EP3891792A1 - Capacitive coupling in a direct-bonded interface for microelectronic devices - Google Patents

Capacitive coupling in a direct-bonded interface for microelectronic devices

Info

Publication number
EP3891792A1
EP3891792A1 EP19892672.7A EP19892672A EP3891792A1 EP 3891792 A1 EP3891792 A1 EP 3891792A1 EP 19892672 A EP19892672 A EP 19892672A EP 3891792 A1 EP3891792 A1 EP 3891792A1
Authority
EP
European Patent Office
Prior art keywords
die
dielectric
direct
capacitive
bonding interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19892672.7A
Other languages
German (de)
French (fr)
Other versions
EP3891792A4 (en
Inventor
Belgacem Haba
Arkalgud R. Sitaram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeia Semiconductor Technologies LLC
Original Assignee
Invensas LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/212,248 external-priority patent/US10811388B2/en
Application filed by Invensas LLC filed Critical Invensas LLC
Publication of EP3891792A1 publication Critical patent/EP3891792A1/en
Publication of EP3891792A4 publication Critical patent/EP3891792A4/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/03602Mechanical treatment, e.g. polishing, grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/05686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/0569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/05695Material with a principal constituent of the material being a gas not provided for in groups H01L2224/056 - H01L2224/05691
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/065Material
    • H01L2224/06505Bonding areas having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08121Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the connected bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • H01L2224/0905Shape
    • H01L2224/09051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • H01L2224/095Material
    • H01L2224/09505Bonding areas having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8034Bonding interfaces of the bonding area
    • H01L2224/80357Bonding interfaces of the bonding area being flush with the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80365Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80379Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/8089Bonding techniques using an inorganic non metallic glass type adhesive, e.g. solder glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • H01L2225/06531Non-galvanic coupling, e.g. capacitive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06565Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected

Definitions

  • Direct bonding and direct hybrid bonding can sometimes demand critical tolerances. These processes can be made more forgiving when various ways of coupling the power, ground, and signal lines at the bonding interface can be devised that allow some misalignment, for example, and less critical tolerances to provide more reliable packages at a higher bond yield.
  • a microelectronic device includes a first die and a second die direct-bonded together at a bonding interface, a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond, and a capacitive interconnect between the first die and the second die formed at the bonding interface.
  • a direct bonding process creates a direct bond between dielectric surfaces of two dies, a direct bond between respective conductive interconnects of the two dies, and a capacitive coupling between the two dies at the bonding interface.
  • a capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line.
  • the capacitive couplings result from the same direct bonding process that creates the conductive interconnects direct-bonded together at the same bonding interface.
  • Fig. 1 is a diagram of an example wafer-level package construction 100 that includes an example capacitive coupling with an ultrathin dielectric layer.
  • Fig. 2 is a diagram of an example wafer-level package construction in which the ultrathin dielectric layer includes two component dielectric layers.
  • Fig. 3 is a diagram of another example wafer-level package construction in which the ultrathin dielectric layer includes multiple component dielectric layers.
  • Fig. 4 is a diagram of an example wafer-level package including a capacitive interface with staggered conductive plates.
  • FIG. 5 is a diagram of an example process for making a coupled capacitive wafer-level package including a capacitive interface.
  • Fig. 6 is a diagram of an example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process.
  • Fig. 7 is a diagram of another example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process.
  • Fig. 8 is another diagram of an example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process.
  • Fig. 9 is a diagram of an example direct-bonded interface that includes conductive interconnects direct-bonded together at the bonding interface, and example capacitive interconnects also coupled at the bonding interface.
  • Fig. 10 is a diagram of an example direct-bonded interface that includes conductive interconnects direct-bonded together at the bonding interface and example capacitive interconnects also coupled at the same bonding interface, with one or more conductive through-vias at the same bonding interface.
  • Fig. 11 is a flow diagram of an example method of creating a capacitive coupling in a direct-bonded interface for microelectronic devices.
  • a direct hybrid bonding process for microelectronic dies and wafers also creates a capacitive coupling for each individual signal line at the bonding interface.
  • a direct hybrid bonding process creates a direct bond between dielectric surfaces of two dies, creates a direct bond between respective power interconnects of the two dies, creates a direct bond between respective ground interconnects of the two dies, and creates a capacitive coupling for each signal line at a bonding interface of the direct hybrid bonding process.
  • the direct bond between the dielectric surfaces can be an oxide-to- oxide direct bond.
  • the direct bond between the respective power interconnects is a metal-to-metal direct bond.
  • the direct bond between the respective ground interconnects is also a metal-to-metal direct bond.
  • the capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line, resulting from the direct hybrid bonding process.
  • Example techniques achieve a capacitive coupling with very fine pitch, in a package construction.
  • a very thin dielectric layer on the order of nanometers may be achieved between two conductive areas (plates or pads, i.e., one from each die) by joining two opposing surfaces. The two plates or pads are joined together to form a capacitor with separation, for example, under 50 nanometers.
  • each component to be coupled has a surface that includes at least one conductive area, such as a metal pad or plate (i.e., capacitor plate).
  • An ultrathin layer of dielectric is formed on at least one surface to be coupled. When the two components are permanently contacted together, the ultrathin layer of dielectric remains between the two surfaces, forming a capacitive interface between the conductive areas of each respective component.
  • the ultrathin layer of dielectric may be composed of multiple layers of various dielectrics, but the combined thickness of such multiple layers is less than or equal to approximately 50 nanometers.
  • the capacitance per unit area of the capacitive interface formed depends on the particular dielectric constants k of the dielectric materials employed in the ultrathin layer, on the respective thicknesses of individual dielectric layers in the ultrathin layer (if more than one dielectric layer is used), and on the overall thickness of the combined ultrathin dielectric layer.
  • electrical and grounding connections can be made at the edge of the coupled stack, i.e., around the edge of the capacitive interface.
  • the example capacitive coupling techniques described herein provide numerous benefits, such as smaller-size wafer-level packages, savings in materials used, and potentially lower voltage requirements because of thinner dielectrics and relatively high dielectric constants k per unit area. For certain applications, such as mobile devices that utilize small size batteries, significantly lower operating voltages may be achieved.
  • FIG. 1 shows an example wafer-level package construction 100 that includes a first integrated circuit die 102 and a second integrated circuit die 104.
  • Each integrated circuit die 102 & 104 has a semiconductor 106 & 108, such as silicon, and an underfill layer 110 & 112 composed of insulation or dielectric (for example, silicon dioxide) securing conductive areas 114 & 116 and 118 & 120.
  • Each integrated circuit die 102 & 104 has a respective surface 122 & 124 that includes at least one of the conductive areas 114 & 116, or 118 & 120.
  • An ultrathin dielectric layer 126 that has a thickness less than or equal to approximately 50 nanometers is formed on at least one of the surfaces 122 or 124 of at least one of the integrated circuit dies 102 & 104.
  • the ultrathin dielectric layer may be a coating, film, residue, membrane, deposit, and so forth.
  • the coupled stack 100 forms a capacitive interface 128 that includes the ultrathin dielectric layer 126, and at least one pair of the respective conductive areas, e.g., 114 & 118 or 116 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 126.
  • the thickness of the ultrathin dielectric layer 126 can be in the range of approximately 2-50 nanometers.
  • the ultrathin dielectric layer 126 can be 5-6 nanometers thick. In an implementation, the ultrathin dielectric layer 126 is less than 2 nanometers thick.
  • the ultrathin dielectric layer 126 can be composed of silicon oxide (silicon dioxide S1O2).
  • the ultrathin dielectric layer 126 can be composed of a dielectric such as silicon monoxide, silicon trioxide, aluminum oxide, hafnium oxide, a high-k ionic metal oxide, a hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer (SAM), a polymer film, or an ionic metal oxide membrane.
  • the ultrathin dielectric layer 126 may be an atomic layer deposition of hafnium oxide with precise control of the thickness of the ultrathin dielectric layer 126 down to 1 -2 nanometers.
  • the ultrathin dielectric layer 126 can be a layer of a metal oxide & alkylphosphonic acid self-assembled monolayer (SAM) that has a thickness of approximately 5-6 nanometers and a capacitance per unit area of approximately 500-800 nF/cm 2 .
  • SAM metal oxide & alkylphosphonic acid self-assembled monolayer
  • the two integrated circuit dies 102 & 104 may be coupled together in a stack by mechanically securing the two integrated circuit dies 102 & 104 together at an edge of the stack 100.
  • the ultrathin dielectric layer 126 on at least one of the surfaces 122 & 124 of at least one of the integrated circuit dies 102 & 104 may have an adhesive quality for adhering the integrated circuit dies 102 & 104 to each other.
  • Electrical power connections 130 and electrical grounding connections 132 between the two integrated circuit dies 102 & 104 may be located at an edge of the stack 100.
  • Fig. 2 shows an example wafer-level package construction 200, in which the ultrathin dielectric layer 206 includes multiple component dielectric layers 202 & 204.
  • a first component dielectric layer 202 is formed on one of the integrated circuit dies 102, and a second component dielectric layer 204 is formed on the other integrated circuit die 104.
  • the multiple component dielectric layers 202 & 204 may be composed of the same dielectric material, such as silicon oxide, or different dielectric materials.
  • each component dielectric layer 202 & 204 has a thickness of less than or equal to 25 nanometers.
  • the capacitive interface 208 that is formed includes the ultrathin dielectric layer 206, and respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 206.
  • Fig. 3 shows an example wafer-level package construction 300, in which the ultrathin dielectric layer 310 includes multiple component dielectric layers 302 & 304 and 306 & 308.
  • a first set of component dielectric layers 302 & 304 is formed on one of the integrated circuit dies 102, and a second set of component dielectric layers 306 & 308 is formed on the other integrated circuit die 104.
  • Each set of ultrathin dielectric layers 302 & 304 or 306 & 308 has a thickness of less than or equal to approximately 25 nanometers, for example.
  • the resulting overall ultrathin dielectric layer 310 has a thickness of less than or equal to approximately 50 nanometers, for example. Symmetry in the thickness of the multiple layers is not needed.
  • the capacitive interface 312 that is formed includes the ultrathin dielectric layers 302 & 304 and 306 & 308 and respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 310.
  • the multiple layers may be composed of different dielectric materials, such as one or more layers of silicon oxide, and one or more a layers of a high- K dielectric other than silicon oxide, such as silicon monoxide, silicon trioxide, aluminum oxide, hafnium oxide, a high-k ionic metal oxide, a hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer (SAM), or a polymer, for example.
  • silicon monoxide silicon trioxide
  • aluminum oxide hafnium oxide
  • a high-k ionic metal oxide such as silicon monoxide, silicon trioxide, aluminum oxide, hafnium oxide, a high-k ionic metal oxide, a hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer (SAM), or a polymer, for example.
  • SAM hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer
  • the multiple layers may be asymmetrical with respect to a parallel central plane of the multiple layers.
  • the asymmetry may consist of a difference in the number, arrangement, thicknesses, or composition of one or more of the multiple layers on either side of the parallel central plane of the multiple layers.
  • Fig. 4 shows an example embodiment of a wafer-level package 400 including a capacitive interface 404 with an ultrathin dielectric layer 402.
  • the respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104 do not have to align perfectly on opposing sides of the ultrathin dielectric layer 402 of the capacitive interface 404.
  • Fig. 5 shows an example process for making a coupled capacitive wafer-level package 500 including a capacitive interface 510.
  • integrated circuit dies 102 & 102’ have a semiconductor 106, such as silicon, and an underfill layer 110 composed of insulation or dielectric, such as silicon dioxide, securing one or more conductive areas 114 & 116.
  • Each integrated circuit die 102 & 102’ has a respective surface 122 that includes the conductive areas 114 & 116. The surface 122 does not have to be flat at this point in the process.
  • a layer of dielectric 502 such as silicon oxide or a high-k dielectric, is formed over the surface 122, including the one or more conductive areas 114 & 116 and exposed parts of the underfill layer 110.
  • the layer of dielectric 502 is ground, etched, lapped, or polished, (or deposited), etc., to a thickness less than or equal to approximately 50 nanometers. The thickness to be achieved for a given layer of the dielectric 502 may depend on how many layers are to compose the overall ultrathin dielectric layer 508, and the value of capacitance per unit area desired.
  • the layer of dielectric 502 is etched or otherwise removed, for example, down to the exposed parts of the underfill layer 110, to form a flat surface 122.
  • the capacitive interface 510 resulting from the coupling includes the ultrathin dielectric layer 508, and at least one pair of conductive areas 114 & 118 or 116 & 120, on opposing sides of the ultrathin dielectric layer 508.
  • a layer of etch stop 512 or a lapping-polishing stop may be applied to the initial surface 122 to protect the underlying structures and assist formation of the ultrathin dielectric layer 508 at an ultrafine pitch.
  • the etch stop 512 or lapping-polishing stop is deposited on the underlying structures, such as the exposed underfill 110 and the conductive areas 114 & 116, to protect the structures (110 & 114 & 116) underlying the etch stop layer 512 from damage caused by the etch process.
  • the etch stop layer 512 terminates the etch process once the desired thickness of the ultrathin dielectric layer 508 has been achieved by the etch process.
  • the etch stop may be a silicon dioxide etch stop, a boron etch stop, an aluminum oxide etch stop, a polysilicon etch stop, a titanium oxide etch stop, or a silicon nitride etch stop.
  • the etch or lapping process may be a dry chemical etch process, a wet etch process, a gaseous etch process, for example, using oxide etch gases such as CF4, CHF3, CH2F2, NF3, or O2, or an electrochemical etch process, e.g., using electrochemical etch rate modulation.
  • the ultrathin dielectric layer 508, or a component layer thereof is formed by deposition, such as atomic layer deposition of a dielectric such as hafnium oxide (HfC ).
  • a combination of an oxygen-plasma-grown metal oxide (e.g., aluminum oxide) and a high-quality alkylphosphonic acid self-assembled monolayer (SAM) can be obtained at process temperatures of no more than about 100 °C, and can be formed not only on glass (silicon oxide) substrates, but also on commercially available flexible plastic substrates, such as polyethylene naphthalate or polyethylene terephthalate.
  • Such an ultrathin dielectric layer 508 may have a total thickness of approximately 5-6 nanometers and a capacitance per unit area of approximately 500-800 nF/cm 2 .
  • an additional ultrathin dielectric layer 514 e.g., of silicon oxide or other high-k dielectric, may be formed above the smooth flat surface 504.
  • the additional ultrathin dielectric layer 514 can be used to tune the thickness, and thus the capacitance, of the resulting capacitive interface 510, once the integrated circuit dies 102 & 102’ have been coupled into a stack 506, forming the capacitive interface 510.
  • the additional ultrathin dielectric layer 514 can also be used to increase the resistance of the capacitive interface 510 against charge and voltage leakage, or dielectric breakdown.
  • Fig. 6 shows an example direct-bonded interface 600 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 600 as one or more capacitive interconnects 608 formed by the same direct bonding process.
  • the two surfaces being direct-bonded together to implement the direct-bonded interface 600 that has both conductive interconnects 606 and capacitive interconnects 608 may belong to two dies 602 & 604 in a die-to-die (D2D) process, may be a die 602 and a die-on-a-wafer 604 as in a die-to-wafer (D2W) process, or may be two dies-on-a-wafer 602 & 604 as in a wafer-to-wafer (W2W) process.
  • D2D die-to-die
  • D2W die-to-wafer
  • W2W wafer-to-wafer
  • the example first die 602 and example second die 604 are direct-bonded together at the bonding interface 600.
  • a metal-to-metal direct bond is also formed by a direct-bonding process to make the conductive interconnect 606 between the first die 602 and the second die 604, formed at the bonding interface 600.
  • the capacitive interconnect 608 between the first die 602 and the second die 604 is formed at the bonding interface 600 by the same direct-bonding process or processes.
  • the first die 602 and the second die 604 are direct-bonded together at the bonding interface 600 with a dielectric-to-dielectric direct bond 610 between respective nonmetal surfaces of the first die 602 and the second die 604.
  • the dielectric-to-dielectric direct bond 610 (e.g., oxide-to-oxide direct bond) between respective nonmetal surfaces of the first die 602 and the second die 604 also creates a capacitive coupling 612 of the capacitive interconnect 608.
  • the capacitive coupling 612 of the capacitive interconnect 608 comprises a first metal 614 in the first die 602 and a second metal 616 in the second die 604.
  • the first metal 614 and the second metal 616 are separated by a dielectric medium 618.
  • Fig. 7 shows an example direct-bonded interface 700 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 700 as one or more capacitive interconnects 702 formed by the same direct bonding process.
  • the first metal 614 of the capacitive interconnect 702 in the first die 602 is recessed from the bonding interface 700 by a space that has the dielectric medium 618, while the second metal 616 of the capacitive interconnect 702 in the second die 604 is flush with the bonding interface 700.
  • Fig. 8 shows an example direct-bonded interface 800 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 800 as one or more capacitive interconnects 802 formed by the same direct bonding process.
  • the first metal 614 of the capacitive interconnect 802 in the first die 602 is recessed from the bonding interface 800, while the second metal 616 of the capacitive interconnect 802 in the second die 604 is also recessed from the same bonding interface 800, in an opposing direction.
  • One or more dielectric materials 804 & 806 can make up the dielectric medium 618 between metals 614 & 616 that creates the capacitive coupling (or capacitor) of the capacitive interconnect 802.
  • the dielectric materials 804 & 806 shown in Fig. 8 are depicted as at least one solid dielectric material, while the dielectric material(s) shown in Fig. 6 are depicted as a gap (an air-filled gap, for example).
  • the dielectric medium 618 of the capacitive interconnect 802 can be made of silicon dioxide, silicon nitride, air, or a high dielectric material, for example, or mixtures or combinations of these and other dielectric materials, gases, and substances usable in semiconductor microfabrication.
  • the dielectric medium 618 of the capacitive interconnect 802 may be an asymmetrical combination of dielectric materials with respect to a horizontal plane of the bonding interface 800 between the first die 602 and the second die 604.
  • a spacing distance between the first metal 614 in the first die 602 and the second metal 616 in the second die 604 can be selected to provide a specific capacitance value or capacitance range for a given capacitive interconnect 802 or set of capacitive interconnects 802.
  • the dielectric medium 618 of the capacitive interconnect 608 & 702 & 802 may be at least one ultrathin layer of a dielectric material.
  • the ultrathin layer of the dielectric material may be a coating, a film, a residue, a membrane, a deposit, or a gap (e.g., an air space).
  • a thickness and a dielectric constant of the ultrathin layer of the dielectric material can determine a capacitance or a capacitive utility of the capacitive interconnect 608 & 702 & 802.
  • the ultrathin layer of the dielectric material may have a thickness less than or equal to approximately 50 nanometers, for example.
  • the ultrathin layer of the dielectric material may also be made of multiple layers.
  • a thickness of the combined multiple layers is less than 25 nanometers, for example.
  • at least one of the multiple layers of the dielectric material may be a polymer.
  • a capacitance of the capacitive interconnect 608 & 702 & 802 may be determined by a thickness of the one or more polymer layers.
  • Fig. 9 shows an example direct-bonded interface 900 that includes conductive interconnects 902 direct-bonded together at the bonding interface 900, and example capacitive interconnects 904 also coupled at the bonding interface 900.
  • the conductive interconnects 902 may be direct-bonded power interconnects or direct-bonded ground interconnects, for example.
  • the capacitive interconnects 904 may be signal lines between the first die 602 and the second die 604, for example.
  • the bonding interface itself 900 is also direct- bonded together, with nonmetal-to-nonmetal direct bonds, for example. The joining of respective bonding surfaces of each die 602 & 604 into the direct- bonded interface 900 creates a capacitive coupling (612 in Fig.
  • direct-bonding is direct hybrid bonding, which includes both direct-bonding of (nonmetal) dielectrics and direct-bonding of metal conductive interconnects 902 at same the bonding interface 900. Dielectric surfaces of the first die 602 and second die 604 on either side of the bonding interface 900 are direct-bonded together with oxide-to-oxide direct bonds, without any adhesives.
  • metal pads such as pads 906 & 908, on either side of the bonding interface 900 are direct-bonded together with metal-to-metal contact bonds, with no solder or adhesives.
  • “direct bond interconnect” (DBI® brand) direct hybrid bonding is utilized for the direct hybrid bonding process, which direct-bonds the dielectric surfaces of the two dies 602 & 604 together at room temperature, and then direct-bonds the metal pads 906 & 908 together at a higher annealing temperature (Invensas Inc., a subsidiary of Xperi Corp., San Jose, CA).
  • DBI® direct hybrid bonding can provide 100,000-1 ,000,000 connections per sq. mm, with each connection averaging from ⁇ 1 pm - 40 pm in pitch. Even greater connection density is feasible with connections that are less than 1 pm in pitch.
  • the power and ground interconnects 902 may be redundant instances, so that if one or more pads 906 does not bond or does not align vertically, then power or ground connection is still made via other instances of the redundant conductive interconnects 902.
  • the direct-bonded interconnects 902 may have relatively large metal pads, to provide a better bonding yield and to allow for some horizontal misalignment during the example direct hybrid bonding process, while ensuring that enough surface area of the metal pads 906 & 908 contact each other across the bonding interface 900 to conduct the desired electrical current flow.
  • the capacitive interconnects 904, for signal and data lines, do not bond in the direct hybrid bonding process, but instead form capacitive couplings 612 that make up the signal-passing interface of each capacitive interconnect 904 between dies 602 & 604.
  • signal lines using capacitive interconnects 904 may include redundant circuits for passing a signal across the bonding interface 900.
  • the redundant circuits may provide a better yield during manufacture and/or provide high availability during use. Redundant signal lines may also be employed to achieve a certain overall capacitance for the capacitive coupling of a given signal circuit that crosses the joined electrical interface 602.
  • Fig. 10 shows an example direct-bonded interface 1000 that includes conductive interconnects 1002 direct-bonded together at the bonding interface 1000, and example capacitive interconnects 1004 also coupled at the same bonding interface 1000.
  • One or more conductive vias 1006 & 1008, such as through-silicon vias (TSVs) or through-dielectric-vias (TDVs) are also implemented in the example direct-bonded first and second dies 602 & 604.
  • a conductive through-via 1006 or 1008 may be fabricated in a via last process, for example.
  • An example conductive through-via 1008 may be implemented to penetrate entirely or at least part way through one die 604.
  • an example through-via 1006 may be implemented to penetrate entirely or at least part way through both direct-bonded dies 602 & 604.
  • Via last conductive through-vias 1006 & 1008 may provide advantages for process integration to reduce the processing impact and thermal budget on back end of line (BEOL) processing.
  • BEOL back end of line
  • the same back-to-front side wafer alignment that enables direct hybrid bonding, for example, can provide lithography alignment for via last patterning to integrate conductive through-vias 1006 & 1008.
  • Fig. 11 shows an example method 1100 of creating a capacitive coupling in a direct-bonded interface for microelectronic devices.
  • the operations of the example method 1100 are shown as individual blocks.
  • a first direct bond is created between respective dielectric surfaces of two dies at a bonding interface.
  • a second direct bond is created between respective conductive interconnects of the two dies at the bonding interface.
  • the example method 1100 includes creating the first (nonmetal) direct bonds and the second (metal) direct bonds during the same direct bonding operation, which also forms the capacitive couplings in the same operation, all of these occurring at the same bonding interface during the same direct-bonding operation, such as a direct hybrid bonding operation.
  • the direct bond between the dielectric surfaces at the bonding interface comprises an oxide-to-oxide direct bond, for example.
  • the direct bond between the respective conductive interconnects comprises a metal-to-metal direct bond.
  • the capacitive coupling comprises at least one dielectric material at the bonding interface between two respective metals of the two dies, coupled by the same direct-bonding operation that accomplishes the oxide-to-oxide direct bond and the metal-to-metal direct bond.
  • an example method may include creating a bonding surface on a die, the bonding surface comprising a flat dielectric material for direct hybrid bonding, making a first metal pad of a power interconnect associated with the bonding surface, the first metal pad suitable for direct hybrid bonding, making a second metal pad of a ground interconnect associated with the bonding surface is made, the second metal pad suitable for direct hybrid bonding, making at least one recessed metal pad of a signal line associated with the bonding surface, the recessed pad for forming a capacitive coupling of the signal line across the bonding surface during direct hybrid bonding, and disposing a dielectric material suitable for making the capacitive coupling in a recess space between the recessed metal pad of the signal line and the bonding surface.
  • At least one dielectric material suitable for making the capacitive coupling can be air, or can be silicon dioxide, silicon nitride, a high dielectric material, and so forth, as above.
  • the respective dielectric materials of first and second dies are direct- bonded together in an example direct hybrid bonding process to bond the first and second dies together and to form the capacitive coupling of the signal line between respective metal pads of the first and second dies.
  • first and second dies are annealed in the example direct hybrid bonding operation to direct-bond the respective first metal pads to form the power interconnect and to direct-bond the respective second metal pads to form the ground interconnect.

Abstract

Capacitive couplings in a direct- bonded interface for microelectronic devices are provided. In an implementation, a microelectronic device includes a first die and a second die direct- bonded together at a bonding interface, a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond, and a capacitive interconnect between the first die and the second die formed at the bonding interface. A direct bonding process creates a direct bond between dielectric surfaces of two dies, a direct bond between respective conductive interconnects of the two dies, and a capacitive coupling between the two dies at the bonding interface. In an implementation, a capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line. The capacitive couplings result from the same direct bonding process that creates the conductive interconnects direct- bonded together at the same bonding interface.

Description

CAPACITIVE COUPLING IN A DIRECT-BONDED INTERFACE
FOR MICROELECTRONIC DEVICES
RELATED APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Patent Application No. 16/212,248, filed December 6, 2018, which is a continuation-in- part of Application No. 16/020,654 filed June 27, 2018, which is a divisional application of U.S. Patent Application No. 15/247,705, filed August 25, 2016, now U.S. Patent No. 10,032,751 issued July 24, 2018, which claimed the benefit of priority to U.S. Provisional Patent Application No. 62/234,022, filed September 28, 2015, all of which are incorporated herein by reference in their entirety.
BACKGROUND
[0002] Direct bonding and direct hybrid bonding can sometimes demand critical tolerances. These processes can be made more forgiving when various ways of coupling the power, ground, and signal lines at the bonding interface can be devised that allow some misalignment, for example, and less critical tolerances to provide more reliable packages at a higher bond yield.
[0003] Also, size reduction of wafer-level packages and microelectronic elements can sometimes be inhibited by the necessary inclusion of components that are difficult to miniaturize. For example, sometimes a package relies on the relatively large size of a discrete capacitor. If the package did not have to rely on the large component, the package could be made much smaller. In other instances, a certain value of capacitance is needed in an integrated circuit design and the construction process could be streamlined if the capacitor could be built into the wafer-level package design. SUMMARY
[0004] Capacitive couplings in a direct-bonded interface for microelectronic devices are provided. In an implementation, a microelectronic device includes a first die and a second die direct-bonded together at a bonding interface, a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond, and a capacitive interconnect between the first die and the second die formed at the bonding interface. A direct bonding process creates a direct bond between dielectric surfaces of two dies, a direct bond between respective conductive interconnects of the two dies, and a capacitive coupling between the two dies at the bonding interface. In an implementation, a capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line. The capacitive couplings result from the same direct bonding process that creates the conductive interconnects direct-bonded together at the same bonding interface.
[0005] This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein.
[0007] Fig. 1 is a diagram of an example wafer-level package construction 100 that includes an example capacitive coupling with an ultrathin dielectric layer.
[0008] Fig. 2 is a diagram of an example wafer-level package construction in which the ultrathin dielectric layer includes two component dielectric layers.
[0009] Fig. 3 is a diagram of another example wafer-level package construction in which the ultrathin dielectric layer includes multiple component dielectric layers.
[0010] Fig. 4 is a diagram of an example wafer-level package including a capacitive interface with staggered conductive plates.
[001 1] Fig. 5 is a diagram of an example process for making a coupled capacitive wafer-level package including a capacitive interface.
[0012] Fig. 6 is a diagram of an example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process.
[0013] Fig. 7 is a diagram of another example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process.
[0014] Fig. 8 is another diagram of an example direct-bonded interface between a first die and a second die that includes one or more direct-bonded conductive interconnects in the same bonding plane as one or more capacitive interconnects formed by the same direct bonding process. [0015] Fig. 9 is a diagram of an example direct-bonded interface that includes conductive interconnects direct-bonded together at the bonding interface, and example capacitive interconnects also coupled at the bonding interface.
[0016] Fig. 10 is a diagram of an example direct-bonded interface that includes conductive interconnects direct-bonded together at the bonding interface and example capacitive interconnects also coupled at the same bonding interface, with one or more conductive through-vias at the same bonding interface.
[0017] Fig. 11 is a flow diagram of an example method of creating a capacitive coupling in a direct-bonded interface for microelectronic devices.
DETAILED DESCRIPTION
Overview
[0018] This disclosure describes capacitive couplings in a direct-bonded interface for microelectronic devices. A direct hybrid bonding process for microelectronic dies and wafers also creates a capacitive coupling for each individual signal line at the bonding interface. In an implementation, a direct hybrid bonding process creates a direct bond between dielectric surfaces of two dies, creates a direct bond between respective power interconnects of the two dies, creates a direct bond between respective ground interconnects of the two dies, and creates a capacitive coupling for each signal line at a bonding interface of the direct hybrid bonding process.
[0019] The direct bond between the dielectric surfaces can be an oxide-to- oxide direct bond. The direct bond between the respective power interconnects is a metal-to-metal direct bond. The direct bond between the respective ground interconnects is also a metal-to-metal direct bond. The capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line, resulting from the direct hybrid bonding process.
[0020] Example techniques achieve a capacitive coupling with very fine pitch, in a package construction. A very thin dielectric layer on the order of nanometers may be achieved between two conductive areas (plates or pads, i.e., one from each die) by joining two opposing surfaces. The two plates or pads are joined together to form a capacitor with separation, for example, under 50 nanometers.
[0021] In an example implementation, each component to be coupled has a surface that includes at least one conductive area, such as a metal pad or plate (i.e., capacitor plate). An ultrathin layer of dielectric is formed on at least one surface to be coupled. When the two components are permanently contacted together, the ultrathin layer of dielectric remains between the two surfaces, forming a capacitive interface between the conductive areas of each respective component. In an implementation, the ultrathin layer of dielectric may be composed of multiple layers of various dielectrics, but the combined thickness of such multiple layers is less than or equal to approximately 50 nanometers. The capacitance per unit area of the capacitive interface formed depends on the particular dielectric constants k of the dielectric materials employed in the ultrathin layer, on the respective thicknesses of individual dielectric layers in the ultrathin layer (if more than one dielectric layer is used), and on the overall thickness of the combined ultrathin dielectric layer.
[0022] In an implementation, electrical and grounding connections can be made at the edge of the coupled stack, i.e., around the edge of the capacitive interface. Thus, within the surface area of the capacitive interface between surfaces, in an implementation there may be no conductive connections, or very few conductive connections, that penetrate through the ultrathin layer of dielectric. If conductive connections are used within the area of the surface that has the capacitive interface, such conductive connections are placed where there are no nearby metal plates participating in the capacitive interface.
[0023] The example capacitive coupling techniques described herein provide numerous benefits, such as smaller-size wafer-level packages, savings in materials used, and potentially lower voltage requirements because of thinner dielectrics and relatively high dielectric constants k per unit area. For certain applications, such as mobile devices that utilize small size batteries, significantly lower operating voltages may be achieved.
Example Systems
[0024] Fig. 1 shows an example wafer-level package construction 100 that includes a first integrated circuit die 102 and a second integrated circuit die 104. Each integrated circuit die 102 & 104 has a semiconductor 106 & 108, such as silicon, and an underfill layer 110 & 112 composed of insulation or dielectric (for example, silicon dioxide) securing conductive areas 114 & 116 and 118 & 120. Each integrated circuit die 102 & 104 has a respective surface 122 & 124 that includes at least one of the conductive areas 114 & 116, or 118 & 120.
[0025] An ultrathin dielectric layer 126 that has a thickness less than or equal to approximately 50 nanometers is formed on at least one of the surfaces 122 or 124 of at least one of the integrated circuit dies 102 & 104. The ultrathin dielectric layer may be a coating, film, residue, membrane, deposit, and so forth. The coupled stack 100 forms a capacitive interface 128 that includes the ultrathin dielectric layer 126, and at least one pair of the respective conductive areas, e.g., 114 & 118 or 116 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 126.
[0026] The thickness of the ultrathin dielectric layer 126 can be in the range of approximately 2-50 nanometers. For example, the ultrathin dielectric layer 126 can be 5-6 nanometers thick. In an implementation, the ultrathin dielectric layer 126 is less than 2 nanometers thick.
[0027] In an implementation, the ultrathin dielectric layer 126 can be composed of silicon oxide (silicon dioxide S1O2). Or, the ultrathin dielectric layer 126 can be composed of a dielectric such as silicon monoxide, silicon trioxide, aluminum oxide, hafnium oxide, a high-k ionic metal oxide, a hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer (SAM), a polymer film, or an ionic metal oxide membrane.
[0028] For example, the ultrathin dielectric layer 126 may be an atomic layer deposition of hafnium oxide with precise control of the thickness of the ultrathin dielectric layer 126 down to 1 -2 nanometers.
[0029] In another example, the ultrathin dielectric layer 126 can be a layer of a metal oxide & alkylphosphonic acid self-assembled monolayer (SAM) that has a thickness of approximately 5-6 nanometers and a capacitance per unit area of approximately 500-800 nF/cm2.
[0030] In an example, the two integrated circuit dies 102 & 104 may be coupled together in a stack by mechanically securing the two integrated circuit dies 102 & 104 together at an edge of the stack 100. In another example, the ultrathin dielectric layer 126 on at least one of the surfaces 122 & 124 of at least one of the integrated circuit dies 102 & 104 may have an adhesive quality for adhering the integrated circuit dies 102 & 104 to each other.
[0031] Electrical power connections 130 and electrical grounding connections 132 between the two integrated circuit dies 102 & 104 may be located at an edge of the stack 100.
[0032] Fig. 2 shows an example wafer-level package construction 200, in which the ultrathin dielectric layer 206 includes multiple component dielectric layers 202 & 204. In this example, a first component dielectric layer 202 is formed on one of the integrated circuit dies 102, and a second component dielectric layer 204 is formed on the other integrated circuit die 104. The multiple component dielectric layers 202 & 204 may be composed of the same dielectric material, such as silicon oxide, or different dielectric materials. In this example, each component dielectric layer 202 & 204 has a thickness of less than or equal to 25 nanometers. When the two integrated circuit dies 102 & 104 are coupled, the resulting overall ultrathin dielectric layer 206 has a thickness of less than or equal to approximately 50 nanometers. The capacitive interface 208 that is formed includes the ultrathin dielectric layer 206, and respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 206.
[0033] Fig. 3 shows an example wafer-level package construction 300, in which the ultrathin dielectric layer 310 includes multiple component dielectric layers 302 & 304 and 306 & 308. In this example, a first set of component dielectric layers 302 & 304 is formed on one of the integrated circuit dies 102, and a second set of component dielectric layers 306 & 308 is formed on the other integrated circuit die 104. Each set of ultrathin dielectric layers 302 & 304 or 306 & 308 has a thickness of less than or equal to approximately 25 nanometers, for example. Or, when the two integrated circuit dies 102 & 104 are coupled, the resulting overall ultrathin dielectric layer 310 has a thickness of less than or equal to approximately 50 nanometers, for example. Symmetry in the thickness of the multiple layers is not needed. The capacitive interface 312 that is formed includes the ultrathin dielectric layers 302 & 304 and 306 & 308 and respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104, on opposing sides of the ultrathin dielectric layer 310.
[0034] When multiple layers of ultrathin dielectric materials are used for the different layers (e.g., 302 & 304 or 306 & 308) of an overall ultrathin dielectric layer 310, the multiple layers may be composed of different dielectric materials, such as one or more layers of silicon oxide, and one or more a layers of a high- K dielectric other than silicon oxide, such as silicon monoxide, silicon trioxide, aluminum oxide, hafnium oxide, a high-k ionic metal oxide, a hybrid oxygen- plasma-grown metal oxide & alkylphosphonic acid self-assembled monolayer (SAM), or a polymer, for example.
[0035] When multiple layers of ultrathin dielectric materials are used for the different layers (e.g., 302 & 304 or 306 & 308) of an overall ultrathin dielectric layer 310, the multiple layers may be asymmetrical with respect to a parallel central plane of the multiple layers. The asymmetry may consist of a difference in the number, arrangement, thicknesses, or composition of one or more of the multiple layers on either side of the parallel central plane of the multiple layers.
[0036] Fig. 4 shows an example embodiment of a wafer-level package 400 including a capacitive interface 404 with an ultrathin dielectric layer 402. As shown in Fig. 4, the respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104 do not have to align perfectly on opposing sides of the ultrathin dielectric layer 402 of the capacitive interface 404. The respective conductive areas 114 & 116 and 118 & 120 of the first and second integrated circuit dies 102 & 104 can be staggered with respect to each other, and the staggered alignment can be used to obtain a particular capacitance, for example, between a first conductive area 114 and a second conductive area 118 on opposing sides of the capacitive interface 404. [0037] Fig. 5 shows an example process for making a coupled capacitive wafer-level package 500 including a capacitive interface 510. In an implementation, integrated circuit dies 102 & 102’ have a semiconductor 106, such as silicon, and an underfill layer 110 composed of insulation or dielectric, such as silicon dioxide, securing one or more conductive areas 114 & 116. Each integrated circuit die 102 & 102’ has a respective surface 122 that includes the conductive areas 114 & 116. The surface 122 does not have to be flat at this point in the process.
[0038] A layer of dielectric 502, such as silicon oxide or a high-k dielectric, is formed over the surface 122, including the one or more conductive areas 114 & 116 and exposed parts of the underfill layer 110. In an implementation, the layer of dielectric 502 is ground, etched, lapped, or polished, (or deposited), etc., to a thickness less than or equal to approximately 50 nanometers. The thickness to be achieved for a given layer of the dielectric 502 may depend on how many layers are to compose the overall ultrathin dielectric layer 508, and the value of capacitance per unit area desired. The layer of dielectric 502 is etched or otherwise removed, for example, down to the exposed parts of the underfill layer 110, to form a flat surface 122.
[0039] Two instances of the same integrated circuit die 102 & 102’, each now having a smooth flat surface 504, may now be coupled to form a stack 506. The capacitive interface 510 resulting from the coupling includes the ultrathin dielectric layer 508, and at least one pair of conductive areas 114 & 118 or 116 & 120, on opposing sides of the ultrathin dielectric layer 508.
[0040] In a variation, a layer of etch stop 512 or a lapping-polishing stop may be applied to the initial surface 122 to protect the underlying structures and assist formation of the ultrathin dielectric layer 508 at an ultrafine pitch. Thus, the etch stop 512 or lapping-polishing stop is deposited on the underlying structures, such as the exposed underfill 110 and the conductive areas 114 & 116, to protect the structures (110 & 114 & 116) underlying the etch stop layer 512 from damage caused by the etch process. The etch stop layer 512 terminates the etch process once the desired thickness of the ultrathin dielectric layer 508 has been achieved by the etch process.
[0041] The etch stop may be a silicon dioxide etch stop, a boron etch stop, an aluminum oxide etch stop, a polysilicon etch stop, a titanium oxide etch stop, or a silicon nitride etch stop.
[0042] The etch or lapping process may be a dry chemical etch process, a wet etch process, a gaseous etch process, for example, using oxide etch gases such as CF4, CHF3, CH2F2, NF3, or O2, or an electrochemical etch process, e.g., using electrochemical etch rate modulation. In an implementation, the ultrathin dielectric layer 508, or a component layer thereof, is formed by deposition, such as atomic layer deposition of a dielectric such as hafnium oxide (HfC ).
[0043] A combination of an oxygen-plasma-grown metal oxide (e.g., aluminum oxide) and a high-quality alkylphosphonic acid self-assembled monolayer (SAM) can be obtained at process temperatures of no more than about 100 °C, and can be formed not only on glass (silicon oxide) substrates, but also on commercially available flexible plastic substrates, such as polyethylene naphthalate or polyethylene terephthalate. Such an ultrathin dielectric layer 508 may have a total thickness of approximately 5-6 nanometers and a capacitance per unit area of approximately 500-800 nF/cm2.
[0044] In a variation, after a smooth flat surface 504 has been obtained from etching the dielectric layer 502, an additional ultrathin dielectric layer 514, e.g., of silicon oxide or other high-k dielectric, may be formed above the smooth flat surface 504. The additional ultrathin dielectric layer 514 can be used to tune the thickness, and thus the capacitance, of the resulting capacitive interface 510, once the integrated circuit dies 102 & 102’ have been coupled into a stack 506, forming the capacitive interface 510. The additional ultrathin dielectric layer 514 can also be used to increase the resistance of the capacitive interface 510 against charge and voltage leakage, or dielectric breakdown.
[0045] Fig. 6 shows an example direct-bonded interface 600 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 600 as one or more capacitive interconnects 608 formed by the same direct bonding process. The two surfaces being direct-bonded together to implement the direct-bonded interface 600 that has both conductive interconnects 606 and capacitive interconnects 608 may belong to two dies 602 & 604 in a die-to-die (D2D) process, may be a die 602 and a die-on-a-wafer 604 as in a die-to-wafer (D2W) process, or may be two dies-on-a-wafer 602 & 604 as in a wafer-to-wafer (W2W) process.
[0046] In a microfabrication process for making a device or package, the example first die 602 and example second die 604 are direct-bonded together at the bonding interface 600. A metal-to-metal direct bond is also formed by a direct-bonding process to make the conductive interconnect 606 between the first die 602 and the second die 604, formed at the bonding interface 600. The capacitive interconnect 608 between the first die 602 and the second die 604 is formed at the bonding interface 600 by the same direct-bonding process or processes.
[0047] In an implementation, the first die 602 and the second die 604 are direct-bonded together at the bonding interface 600 with a dielectric-to-dielectric direct bond 610 between respective nonmetal surfaces of the first die 602 and the second die 604.
[0048] The dielectric-to-dielectric direct bond 610 (e.g., oxide-to-oxide direct bond) between respective nonmetal surfaces of the first die 602 and the second die 604 also creates a capacitive coupling 612 of the capacitive interconnect 608. The capacitive coupling 612 of the capacitive interconnect 608 comprises a first metal 614 in the first die 602 and a second metal 616 in the second die 604. The first metal 614 and the second metal 616 are separated by a dielectric medium 618.
[0049] Fig. 7 shows an example direct-bonded interface 700 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 700 as one or more capacitive interconnects 702 formed by the same direct bonding process.
[0050] In an implementation, the first metal 614 of the capacitive interconnect 702 in the first die 602 is recessed from the bonding interface 700 by a space that has the dielectric medium 618, while the second metal 616 of the capacitive interconnect 702 in the second die 604 is flush with the bonding interface 700.
[0051] Fig. 8 shows an example direct-bonded interface 800 between a first die 602 and a second die 604 that includes one or more direct-bonded conductive interconnects 606 in the same bonding plane 800 as one or more capacitive interconnects 802 formed by the same direct bonding process.
[0052] In an implementation, the first metal 614 of the capacitive interconnect 802 in the first die 602 is recessed from the bonding interface 800, while the second metal 616 of the capacitive interconnect 802 in the second die 604 is also recessed from the same bonding interface 800, in an opposing direction. One or more dielectric materials 804 & 806 can make up the dielectric medium 618 between metals 614 & 616 that creates the capacitive coupling (or capacitor) of the capacitive interconnect 802. The dielectric materials 804 & 806 shown in Fig. 8 are depicted as at least one solid dielectric material, while the dielectric material(s) shown in Fig. 6 are depicted as a gap (an air-filled gap, for example).
[0053] The dielectric medium 618 of the capacitive interconnect 802 can be made of silicon dioxide, silicon nitride, air, or a high dielectric material, for example, or mixtures or combinations of these and other dielectric materials, gases, and substances usable in semiconductor microfabrication.
[0054] The dielectric medium 618 of the capacitive interconnect 802 may be an asymmetrical combination of dielectric materials with respect to a horizontal plane of the bonding interface 800 between the first die 602 and the second die 604. [0055] A spacing distance between the first metal 614 in the first die 602 and the second metal 616 in the second die 604 can be selected to provide a specific capacitance value or capacitance range for a given capacitive interconnect 802 or set of capacitive interconnects 802.
[0056] In an implementation, the dielectric medium 618 of the capacitive interconnect 608 & 702 & 802 may be at least one ultrathin layer of a dielectric material. The ultrathin layer of the dielectric material may be a coating, a film, a residue, a membrane, a deposit, or a gap (e.g., an air space). A thickness and a dielectric constant of the ultrathin layer of the dielectric material can determine a capacitance or a capacitive utility of the capacitive interconnect 608 & 702 & 802. The ultrathin layer of the dielectric material may have a thickness less than or equal to approximately 50 nanometers, for example. The ultrathin layer of the dielectric material may also be made of multiple layers. In an implementation, a thickness of the combined multiple layers is less than 25 nanometers, for example. In an implementation, at least one of the multiple layers of the dielectric material may be a polymer. A capacitance of the capacitive interconnect 608 & 702 & 802 may be determined by a thickness of the one or more polymer layers.
[0057] Fig. 9 shows an example direct-bonded interface 900 that includes conductive interconnects 902 direct-bonded together at the bonding interface 900, and example capacitive interconnects 904 also coupled at the bonding interface 900. The conductive interconnects 902 may be direct-bonded power interconnects or direct-bonded ground interconnects, for example. The capacitive interconnects 904 may be signal lines between the first die 602 and the second die 604, for example. The bonding interface itself 900 is also direct- bonded together, with nonmetal-to-nonmetal direct bonds, for example. The joining of respective bonding surfaces of each die 602 & 604 into the direct- bonded interface 900 creates a capacitive coupling (612 in Fig. 6) for each individual capacitive interconnect 904, at the bonding interface 900. [0058] One type of direct-bonding is direct hybrid bonding, which includes both direct-bonding of (nonmetal) dielectrics and direct-bonding of metal conductive interconnects 902 at same the bonding interface 900. Dielectric surfaces of the first die 602 and second die 604 on either side of the bonding interface 900 are direct-bonded together with oxide-to-oxide direct bonds, without any adhesives.
[0059] For the conductive interconnects 902, metal pads, such as pads 906 & 908, on either side of the bonding interface 900 are direct-bonded together with metal-to-metal contact bonds, with no solder or adhesives. In an implementation,“direct bond interconnect” (DBI® brand) direct hybrid bonding is utilized for the direct hybrid bonding process, which direct-bonds the dielectric surfaces of the two dies 602 & 604 together at room temperature, and then direct-bonds the metal pads 906 & 908 together at a higher annealing temperature (Invensas Inc., a subsidiary of Xperi Corp., San Jose, CA). DBI® direct hybrid bonding can provide 100,000-1 ,000,000 connections per sq. mm, with each connection averaging from < 1 pm - 40 pm in pitch. Even greater connection density is feasible with connections that are less than 1 pm in pitch.
[0060] In an implementation, the power and ground interconnects 902 may be redundant instances, so that if one or more pads 906 does not bond or does not align vertically, then power or ground connection is still made via other instances of the redundant conductive interconnects 902. The direct-bonded interconnects 902 may have relatively large metal pads, to provide a better bonding yield and to allow for some horizontal misalignment during the example direct hybrid bonding process, while ensuring that enough surface area of the metal pads 906 & 908 contact each other across the bonding interface 900 to conduct the desired electrical current flow.
[0061] The capacitive interconnects 904, for signal and data lines, do not bond in the direct hybrid bonding process, but instead form capacitive couplings 612 that make up the signal-passing interface of each capacitive interconnect 904 between dies 602 & 604. [0062] In an implementation, signal lines using capacitive interconnects 904 may include redundant circuits for passing a signal across the bonding interface 900. The redundant circuits may provide a better yield during manufacture and/or provide high availability during use. Redundant signal lines may also be employed to achieve a certain overall capacitance for the capacitive coupling of a given signal circuit that crosses the joined electrical interface 602.
[0063] Fig. 10 shows an example direct-bonded interface 1000 that includes conductive interconnects 1002 direct-bonded together at the bonding interface 1000, and example capacitive interconnects 1004 also coupled at the same bonding interface 1000. One or more conductive vias 1006 & 1008, such as through-silicon vias (TSVs) or through-dielectric-vias (TDVs) are also implemented in the example direct-bonded first and second dies 602 & 604.
[0064] A conductive through-via 1006 or 1008, may be fabricated in a via last process, for example. An example conductive through-via 1008 may be implemented to penetrate entirely or at least part way through one die 604. Or, an example through-via 1006 may be implemented to penetrate entirely or at least part way through both direct-bonded dies 602 & 604. Via last conductive through-vias 1006 & 1008 may provide advantages for process integration to reduce the processing impact and thermal budget on back end of line (BEOL) processing. The same back-to-front side wafer alignment that enables direct hybrid bonding, for example, can provide lithography alignment for via last patterning to integrate conductive through-vias 1006 & 1008.
Example Methods
[0065] Fig. 11 shows an example method 1100 of creating a capacitive coupling in a direct-bonded interface for microelectronic devices. In the flow diagram of Fig. 11 , the operations of the example method 1100 are shown as individual blocks.
[0066] At block 1102, a first direct bond is created between respective dielectric surfaces of two dies at a bonding interface. [0067] At block 1104, a second direct bond is created between respective conductive interconnects of the two dies at the bonding interface.
[0068] At block 1106, a capacitive coupling is created at the bonding interface for a capacitive interconnect between the two dies.
[0069] In general, the example method 1100 includes creating the first (nonmetal) direct bonds and the second (metal) direct bonds during the same direct bonding operation, which also forms the capacitive couplings in the same operation, all of these occurring at the same bonding interface during the same direct-bonding operation, such as a direct hybrid bonding operation.
[0070] The direct bond between the dielectric surfaces at the bonding interface comprises an oxide-to-oxide direct bond, for example. The direct bond between the respective conductive interconnects comprises a metal-to-metal direct bond. The capacitive coupling comprises at least one dielectric material at the bonding interface between two respective metals of the two dies, coupled by the same direct-bonding operation that accomplishes the oxide-to-oxide direct bond and the metal-to-metal direct bond.
[0071] In an implementation, an example method may include creating a bonding surface on a die, the bonding surface comprising a flat dielectric material for direct hybrid bonding, making a first metal pad of a power interconnect associated with the bonding surface, the first metal pad suitable for direct hybrid bonding, making a second metal pad of a ground interconnect associated with the bonding surface is made, the second metal pad suitable for direct hybrid bonding, making at least one recessed metal pad of a signal line associated with the bonding surface, the recessed pad for forming a capacitive coupling of the signal line across the bonding surface during direct hybrid bonding, and disposing a dielectric material suitable for making the capacitive coupling in a recess space between the recessed metal pad of the signal line and the bonding surface. At least one dielectric material suitable for making the capacitive coupling can be air, or can be silicon dioxide, silicon nitride, a high dielectric material, and so forth, as above. [0072] The respective dielectric materials of first and second dies are direct- bonded together in an example direct hybrid bonding process to bond the first and second dies together and to form the capacitive coupling of the signal line between respective metal pads of the first and second dies.
[0073] Then the first and second dies are annealed in the example direct hybrid bonding operation to direct-bond the respective first metal pads to form the power interconnect and to direct-bond the respective second metal pads to form the ground interconnect.
[0074] While the present disclosure has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations from the description provided herein. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the disclosure.

Claims

1. A microelectronic device, comprising:
a first die and a second die direct-bonded together at a bonding interface;
a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond; and
a capacitive interconnect between the first die and the second die formed at the bonding interface.
2. The microelectronic device of claim 1 , wherein the first die and the second die are direct-bonded together at the bonding interface with a dielectric-to-dielectric direct bond between respective nonmetal surfaces of the first die and the second die.
3. The microelectronic device of claim 2, wherein the dielectric- to-dielectric direct bond between the first die and the second die creates a capacitive coupling of the capacitive interconnect.
4. The microelectronic device of claim 1 , wherein the capacitive interconnect comprises a first metal in the first die and a second metal in the second die, the first metal and the second metal separated by a dielectric medium.
5. The microelectronic device of claim 4, wherein the first metal of the capacitive interconnect in the first die is recessed from the bonding interface and the second metal of the capacitive interconnect in the second die is flush with the bonding interface.
6. The microelectronic device of claim 4, wherein the first metal of the capacitive interconnect in the first die is recessed from the bonding interface and the second metal of the capacitive interconnect in the second die is also recessed from the bonding interface.
7. The microelectronic device of claim 4, wherein the dielectric medium of the capacitive interconnect comprises silicon dioxide, silicon nitride, air, or a high dielectric material.
8. The microelectronic device of claim 4, wherein the dielectric medium of the capacitive interconnect comprises a combination of dielectric materials selected from the group consisting of air, silicon dioxide, silicon nitride, and a high dielectric material.
9. The microelectronic device of claim 4, wherein the dielectric medium of the capacitive interconnect comprises an asymmetrical combination of dielectric materials with respect to a horizontal plane of the bonding interface between the first die and the second die.
10. The microelectronic device of claim 4, wherein a spacing distance between the first metal in the first die and the second metal in the second die is selected to provide a capacitance value for the capacitive interconnect.
11. The microelectronic device of claim 4, wherein the dielectric medium of the capacitive interconnect comprises at least one ultrathin layer of a dielectric material.
12. The microelectronic device of claim 11 , wherein the ultrathin layer of the dielectric comprises one of a coating, a film, a residue, a membrane, a deposit, or a gap; and
wherein a thickness and a dielectric constant of the ultrathin layer of the dielectric determines a capacitance of the capacitive interconnect.
13. The microelectronic device of claim 11 , wherein the ultrathin layer of the dielectric material comprises a thickness less than or equal to approximately 50 nanometers.
14. The microelectronic device of claim 11 , wherein the ultrathin layer of the dielectric material comprises multiple layers.
15. The microelectronic device of claim 14, wherein a thickness of the combined multiple layers is less than 25 nanometers.
16. The microelectronic device of claim 14, wherein one of the multiple layers comprises a polymer.
17. The microelectronic device of claim 16, wherein a capacitance of the capacitive interconnect is determined by a thickness of the polymer layer.
18. The microelectronic device of claim 1 , wherein the conductive interconnect comprises a direct-bonded power interconnect or a direct-bonded ground interconnect.
19. The microelectronic device of claim 1 , wherein the capacitive interconnect comprises a signal line between the first die and the second die.
20. The microelectronic device of claim 1 , further comprising a conductive through-via created by a via-last fabrication process penetrating at least part way into the first die or penetrating at least part way into both the first die and the second die.
21. A process, comprising:
creating a first direct bond between respective dielectric surfaces at a bonding interface of two dies;
creating a second direct bond between respective conductive interconnects at the bonding interface of the two dies; and
creating a capacitive coupling at the bonding interface for a capacitive interconnect between the two dies.
22. The process of claim 21 , wherein creating the second direct bond between respective conductive interconnects at the bonding interface and creating the capacitive coupling at the bonding interface result from the same direct bonding process at the same bonding interface.
23. The process of claim 21 , wherein the direct bond between the dielectric surfaces comprises an oxide-to-oxide direct bond;
wherein the direct bond between the respective conductive interconnects comprises a metal-to-metal direct bond; and
wherein the capacitive coupling comprises at least one dielectric material at the bonding interface between two respective metals of the two dies.
EP19892672.7A 2018-12-06 2019-08-28 Capacitive coupling in a direct-bonded interface for microelectronic devices Pending EP3891792A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/212,248 US10811388B2 (en) 2015-09-28 2018-12-06 Capacitive coupling in a direct-bonded interface for microelectronic devices
PCT/US2019/048530 WO2020117336A1 (en) 2018-12-06 2019-08-28 Capacitive coupling in a direct-bonded interface for microelectronic devices

Publications (2)

Publication Number Publication Date
EP3891792A1 true EP3891792A1 (en) 2021-10-13
EP3891792A4 EP3891792A4 (en) 2022-12-28

Family

ID=70974752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19892672.7A Pending EP3891792A4 (en) 2018-12-06 2019-08-28 Capacitive coupling in a direct-bonded interface for microelectronic devices

Country Status (3)

Country Link
EP (1) EP3891792A4 (en)
CN (1) CN113169159A (en)
WO (1) WO2020117336A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293092A (en) * 2021-09-06 2023-12-26 长江存储科技有限责任公司 semiconductor structure
CN117425329A (en) * 2022-07-07 2024-01-19 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing semiconductor structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786979A (en) * 1995-12-18 1998-07-28 Douglass; Barry G. High density inter-chip connections by electromagnetic coupling
US7535105B2 (en) * 2005-08-02 2009-05-19 International Business Machines Corporation Inter-chip ESD protection structure for high speed and high frequency devices
KR100881182B1 (en) * 2006-11-21 2009-02-05 삼성전자주식회사 De-coupling capacitor formed between wafers, wafer stack package comprising the same capacitor, and method of fabricating the same package
KR101046394B1 (en) * 2010-02-03 2011-07-05 주식회사 하이닉스반도체 Stack package
WO2014184988A1 (en) * 2013-05-16 2014-11-20 パナソニックIpマネジメント株式会社 Semiconductor device and method for manufacturing same
US9613994B2 (en) 2014-07-16 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitance device in a stacked scheme and methods of forming the same
US9953941B2 (en) * 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10032751B2 (en) * 2015-09-28 2018-07-24 Invensas Corporation Ultrathin layer for forming a capacitive interface between joined integrated circuit components
US10141392B2 (en) * 2017-02-23 2018-11-27 International Business Machines Corporation Microstructure modulation for 3D bonded semiconductor structure with an embedded capacitor

Also Published As

Publication number Publication date
WO2020117336A1 (en) 2020-06-11
CN113169159A (en) 2021-07-23
EP3891792A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US11495579B2 (en) Capacitive coupling in a direct-bonded interface for microelectronic devices
US10600760B2 (en) Ultrathin layer for forming a capacitive interface between joined integrated circuit component
US10607937B2 (en) Increased contact alignment tolerance for direct bonding
US8183127B2 (en) Method for bonding wafers to produce stacked integrated circuits
US9679867B2 (en) Semiconductor device having a low-adhesive bond substrate pair
US9041214B2 (en) Bonded processed semiconductor structures and carriers
CN107316840B (en) 3DIC structure and method for hybrid bonding semiconductor wafers
US11798914B2 (en) Methods and structures for die-to-die bonding
WO2020117336A1 (en) Capacitive coupling in a direct-bonded interface for microelectronic devices
Henry et al. Via first technology development based on high aspect ratio trenches filled with doped polysilicon
JP6473897B2 (en) Manufacturing method of semiconductor device
Chung et al. 3D Stacking DRAM using TSV technology and microbump interconnect
Lee et al. Novel W2W/C2W hybrid bonding technology with high stacking yield using ultra-fine size, ultra-high density Cu nano-pillar (CNP) for exascale 2.5 D/3D integration
Jourdain et al. Extreme thinning of Si wafers for via-last and multi-wafer stacking applications
Koyanagi et al. New multichip-to-wafer 3D integration technology using Self-Assembly and Cu nano-pillar hybrid bonding
TWI793560B (en) Semiconductor device and method of manufacturing the same
Lee et al. Nano-scale Cu direct bonding using ultra-high density Cu nano-pillar (CNP) for high yield exascale 2.5/3D integration applications
Chen et al. Low-cost 3DIC process technologies for Wide-I/O memory cube
Song et al. 10µm pitch Cu-Cu bonding interconnection for wafer level 3D integration
Lee Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5 D/3D Integrated System
李康旭 et al. Novel Reconfigured Wafer-to-Wafer (W2W) Hybrid Bonding Technology for Exascale 2.5 D/3D Integration

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01L0025065000

Ipc: H01L0023000000

A4 Supplementary search report drawn up and despatched

Effective date: 20221124

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 23/64 20060101ALI20221118BHEP

Ipc: H01L 25/18 20060101ALI20221118BHEP

Ipc: H01L 25/16 20060101ALI20221118BHEP

Ipc: H01L 23/522 20060101ALI20221118BHEP

Ipc: H01L 21/20 20060101ALI20221118BHEP

Ipc: H01L 21/311 20060101ALI20221118BHEP

Ipc: H01L 25/00 20060101ALI20221118BHEP

Ipc: H01L 25/065 20060101ALI20221118BHEP

Ipc: H01L 23/00 20060101AFI20221118BHEP