s’applique, ou par défaut soumise directement à l’étape c), n’est pas congelée et/ou décongelée avant cette étape b) ou c).
[0029] Dans un mode de réalisation avantageux de l’invention, la fraction plasmatique soumise au procédé de l’invention peut être obtenue selon le procédé décrit par la Demanderesse dans la demande EP1739093. Selon ce mode, la fraction plasmatique utilisée est de préférence obtenue comme suit : On utilise de préférence du cryosurnageant de plasma humain. Ce cryosurnageant de plasma est soumis à une précipitation éthanolique par la méthode de Cohn, selon des conditions connues de l'homme du métier, notamment de façon telle que la concentration d'éthanol dans le plasma considéré soit de 8 à 10 % (v/v).
Le surnageant et le précipité ainsi obtenus sont ensuite centrifugés. Le précipité constitue la fraction I de Cohn constituée majoritairement de fibrinogène (pureté environ 70 %).
Cette fraction I de Cohn prépurifiée est remise en suspension et lavée par dispersion.
Après centrifugation, la pâte de précipité purifié (fraction I de Cohn purifiée) est récupérée puis solubilisée.
La solution ainsi obtenue est ensuite soumise à une élimination des facteurs procoagulants par traitement au gel d'alumine à un pH de 6,9-7, 1.
Après filtration, cette solution prépurifiée est soumise à un premier traitement d'inactivation virale par solvant-détergent en présence de Tween®-TnBP.
La solution prépurifiée ainsi obtenue est injectée sur une colonne chromatographique remplie d'un gel échangeur d'anions DEAE Macroprep (Bio- Rad, France), préalablement équilibrée en tampon constitué de chlorure de sodium et de citrate trisodique, ajusté à un pH de 8,0.
L'élution du fibrinogène est effectuée par un tampon d'élution approprié, par exemple contenant du chlorure de sodium 1 M et un mélange constitué de citrate trisodique, de lysine, de glycine, d'arginine et l'isoleucine, ajusté à un pH de 7,5. L'éluat ainsi récupéré constitue la fraction plasmatique utilisée pour la nanofiltration. Dans le procédé selon l’invention, l’étape de chromatographie est effectuée par chromatographie d’affinité, mixed-mode ou échangeuse d’ions.
[0030] Dans un mode de réalisation particulier, la purification chromatographique est une chromatographie échangeuse d’ions. De préférence, elle est effectuée sur une matrice échangeuse d’ions à base de polymère naturel ou synthétique, résine ou gel, sur laquelle sont greffés des groupements échangeurs d'anions de type base faible, de préférence le DEAE. De préférence, la purification chromatographique comprend une première étape de chargement d’une composition de fibrinogène, notamment de la fraction plasmatique solubilisée, sur un échangeur d'anions de type base faible, ledit échangeur étant préalablement équilibré par un tampon de force ionique prédéterminée de pH basique. Ledit tampon est appelé tampon d’équilibrage.
[0031] Dans le procédé selon l’invention, le tampon d'élution comprend de l’arginine en arginine est préférentiellement d’au moins 200 mM, au moins 300 mM, au moins 400 mM, au moins 500mM, au moins 600 mM, au moins 700 mM, au moins 800 mM, au moins 900 mM, au moins 1 M.
[0032] Dans un mode de réalisation préféré, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 200 et 800 mM, entre 200 et 700 mM, entre 200 et 600 mM, entre 200 et 500 mM, entre 200 et 400 mM, entre 200 et 300 mM.
[0033] Dans un autre mode de réalisation, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 300 et 800 mM, entre 400 et 800 mM, entre 500 et 800 mM, entre 600 et 800 mM, entre 700 et 800 mM.
[0034] Dans un autre mode de réalisation, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 300 et 800 mM, entre 400 et 700 mM, entre 400 et 600 mM.
[0035] Dans le procédé selon l’invention, le tampon d’élution peut également contenir d'autres excipients adaptés, tels que des sels et/ou des acides aminés par exemple du citrate trisodique, du Tris, de la lysine, de la glycine, et/ou de l'isoleucine. La concentration en protéines dans l'éluat est de l'ordre de 2 à 5 g/l.
[0036] Dans un mode de réalisation particulier, la purification chromatographique est une chromatographie d’affinité. De préférence, la purification chromatographique comprend une première étape de chargement d’une composition de fibrinogène, issue du cryosurnageant ou du cryoprécipité remis en suspension, sur une résine d’affinité, ladite résine étant préalablement équilibrée par un tampon de force ionique prédéterminée de pH adapté. Ledit tampon est appelé tampon d’équilibrage.
[0037] Ainsi, de préférence, lors de l’étape a), la fraction plasmatique solubilisée est chargée sur toute matrice d’affinité, résine ou gel, sur laquelle sont greffés des ligands chimiques ou synthétique tels que les anticorps, les fragments d’anticorps, les dérivés d’anticorps ou des ligands chimiques tels que des peptides, des peptides mimétiques, des peptoïdes, des nanofitines ou encore des ligands oligonucléotidiques tels que les aptamères. Dans un mode de réalisation particulier, le support chromatographique est disponible sous l’appellation CaptureSelect Fibrinogen (Life Technologies). Dans un autre mode de réalisation particulier, le support chromatographique est obtenu selon la méthode décrite dans la demande WO2018007530.
[0038] Dans un mode de réalisation avantageux de l’invention, la fraction plasmatique soumise au procédé de l’invention peut ainsi être obtenue selon le procédé décrit par la Demanderesse dans la demande WO2015/136217 ou la demande WO2018007530.
[0039] De façon avantageuse la chromatographie d’affinité peut être réalisée en chromatographie continue de type SMB (Simulated Moving Bed) par exemple avec la technologie NOVASEP SMCC (Sequential MultiColumns Chromatography). En utilisant entre 2 et 8 colonnes de petite taille réalisant plusieurs cycles de purification de manière à purifier l’ensemble du fibrinogène, la taille des colonnes et des équipements de chromatographie se trouve réduite de façon importante (de l’ordre de 10 fois). De plus en surchargeant la résine d’affinité lors de phases de chargement du fibrinogène le besoin en résine par lot de fibrinogène peut être réduit de 10 à 50% en général. Les éluats générés en chromatographie continue peuvent être soit utilisés en continu pour les étapes suivantes avec ou sans concentration en ligne en utilisant des équipements de concentration en ligne de type Cadence Pall ou équivalent d’autres fournisseurs. Une variante consiste à pooler les éluats avant la suite du procédé, avec une reconcentration possible des éluats avant leur utilisation.
[0040] Dans un mode de réalisation avantageux de l’invention, la chromatographie d’affinité est réalisée sur la solution de fibrinogène ayant subi le traitement d’inactivation virale, ainsi la solution d’inactivation virale se retrouve dans la fraction non adsorbée de chromatographie et est éliminée en même temps que le fibrinogène est purifié. [0041] Dans le procédé selon l’invention, le tampon d'élution comprend de l’arginine; la concentration en arginine est préférentiellement d’au moins 200 mM au moins 300 mM, au moins 400 mM, au moins 500 mM, au moins 600 mM, au moins 700 mM, au moins 800 mM, au moins 900 mM, au moins 1 M.
[0042] Dans un mode de réalisation préféré, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 200 et 800mM, entre 200 et 700 mM, entre 200 et 600 mM, entre 200 et 500 mM, entre 200 et 400 mM, entre 200 et 300 mM.
[0043] Dans un autre mode de réalisation, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 300 et 800 mM, entre 400 et 800 mM, entre 500 et 800 mM, entre 600 et 800 mM, entre 700 et 800 mM.
[0044] Dans un autre mode de réalisation, la concentration en arginine du tampon d’élution est préférentiellement comprise entre 300 et 800 mM, entre 400 et 700 mM, entre 400 et 600 mM.
[0045] Dans le procédé selon l’invention, le tampon d'élution peut également contenir d'autres excipients adaptés, tels que des sels et/ou des acides aminés par exemple du citrate trisodique, du Tris, de la lysine, de la glycine, et/ou de l'isoleucine.
[0046] Dans un autre mode de réalisation particulier de l’invention, le tampon d’élution peut consister soit en une modification du pH et/ou de la force ionique.
[0047] Dans un autre mode de réalisation particulier de l’invention, la composition comprenant du fibrinogène provient de lait d’animaux transgéniques, par exemple obtenu selon la méthode décrite dans WO00/17234 ou dans WO00/17239.
[0048] De manière avantageuse, la composition de fibrinogène soumise au procédé selon l’invention possède une pureté supérieure ou égale à 70%, de manière préférée supérieure ou égale à 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%.
[0049] Dans un mode de réalisation particulier de l’invention, la composition de fibrinogène soumise au procédé selon l’invention ne comprend avantageusement pas d’autres protéines co-purifiées, avantageusement pas de FXIII et/ou de fibronectine et/ou de prothrombine (Fil) et/ou de thrombine, et/ou de plasminogène et/ou de plasmine. Dans un mode de réalisation particulier de l’invention, la composition de fibrinogène soumise au procédé selon l’invention est avantageusement dépourvue de FXIII.
[0050] Selon l'invention, la composition de fibrinogène soumise au procédé selon l’invention peut également comprendre une ou plusieurs protéines accompagnantes, éventuellement co-purifiées. Dans un mode de réalisation particulier de l’invention, la composition de fibrinogène soumise au procédé selon l’invention comprend avantageusement du FXIII.
[0051] Dans un mode de réalisation particulièrement avantageux de l’invention la composition de fibrinogène soumise au procédé selon l’invention ne comprend pas de formes multimériques de fibrinogène, avantageusement pas de polymères de fibrinogène ni d’agrégats de fibrinogène.
[0052] De manière particulièrement avantageuse, la composition de fibrinogène soumise au procédé selon l’invention est concentrée à plus de 1 g de fibrinogène/L de solution, de préférence à plus de 2g de fibrinogène/L de solution, de manière encore plus préférée à plus de 3g de fibrinogène/L de solution, à plus de 3,5g de fibrinogène/L de solution, à plus de 4g de fibrinogène/L de solution, à plus de 4,5g de fibrinogène/L de solution. Dans un mode de réalisation particulier de l’invention, la composition de fibrinogène soumise au procédé selon l’invention est concentrée entre 2g et 5g de fibrinogène/L de solution. En outre, de préférence, elle est utilisée sans dilution préalable. En effet, de préférence, le procédé selon l’invention ne nécessite pas d’étape de dilution préalable de la composition de fibrinogène.
[0053] Le procédé selon l’invention comprend optionnellement une étape b), selon laquelle au moins une étape de filtration du fibrinogène, est réalisée sur filtre ayant une taille de pores comprise entre 0,08pm et 0,22pm.
[0054] De préférence, l’étape b) comprend deux étapes de filtration du fibrinogène sur filtre ayant une taille de pores comprise entre 0,08pm et 0,22pm. De préférence, la première filtration est effectuée sur filtre ayant une taille de pores comprise entre 0,15pm et 0,22pm, de préférence d’environ 0,2 pm. De préférence, la seconde filtration est effectuée sur filtre ayant une taille de pores comprise entre 0,08pm et 0,15pm, de préférence d’environ 0,1 pm.
[0055] Ces filtrations peuvent être réalisées en utilisant les filtres de polyéthersulfone (PES) commercialisés par Sartorius sous le nom Sartopore® 2 Maxicaps® ou tout autre média équivalent ayant des caractéristiques similaires.
[0056] De préférence, la séquence de filtres est, préalablement à l’étape b), équilibrée avec le tampon des étapes préalables de purification, en particulier avec le tampon d’élution de la chromatographie éventuellement supplémenté en acides aminés.
[0057] A la fin de l’étape b), on récupère une composition de fibrinogène.
[0058] Puis, le procédé selon l’invention comprend la filtration de la composition de fibrinogène optionnellement obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm : c’est l’étape c).
[0059] Si l’étape b) est effectuée, alors la solution de fibrinogène obtenue en b) est passée sur filtre symétrique ayant des pores de diamètre compris entre 15 nm et 25 nm, préférentiellement de 20 nm, et la solution résultante de fibrinogène est récupérée. Si l’étape b) n’est pas effectuée, alors la composition de fibrinogène obtenue par élution de chromatographie à l’étape a) est directement passée sur filtre symétrique ayant des pores de diamètre compris entre 15 nm et 25 nm, préférentiellement de 20 nm, et la solution résultante de fibrinogène est récupérée.
[0060] La nanofiltration de l’étape c) est typiquement réalisée à une pression comprise entre 200 et 4000 mbar. De manière avantageuse, la nanofiltration de l’étape b) est typiquement réalisée à une pression comprise entre 200 et 1000 mbar, ou entre 2000 et 4000 mbar.
[0061] De manière avantageuse, les filtres utilisés peuvent être définis par leur taille moyenne de pores en nm, par les virus retenus par le filtre, par un seuil de poids moléculaire ou par le type de symétrie de leur membrane. Les filtres utilisés peuvent donc être des filtres ou tout autre filtre équivalent commercialisé :
- définis par une taille moyenne de pores en nm, incluant les filtres de la gamme Planova®, constitués d’une membrane à fibres creuses formée de cellulose régénérée au cuprammonium et commercialisés par Asahi-Kasei (Planova® 15N, Planova® 20N), et ceux de la gamme Ultipor®, composés d’une membrane de polyfluorure de vinylidène modifié à la surface et sont commercialisés par Pall (Ultipor DV20, Pegasus SV4), ou tout autre filtre équivalent commercialisé ;
- dont la taille moyenne des pores est définie relativement aux virus retenus par le filtre. La taille moyenne des pores du filtre correspond alors à la taille du plus petit virus retenu par le filtre. De tels filtres, définis par les virus retenus par le filtre, incluent les filtres Planova BioEX en PVDF (rétention des parvovirus, membrane en polyvinylidène fluoride hydrophile modifié) commercialisés par la société Asahi Kasei Bioprocess, les filtres Pegasus SV4, ou Ultipor VF (rétention des parvovirus, membrane en polyvinylidène fluoride hydrophile modifié) commercialisés par Pall, les filtres Viresolve® NFP (rétention des parvorirus, membrane en polyfluorure de vinylidène modifié en surface), Viresolve Pro (rétention des parvorirus, membrane en polyéthersulfone double couche) et Viresolve® NFR (rétention des rétrovirus, membrane en polyéthersulfone) commercialisés par Millipore, et Virosart® CPV (rétention du parvovirus canin, membrane à double couche de polyéthersulfone), Virosart HC ou Virosart Fl F commercialisé par Sartorius, ou tout autre filtre équivalent commercialisé. Ces filtres, qui sont définis par les virus retenus, notamment les parvovirus, présentent une taille moyenne de pores d’environ 20 nm.
- définis par leur symétrie, par exemple
filtres asymétriques tels que les filtres de la gamme Planova®, commercialisés par Asahi-Kasei (Planova® 15N, Planova® 20N, Planova BioEx), Viresolve NFP et Viresolve Pro (commercialisés par Merck Millipore), Virosart HF (commercialisé par Sartorius Stedim).
filtres symétriques, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall), le filtre Virosart CPV (commercialisé par Sartorius Stedim).
Une telle classification des filtres selon leur symétrie apparaît notamment dans Gustafsson et al., « Mille-feuille paper : a novel type of filter architecture for advanced virus séparation applications ». Materials Florizons 2016, 3, 320-337.
[0062] Par « filtre symétrique » selon l’invention on entend un filtre ayant une porosité équivalente entre la surface interne (en contact avec la solution à filtrer) et externe du filtre. Ceci vient en opposition des filtres asymétriques pour lesquels la surface interne du filtre est souvent plus poreuse que la surface externe.
[0063] Quelle que soit la manière dont est défini le filtre par le fabricant, la taille des pores en nm peut être mesurée par l’homme du métier selon des techniques connues.
[0064] Dans un mode de réalisation particulièrement avantageux, la nanofiltration réalisée à l’étape c) est effectuée à l’aide d’un filtre de type symétrique.
[0065] De préférence, la nanofiltration de l’étape c) est effectuée en utilisant un filtre symétrique, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall), le filtre Virosart CPV (commercialisé par Sartorius Stedim).
[0066] Dans un mode de réalisation particulier, le filtre symétrique est en montage plissé.
[0067] Dans un autre mode de réalisation particulier le filtre symétrique est avantageusement caractérisé par une membrane polyvinylidènedifluoride (PVDF) hydrophile.
[0068] Dans un mode de réalisation particulier, le filtre symétrique en montage plissé caractérisé par une membrane polyvinylidènedifluoride (PVDF) hydrophile est un filtre Pegasus SV4 (commercialisé par Pall).
[0069] La Demanderesse a avantageusement mis en évidence que les filtres de type symétrique, tels que des filtres similaires au filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall) ou Virosart CPV (commercialisé par Sartorius Stedim) permettaient de réaliser la nanofiltration du fibrinogène avec une charge d’au moins 0,2 kg de fibrinogène/m2 de membrane et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée et d’obtenir de meilleurs résultats qu’avec un filtre de type asymétrique tels que les filtres de la gamme Planova®, commercialisés par Asahi-Kasei (Planova® 15N, Planova® 20N).
[0070] Comme cela est montré en exemples, cette étape c) permet de filtrer un volume conséquent de solution de fibrinogène, avec un très bon rendement, i.e. au moins égal à 90%. Ce volume conséquent correspond à une capacité d’au moins 0,2 kg de fibrinogène par m2 et peut aller jusqu’à au moins 5 kg par m2.
[0071] Comme cela est montré dans l’exemple 7, la capacité de filtration d’une composition de fibrinogène est avantageusement augmentée en ajoutant des concentrations croissantes d’arginine dans le tampon d’élution de la chromatographie réalisée préalablement à la séquence de filtration.
[0072] Dans un mode de réalisation préféré du procédé de filtration selon l’invention, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration a une capacité d’au moins 0.25 kg/m2.
[0073] Dans un autre mode réalisation du procédé de filtration selon l’invention, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration a une capacité d’au moins 0.30 kg/m2
[0074] Dans un autre mode de réalisation, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration a une capacité d’au moins 0.35 kg/m2.
[0075] Dans un autre mode de réalisation de l’invention, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration a une capacité d’au moins 0.25 kg/m2
[0076] Dans un autre mode de réalisation de l’invention, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration a une capacité d’au moins 0.30 kg/m2. Dans un autre mode de réalisation, le tampon d’élution de la chromatographie réalisée à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration a une capacité d’au moins 0.35 kg/m2.
[0077] La capacité de filtration est mesurée par toute méthode connue de l’homme du métier. Typiquement, celle-ci est déterminée de la manière suivante : La solution de fibrinogène à nanofiltrer est prépurifée par chromatographie selon la méthode décrite dans EP1739093. La concentration de la solution de fibrinogène de départ est de 3g/L.
En vue de déterminer la capacité de filtration, des quantités croissantes de fibrinogène sont appliquées sur la séquence de nanofiltration.
Une séquence de filtration de cet éluat est appliquée :
- Filtre 0.2-0.1 pm polyéthersulfone
- Filtre 35 nm (de type Planova 35 N, de la société Asahi)
- Filtre symétrique 20 nm (de type Pegasus SV4 de la société Pall Life Sciences) La filtration est réalisée à une pression constante de 2.1 bar sur le filtre 20 nm.
La capacité de filtration du filtre est déterminée par l’analyse du profil de colmatage; la capacité de filtration maximale correspond à la quantité de fibrinogène associée à un débit de filtration inférieur à 25% du débit initial.
[0078] On pourra également citer la méthode décrite par Burnouf et al (Haemophilia. 2003 Jan;9(1 ):24-37).
[0079] De préférence, le procédé de filtration d’une composition de fibrinogène selon l’invention comprend les étapes suivantes:
A) obtention de la composition de fibrinogène, ladite composition de fibrinogène étant choisie parmi un surnageant de culture cellulaire, du lait d’animaux transgéniques, le surnageant de plasma cryoprécipité, le cryoprécipité de plasma remis en suspension, la fraction I obtenues par fractionnement éthanolique selon la méthode de Cohn ou de Kistler & Nitschmann, le surnageant et le précipité obtenus après précipitation d’une fraction plasmatique à l'hydroxyde d'aluminium et/ou une précipitation à basse température, et les éluats de chromatographies et les fractions non adsorbées des colonnes de chromatographie obtenus à partir d’une fraction plasmatique, d’un surnageant de culture cellulaire ou d’un lait d’animaux transgéniques,
a) passage de la composition obtenue en A) sur une chromatographie d’affinité, mixed-mode ou d’échange d’ions et élution en tampon comprenant de l’arginine b) au moins une étape de filtration de la composition de fibrinogène obtenue en a), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
c) filtration de la solution de fibrinogène obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé, sans ajout d’arginine après l’étape a), à capacité élevée et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0080] De manière préférée, le procédé de filtration d’une composition de fibrinogène selon l’invention comprend les étapes suivantes:
A) obtention d’un surnageant de plasma cryoprécipité ou d’un cryoprécipité de plasma remis en suspension,
a) passage de la composition obtenue en A) sur une chromatographie d’affinité, de préférence une chromatographie d’affinité à ligands aptamères, et élution en tampon comprenant de l’arginine
b) au moins une étape de filtration de la composition de fibrinogène obtenue en a), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
c) filtration de la solution de fibrinogène obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à capacité élevée et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0081] Dans un mode de réalisation particulier de l’invention, la solution de fibrinogène obtenue optionnellement en b) est passée sur filtre ayant des pores de diamètre compris entre 15 nm et 50 nm préalablement à l’étape c) : c’est l’étape b’).
[0082] De manière avantageuse, les filtres utilisés peuvent être définis par leur taille moyenne de pores en nm, par les virus retenus par le filtre, par un seuil de poids moléculaire ou par le type de symétrie de leur membrane. Les filtres utilisés peuvent donc être des filtres ou tout autre filtre équivalent commercialisé :
- définis par une taille moyenne de pores en nm, incluant les filtres de la gamme Planova®, constitués d’une membrane à fibres creuses formée de cellulose régénérée au cuprammonium et commercialisés par Asahi-Kasei (Planova® 15N, Planova® 20N), et ceux de la gamme Ultipor®, composés d’une membrane de polyfluorure de vinylidène modifié à la surface et sont commercialisés par Pall (Ultipor DV20, Pegasus SV4), ou tout autre filtre équivalent commercialisé ;
- dont la taille moyenne des pores est définie relativement aux virus retenus par le filtre. La taille moyenne des pores du filtre correspond alors à la taille du plus petit virus retenu par le filtre. De tels filtres, définis par les virus retenus par le filtre, incluent les filtres Planova BioEX en PVDF (rétention des parvovirus, membrane en polyvinylidène fluoride hydrophile modifié) commercialisés par la société Asahi Kasei Bioprocess, les filtres Pegasus SV4, ou Ultipor VF (rétention des parvovirus, membrane en polyvinylidène fluoride hydrophile modifié) commercialisés par Pall, les filtres Viresolve® NFP (rétention des parvorirus, membrane en polyfluorure de vinylidène modifié en surface), Viresolve Pro (rétention des parvorirus, membrane en polyéthersulfone double couche) et Viresolve® NFR (rétention des rétrovirus, membrane en polyéthersulfone) commercialisés par Millipore, et Virosart® CPV (rétention du parvovirus canin, membrane à double couche de polyéthersulfone), Virosart HC ou Virosart Fl F commercialisé par Sartorius, ou tout autre filtre équivalent commercialisé. Ces filtres, qui sont définis par les virus retenus, notamment les parvovirus, présentent une taille moyenne de pores d’environ 20 nm.
- définis par leur symétrie, par exemple
filtres asymétriques tels que les filtres de la gamme Planova®, commercialisés par Asahi-Kasei (Planova® 15N, Planova® 20N, Planova BioEx), Viresolve NFP et Viresolve Pro (commercialisés par Merck Millipore), Virosart HF (commercialisé par Sartorius Stedim).
filtres symétriques, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall), le filtre Virosart CPV (commercialisé par Sartorius Stedim).
Une telle classification des filtres selon leur symétrie apparaît notamment dans Gustafsson et al., « Mille-feuille paper : a novel type of filter architecture for advanced virus séparation applications ». Materials Florizons 2016, 3, 320-337.
[0083] Par « filtre symétrique » selon l’invention on entend un filtre ayant une porosité équivalente entre la surface interne (en contact avec la solution à filtrer) et externe du filtre. [0084] Selon un mode particulier de mise en oeuvre du procédé, la nanofiltration de l’étape b’) est effectuée en utilisant des filtres ayant des pores de diamètre compris entre 25 nm et 50 nm, préférentiellement de 35 nm. De préférence, la nanofiltration de l’étape b’) est alors effectuée en utilisant le filtre Planova 35 N commercialisé par Asahi Kasei Bioprocess ou STyLUX par Meissner (40 nm).
[0085] Alternativement, la nanofiltration de l’étape b’) est effectuée en utilisant des filtres symétriques ayant des pores de diamètre compris entre 15 nm et 25 nm, préférentiellement de 20 nm. De préférence, la nanofiltration de l’étape b’) est alors effectuée en utilisant un filtre à membrane symétrique, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall) ou Virosart CPV (commercialisé par Sartorius Stedim).
[0086] Dans un mode de réalisation particulier de l’invention, la nanofiltration de l’étape b’) et de l’étape c) est réalisée sur des filtres de porosité décroissante, avantageusement sur un filtre de porosité 35 nm suivi d’un filtre symétrique de porosité 20 nm. De préférence, la nanofiltration de l’étape b’) est alors effectuée en utilisant le filtre Planova 35 N commercialisé par Asahi Kasei Bioprocess puis un filtre à membrane symétrique, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall) ou Virosart CPV (commercialisé par Sartorius Stedim).
[0087] Dans un autre mode de réalisation particulier de l’invention, la nanofiltration de l’étape b’) et de l’étape c) est réalisée sur des filtres de même taille de pores, avantageusement sur 2 filtres identiques. De préférence, la nanofiltration de l’étape b’) est alors effectuée en utilisant un filtre à membrane symétrique, tel que le filtre Pegasus SV4 ou Ultipor DV20 (commercialisés par Pall) ou Virosart CPV (commercialisé par Sartorius Stedim).
[0088] La nanofiltration de l’étape b’) est typiquement réalisée à une pression comprise entre 200 et 4000 mbar. De manière avantageuse, la nanofiltration de l’étape b’) est typiquement réalisée à une pression comprise entre 200 et 1000 mbar, ou entre 2000 et 4000 mbar.
[0089] Ainsi, de préférence, l'invention concerne un procédé de filtration d’une composition de fibrinogène, comprenant les étapes suivantes:
a) purification par chromatographie de la composition de fibrinogène à l’aide d’un tampon d’élution comprenant de l’arginine :
b) au moins une étape de filtration de la composition de fibrinogène, sur filtre ayant une taille de pores comprise entre 0,08pm et 0,22pm, et récupération de la solution résultante de fibrinogène,
b’) filtration de la solution de fibrinogène obtenue en b), sur filtre ayant des pores de diamètre compris entre 15 nm et 50 nm,
c) filtration de la solution de fibrinogène obtenue en b’), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène.
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à capacité élevée et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0090] A la fin de l’étape d), la solution obtenue comprend du fibrinogène, et est hautement sécurisée.
[0091] De manière particulièrement avantageuse, la mise en oeuvre de l’étape c) du procédé selon l’invention permet l’élimination d’au moins 2log, avantageusement d’au moins 3log, encore plus avantageusement au moins 4log, préférentiellement au moins 5 log ou au moins 6log de virus de petites tailles tel que le parvovirus B19.
[0092] De préférence, le procédé de filtration d’une composition de fibrinogène selon l’invention comprend les étapes suivantes:
A) obtention de la composition de fibrinogène, ladite composition de fibrinogène étant choisie parmi un surnageant de culture cellulaire, du lait d’animaux transgéniques, le surnageant de plasma cryoprécipité, le cryoprécipité de plasma remis en suspension, la fraction I obtenues par fractionnement éthanolique selon la méthode de Cohn ou de Kistler & Nitschmann, le surnageant et le précipité obtenus après précipitation d’une fraction plasmatique à l'hydroxyde d'aluminium et/ou une précipitation à basse température, et les éluats de chromatographies et les fractions non adsorbées des colonnes de chromatographie obtenus à partir d’une fraction plasmatique, d’un surnageant de culture cellulaire ou d’un lait d’animaux transgéniques,
a) passage de la composition obtenue en A) sur une chromatographie d’affinité, mixed-mode ou d’échange d’ions et élution en tampon comprenant de l’arginine, b) au moins une étape de filtration de la composition de fibrinogène obtenue en A), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
b’) filtration de la solution de fibrinogène obtenue en b), sur filtre ayant des pores de diamètre compris entre 15 nm et 50 nm,
c) filtration de la solution de fibrinogène obtenue en b’), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à capacité élevée et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0093] De manière préférée, le procédé de filtration d’une composition de fibrinogène selon l’invention comprend les étapes suivantes:
A) obtention d’un surnageant de plasma cryoprécipité ou d’un cryoprécipité de plasma remis en suspension,
a) passage de la composition obtenue en A) sur une chromatographie d’affinité, de préférence une chromatographie d’affinité à ligands aptamères, et élution en tampon comprenant de l’arginine
b) au moins une étape de filtration de la composition de fibrinogène obtenue en a), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
c) filtration de la solution de fibrinogène obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à capacité élevée et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[0094] La solution obtenue à l’étape d) peut ensuite être concentrée, par exemple par ultrafiltration, jusqu'à des teneurs typiquement comprises entre 10 et 40, préférentiellement entre 15 et 25 g de protéines totales/l, déterminées par des mesures classiques connues de l'homme du métier.
[0095] En outre, la solution de fibrinogène obtenue, éventuellement concentrée, peut être soumise à une étape de diafiltration. Cette étape est destinée à éliminer l'excès éventuel de sel inorganique utilisé pour obtenir des solutions ayant une force ionique d'au plus 0,2 M. Cette étape peut également se révéler nécessaire afin de formuler le fibrinogène dans des conditions optimales. Le tampon est avantageusement adapté soit pour une conservation de la composition de fibrinogène sous forme liquide (formulation liquide prête à l’emploi) soit pour une conservation sous forme lyophilisée (formulation adaptée à la préservation lors de l’étape de lyophilisation et éventuellement à l’étape de chauffage à sec). Cela permet dans ce cas d'une part, un chauffage à sec du fibrinogène sans risque de dénaturation, et, d'autre part, une solubilisation rapide lorsque le fibrinogène est lyophilisé par la suite, typiquement en 3 à 8 minutes.
[0096] Les solutions respectives, éventuellement diafiltrées, éventuellement concentrées, peuvent être éventuellement lyophilisées selon des méthodes classiques et conditions habituelles. Les lyophilisats peuvent ensuite être reconstitués dans un milieu aqueux compatible avec un usage clinique, de préférence dans de l'eau purifiée pour injection (PPI), et directement injectés par voie intraveineuse.
[0097] Il peut en outre être prévu au moins une étape additionnelle d'élimination ou d'inactivation d'au moins un agent infectieux et des contaminants, comme les virus, les bactéries ou les ATNC (agents transmissibles non conventionnels) comme le prion.
[0098] Une inactivation virale comprend souvent un traitement avec des produits chimiques, par exemple par solvant et/ou détergent et/ou par la chaleur (pasteurisation et/ou chauffage à sec) et/ou par irradiation (rayons gamma et/ou UVC) Cette étape peut être effectuée par un traitement chimique classique d'inactivation virale, de préférence consistant en un traitement par solvant- détergent (appelé généralement traitement S/D). Les agents chimiques d'inactivation virale sont préférentiellement les mélanges de polysorbate et de Tri(n-butyl)phosphate (TnBP), ou les mélanges de Triton (octoxynol) et de TnBP, dont les concentrations typiques sont comprises entre 0,1 et 2% . Cette inactivation virale peut être intégrée à un stade quelconque du procédé, mais elle est judicieusement mise en oeuvre avant l'étape a) de purification chromatographique. De cette façon, celle-ci contribuera à l'élimination efficace des agents d'inactivation. [0099] Alternativement, on peut utiliser une étape additionnelle de traitement thermique d'inactivation virale à sec, effectuée sur les lyophilisats de fibrinogène obtenus après l'étape de lyophilisation. Les conditions opératoires sont classiquement d’environ 80°C pendant 72 heures.
[0100] L’élimination des agents infectieux peut également être réalisée au moyen d’une filtration en profondeur. Les filtres disponibles sont par exemple des filtres composés de cellulose régénérée, dans lesquels des adjuvants de filtration peuvent avoir été additionnés, tels que la cellite, la perlite ou des terres de Kieselguhr. De tels filtres sont notamment commercialisés par Cuno (filtres Zeta+ VR sériés), Pall-Seitz (P-series Depth Filter) ou Sartorius Sartoclear P depth filters).
[0101] Ainsi, la mise en oeuvre du procédé conduit à des solutions de fibrinogène hautement sécurisées, exempte de particules virales et/ou de contaminants de type ATNC.
[0102] L’invention a donc pour objet une solution de fibrinogène susceptible d’être obtenue par le procédé décrit ci-dessus.
[0103] La solution de fibrinogène susceptible d’être obtenue par le procédé décrit ci-dessus présente avantageusement une pureté supérieure ou égale à 95% et est avantageusement stable sans addition de protéine stabilisante telle que l’albumine.
[0104] La solution de fibrinogène susceptible d’être obtenue par le procédé décrit ci-dessus présente avantageusement une activité fibrinogène intègre avec en particulier un ratio fibrinogène coagulable / fibrinogène antigénique > 0,9, voire égal à 1 ,0.
[0105] Les exemples qui suivent illustrent un mode de réalisation de la présente invention sans toutefois en limiter la portée.
[0106]
Exemples
[0107] Exemple 1 : Evaluation de la filtration du fibrinogène sur filtre symétrique 20 nm selon l’invention
[0108] La composition comprenant du fibrinogène prépurifié est obtenue selon la méthode décrite dans la demande EP1739093. [0109] I - Objectifs
Evaluer la filtrabilité d’une composition comprenant du fibrinogène sur un filtre symétrique de nanofiltration de taille de pores d’environ 20nm.
[0110] Il - Paramètres opératoires
Séquence de filtration
- Filtre 0,2 - 0,1 pm polyéthersulfone (PES)
- Filtre symétrique 20 nm Pégasus SV4 de la société Pall Life Sciences, surface 0,00096 m2 (Pegasus VF SV4, 10MCFSV4, surface 9,6 cm2).
La solution comprenant le fibrinogène est concentrée à 3g/L et pure à plus de 90%
[0111] [Tableau 1 ]
[0112] III - Résultats
[0113] La pression de filtration a été maintenue constante à 2,1 Bar sur le filtre 20 nm durant toute la filtration.
[0114] La séquence de filtration est équilibrée en tampon d’élution de la chromatographie échangeuse d’ions décrite dans le brevet EP1739093 comprenant de l’arginine. Le profil de colmatage du fibrinogène sur le filtre de taille de pores 20 nm est linéaire avec une décroissance proportionnelle au volume filtré jusqu’à 181 L/m2.
[0115] Après 10 heures 15 minutes de filtration correspondant à une utilisation optimale du filtre, un poids de 178 g de solution a été collecté ; à ce stade, le ratio du débit de filtration / débit initial est de 19%. Le débit moyen de filtration calculé de 0,3 g/min correspond à environ 17 L/h/m2 de membrane. [0116] IV - Tableau récapitulatif des résultats
[0117] [Tableau 2]
[0118] La séquence de filtration appliquée a permis de filtrer une quantité équivalente à 0,5kg de fibrinogène par m2 de membrane de taille de pores 20 nm en 6 heures. Des filtrabilités plus importantes auraient pu être atteintes en prolongeant la durée de filtration.
[0119] Grâce au procédé selon l’invention, le rendement de cette nanofiltration est supérieur à 90%.
[0120] Le procédé selon l’invention permet donc la filtrabilité, sur filtre symétrique de taille de pores d’environ 20 nm, d’une composition comprenant du fibrinogène sans étape de congélation/décongélation préalable, ni dilution préalable à partir d’une solution de fibrinogène pré-purifié par chromatographie et éluée par tampon comprenant de l’arginine.
[0121] Exemple 2 : Evaluation de la filtration du fibrinogène sur filtre symétrique 20 nm Pâli DV 20 selon l’invention
[0122] La composition comprenant du fibrinogène prépurifié est obtenue selon la méthode décrite dans la demande EP1739093.
[0123] I - Objectifs
Evaluer la filtrabilité d’une composition comprenant du fibrinogène sur un filtre symétrique de nanofiltration de taille de pores d’environ 20nm. [0124] Il - Paramètres opératoires
Séquence de filtration
- Filtre 0,2 - 0,1 pm polyéthersulfone (PES)
- Filtre symétrique 20 nm ULTIPOR VF DV20 de la société Pâli Life Sciences, surface 0,00106 m2.
[0125] La solution comprenant le fibrinogène est concentrée à 3,1 g/L et pure à plus de 90%
[0126] [Tableau 3]
[0127] III - Résultats
[0128] La pression de filtration a été maintenue constante à 2,0 Bar sur le filtre 20 nm durant toute la filtration.
[0129] La séquence de filtration est équilibrée en tampon d’élution de la chromatographie échangeuse d’ions décrite dans le brevet EP1739093 comprenant de l’arginine. Le profil de colmatage du fibrinogène sur le filtre de taille de pores 20 nm est linéaire avec une décroissance proportionnelle au volume filtré jusqu’à 136 L/m2.
[0130] Après 16 heures 30 minutes de filtration correspondant à une utilisation optimale du filtre, un poids de 154,7 g de solution a été collecté ; à ce stade, le ratio du débit de filtration / débit initial est de 27%. Le débit moyen de filtration calculé de 0,1 g/min correspond à environ 9 L/h/m2 de membrane.
[0131] IV - Tableau récapitulatif des résultats [0132] [Tableau 4]
[0133] La séquence de filtration appliquée a permis de filtrer une quantité équivalente à 0,4 kg de fibrinogène par m2 de membrane de taille de pores 20 nm en 15 heures. Des filtrabilités plus importantes auraient pu être atteintes en prolongeant la durée de filtration.
[0134] Exemple 3 : Evaluation de la filtration du fibrinogène sur filtre symétrique 20 nm selon l’invention avec préfiltration 20-50 nm
[0135] La composition comprenant du fibrinogène prépurifié est obtenue selon la méthode décrite dans la demande EP1739093.
[0136] I - Objectifs
Evaluer la filtrabilité d’une composition comprenant du fibrinogène sur un filtre symétrique de nanofiltration de taille de pores d’environ 20nm.
[0137] Il - Paramètres opératoires
Séquence de filtration
- Filtre 0,2 - 0,1 pm polyéthersulfone (PES)
- Filtre 35 nm (Planova 35N d’Asahi)
- Filtre symétrique 20 nm Pégasus SV4 de la société Pall Life Sciences, surface 0,00096 m2 (Pegasus VF SV4, 10MCFSV4, surface 9,6 cm2).
[0138] La solution comprenant le fibrinogène est concentrée à 3g/L et pure à plus de 90%
[0139] [Tableau 5]
[0140] III - Résultats
[0141] La pression de filtration a été maintenue constante à 2,1 Bar sur le filtre 20 nm durant toute la filtration.
[0142] La séquence de filtration est équilibrée en tampon d’élution de la chromatographie échangeuse d’ions décrite dans le brevet EP1739093. Le profil de colmatage du fibrinogène sur le filtre de taille de pores 20 nm est linéaire avec une décroissance proportionnelle au volume filtré jusqu’à 276 L/m2.
[0143] Après 18 heures de filtration correspondant à une utilisation optimale du filtre, un poids de 264,8 g de solution a été collecté ; à ce stade, le ratio du débit de filtration / débit initial est de 14%. Le débit moyen de filtration calculé de 0,3 g/min correspond à environ 15 L/h/m2 de membrane.
[0144] IV - Tableau récapitulatif des résultats
[0145] [Tableau 6]
[0146] La séquence de filtration appliquée a permis de filtrer une quantité équivalente à 0,8 kg de fibrinogène par m2 de membrane de taille de pores 20 nm en 18 heures.
[0147] Grâce au procédé selon l’invention, le rendement de cette nanofiltration est supérieur à 90%.
[0148] Le procédé selon l’invention permet donc la filtrabilité, sur filtre symétrique de taille de pores d’environ 20 nm, d’une composition comprenant du fibrinogène sans étape de congélation/décongélation préalable, ni dilution préalable à partir d’une solution de fibrinogène pré-purifié par chromatographie et éluée par tampon comprenant de l’arginine.
[0149] Exemple 4 : Comparaison du procédé selon l’invention avec un procédé de l’art antérieur sur filtre asymétrique d’environ 20nm
[0150] I - Objectifs
Comparer le niveau de capacité de fibrinogène par m2 de membrane pouvant être supportée par le procédé selon l’invention et un procédé de l’art antérieur sur filtre asymétrique d’environ 20nm.
[0151] Il - Préparation de la matière première :
La composition comprenant du fibrinogène pré-purifié est obtenue selon la méthode décrite dans la demande EP1739093. L’éluat de chromatographie obtenu selon EP1739093 est élué en tampon comprenant 200 mM d’arginine.
[0152] III - Préparation du tampon d’équilibrage du filtre
Il s’agit du même tampon d’élution que celui utilisé pour la préparation de l’éluât de départ (Tp E DEAE Macroprep, ajusté à pH 7,5 ± 0,1 par acide citrique 1 M).
[0153] IV - Séquence de filtration :
1. Préfiltration :
La composition de fibrinogène est préfiltrée à l’aide d’un filtre PES (Polyéther sulfone) modèle Sartopore 2 de porosité 0,2 - 0,1 pm (100 nm).
2. Filtration :
Selon la condition opératoire testée la composition préfiltrée est alors filtrée :
à l’aide d’un filtre Pegasus SV4 (commercialisé par la société Pall Life Sciences) à 2100 ± 100 mbar, ou bien
à l’aide d’un filtre Planova 20N (commercialisé par la société Asahi) à 395 ± 23 mbar.
[0154] V - Résultats
Les résultats obtenus ont été compilés dans le graphique tel que représenté à la Figure 1 .
[0155] Pour les deux procédés, on observe que plus le débit (en L/h/m2) appliqué est faible et plus la capacité en fibrinogène supportée (en g de fibrinogène par m2 de membrane) augmente. [0156] Cependant on observe que la capacité de fibrinogène supportée par le procédé de l’art antérieur (« procédé antérieur » dans le graphique ci-après) faisant ici appel à un filtre asymétrique Planova 20N d’Asahi est bien inférieure à celle supportée par le procédé selon l’invention (« procédé invention » dans le graphique ci-après), mettant ici en oeuvre un filtre symétrique Pegasus SV4 de Pall Life Sciences.
[0157] Ainsi ces résultats illustrent que l’application du procédé de l’art antérieur sur un filtre asymétrique ne permet pas d’obtenir une capacité de filtration de 200 g/m2 de membrane, avec notamment une capacité de fibrinogène de 55 g/m2 obtenue sur membrane Planova 20N Asahi. [0158] Exemple 5 : Comparaison du procédé selon l’invention sur filtre symétrique avec les procédés de l’art antérieur sur filtre asymétrique
[0159] Dans les mêmes conditions que l’exemple 4, différents filtres asymétriques des procédés de l’art antérieur sont testés en comparaison avec le procédé selon l’invention. [0160] Les résultats sont les suivants :
[0161] [Tableau 7]
[0162] Les nanofiltres asymétriques testés sur une solution de fibrinogène prépurifiée par chromatographie ayant une concentration d’au moins 2 g/L montrent des filtrabilités inférieures à 0.1 Kg de fibrinogène par m2 tandis que le procédé selon l’invention sur filtre symétrique permet d’atteindre une filtrabilité supérieure à 0,2 Kg de fibrinogène par m2.
[0163] Exemple 6 : Evaluation de la réduction virale
[0164] I - Objectif :
Evaluer la réduction virale obtenue à l’aide du procédé selon l’invention.
[0165] Il - Préparation de la matière première :
La composition comprenant du fibrinogène pré-purifié est obtenue selon la méthode décrite dans la demande EP1739093. [0166] III - Préparation du tampon d’équilibrage du filtre :
Il s’agit du même tampon d’élution que celui utilisé pour la préparation de l’éluât de départ (Tp E DEAE Macroprep, ajusté à pH 7,5 ± 0,1 par acide citrique 1 M).
[0167] IV - Séquence de filtration :
La composition de fibrinogène est préfiltrée à l’aide d’un filtre PES (Polyéther sulfone) modèle Minisart High flow de porosité 0,2 - 0,1 pm (100 nm).
La nanofiltration est réalisée sur le filtre Pegasus SV4 de Pall Life Sciences à une pression de 2,1 +/- 0,1 bar.
La charge virale est mesurée est produite à l’aide du produit PPV Ultrapure Gold 1 % (v/v).
Un échantillon est prélevé dans la fraction nanofiltrée après la filtration de 79,2 L/m2 de solution (volume chargé).
On observe un colmatage complet du filtre après filtration de 85,5 L chargés par m2 de membrane.
V - Résultats
Les résultats obtenus sont présentés dans le tableau ci-après.
Ces résultats montrent que pour des capacités de fibrinogène de 250 g/m2 de membrane la réduction virale mesurée est de 3,78 (+/- 0,56) log10.
[0168] VI - Tableau récapitulatif des résultats
[0169] Exemple 7 : Evaluation de la capacité de filtration du fibrinogène sur filtre symétrique 20 nm en fonction de concentrations croissantes en arginine dans le tampon d’élution de l’étape de chromatographie
[0170] I - Objectifs
Evaluer la capacité de filtration du fibrinogène avec des concentrations croissantes en arginine ajoutées dans le tampon d’élution de l’étape de chromatographie préalable à la séquence de filtration. [0171] Il - Paramètres opératoires
[0172] Les compositions de fibrinogène testées sont prépurifiées par chromatographie d’affinité selon la méthode décrite dans la demande EP1739093, en utilisant un tampon d’élution comprenant 50 mM de citrate de sodium et des concentrations croissantes en arginine HCL (150mM, 200 mM, 400 mM)
[0173] Une séquence de filtration telle que décrite dans l’exemple 1 est ensuite réalisée sur l’éluat en vue d’étudier le profil de colmatage du fibrinogène sur le nanofiltre de porosité 20 nm.
[0174] III- Résultat :
[0175] Les résultats sont présentés dans le tableau ci-après
[0176] De façon inattendue, une composition éluée en chromatographie en tampon comprenant des concentrations croissantes en arginine, sans ajout supplémentaire d’arginine avant l’étape de nanofiltration, permet une augmentation de la capacité de nanofiltration 20 nm du fibrinogène.
[0177] Ainsi et avantageusement, des concentrations croissantes d’arginine dans le tampon d’élution selon l’invention n’induisent pas de colmatage du filtre et permettent d’augmenter la capacité de nanofiltration du procédé, et ce, sans ajout d’arginine après l’étape de purification par chromatographie. .

Claims

Revendications
[Revendication 1] Procédé de filtration d’une composition de fibrinogène, comprenant les étapes suivantes:
a) purification par chromatographie de la composition de fibrinogène à l’aide d’un tampon d’élution comprenant de l’arginine ;
b) optionnellement, au moins une étape de filtration de la composition de fibrinogène obtenue par élution de chromatographie à l’étape a), sur filtre ayant une taille de pores comprise entre 0,08 pm et 0,22 pm,
c) filtration de la composition de fibrinogène obtenue par élution de chromatographie à l’étape a), ou optionnellement obtenue en b), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, de préférence comprise entre 18 nm et 22 nm, et
d) récupération de la solution résultante de fibrinogène,
ledit procédé de filtration étant réalisé sans ajout d’arginine après l’étape a), à une capacité d’au moins 0,2 kg de fibrinogène/m2 et ladite composition de fibrinogène n’étant pas préalablement congelée et/ou décongelée.
[Revendication 2] . Procédé selon la revendication 1 , caractérisé en ce qu’il comprend
a) purification par chromatographie de la composition de fibrinogène à l’aide d’un tampon d’élution comprenant de l’arginine :
b) au moins une étape de filtration de la composition de fibrinogène, sur filtre ayant une taille de pores comprise entre 0,08pm et 0,22pm, et récupération de la solution résultante de fibrinogène,
b’) filtration de la solution de fibrinogène obtenue en b), sur filtre ayant des pores de diamètre compris entre 15 nm et 50 nm,
c) filtration de la solution de fibrinogène obtenue en b’), sur filtre symétrique ayant une taille de pores comprise entre 15 nm et 25 nm, et
d) récupération de la solution résultante de fibrinogène.
[Revendication 3] Procédé selon la revendication 1 ou 2, caractérisé en ce que la composition de fibrinogène est obtenue à partir de fractions plasmatiques, de lait d’animal transgénique ou de surnageant de culture cellulaire.
[Revendication 4] Procédé selon l’une des revendications 1 à 3, caractérisé en ce que la composition de fibrinogène présente une pureté supérieure ou égale à 70%.
[Revendication 5] Procédé selon l’une des revendications 1 à 4, caractérisé en ce que la composition de fibrinogène est utilisée, de préférence sans dilution préalable, à une concentration d’au moins 1 g/L.
[Revendication 6] Procédé selon l’une des revendications 1 à 5, caractérisé en ce que l’étape de purification par chromatographie est effectuée par chromatographie d’affinité, mixed-mode ou échangeuse d’ions.
[Revendication 7] Procédé selon la revendication 6, caractérisé en ce que l’étape de chromatographie est effectuée par chromatographie d’affinité.
[Revendication 8] Procédé selon la revendication 7, caractérisé en ce que la chromatographie d’affinité est une chromatographie d’affinité à ligands aptamères.
[Revendication 9] Procédé selon la revendication 6, caractérisé en ce que l’étape de purification par chromatographie est effectuée sur une matrice échangeuse d’ions à base de polymère naturel ou synthétique, résine ou gel, sur laquelle sont greffés des groupements échangeurs d'anions de type base faible, de préférence le DEAE.
[Revendication 10] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 200 mM.
[Revendication 11] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 400 mM.
[Revendication 12] Procédé selon l’une des revendications caractérisél à 9 en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 600 mM.
[Revendication 13] Procédé selon l’une des revendicationsl à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine comprise entre 200 mM et 800 mM.
[Revendication 14] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine comprise entre 200 mM et 600 mM.
[Revendication 15] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine comprise entre 200 mM et 400 mM.
[Revendication 16] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.25 kg/m2.
[Revendication 17] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.30 kg/m2.
[Revendication 18] Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 200 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.35 kg/m2.
[Revendication 19] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.25 kg/m2.
[Revendication 20] Procédé selon l’une des revendications 1 à 9 caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.30 kg/m2.
[Revendication 21] Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que le tampon d’élution utilisé à l’étape a) comprend une concentration en arginine d’au moins 400 mM et ledit procédé de filtration étant réalisé à une capacité d’au moins 0.35 kg/m2.
[Revendication 22] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’étape b) comprend deux étapes de filtration sur filtre ayant une taille de pores comprise entre 0,08pm et 0,22pm.
[Revendication 23] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la première filtration de l’étape b) est effectuée sur filtre ayant une taille de pores comprise entre 0,15pm et 0,22pm, de préférence d’environ 0,2 pm, et en ce que la seconde filtration est effectuée sur filtre ayant une taille de pores comprise entre 0,08pm et 0,15pm, de préférence d’environ 0,1 pm.
[Revendication 24] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la solution obtenue en d) est concentrée par ultrafiltration .
[Revendication 25] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la solution obtenue en d) est soumise à une étape de diafiltration.
[Revendication 26] Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la solution obtenue en d), éventuellement diafiltrée, éventuellement concentrée, est lyophilisée.
[Revendication 27] Solution de fibrinogène susceptible d’être obtenue par le procédé selon l’une quelconque des revendications précédentes.
EP19848895.9A 2018-12-21 2019-12-20 Procédé de filtration du fibrinogène Pending EP3897692A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873741A FR3090321B1 (fr) 2018-12-21 2018-12-21 Procédé de filtration du fibrinogène
PCT/FR2019/053235 WO2020128385A1 (fr) 2018-12-21 2019-12-20 Procédé de filtration du fibrinogène

Publications (1)

Publication Number Publication Date
EP3897692A1 true EP3897692A1 (fr) 2021-10-27

Family

ID=66542430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19848895.9A Pending EP3897692A1 (fr) 2018-12-21 2019-12-20 Procédé de filtration du fibrinogène

Country Status (7)

Country Link
US (1) US20220056107A1 (fr)
EP (1) EP3897692A1 (fr)
CO (1) CO2021009000A2 (fr)
FR (1) FR3090321B1 (fr)
MA (1) MA54552A (fr)
MX (1) MX2021007553A (fr)
WO (1) WO2020128385A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211632A1 (de) * 2002-03-15 2003-10-09 Aventis Behring Gmbh Verfahren zur Abtrennung von Viren aus einer Proteinlösung durch Nanofiltration
ES2214967B1 (es) 2003-03-06 2005-06-16 Probitas Pharma, S.A Procedimiento para la eliminacion de virus en soluciones de fibrinogeno y fibrinogeno obtenido por dicho procedimiento.
FR2887883B1 (fr) 2005-06-29 2007-08-31 Lab Francais Du Fractionnement Procede de separation des proteines fibrinogene, facteur xiii et colle biologique d'une fraction plasmatique solubilisee et de preparation de concentres lyophilises desdites proteines
HUE028626T2 (en) * 2008-06-23 2016-12-28 Bio-Products & Bio-Engineering Ag Stable, functionally intact, virus-inactivated fibrinogen during storage
US20140154233A1 (en) * 2012-12-05 2014-06-05 Csl Limited Method of purifying therapeutic proteins
US10188965B2 (en) 2012-12-05 2019-01-29 Csl Behring Gmbh Hydrophobic charge induction chromatographic depletion of a protein from a solution
NZ631126A (en) * 2013-08-08 2018-06-29 Csl Ltd Contaminant removal method
FR3018450B1 (fr) 2014-03-11 2016-04-15 Lab Francais Du Fractionnement Procede de preparation de proteines plasmatiques humaines
AU2017292711A1 (en) 2016-07-06 2019-02-07 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Stable liquid fibrinogen

Also Published As

Publication number Publication date
FR3090321B1 (fr) 2023-07-14
MA54552A (fr) 2022-03-30
WO2020128385A1 (fr) 2020-06-25
MX2021007553A (es) 2021-08-11
FR3090321A1 (fr) 2020-06-26
US20220056107A1 (en) 2022-02-24
CO2021009000A2 (es) 2021-07-30

Similar Documents

Publication Publication Date Title
BE1004178A3 (fr) Procede de preparation a l&#39;echelle industrielle d&#39;un concentre de facteur von willebrand humain standardise, de tres haute purete, approprie a un usage therapeutique.
EP1739093B1 (fr) Séparation de protéines plasmatiques
EP1718673B1 (fr) Procede de purificaton d&#39; albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant
FR2920429A1 (fr) Procede de purification du facteur viii et du facteur von willebrand
EP2731966B1 (fr) Procede de preparation d&#39;un concentre d&#39;immunoglobulines polyvalentes
EP1632501B1 (fr) Procédé de préparation d&#39;un concentré de facteur von Willebrand (FvW) par voie chromatographique et concentré de FvW susceptible d&#39;être ainsi obtenu
JP4272562B2 (ja) フィブリノゲン溶液中のウイルスを除去する方法およびこの方法により得られるフィブリノゲン
EP1037923B9 (fr) Procede de preparation par filtration d&#39;une solution de facteur viii securisee viralement
EP0512883B1 (fr) Procédé de préparation d&#39;un concentré de facteur XI de la coagulation sanguine à haute activité spécifique, approprié à un usage thérapeutique
FR2857267A1 (fr) Formulation stabilisante et solubilisante pour les proteines cryoprecipitables.
EP0402205B1 (fr) Procédé de préparation de solutions d&#39;albumine purifiée
EP0555135B1 (fr) Procédé de fabrication de fibrinogène de très haute pureté
CN1867582A (zh) 制备α-1-抗胰蛋白酶溶液的方法
EP3897692A1 (fr) Procédé de filtration du fibrinogène
FR2952640A1 (fr) Procede de fabrication d&#39;une preparation de facteur h
MXPA06001112A (en) Process for preparing an alpha-1-antitrypsin solution

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20210716

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LABORATOIRE FRANCAIS DU FRACTIONNEMENT ET DES BIOTECHNOLOGIES

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419