EP3894271A1 - Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel - Google Patents

Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel

Info

Publication number
EP3894271A1
EP3894271A1 EP19832605.0A EP19832605A EP3894271A1 EP 3894271 A1 EP3894271 A1 EP 3894271A1 EP 19832605 A EP19832605 A EP 19832605A EP 3894271 A1 EP3894271 A1 EP 3894271A1
Authority
EP
European Patent Office
Prior art keywords
memory cells
cells
energy
connection arrangement
energy store
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19832605.0A
Other languages
English (en)
French (fr)
Inventor
Johannes Grabowski
Joachim Joos
Walter Von Emden
Andreas Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3894271A1 publication Critical patent/EP3894271A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/36Arrangements using end-cell switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy store, in particular for an electrically drivable means of transportation.
  • the present invention relates to a flexible and energy-efficient mode of operation of an energy store.
  • interconnected battery pack active components that include an inverter, DC-DC converter, additional 12 V / 48 V batteries, power conversion units
  • the passive interconnection of the individual battery cells e.g. with a single source voltage of 3.7 V
  • the production-related differences in internal resistance and capacity also result in significantly different loads on the individual cells and possible further drifting apart during operation.
  • the capacity of the entire battery pack is thus determined based on the performance of the cells with the poorest state of health or the lowest state of charge, which necessitates a reserve that limits the usable capacity to 60% to 80% of the nominal capacity in order to avoid the harmful deep discharge of the cell to avoid the lowest capacity.
  • the present invention pursues the task of shifting the functionality into the individual cell, so that each individual cell can also be used optimally or optimally for an external power request (ferry operation, work operation or the like) or a power supply (charging operation, recuperation operation or the like ...) react and contribute if necessary.
  • the present invention proposes a system which, for example, has an ASIC, sensors and switches, which can be implemented on each individual battery cell.
  • intelligent battery cells can be used as the basic unit for the present invention.
  • the ASIC of the respective cell or system contains one
  • Memory / data memory that has a unique identification, so that each battery cell is uniquely assigned, and sensors, e.g. Temperature, currents, number of charge / discharge cycles, cell voltage and possibly occurring fault cells, e.g. Detect and save deep discharge, high temperatures, etc.
  • a bus system can enable communication from every single cell with the consumers or the charging station.
  • Active switches e.g. MOSFETs
  • An algorithm on each ASIC of a respective system of a respective cell can enable the respective cell to evaluate how the individual cell can contribute to the performance requirement or whether this is not sensible in the present case.
  • an energy store which has a housing, a first plurality of storage cells, a second plurality of storage cells, a first electrical connection arrangement, a second electrical connection arrangement and a switching device.
  • the housing can be made of plastic, for example
  • the memory cells of the first plurality of memory cells can be any type of memory cells. To ensure acid resistance and to be insensitive to corrosion.
  • the memory cells of the first plurality of memory cells can be any type of memory cells.
  • first electrical connection arrangement and the second electrical connection arrangement can be provided to supply external consumers with electrical energy from the energy stores or from the storage cells.
  • an electrical consumer can in particular be supplied with electrical energy independently of the second electrical connection arrangement.
  • the first electrical connection arrangement and the second electrical connection arrangement can be provided to supply external consumers with electrical energy from the energy stores or from the storage cells.
  • Connection arrangement can be connected while the second variety
  • Memory cells is connected to the second electrical connection arrangement.
  • the switching device is also set up to optionally electrically connect the first plurality of memory cells to the second plurality of memory cells. In this way, the energy, the voltage and / or the current strength of the storage cells can be selected via the first electrical one
  • the switching device can be set up as a function of an operating state of a machine or machine to be supplied with electrical energy by the energy store
  • the storage cells of the energy store can be different
  • Terminal voltage characteristics are energetically supplied, which improves the use of an energy store according to the invention compared to arrangements known in the prior art.
  • the first connection arrangement and / or the second connection arrangement can each have at least two electrical contacts, via which electrical energy of the memory cells can be transmitted.
  • electrical energy from the first plurality of storage cells to the second plurality of storage cells via the respective electrical contacts and / or to indicate electrical energy to consumers arranged outside the housing.
  • the electrical contacts are acted upon electrically by means of the switching device of the energy store.
  • energy cells When “energy cells” is referred to in the context of the present disclosure, this refers to the property of the plurality of storage cells that they are essentially designed to provide a large amount of energy. In other words, the storage cells referred to as energy cells have the highest possible energy capacity. In contrast to this, the term “power cells” refers to the large number of memory cells that are in the
  • the maximum power output of the power cells can be significantly higher than that of the aforementioned energy cells, in particular in comparison to their energetic capacity.
  • Energy storage particularly suitable and flexible to respond to requests for the provision of electrical energy.
  • the switching device can, for example, be set up to electrically decouple the first plurality of memory cells and the second plurality of memory cells from one another in response to an energy supply request from a first (external) consumer and to electrically connect the first plurality of memory cells or the second plurality of memory cells to the first connection arrangement.
  • the first consumer is thus electrically connected to the energy store and the memory cells of the first plurality of memory cells contained therein via the first connection arrangement.
  • the first consumer can be electrically decoupled from the second plurality of memory cells, so that the second plurality of memory cells are not loaded by the first consumer and are available without restriction for supplying other external consumers. In this way, no compromises have to be made in the supply of electrical consumers, so that, for example, voltage-sensitive electrical consumers can be supplied by a large number of storage cells which are not supplied by another (e.g.
  • the electrical characteristics of the first consumer can thus be satisfied as best as possible by the first plurality of memory cells.
  • the switching device of the energy store according to the invention can be set up to electrically connect the first consumer to the first plurality of memory cells or the second plurality of memory cells depending on its nominal voltage. In other words, either the actual power consumption of the first electrical consumer can decide whether the switching device considers it helpful to electrically connect the first consumer to the second plurality of memory cells instead of the first plurality of memory cells, or both to the first plurality instead
  • the switching device can be activated even before electrical energy is drawn from the energy store
  • the first consumer can be better supplied with electrical energy via the first plurality of storage cells and / or via the second plurality of storage cells. This can also be done taking into account other consumers that are currently being supplied with energy from the electrical energy store or are to be supplied with energy from the electrical energy store in the future. In this way, the electrical consumers to be supplied can be used as best as possible
  • contained storage cells are supplied with electrical energy.
  • each memory cell can have an evaluation unit, which is set up in response to a request and depending on its own state of health and / or state of charge to decide whether it should connect to the first electrical connection arrangement and / or to the second electrical connection arrangement.
  • the evaluation unit can be understood as “intelligence” of the respective memory cell, so that there are a large number of intelligent memory cells within the energy store according to the invention.
  • the communication unit can accordingly the evaluation unit can be contained in each memory cell.
  • a respective sensor unit within the memory cell can be linked to the evaluation unit in terms of information technology.
  • the storage cell can monitor its own performance, its own state of charge and its own state of health in the best possible way and, depending on the aforementioned variables, independently decide whether it participates in the energy supply of external consumption or not.
  • This modularization also makes it possible to flexibly maintain an energy store according to the invention, since only electrical connections have to be connected between the old storage cells and an exchanged / newly added storage cell, while communication with a higher-level evaluation unit which may be further away is eliminated.
  • the evaluation unit can be set up in response to an electrical connection of another memory cell to the first electrical connection arrangement, to decide whether it connects to the first electrical connection arrangement or Not. In other words, it can
  • Memory cell determine the switching process (for example, by its own electrical sensor system), and in response to it decide again whether or not it makes sense to participate in the energetic supply of the electrical consumer.
  • the memory cell is able, by means of its evaluation unit, in combination with the invention
  • Energy storage to make a decentralized decision as to whether it is electrically connected to a further storage cell and / or an external electrical consumer via the switching device of the energy storage.
  • the sensor system mentioned above can include a temperature sensor and alternatively or additionally a voltage sensor (in particular an undervoltage sensor) and alternatively or additionally a sensor / counter for determining a number of cycles of the memory cell and alternatively or additionally a current sensor Have measurement of the cell currents of the memory cell.
  • the sensor system can carry out a cell spectroscopy of the memory cell in that it electrically operates the memory cell in a predefined manner loaded and the response of the memory cell depending on the load is determined using a predefined reference. A conclusion on the state of health and / or the cell chemistry can be drawn from the result of the determination.
  • the energy store according to the invention can, for example, be provided in an electrically drivable means of transportation.
  • the electrical energy store can be provided in a work machine and / or to support an island network.
  • FIG. 1 is a schematic representation of an embodiment of an energy storage device according to the invention.
  • FIG. 2 is a schematic representation in more detail
  • Embodiments for switching devices according to the invention in the form of switching matrices in the form of switching matrices.
  • Figure 1 shows an embodiment of an inventive
  • Connection arrangements 8, 9 are connected to a first electrical consumer 11 and a second electrical consumer 12.
  • Communication bus lines 15 connect the consumers 11, 12 to cell modules 20a, 20b, 20c, 20d arranged inside the housing 2.
  • the cell modules 20a are designed as power cells. Their memory cells 3a, 3b are capable of delivering comparatively high electrical outputs compared to their storage capacity. Energy cells 4a, 4b of the cell modules 20b, on the other hand, are capable of one compared to the maximum power that they can deliver to store a large amount of energy.
  • Super-caps 5a, 5b of the cell modules 20c are set up to deliver extremely high power at short notice with particularly low electrical losses and lower capacity. Also are
  • Cell modules 20d with shunts 6a, 6b are provided, which offer a flexible possibility for converting (“annihilating”) electrical energy within the
  • the switching devices 13 of the cell modules 20a to 20d enable the ASICs 7 as evaluation units to electrically connect the power cells 3a, 3b, the energy cells 4a, 4b, the super-caps 5a, 5b and the shunts 6a, 6b to a central switching device 10. In this way, the switching device 10, on which in
  • Connection arrangements 8, 9 to supply the external consumers 11, 12 with electrical energy.
  • Sensors 14 within the cell modules 20a to 20d enable the voltages or temperatures and the flowing currents within the cell modules 20a to 20d to be monitored.
  • the memory cells 3a, 3b, 4a, 4b, 5a, 5b can also use the respective sensors 14 to determine the undervoltage, number of cycles and cell chemistry (e.g. using a
  • the respective ASIC 7 of the cell modules 20a to 20d can receive or communicate information about the current or the intended operating state of the external consumers 11, 12 via the communication bus 15. Information about the states of the
  • Cell modules 20a to 20d and the previous communication can be stored by the ASIC 7 of the respective cell module 20a to 20d.
  • the ASIC 7 can store information on cell profiles and behavior models for the cell modules 20a to 20d.
  • Figure 2 shows a possible implementation of an inventive
  • FIG. 1 has a plurality of cell modules 20a and 20b and a switching device 10 shown in detail in the form of a switching matrix.
  • the first plurality of memory cells within the cell modules 20a and 20b can be bridged via a respective switch S.
  • the electrical contacts 8a, 8b and 9a, 9b of the electrical connection arrangements 8, 9 arranged on the outside of the housing can be flexibly electrically connected to any number of cell modules 20a, 20b via the plurality of switches provided within the switching device 10, and thus flexibly with a suitable number of storage cells are supplied with energy.
  • FIG. 2 shows a possible implementation of the dynamic interconnections of the battery cells on battery strings. Each cell controls the switches associated with it.
  • a string denotes the switches shown one above the other within the switching device 10.
  • the cells of the cell modules 20a, 20b can dynamically hook into them. If none of the cell modules 20a, 20b decides to latch electrically into the respective string, the short-circuit switch S automatically closes.
  • the strings can generate different voltages with the different memory cells.
  • a feedback via the common bus (see FIG. 1) enables the individual cell modules 20a, 20b to make the decision taking into account the decision of the other cells.
  • All of the cells can be operated at the optimum operating point thanks to the structure mentioned above.
  • the cell stress can vary according to the current
  • BMS Battery management systems
  • DC-DC converters DC-DC converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Es wird ein Energiespeicher (1) mit einem Gehäuse (2), einer ersten Vielzahl Speicherzellen (3a, 3b), einer zweiten Vielzahl Speicherzellen (4a, 4b), einer ersten elektrischen Anschlussanordnung (8), einer zweiten elektrischen Anschlussanordnung (9) und einer Schalteinrichtung (10) vorgeschlagen. Die Schalteinrichtung (10) ist eingerichtet, die erste Vielzahl Speicherzellen (3a, 3b) mit der ersten elektrischen Anschlussanordnung (8) zu verbinden, die zweite Vielzahl Speicherzellen (4a, 4b) mit der zweiten elektrischen Anschlussanordnung (9) zu verbinden, und/oder die erste Vielzahl Speicherzellen (3a, 3b) mit der zweiten Vielzahl Speicherzellen (4a, 4b) zu verbinden.

Description

Beschreibung
Titel
Energiespeicher für ein elektrisch antreibbares Fortbewegungsmittel
Stand der Technik
Die vorliegende Erfindung betrifft einen Energiespeicher, insbesondere für ein elektrisch antreibbares Fortbewegungsmittel. Insbesondere betrifft die vorliegende Erfindung eine flexible und energieeffiziente Betriebsweise eines Energiespeichers.
Derzeitige Elektromobilitätslösungen beinhalten neben einem passiv
verschalteten Battery-Pack aktive Komponenten, die einen Inverter, DC-DC- Wandler, zusätzliche 12 V/48 V-Batterien, Power-Conversion Units
(Energiewandler, PCU), Softstart Schütze und Laderegler. Dies ist ein mitunter aufwendiges und kostenintensives System. Durch die passive Verschaltung der einzelnen Batteriezellen (z.B. mit einer Einzelquellenspannung von 3,7 V) und die fertigungsbedingten Unterschiede in Innenwiderstand und Kapazität kommt es auch im Betrieb zu deutlich unterschiedlichen Belastungen der Einzelzellen und zu einem möglichen weiteren Auseinanderdriften. Die Kapazität des gesamten Batterie-Packs wird somit auf die Performance der Zellen mit schlechtestem Gesundheitszustand bzw. schlechtestem Ladezustand bestimmt, wodurch ein Vorhalt notwendig wird, der die nutzbare Kapazität auf 60 % bis 80 % der Nennkapazität begrenzt, um die schädliche Tiefentladung der Zelle mit der niedrigsten Kapazität zu vermeiden. Die vorliegende Erfindung verfolgt die Aufgabe, die Funktionalität in die einzelnen Zelle zu verschieben, so dass auch jede einzelne Zelle optimal genutzt werden kann bzw. optimal auf einen äußeren Leistungsabruf (Fährbetrieb, Arbeitsbetrieb o.ä.) oder eine Leistungszufuhr (Ladebetrieb, Rekuperationsbetrieb o.ä.) reagieren und erforderlichenfalls beitragen kann.
Offenbarung der Erfindung Hierzu schlägt die vorliegende Erfindung ein System vor, welches beispielsweise einen ASIC, Sensoren und Schalter aufweist, welches auf jeder einzelnen Batterie-Zelle implementiert sein kann. Mit anderen Worten werden intelligente Batteriezellen als Grundeinheit für die vorliegende Erfindung verwendbar. Der ASIC der jeweiligen Zelle bzw. des jeweiligen Systems enthält einen
Speicher/Datenspeicher, der eine eindeutige Identifikation aufweist, so dass jede Batteriezelle eindeutig zugeordnet ist, und Sensoren, welche z.B. Temperatur, Ströme, Anzahl der Lade/Entladezyklen, Zellspannung und möglicherweise auftretende Fehlerzelle, z.B. Tiefentladung, hohe Temperaturen, etc., erkennen und abspeichern. Ein Bussystem kann die Kommunikation von jeder einzelnen Zelle mit den Verbrauchern oder Ladestation ermöglichen. Aktive Schalter (z.B. MOSFETs) an jeder einzelnen Zelle ermöglichen verschiedenste Zellen in Serie und/oder parallel zu schalten und an verschiedene externe Verbraucher entsprechende Spannungen anzulegen. Ein Algorithmus auf jeden ASIC eines jeweiligen Systems einer jeweiligen Zelle kann die jeweilige Zelle in die Lage versetzen zu bewerten, wie die einzelne Zelle zur Leistungsanforderung beitragen kann oder ob dies vorliegend nicht sinnvoll ist.
Anders ausgedrückt wird die o.g. Aufgabe durch einen Energiespeicher gelöst, welcher ein Gehäuse, eine erste Vielzahl Speicherzellen, eine zweite Vielzahl Speicherzellen, eine erste elektrische Anschlussanordnung, eine zweite elektrische Anschlussanordnung und eine Schalteinrichtung aufweist. Das Gehäuse kann beispielsweise aus Kunststoff gefertigt sein, um
Säurebeständigkeit zu gewährleisten und unempfindlich gegenüber Korrosion zu sein. Die Speicherzellen der ersten Vielzahl Speicherzellen können
beispielsweise als Leistungszellen, Energiezellen, und alternativ oder zusätzlich als eine Mischung der vorgenannten Zellen ausgestaltet sein. Hierzu können einzelne oder sämtliche der ersten Vielzahl Speicherzellen auch als Super-Caps ausgestaltet sein. Entsprechendes gilt für die zweite Vielzahl Speicherzellen. Insbesondere kann die erste Vielzahl Speicherzellen eine andere Natur von Speicherzellen aufweisen, als die zweite Vielzahl Speicherzellen. Insbesondere sind sämtliche Speicherzellen der ersten Vielzahl Speicherzellen einer anderen Natur als die zweite Vielzahl Speicherzellen (und/oder anders herum). Die erste elektrische Anschlussanordnung und die zweite elektrische Anschlussanordnung können vorgesehen sein, externe Verbraucher mit elektrischer Energie aus den Energiespeichern bzw. aus den Speicherzellen zu versorgen. Über die erste elektrische Anschlussanordnung kann hierbei insbesondere unabhängig von der zweiten elektrischen Anschlussanordnung ein elektrischer Verbraucher mit elektrischer Energie versorgt werden. Insbesondere sind die erste elektrische Anschlussanordnung und die zweite elektrische Anschlussanordnung
eingerichtet, unterschiedliche elektrische Spannungen auszugeben, indem sie mit einer unterschiedlichen Vielzahl Speicherzellen elektrisch verbunden werden. Hierzu kann die erste Vielzahl Speicherzellen mit der ersten elektrischen
Anschlussanordnung verbunden werden, während die zweite Vielzahl
Speicherzellen mit der zweiten elektrischen Anschlussanordnung verbunden wird. Die Schalteinrichtung ist zudem eingerichtet, wahlweise auch die erste Vielzahl Speicherzellen mit der zweiten Vielzahl Speicherzellen elektrisch zu verbinden. Auf diese Weise kann die Energie, die Spannung und/oder die Stromstärke der Speicherzellen wahlweise über die erste elektrische
Anschlussanordnung, die zweite elektrische Anschlussanordnung und/oder sowohl die erste als auch die zweite elektrische Anschlussanordnung aus dem Energiespeicher abgegeben werden. Die Schalteinrichtung kann eingerichtet sein, in Abhängigkeit eines Betriebszustandes einer durch den Energiespeicher mit elektrischer Energie zu versorgenden Arbeitsmaschine bzw. eines
entsprechenden Fortbewegungsmittel zu operieren. Auf diese Weise können die Speicherzellen des Energiespeichers durch unterschiedliche
Klemmenspannungs-Charakteristika energetisch versorgt werden, was den Einsatz eines erfindungsgemäßen Energiespeichers gegenüber im Stand der Technik bekannten Anordnungen verbessert.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
Die erste Anschlussanordnung und/oder die zweite Anschlussanordnung können jeweils mindestens zwei elektrische Kontakte aufweisen, über welche elektrische Energie der Speicherzellen übertragen werden kann. Je nach Einsatzzweck bzw. Arbeitsmodus des Energiespeichers ist es also möglich, über die jeweiligen elektrischen Kontakte elektrische Energie von der ersten Vielzahl Speicherzellen an die zweite Vielzahl Speicherzellen zu übertragen und/oder elektrische Energie an außerhalb des Gehäuses angeordnete Verbraucher anzugeben. Die elektrische Beaufschlagung der jeweiligen elektrischen Kontakte erfolgt mittels der Schalteinrichtung des Energiespeichers. Insbesondere erfolgt auch eine Analyse der Notwendigkeit zum Aktivieren der Schalteinrichtung innerhalb des erfindungsgemäßen Energiespeichers. Dies erhöht die Flexibilität beim Einsatz des erfindungsgemäßen Energiespeichers und erübrigt eine übergeordnete Logik/Steuereinheit und den mit einer solchen verbundenen
Verdrahtungsaufwand.
Wenn im Rahmen der vorliegenden Offenbarung von„Energiezellen“ gesprochen wird, so bezieht sich dies auf die Eigenschaft der Vielzahl Speicherzellen, im Wesentlichen zur Bereitstellung einer hohen Energiemenge eingerichtet zu sein. Mit anderen Worten weisen die als Energiezellen bezeichneten Speicherzellen eine möglichst hohe energetische Kapazität auf. Im Gegensatz hierzu wird unter „Leistungszellen“ die Vielzahl Speicherzellen bezeichnet, welche im
Wesentlichen zur Abgabe hoher elektrischer Leistungen eingerichtet sind. Die maximale Leistungsabgabe der Leistungszellen kann insbesondere im Vergleich zu ihrer energetischen Kapazität deutlich höher sein als diejenige der vorgenannten Energiezellen. Durch die Verwendung von Speicherzellen unterschiedlicher Charakteristika kann durch einen erfindungsgemäßen
Energiespeicher besonders geeignet und flexibel auf Anfragen zur Bereitstellung elektrischer Energie reagiert werden.
Die Schalteinrichtung kann beispielsweise eingerichtet sein, im Ansprechen auf eine Energieversorgungsanfrage eines ersten (externen) Verbrauchers die erste Vielzahl Speicherzellen und die zweite Vielzahl Speicherzellen elektrisch voneinander zu entkoppeln und die erste Vielzahl Speicherzellen oder die zweite Vielzahl Speicherzellen elektrisch mit der ersten Anschlussanordnung zu verbinden. Über die erste Anschlussanordnung wird der erste Verbraucher also elektrisch mit dem Energiespeicher und den in ihm enthaltenen Speicherzellen der ersten Vielzahl Speicherzellen verbunden. Gleichzeitig kann der erste Verbraucher elektrisch von der zweiten Vielzahl Speicherzellen entkoppelt werden, so dass die zweite Vielzahl Speicherzellen nicht durch den ersten Verbraucher belastet wird und für die Versorgung anderer externer Verbraucher uneingeschränkt zur Verfügung steht. Auf diese Weise sind keine Kompromisse bei der Versorgung elektrischer Verbraucher einzugehen, so dass beispielsweise spannungssensible elektrische Verbraucher durch eine Vielzahl Speicherzellen versorgt werden können, welche nicht durch einen weiteren (z.B.
leistungsintensiven) Verbraucher belastet werden. Somit können die elektrischen Kenngrößen des ersten Verbrauchers bestmöglich durch die erste Vielzahl Speicherzellen befriedigt werden. Die Schalteinrichtung des erfindungsgemäßen Energiespeichers kann eingerichtet sein, den ersten Verbraucher in Abhängigkeit seiner Nennspannung mit der ersten Vielzahl Speicherzellen oder der zweiten Vielzahl Speicherzellen elektrisch zu verbinden. Mit anderen Worten kann entweder die tatsächliche Leistungsaufnahme des ersten elektrischen Verbrauchers darüber entscheiden, ob die Schalteinrichtung es für hilfreich erachtet, den ersten Verbraucher statt mit der ersten Vielzahl Speicherzellen mit der zweiten Vielzahl Speicherzellen elektrisch zu verbinden oder stattdessen sowohl mit der ersten Vielzahl
Speicherzellen als auch mit der zweiten Vielzahl Speicherzellen elektrisch zu verbinden. Alternativ kann in Kenntnis des elektrisch durch den Energiespeicher zu versorgenden Verbrauchers und seiner Kenngrößen bereits vor dem Bezug elektrischer Energie aus dem Energiespeicher die Schalteinrichtung eine
Entscheidung treffen, ob der erste Verbraucher besser über die erste Vielzahl Speicherzellen und/oder über die zweite Vielzahl Speicherzellen mit elektrischer Energie zu versorgen ist. Dies kann auch unter Berücksichtigung weiterer Verbraucher, welche aktuell aus dem elektrischen Energiespeicher mit Energie versorgt werden oder zukünftig aus dem elektrischen Energiespeicher mit Energie versorgt werden sollen, getroffen werden. Auf diese Weise können die zu versorgenden elektrischen Verbraucher bestmöglich und mit
geringstmöglichen Wandlungsverlusten durch die im Energiespeicher
enthaltenen Speicherzellen mit elektrischer Energie versorgt werden.
Erfindungsgemäß kann eine jede Speicherzelle eine Auswerteeinheit aufweisen, welche eingerichtet ist, im Ansprechen auf eine Anfrage und in Abhängigkeit eines eigenen Gesundheitszustandes und/oder Ladungszustandes zu entscheiden, ob sie sich mit der ersten elektrischen Anschlussanordnung und/oder mit der zweiten elektrischen Anschlussanordnung verbinden soll. Die Auswerteeinheit kann als„Intelligenz“ der jeweiligen Speicherzelle verstanden werden, so dass sich innerhalb des erfindungsgemäßen Energiespeichers eine Vielzahl intelligenter Speicherzellen befindet. Diese können eine
„Schwarmintelligenz“ bilden. Der Signalisierungsbedarf innerhalb eines erfindungsgemäß ausgestalteten Energiespeichers kann auf diese Weise verringert werden. Insbesondere können Datenkommunikationsleitungen zwischen den Speicherzellen erübrigt werden, indem jede Speicherzelle eine jeweilige Auswerteeinheit aufweist. Die Auswerteeinheit kann eine
Kommunikationseinheit aufweisen oder mit einer solchen informationstechnisch verbunden sein. Insbesondere kann die Kommunikationseinheit entsprechend der Auswerteeinheit in jeder Speicherzelle enthalten sein. Überdies kann eine jeweilige Sensoreinheit innerhalb der Speicherzelle informationstechnisch mit der Auswerteeinheit verknüpft sein. Auf diese Weise kann die Speicherzelle bestmöglich die eigene Leistungsfähigkeit, den eigenen Ladezustand und den eigenen Gesundheitszustand überwachen und in Abhängigkeit der vorgenannten Größen eigenständig entscheiden, ob sie an der Energieversorgung eines externen Verbrauches teilnimmt oder nicht. Durch diese Modularisierung ist auch eine Wartung eines erfindungsgemäßen Energiespeichers flexibel möglich, da lediglich elektrische Anschlüsse zwischen den alten Speicherzellen und einer ausgetauschten/neu hinzugekommenen Speicherzelle zu verbinden sind, während die Kommunikation mit einer übergeordneten ggf. weiter entfernten Auswerteeinheit entfällt.
Wenn die Speicherzellen des erfindungsgemäßen Energiespeichers eine jeweilige Auswerteeinheit (und optional eine jeweilige Kommunikationseinheit) aufweisen, kann die Auswerteeinheit eingerichtet sein, im Ansprechen auf eine elektrische Hinzuschaltung einer anderen Speicherzelle zur ersten elektrischen Anschlussanordnung zu entscheiden, ob sie sich mit der ersten elektrischen Anschlussanordnung verbindet oder nicht. Mit anderen Worten kann die
Speicherzelle den Schaltvorgang (beispielsweise durch die eigene elektrische Sensorik) ermitteln, und im Ansprechen darauf erneut entscheiden, ob ihre Teilnahme an der energetischen Versorgung des elektrischen Verbrauchers vorliegend sinnvoll ist oder nicht. Mit anderen Worten ist die Speicherzelle mittels ihrer Auswerteeinheit imstande, im Verbund des erfindungsgemäßen
Energiespeichers eine dezentrale Entscheidung dahingehend zu fällen, ob sie über die Schalteinrichtung des Energiespeichers elektrisch mit einer weiteren Speicherzelle und/oder einem externen elektrischen Verbraucher verbunden wird.
Die oben angesprochene, optional in jeder Speicherzelle oder zumindest in einzelnen Speicherzellen vorgesehene Sensorik kann einen Temperatursensor und alternativ oder zusätzlich einen Spannungssensor (insbesondere einen Unterspannungssensor) und alternativ oder zusätzlich einen Sensor/Counter zur Ermittlung einer Zyklenanzahl der Speicherzelle und alternativ oder zusätzlich ein Stromsensor zur Messung der Zellströme der Speicherzelle aufweisen. Alternativ oder zusätzlich kann die Sensorik eine Zellspektroskopie der Speicherzelle durchführen, indem sie die Speicherzelle elektrisch in vordefinierter Weise belastet und die Reaktion der Speicherzelle in Abhängigkeit der Belastung anhand einer vordefinierten Referenz ermittelt. Aus dem Ergebnis der Ermittlung kann ein Rückschluss auf den Gesundheitszustand und/oder die Zellchemie gezogen werden.
Der erfindungsgemäße Energiespeicher kann beispielsweise in einem elektrisch antreibbaren Fortbewegungsmittel vorgesehen werden. Alternativ oder zusätzlich kann der elektrische Energiespeicher in einer Arbeitsmaschine und/oder zur Stützung eines Inselnetzes vorgesehen sein. Die o.g. Merkmale,
Merkmalskombinationen und Vorteile ergeben sich für diese und andere
Einsatzzwecke in entsprechender Weise, so dass zur Vermeidung von
Wiederholungen diesbezüglich auf die obigen Ausführungen verwiesen wird.
Kurze Beschreibung der Zeichnung
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist:
Figur 1 eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Energiespeichers, und
Figur 2 eine schematische Darstellung detaillierter
Ausführungsbeispiele für erfindungsgemäße Schalteinrichtungen in Form von Schaltmatrizen.
Ausführungsformen der Erfindung
Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen
Energiespeichers 1 , an dessen Gehäuse 2 zwei elektrische
Anschlussanordnungen 8, 9 mit einem ersten elektrischen Verbraucher 11 und einem zweiten elektrischen Verbraucher 12 verbunden sind. Optionale
Kommunikationsbusleitungen 15 verbinden die Verbraucher 11 , 12 mit innerhalb des Gehäuses 2 angeordneten Zellmodulen 20a, 20b, 20c, 20d. Die Zellmodule 20a sind als Leistungszellen ausgestaltet. Ihre Speicherzellen 3a, 3b sind im Vergleich zu ihrer Speicherkapazität imstande, vergleichsweise hohe elektrische Leistungen abzugeben. Energiezellen 4a, 4b der Zellmodule 20b sind hingegen imstande, im Vergleich zu der von ihnen maximal abzugebenden Leistung eine hohe Energiemenge zu speichern. Super-Caps 5a, 5b der Zellmodule 20c sind eingerichtet, kurzfristig eine extrem hohe Leistung bei besonders geringen elektrischen Verlusten und geringerer Kapazität abzugeben. Zudem sind
Zellmodule 20d mit Shunts 6a, 6b vorgesehen, welche eine flexible Möglichkeit zur Umwandlung („Vernichtung“) elektrischer Energie innerhalb des
erfindungsgemäßen Energiespeichers 1 darstellen. Die Schalteinrichtungen 13 der Zellmodule 20a bis 20d ermöglichen es den ASICs 7 als Auswerteeinheiten, die Leistungszellen 3a, 3b, die Energiezellen 4a, 4b, die Super-Caps 5a, 5b und die Shunts 6a, 6b mit einer zentralen Schalteinrichtung 10 elektrisch zu verbinden. Auf diese Weise kann die Schalteinrichtung 10, auf welche in
Verbindung mit Figur 2 im Detail eingegangen wird, flexibel die Energien bzw. Shunts der Zellmodule 20a bis 20d nutzen, um über die elektrischen
Anschlussanordnungen 8, 9 die externen Verbraucher 11 , 12 mit elektrischer Energie zu versorgen. Sensoren 14 innerhalb der Zellmodule 20a bis 20d ermöglichen eine Überwachung der Spannungen bzw. Temperaturen sowie der fließenden Ströme innerhalb der Zellmodule 20a bis 20d. Die Speicherzellen 3a, 3b, 4a, 4b, 5a, 5b können mittels der jeweiligen Sensorik 14 überdies auf Unterspannung, Zyklenanzahl und Zellchemie (z.B. mittels einer
Zellspektroskopie) untersucht werden. Über den Kommunikationsbus 15 kann der jeweilige ASIC 7 der Zellmodule 20a bis 20d Informationen über den aktuellen oder den beabsichtigten Betriebszustand der externen Verbraucher 11 , 12 erhalten oder kommunizieren. Informationen über die Zustände der
Zellmodule 20a bis 20d sowie die bisherige Kommunikation kann durch den ASIC 7 des jeweiligen Zellmoduls 20a bis 20d gespeichert werden. Überdies kann der ASIC 7 Informationen zu Zellprofilen und Verhaltensmodellen für die Zellmodule 20a bis 20d speichern.
Figur 2 zeigt eine mögliche Realisierung eines erfindungsgemäßen
Energiespeichers 1 , welcher entsprechend Figur 1 eine Vielzahl Zellmodule 20a und 20b und eine im Detail dargestellte Schalteinrichtung 10 in Form einer Schaltmatrix aufweist. Über einen jeweils Schalter S kann die erste Vielzahl Speicherzellen innerhalb der Zellenmodule 20a bzw. 20b überbrückt werden. Die außen am (nicht dargestellten) Gehäuse angeordneten elektrischen Kontakte 8a, 8b bzw. 9a, 9b der elektrischen Anschlussanordnungen 8, 9 können über die Vielzahl innerhalb der Schalteinrichtung 10 vorgesehener Schalter flexibel mit einer beliebigen Anzahl Zellmodule 20a, 20b elektrisch verbunden und so flexibel mit einer geeigneten Vielzahl Speicherzellen energetisch versorgt werden. Anders ausgedrückt stellt Figur 2 eine mögliche Realisierung der dynamischen Verschaltungen der Batteriezellen auf Batteriestrings dar. Jede Zelle kontrolliert dabei die zu ihr zugehörigen Schalter. Ein String bezeichnet die innerhalb der Schalteinrichtung 10 jeweils übereinander dargestellten Schalter. In diese können sich die Zellen der Zellenmodule 20a, 20b dynamisch einhängen. Falls sich keine der Zellenmodule 20a, 20b dazu entscheidet, sich elektrisch in den jeweiligen String einzuklinken, schließt automatisch der Kurzschlussschalter S. Die Strings können dabei mit den verschiedenen Speicherzellen verschiedene Spannungen erzeugen. Eine Rückkopplung über den gemeinsamen Bus (s. Figur 1) ermöglicht es den einzelnen Zellmodulen 20a, 20b, die Entscheidung unter Berücksichtigung der Entscheidung der anderen Zellen zu fällen.
Durch die vorliegende Erfindung wird eine dezentrale Regelung der
Energieflüsse eines Energiespeichers in Verbindung mit seiner Umgebung ermöglicht. Auf diese Weise wird der Vorteil eines optimalen Matchings zwischen Energiebereitstellung (Energiespeicherseite) und Energieverbraucher
(Verbraucherseite) ohne große zentrale Schalter, Batteriemanagementsystem, etc. ermöglicht. Jeder Energiefluss wird dynamisch geschaltet und berücksichtigt den aktuellen Zustand von Batteriezelle und Verbraucher. Hierdurch wird sowohl die Lebensdauer des Energiespeichers erhöht als auch der Wirkungsgrad des Gesamtsystems optimiert.
Alle Zellen können durch die oben genannte Struktur im optimalen Arbeitspunkt betrieben werden. Die Zellbeanspruchung kann sich nach der aktuellen
Leistungsfähigkeit der Zellen richten. Im Gesamtsystem mit aktiven Battery- Packs entfallen zentrale Baugruppen wie Inverter, ECUs,
Batteriemanagementsysteme (BMS), DC-DC-Wandler, etc. Neue Systeme und Systemkonfigurationen können sehr einfach zusammengestellt werden.
Insbesondere können neue Fahrzeugtypen bzw. Bordnetzanforderungen flexibel und kurzfristig befriedigt werden. Das System ist hochflexibel bei z.B.
Kapazitätserweiterungen, beim Wegfall einzelner Zellen, im Wartungsfall, beim Abfangen von Fehlerfällen, etc.
Weiter führt der Ausfall einzelner Zellen nicht mehr zum Ausfall des
Gesamtsystems, da einzelne Zellen überbrückt werden können. Das thermische Weglaufen einzelner Zellen, z.B. bei mechanischer Beschädigung, kann abgefangen werden, indem andere Zellen, Shunts und Verbraucher dynamisch verschaltet werden. Einzelne (schwache) Zellen können identifiziert und einzeln ausgetauscht werden. Die Spannungsfreiheit bei Wartungsarbeiten kann durch die Einzelschalter jederzeit sichergestellt werden. Die Lade-Energie kann optimal auf die Zellen verteilt werden: Wenige geladene Zellen können mehr Energie aufnehmen, die Gesamtladung des Batteriepacks steigt damit schneller an, wodurch die Ladezeiten verkürzt werden. Die Reichweite kann durch die effiziente Nutzung der gespeicherten Energie im jeweils optimalen Arbeitspunkt und dem Mix aus Energie-, Leistungs- und Super-Cap-Zellen erhöht werden. Die auf die kritischen Zellen bezogene geringere Belastung für zyklisierte Zellen durch den Betrieb im optimalen Arbeitspunkt jeder Zelle durch Tiefentladung kann ausgeschlossen werden. Damit kann die Lebensdauer des
Energiespeichers drastisch erhöht werden.

Claims

Ansprüche
1. Energiespeicher (1) umfassend:
ein Gehäuse (2),
eine erste Vielzahl Speicherzellen (3a, 3b),
eine zweite Vielzahl Speicherzellen (4a, 4b),
eine erste elektrische Anschlussanordnung (8),
eine zweite elektrische Anschlussanordnung (9) und
eine Schalteinrichtung (10), welche eingerichtet ist,
die erste Vielzahl Speicherzellen (3a, 3b) mit der ersten elektrischen
Anschlussanordnung (8) zu verbinden,
die zweite Vielzahl Speicherzellen (4a, 4b) mit der zweiten elektrischen Anschlussanordnung (9) zu verbinden, und/oder die erste Vielzahl Speicherzellen (3a, 3b) mit der zweiten Vielzahl
Speicherzellen (4a, 4b) zu verbinden.
2. Energiespeicher (1) nach Anspruch 1 , wobei die erste Anschlussanordnung (8) und die zweite Anschlussanordnung (9) jeweils mindestens zwei elektrische Kontakte (8a, 8b, 9a, 9b) aufweist, über welche elektrische Energie der Speicherzellen (3a, 3b, 4a, 4b, 5a, 5b) übertragen werden kann.
3. Energiespeicher (1) nach Anspruch 1 oder 2, wobei
die erste elektrische Anschlussanordnung (8) und
die zweite elektrische Anschlussanordnung (9) außen am Gehäuse
(2) angeordnet sind.
4. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei die erste Vielzahl Speicherzellen (3a, 3b) eine Vielzahl Energiezellen umfasst, insbesondere aus Energiezellen besteht, und/oder
die zweite Vielzahl Speicherzellen (4a, 4b) eine Vielzahl Leistungszellen umfasst, insbesondere aus Leistungszellen besteht.
5. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei die Schalteinrichtung (10) eingerichtet ist, im Ansprechen auf eine
Energieversorgungsanfrage eines ersten Verbrauchers (11)
die erste Vielzahl Speicherzellen (3a, 3b) und die zweite Vielzahl Speicherzellen (4a, 4b) elektrisch voneinander zu entkoppeln und die erste Vielzahl Speicherzellen (3a, 3b) oder die zweite Vielzahl Speicherzellen (4a, 4b) elektrisch mit der ersten Anschlussanordnung (8) zu verbinden.
6. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei die Schalteinrichtung (10) eingerichtet ist, im Ansprechen auf eine
Energieversorgungsanfrage eines ersten Verbrauchers (11) und eines zweiten Verbrauchers (12)
die erste Vielzahl Speicherzellen (3a, 3b) und die zweite Vielzahl Speicherzellen (4a, 4b) elektrisch voneinander zu entkoppeln, die erste Vielzahl Speicherzellen (3a, 3b) elektrisch mit der ersten Anschlussanordnung (8) zu verbinden und
die zweite Vielzahl Speicherzellen (4a, 4b) elektrisch mit der zweiten Anschlussanordnung (9) zu verbinden.
7. Energiespeicher (1) nach einem der vorstehenden Ansprüche 5 oder 6, wobei die Schalteinrichtung (10) eingerichtet ist, den ersten Verbraucher (11) in Abhängigkeit seiner Nennspannung mit der ersten Vielzahl Speicherzellen (3a, 3b) oder der zweiten Vielzahl Speicherzellen (4a, 4b) elektrisch zu verbinden.
8. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei eine jede Speicherzelle (3a, 3b, 4a, 4b) eine Auswerteeinheit (7) aufweist, welche eingerichtet ist, im Ansprechen auf eine Anfrage und in
Abhängigkeit eines eigenen Gesundheitszustandes und/oder
Ladungszustandes zu entscheiden, ob sie sich mit der ersten elektrischen Anschlussanordnung (8) und/oder mit der zweiten elektrischen
Anschlussanordnung (9) verbindet.
9. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei eine jede Speicherzelle (3a, 3b, 4a, 4b) eine Auswerteeinheit (7) aufweist, welche eingerichtet ist, im Ansprechen auf eine elektrische Hinzuschaltung einer anderen Speicherzelle (3a, 3b, 4a, 4b) zur ersten elektrischen Anschlussanordnung (8) zu entscheiden, ob sie sich mit der ersten elektrischen Anschlussanordnung (8) verbindet oder nicht.
10. Energiespeicher (1) nach einem der vorstehenden Ansprüche, wobei eine jede Speicherzelle (3a, 3b, 4a, 4b) eine Sensorik (14) aufweist, welche eingerichtet ist,
eine Temperatur und/oder
eine Unterspannung und/oder
- eine Zyklenanzahl und/oder
Zellströme der Speicherzelle (3a, 3b, 4a, 4b) zu messen und/oder eine Zellspektroskopie der Speicherzelle (3a, 3b, 4a, 4b) durchzuführen.
EP19832605.0A 2018-12-14 2019-12-16 Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel Pending EP3894271A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018221836.6A DE102018221836A1 (de) 2018-12-14 2018-12-14 Energiespeicher für ein elektrisch antreibbares Fortbewegungsmittel
PCT/EP2019/085277 WO2020120792A1 (de) 2018-12-14 2019-12-16 Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel

Publications (1)

Publication Number Publication Date
EP3894271A1 true EP3894271A1 (de) 2021-10-20

Family

ID=69143512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19832605.0A Pending EP3894271A1 (de) 2018-12-14 2019-12-16 Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel

Country Status (5)

Country Link
US (1) US20220029211A1 (de)
EP (1) EP3894271A1 (de)
CN (1) CN113195301A (de)
DE (1) DE102018221836A1 (de)
WO (1) WO2020120792A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101334A1 (ja) * 2022-11-10 2024-05-16 克彦 近藤 太陽光発電システムおよび制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748605B1 (fr) * 1996-05-07 1998-08-07 Gerard Lemaire Procede de fabrication d'un generateur elementaire de pile ou d'accumulateur intelligent
AT507703B1 (de) * 2008-12-22 2012-06-15 Moove Gmbh E Energiespeicheranordnung und verfahren zum betrieb einer derartigen anordnung
DE102011087031A1 (de) * 2011-11-24 2013-05-29 Sb Limotive Company Ltd. Batteriemodulstrang
DE102014200336A1 (de) * 2014-01-10 2015-07-16 Robert Bosch Gmbh Elektrochemischer Speicherverbund
DE102014208543A1 (de) * 2014-05-07 2015-11-12 Robert Bosch Gmbh Batteriezelleinrichtung mit einer Batteriezelle und einer Überwachungselektronik zum Überwachen der Batteriezelle und entsprechendes Verfahren zum Betreiben und Überwachen einer Batteriezelle
KR101553063B1 (ko) * 2015-01-20 2015-09-15 주식회사 제이에스영테크 하이브리드 에너지 저장 모듈 시스템
US10087903B2 (en) * 2017-01-13 2018-10-02 Ford Global Technologies, Llc Vehicle energy management

Also Published As

Publication number Publication date
CN113195301A (zh) 2021-07-30
WO2020120792A1 (de) 2020-06-18
DE102018221836A1 (de) 2020-06-18
US20220029211A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
DE102012003309B4 (de) Elektrisches Energiesystem in einem Kraftfahrzeug und Verfahren zum Betreiben eines Energiesystems
AT507703B1 (de) Energiespeicheranordnung und verfahren zum betrieb einer derartigen anordnung
DE102016224002A1 (de) Entladen von einem wenigstens zwei Batteriezellen aufweisenden Batteriemodul einer wenigstens zwei Batteriemodule aufweisenden Batterie
DE102014006028B4 (de) Multibatteriesystem zur Erhöhung der elektrischen Reichweite
WO2010128066A2 (de) System zum speichern von energie
DE102013210293A1 (de) Dezentrale Gleichspannungssteller
EP3593435B1 (de) Verfahren zum betreiben eines modularen batteriespeichersystems und modulares batteriespeichersystem
EP2131469B1 (de) Verfahren und System zum Regeln der Leistung des Ladens einer Batterie
DE102010060305B4 (de) Batteriesystem sowie Verfahren zur Überwachung eines Ladezustandes mindestens einer wiederaufladbaren Batterie
DE102013225221A1 (de) Batteriesystem
DE112012007029T5 (de) Energieversorgungs-Handhabungssystem und Energieversorgungs-Handhabungsverfahren
DE202016105015U1 (de) Speichersystem zur Speicherung elektrischer Energie
WO2018233956A1 (de) Elektrische energieliefervorrichtung mit einer vielzahl von nutzeinheiten, die zu strängen verschaltet sind, sowie verfahren zum betreiben der energieliefervorrichtung
DE102017210611B4 (de) Elektrische Energieliefervorrichtung mit einer Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung
DE102013201221A1 (de) Ansteuervorrichtung für ein elektrisches Energiespeichersystem
WO2018233954A1 (de) Elektrische energieliefervorrichtung mit stromschienenmatrix sowie verfahren zum betreiben der energieliefervorrichtung
WO2018233952A1 (de) Elektrische energieliefervorrichtung mit einer vielzahl von austauschbaren nutzeinheiten sowie verfahren zum betreiben einer solchen energieliefervorrichtung
DE102009005270A1 (de) Elektrisches Energieversorgungssystem, insbesondere in einem Luftfahrzeug
DE102018216316A1 (de) Elektrochemisches Batteriesystem
EP3894271A1 (de) Energiespeicher für ein elektrisch antreibbares fortbewegungsmittel
DE102016104989A1 (de) Zwischenlager für Batterieeinheiten
DE102010017439A1 (de) Schaltungsanordnung und Verfahren zum Ausgleich von unterschiedlichen Ladezuständen von Zellen eines Energiespeichers
DE102010053824A1 (de) System und Verfahren zum Regeln des Ladezustands einer Mehrzahl an Batterien während deren Lagerung
WO2019020446A1 (de) Verfahren zum betreiben eines elektrischen gesamtbordnetzes, steuereinheit und kraftfahrzeug
DE102019217277A1 (de) Energiespeichereinheit, Energiespeichersystem, Verfahren zum Betreiben einer Energiespeichereinheit und Verfahren zum Betreiben eines Energiespeichersystems

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)