EP3891233A1 - Dispersant and waterborne epoxy coating composition - Google Patents
Dispersant and waterborne epoxy coating compositionInfo
- Publication number
- EP3891233A1 EP3891233A1 EP18941961.7A EP18941961A EP3891233A1 EP 3891233 A1 EP3891233 A1 EP 3891233A1 EP 18941961 A EP18941961 A EP 18941961A EP 3891233 A1 EP3891233 A1 EP 3891233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymeric dispersant
- component
- structural units
- epoxy
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002270 dispersing agent Substances 0.000 title claims abstract description 125
- 239000008199 coating composition Substances 0.000 title claims abstract description 71
- 229920006334 epoxy coating Polymers 0.000 title claims abstract description 53
- 239000004593 Epoxy Substances 0.000 claims abstract description 47
- 239000000049 pigment Substances 0.000 claims abstract description 31
- 239000004606 Fillers/Extenders Substances 0.000 claims abstract description 28
- 239000003822 epoxy resin Substances 0.000 claims abstract description 27
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 27
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000178 monomer Substances 0.000 claims description 98
- 150000003839 salts Chemical class 0.000 claims description 60
- -1 phosphoethyl Chemical group 0.000 claims description 39
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 37
- 229920000058 polyacrylate Polymers 0.000 claims description 22
- 239000006185 dispersion Substances 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical group CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 claims description 15
- 150000003460 sulfonic acids Chemical class 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 10
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 9
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 claims description 4
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 claims description 4
- FWFUWXVFYKCSQA-UHFFFAOYSA-M sodium;2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(C)(C)NC(=O)C=C FWFUWXVFYKCSQA-UHFFFAOYSA-M 0.000 claims description 2
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 claims 2
- 238000000576 coating method Methods 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 13
- 235000002639 sodium chloride Nutrition 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 239000007921 spray Substances 0.000 description 19
- 239000004816 latex Substances 0.000 description 13
- 229920000126 latex Polymers 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 7
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000004848 polyfunctional curative Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000080 wetting agent Substances 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000013530 defoamer Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- IBDVWXAVKPRHCU-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C(C)=C IBDVWXAVKPRHCU-UHFFFAOYSA-N 0.000 description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- COCLLEMEIJQBAG-UHFFFAOYSA-N 8-methylnonyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)=C COCLLEMEIJQBAG-UHFFFAOYSA-N 0.000 description 3
- WIVTXBIFTLNVCZ-UHFFFAOYSA-N CC(=C)C(=O)OCCP(=O)=O Chemical compound CC(=C)C(=O)OCCP(=O)=O WIVTXBIFTLNVCZ-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 239000012986 chain transfer agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical class OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- VRRDONHGWVSGFH-UHFFFAOYSA-N 2,5-diethylcyclohexane-1,4-diamine Chemical compound CCC1CC(N)C(CC)CC1N VRRDONHGWVSGFH-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- DETXZQGDWUJKMO-UHFFFAOYSA-N 2-hydroxymethanesulfonic acid Chemical compound OCS(O)(=O)=O DETXZQGDWUJKMO-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-isoascorbic acid Chemical compound OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- GCPWJFKTWGFEHH-UHFFFAOYSA-N acetoacetamide Chemical compound CC(=O)CC(N)=O GCPWJFKTWGFEHH-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- MGFFVSDRCRVHLC-UHFFFAOYSA-N butyl 3-sulfanylpropanoate Chemical compound CCCCOC(=O)CCS MGFFVSDRCRVHLC-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000004815 dispersion polymer Substances 0.000 description 2
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 2
- 235000010350 erythorbic acid Nutrition 0.000 description 2
- 239000000194 fatty acid Chemical class 0.000 description 2
- 229930195729 fatty acid Chemical class 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229940026239 isoascorbic acid Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- LDTLDBDUBGAEDT-UHFFFAOYSA-N methyl 3-sulfanylpropanoate Chemical compound COC(=O)CCS LDTLDBDUBGAEDT-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- MQLPUOPZIBQSJG-UHFFFAOYSA-N (2-ethyl-3-hydroxyhexyl) 2-methylprop-2-enoate Chemical compound CCCC(O)C(CC)COC(=O)C(C)=C MQLPUOPZIBQSJG-UHFFFAOYSA-N 0.000 description 1
- VGPBTNMZOCCNAK-UHFFFAOYSA-N (2-ethyl-3-hydroxyhexyl) prop-2-enoate Chemical compound CCCC(O)C(CC)COC(=O)C=C VGPBTNMZOCCNAK-UHFFFAOYSA-N 0.000 description 1
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- GFZSETHZWHRUBN-UHFFFAOYSA-N 1,2-dihydroxypropyl-oxido-oxophosphanium Chemical compound P(=O)(=O)C(C(C)O)O GFZSETHZWHRUBN-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- FENFUOGYJVOCRY-UHFFFAOYSA-N 1-propoxypropan-2-ol Chemical compound CCCOCC(C)O FENFUOGYJVOCRY-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 1
- DDHUNHGZUHZNKB-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diamine Chemical compound NCC(C)(C)CN DDHUNHGZUHZNKB-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- WMDZKDKPYCNCDZ-UHFFFAOYSA-N 2-(2-butoxypropoxy)propan-1-ol Chemical compound CCCCOC(C)COC(C)CO WMDZKDKPYCNCDZ-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- BPGIOCZAQDIBPI-UHFFFAOYSA-N 2-ethoxyethanamine Chemical compound CCOCCN BPGIOCZAQDIBPI-UHFFFAOYSA-N 0.000 description 1
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- IBZKBSXREAQDTO-UHFFFAOYSA-N 2-methoxy-n-(2-methoxyethyl)ethanamine Chemical compound COCCNCCOC IBZKBSXREAQDTO-UHFFFAOYSA-N 0.000 description 1
- JMADMUIDBVATJT-UHFFFAOYSA-N 2-methylprop-2-enamide;propan-2-one Chemical compound CC(C)=O.CC(C)=O.CC(=C)C(N)=O JMADMUIDBVATJT-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- RXFCIXRFAJRBSG-UHFFFAOYSA-N 3,2,3-tetramine Chemical compound NCCCNCCNCCCN RXFCIXRFAJRBSG-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- MONKMMOKPDOZIP-UHFFFAOYSA-N 3-[1-(3-aminopropyl)piperazin-2-yl]propan-1-amine Chemical compound NCCCC1CNCCN1CCCN MONKMMOKPDOZIP-UHFFFAOYSA-N 0.000 description 1
- YOOSAIJKYCBPFW-UHFFFAOYSA-N 3-[4-(3-aminopropoxy)butoxy]propan-1-amine Chemical compound NCCCOCCCCOCCCN YOOSAIJKYCBPFW-UHFFFAOYSA-N 0.000 description 1
- SOYBEXQHNURCGE-UHFFFAOYSA-N 3-ethoxypropan-1-amine Chemical compound CCOCCCN SOYBEXQHNURCGE-UHFFFAOYSA-N 0.000 description 1
- VHNJXLWRTQNIPD-UHFFFAOYSA-N 3-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(O)CCOC(=O)C(C)=C VHNJXLWRTQNIPD-UHFFFAOYSA-N 0.000 description 1
- JRCGLALFKDKSAN-UHFFFAOYSA-N 3-hydroxybutyl prop-2-enoate Chemical compound CC(O)CCOC(=O)C=C JRCGLALFKDKSAN-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- LSNVWJUXAFTVLR-UHFFFAOYSA-N 4-cyclohexylcyclohexane-1,2-diamine Chemical compound C1C(N)C(N)CCC1C1CCCCC1 LSNVWJUXAFTVLR-UHFFFAOYSA-N 0.000 description 1
- FQXNPLMUQMVWPO-UHFFFAOYSA-N 4-ethylcyclohexane-1,2-diamine Chemical compound CCC1CCC(N)C(N)C1 FQXNPLMUQMVWPO-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 1
- XFOFBPRPOAWWPA-UHFFFAOYSA-N 6-hydroxyhexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCO XFOFBPRPOAWWPA-UHFFFAOYSA-N 0.000 description 1
- OCIFJWVZZUDMRL-UHFFFAOYSA-N 6-hydroxyhexyl prop-2-enoate Chemical compound OCCCCCCOC(=O)C=C OCIFJWVZZUDMRL-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 229920003332 Epotuf® Polymers 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HQRHBOUOBMWJMZ-UHFFFAOYSA-N OCC(O)P(=O)=O Chemical compound OCC(O)P(=O)=O HQRHBOUOBMWJMZ-UHFFFAOYSA-N 0.000 description 1
- KJWLRYJPJKQSOM-UHFFFAOYSA-N OCCOCCOCC(O)P(=O)=O Chemical compound OCCOCCOCC(O)P(=O)=O KJWLRYJPJKQSOM-UHFFFAOYSA-N 0.000 description 1
- QSBINWBNXWAVAK-PSXMRANNSA-N PE-NMe(16:0/16:0) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCNC)OC(=O)CCCCCCCCCCCCCCC QSBINWBNXWAVAK-PSXMRANNSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- XNMBJZBNNZMGCF-UHFFFAOYSA-N [1-hydroxy-2-(2-hydroxyethoxy)ethyl]-oxido-oxophosphanium Chemical compound P(=O)(=O)C(COCCO)O XNMBJZBNNZMGCF-UHFFFAOYSA-N 0.000 description 1
- UEHNAWOVOAFUBC-UHFFFAOYSA-N [2-hydroxy-3-(1-hydroxypropan-2-yloxy)propyl]-oxido-oxophosphanium Chemical compound P(=O)(=O)CC(COC(C)CO)O UEHNAWOVOAFUBC-UHFFFAOYSA-N 0.000 description 1
- VDSBICRXPHQAEI-UHFFFAOYSA-N [2-hydroxy-3-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]propyl]-oxido-oxophosphanium Chemical compound P(=O)(=O)CC(COC(C)COC(C)CO)O VDSBICRXPHQAEI-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SWRGUMCEJHQWEE-UHFFFAOYSA-N ethanedihydrazide Chemical compound NNC(=O)C(=O)NN SWRGUMCEJHQWEE-UHFFFAOYSA-N 0.000 description 1
- ZEYMDLYHRCTNEE-UHFFFAOYSA-N ethenyl 3-oxobutanoate Chemical class CC(=O)CC(=O)OC=C ZEYMDLYHRCTNEE-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000012628 flowing agent Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-M hydrosulfide Chemical compound [SH-] RWSOTUBLDIXVET-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000006115 industrial coating Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical class [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940113083 morpholine Drugs 0.000 description 1
- UDGSVBYJWHOHNN-UHFFFAOYSA-N n',n'-diethylethane-1,2-diamine Chemical compound CCN(CC)CCN UDGSVBYJWHOHNN-UHFFFAOYSA-N 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 229920005787 opaque polymer Polymers 0.000 description 1
- MOOYVEVEDVVKGD-UHFFFAOYSA-N oxaldehydic acid;hydrate Chemical compound O.OC(=O)C=O MOOYVEVEDVVKGD-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WTSXICLFTPPDTL-UHFFFAOYSA-N pentane-1,3-diamine Chemical compound CCC(N)CCN WTSXICLFTPPDTL-UHFFFAOYSA-N 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical class OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940116254 phosphonic acid Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229940113116 polyethylene glycol 1000 Drugs 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- VSVCAMGKPRPGQR-UHFFFAOYSA-N propan-2-one;sulfurous acid Chemical compound CC(C)=O.OS(O)=O VSVCAMGKPRPGQR-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940001607 sodium bisulfite Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229940086542 triethylamine Drugs 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/285—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
- C08F220/286—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/58—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
- C08F220/585—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
Definitions
- the present invention relates to a waterborne epoxy coating composition.
- Epoxy coatings are extensively used in construction coatings and protective coatings because of their chemical resistance, corrosion protection and mechanical properties. Waterborne epoxy binders have much less environmental concerns than conventional solvent epoxy resins.
- Waterborne epoxy coating compositions are typically formed from two components, a waterborne epoxy component (Component A) and a hardener component (Component B) . The two components are mixed prior to application of the coating compositions to prevent coagulation.
- dispersants are usually used to disperse pigments and/or extenders in Component A.
- Conventional anionic acrylic polymeric dispersants derived from carboxylic acid monomers can afford sufficient dispersing efficiency for pigments and/or extenders, but usually cause a colloidal stability issue of Component A due to the reaction of acrylic carboxylate groups of the acrylic polymer dispersant with oxirane groups of an epoxy resin.
- Non-ionic dispersants may solve the above described stability issue, but usually requires higher loading to provide comparable dispersing efficiency as compared to anionic acrylic polymeric dispersants, thus negatively impact anti-corrosion properties.
- Another approach is to disperse pigments and/or extenders into the hardener component of waterborne epoxy coating compositions.
- US2012/0301621A discloses a coating composition comprising aqueous dispersions of acrylic polymer particles imbibed with epoxy resins in Component A, and pigments and a curing agent added in Component B at a weight ratio of Component A to Component B being about 3: 2, but operation difficulties may arise in regard to incorporation of Component B to a similar amount of Component A.
- a novel polymeric dispersant suitable for a stable two-component epoxy coating composition that comprises pigments and/or extenders dispersed in a waterborne epoxy component by the polymeric dispersant, and a hardener component, which provides coatings made therefrom with improved corrosion resistance properties.
- the present invention provides a novel polymeric dispersant that can provide desirable dispersing efficiency for pigments and/or extenders and a two-component epoxy coating composition comprising the polymeric dispersant.
- the two-component epoxy coating composition comprising an epoxy component A (hereinafter “Component A” ) comprising a waterborne epoxy resin, the polymeric dispersant, and pigments and/or extenders dispersed therein, and a component B (hereinafter “Component B” ) comprising a curing agent.
- Component A and Component B are mixed prior to application of the epoxy coating composition.
- the epoxy coating composition of the present invention has good storage stability as indicated by viscosity change of 10 Krebs Units (KU) or less after storage.
- the epoxy coating composition can also provide coatings made therefrom with improved salt spray corrosion resistance as indicated by a blister rating better than “2MD” at a dry film thickness of 50-60 ⁇ m after at least 110 hours of exposure to salt spray when coated onto a corrosion susceptible substrate.
- the dispersing efficiency, storage stability and salt spray test may be measured according the test methods described in the Examples section below.
- the present invention is a polymeric dispersant comprising, by weight based on the dry weight of the polymeric dispersant,
- polymeric dispersant has a weight average molecular weight of from 300 to 40,000 Daltons.
- the present invention is a two-component epoxy coating composition
- a two-component epoxy coating composition comprising: an epoxy component A and a component B comprising a curing agent, wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of the first aspect, and pigments and/or extenders.
- the present invention is a method of preparing a two-component epoxy coating composition.
- the method comprises admixing an epoxy component A and a component B comprising a curing agent, wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of the first aspect, and pigments and/or extenders.
- aqueous composition or dispersion herein means that particles dispersed in an aqueous medium.
- aqueous medium herein is meant water and from zero to 30%, by weight based on the weight of the medium, of water-miscible compound (s) such as, for example, alcohols, glycols, glycol ethers, glycol esters, and the like.
- “Acrylic” in the present invention includes (meth) acrylic acid, (meth) alkyl acrylate, (meth) acrylamide, (meth) acrylonitrile and their modified forms such as (meth) hydroxyalkyl acrylate.
- the word fragment “ (meth) acryl” refers to both “methacryl” and “acryl” .
- (meth) acrylic acid refers to both methacrylic acid and acrylic acid
- methyl (meth) acrylate refers to both methyl methacrylate and methyl acrylate.
- structural units also known as polymerized units, of the named monomer refers to the remnant of the monomer after polymerization.
- a structural unit of methyl methacrylate is as illustrated:
- the polymeric dispersant of the present invention comprises structural units of one or more acid monomers and/or salts thereof.
- the acid monomers and/or salts thereof are selected from the group consisting of an ethylenically unsaturated sulfonic acid-containing monomer, an ethylenically unsaturated phosphorous acid-containing monomer, salts thereof, or combinations thereof.
- the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof useful in the present invention may include sodium styrene sulfonate (SSS) , sodium vinyl sulfonate (SVS) , 2-acrylamido-2-methylpropanesulfonic acid (AMPS) , salts of the ethylenically unsaturated sulfonic acid-containing monomer such as sodium 2-acrylamido-2-methylpropane sulfonate, or mixtures thereof.
- SSS sodium styrene sulfonate
- SVS sodium vinyl sulfonate
- AMPS 2-acrylamido-2-methylpropanesulfonic acid
- salts of the ethylenically unsaturated sulfonic acid-containing monomer such as sodium 2-acrylamido-2-methylpropane sulfonate, or mixtures thereof.
- the polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, zero or more, 5%or more, 6%or more, 7%or more, 8%or more, 9%or more, or even 10%or more, and at the same time, 60%or less, 50%or less, 40%or less, 30%or less, 25%or less, 20%or less, or even 15%or less of structural units of the ethylenically unsaturated sulfonic acid-containing monomers and/or salt thereof.
- the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof useful in the present invention can be dihydrogen phosphate esters of an alcohol in which the alcohol contains or is substituted with a polymerizable vinyl or olefinic group.
- Preferred ethylenically unsaturated phosphorous acid-containing monomers and salts thereof are selected from the group consisting of phosphoethyl (meth) acrylate, phosphopropyl (meth) acrylate, phosphobutyl (meth) acrylate, salts thereof, and mixtures thereof; more preferably, phosphoethyl methacrylate (PEM) .
- the polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 1.5%or more, 2%or more, 3%or more, 4%or more, or even 5%or more, and at the same time, 60%or less, 50%or less, 40%or less, 30%or less, 20%or less, or even 15%or less of structural units of the ethylenically unsaturated phosphorous-containing monomer and/or salt thereof.
- the polymeric dispersant of the present invention may comprise, by weight based on the dry weight of the polymeric dispersant, the structural units of the acid monomer and/or salts thereof in a combined amount of 11%or more, 12%or more, 15%or more, 18%or more, or even 20%or more, and at the same time, 60%or less, 55%or less, 50%or less, 45%or less, 40%or less, 35%or less, 33%or less, 30%or less, or even 28%or less.
- the polymeric dispersant comprises a combination of the structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof with structural units of the ethylenically unsaturated phosphorous-acid containing monomer and/or salt thereof; and preferably at a weight ratio of 0.3 or higher, 0.35 or higher, 0.4 or higher, 0.45 or higher, 0.5 or higher, 0.55 or higher, 0.6 or higher, or even 0.65 or higher, and at the same time, 20.0 or less, 18.0 or less, 15.0 or less, 12.0 or less, 10.0 or less, 7.5 or less, 6.0 or less, 5.0 or less, 4.0 or less, 3.5 or less, or even 3.0 or less.
- Weight ratio herein refers to the weight ratio of the structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof to the structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof.
- the polymeric dispersant of the present invention may also comprise structural units of one or more carbonyl-containing functional monomers.
- suitable carbonyl-containing functional monomers include diacetone methacrylamide, diacetone acrylamide (DAAM) , acetoacetoxy or acetoacetamide functional monomers including, for example, acetoacetoxyethyl (meth) acrylate such as acetoacetoxyethyl methacrylate (AAEM) , acetoacetoxypropyl (meth) acrylate, acetoacetoxybutyl (meth) acrylate, 2, 3-di (acetoacetamido) propyl (meth) acrylate, 2, 3-di (acetoacetoxy) propyl (meth) acrylate, acetoacetamidoethyl (meth) acrylate, acetoacetamidopropyl (meth) acrylate, allyl acetoacetates, acetoacta
- Preferred carbonyl-containing functional monomer is diacetone acrylamide.
- the polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 0.5%or more, 1%or more, 1.5%or more, 2%or more, 2.5%or more, 3%or more, 3.5%or more, 4%or more, 4.5%or more, 5%or more, 5.5%or more, 6%or more, 6.5%or more, 7%or more, or even 8%or more, and at the same time, 20%or less, 18%or less, 15%or less, 12%or less, or even 10%or less of structural units of the carbonyl-containing functional monomer.
- the polymeric dispersant of the present invention may also comprise structural units of one or more ethylenically unsaturated nonionic monomers.
- ethylenically unsaturated nonionic monomers include, for example, alkyl esters of (meth) acrylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate, (meth) acrylonitrile; hydroxy-functional alkyl (meth) acrylates; alkoxylated (meth) acrylates; styrene and substituted styrenes; butadiene; ethylene, propylene, ⁇ -olefins such as 1-decene; vinyl acetate, vinyl butyrate, vinyl versatate and other vinyl esters; and vinyl monomers such as vinyl chloride and vinylidene chloride; or combinations thereof.
- Suitable hydroxy-functional alkyl (meth) acrylates may include hydroxyethyl (meth) acrylate such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate; hydroxypropyl (meth) acrylate such as 2-hydroxypropylacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, and 3-hydroxypropyl methacrylate; hydroxybutyl (meth) acrylates such as 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, and 4-hydroxybutyl methacrylate; 6-hydroxyhexyl acrylate; 6-hydroxyhexylmethacrylate; 3-hydroxy-2-ethylhexyl acrylate; 3-hydroxy-2-ethylhexyl methacrylate; or mixtures thereof.
- the alkoxylated (meth) acrylate may comprise ethylene oxide (-CH 2 CH 2 O-) units, propylene oxide (-CH (CH 3 ) CH 2 O-) units, butylene oxide (-C (CH 3 ) 2 CH 2 O-) units, or combinations thereof. These units may alternate or may be present in the form of polyethylene oxide, polypropylene oxide, and/or polybutylene oxide blocks.
- the alkoxylated (meth) acrylate may comprise from 4 to 50, from 5 to 45, from 6 to 40, from 8 to 35, from 9 to 30, or from 10 to 25 of the ethylene oxide units.
- Suitable commercially available alkoxylated (meth) acrylates include Bisomer S10W (methoxy polyethylene glycol 1000 methacrylate) available from GEO Specialty Chemicals UK Ltd.
- Preferred ethylenically unsaturated nonionic monomers are ethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, butyl acrylate, butyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, isodecyl methacrylate, lauryl methacrylate, styrene, methoxy polyethylene glycol methacrylate, or mixtures thereof.
- the polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 25%or more, 30%or more, 35%or more, 40%or more, 45%or more, 50%or more, 55%or more, or even 60%or more, and at the same time, 88.5%or less, 85%or less, 82%or less, 80%or less, 75%or less, 70%or less, or even 65%or less of structural units of the ethylenically unsaturated nonionic monomer.
- the polymeric dispersant of the present invention may optionally comprise structural units of one or more additional ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers.
- suitable ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers include monobasic acids such as acrylic, methacrylic, crotonic, and acyloxypropionic acids; and dibasic acid monomers such as maleic, fumaric, and itaconic acids; or mixtures thereof.
- the polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, less than 10%of structural units of the additional ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer, for example, less than 9%, less than 8%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.1%, or even zero of structural units of the additional ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer.
- the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 5%to 20%of structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof such as SSS, SVS, AMPS, salts thereof, or mixtures thereof; from 4%to 20%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof such as PEM; from 4%to 15%of structural units of diacetone acrylamide, from 55%to 85%of structural units of the ethylenically unsaturated nonionic monomer such as ethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, butyl acrylate, butyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, isodecyl methacrylate
- the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 10%to 20%of structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof; from 5%to 15%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof; from 4%to 15%of structural units of diacetone acrylamide, from 55%to 80%of structural units of the ethylenically unsaturated nonionic monomer; and optionally from zero to 5%of structural units of the additional ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer.
- the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 15%to 60%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof such as PEM, from 2%to 15%of structural units of diacetone acrylamide, from 25%to 80%of structural units of the alkoxylated (meth) acrylate, the hydroxy-functional alkyl (meth) acrylate, or combinations thereof, including, for example, methoxy polyethylene glycol methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, or mixtures thereof.
- the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 20%to 50%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof, from 2%to 15%of structural units of diacetone acrylamide, and from 30%to 75%of structural units of the alkoxylated (meth) acrylate, the hydroxy-functional alkyl (meth) acrylate, or combinations thereof, and optionally from zero to 5%by weight of structural units of the additional ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer.
- the polymeric dispersant of the present invention may have a weight average molecular weight of from 300 to 40,000 daltons, for example, 500 daltons or more, 800 daltons or more, 1,000 daltons or more, 1,500 daltons or more, 2,000 daltons or more, 2,500 daltons or more, 3,000 daltons or more, 3,500 daltons or more, 4,000 daltons or more, 4,500 daltons or more, 5,000 daltons or more, 5,500 daltons or more, or even 6,000 daltons or more, and at the same time, 38,000 daltons or less, 35,000 daltons or less, 32,000 daltons or less, 30,000 daltons or less, 28,000 daltons or less, 25,000 daltons or less, 24,000 daltons or less, 22,000 daltons or less, 21,000 daltons or less, 20,000 daltons or less, 19,000 daltons or less, 18,000 daltons or less, 17,000 daltons or less, 16,000 daltons or less,
- the polymeric dispersant of the present invention may be prepared by free-radical polymerization of the monomers described above, for example, aqueous solution polymerization or emulsion polymerization. Dosage of each monomer, based on the total weight of monomers, is substantially the same as dosage of structural units of such monomer based on the dry weight of the polymeric dispersant. Total weight concentration of monomers for preparing the polymeric dispersant is equal to 100%.
- a mixture of monomers for preparing the polymeric dispersant may be added as a monomer solution in water or as an emulsion in water; or added in one or more additions or continuously, linearly or nonlinearly, over the reaction period of preparing the polymeric dispersant.
- Temperature suitable for the polymerization process may be lower than 100°C, for example, in the range of from 30 to 99°C or in the range of from 50 to 97°C.
- Multistage free-radical polymerization using the monomers described above can be used, which at least two stages are formed sequentially, and usually results in the formation of the multistage polymer comprising at least two polymer compositions.
- free radical initiators may be used in the polymerization process for preparing the polymeric dispersant.
- the polymerization process may be thermally initiated or redox initiated aqueous solution polymerization or emulsion polymerization.
- suitable free radical initiators include hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid, and salts thereof; potassium permanganate, and ammonium or alkali metal salts of peroxydisulfuric acid.
- the free radical initiators may be used typically at a level of from 0.01%to 15%, from 0.01%to 5%, or from 0.01%to 3%, by weight based on the total weight of monomers.
- Redox systems comprising the above described initiators coupled with a suitable reductant may be used in the polymerization process.
- Suitable reductants include sodium sulfoxylate formaldehyde, ascorbic acid, isoascorbic acid, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, acetone bisulfite, glycolic acid, hydroxymethanesulfonic acid, glyoxylic acid hydrate, lactic acid, glyceric acid, malic acid, tartaric acid and salts of the preceding acids.
- Metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt may be used to catalyze the redox reaction. Chelating agents for the metals may optionally be used.
- one or more surfactants may be used.
- the surfactants may be added prior to or during the polymerization of the monomers, or combinations thereof. A portion of the surfactant can also be added after the polymerization.
- These surfactants may include anionic and/or nonionic emulsifiers.
- suitable surfactants include alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids; sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols.
- the alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates surfactant are used.
- the surfactant may be used in an amount of from zero to 10%, preferably from 0.05%to 3%, by weight based on the weight of total monomers used for preparing the polymeric dispersant.
- a chain transfer agent may be used in the polymerization process for preparing the polymeric dispersant.
- suitable chain transfer agents used in emulsion polymerization include n-dodecylmercaptan (nDDM) , and 3-mercaptopropionic acid, methyl 3-mercaptopropionate (MMP) , butyl 3-mercaptopropionate (BMP) , benzenethiol, azelaic alkyl mercaptan, or mixtures thereof.
- suitable chain transfer agents used in aqueous solution polymerization include sodium hyphophosphite, phosphorous acid, sodium metabisulfite, sodium bisulfite, or mixtures thereof.
- the chain transfer agent may be used in an effective amount to control the molecular weight of the polymeric dispersant.
- the chain transfer agent is used in an amount of 0.001%or more, 0.01%or more, or even 0.1%or more, or even 1%or more, and at the same time, 20%or less, 15%or less, 10%or less, or even 5%or less by weight based on the total weight of monomers used for preparing the polymeric dispersant.
- the obtained polymeric dispersant of the present invention may have a pH value of from 0.5 to 5.0, from 1.0 to 4.5, or from 1.5 to 4.0.
- the polymeric dispersant may have a viscosity of from 0 to 100 centipoises (cP) , from 0 to 80 cP, or from 0 to 60 cP, as measured by 2 # spindle of Brookfield viscosity meter at 60 rpm.
- the polymeric dispersant of the present invention may become water-soluble or partially water-soluble upon neutralization.
- Neutralization can be conducted by adding one or more bases into the polymeric dispersant.
- suitable bases include ammonia; alkali metal or alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate; primary, secondary, and tertiary amines, such as triethyl amine, ethylamine, propylamine, monoisopropylamine, monobutylamine, hexylamine, ethanolamine, diethyl amine, dimethyl amine, tributylamine, triethanolamine, dimethoxyethylamine, 2-ethoxyethylamine, 3-ethoxypropylamine, dimethylethanolamine, diisopropanolamine, morpholine, ethylenediamine, 2-diethylaminoethylamine, 2, 3-diaminopropane, 1, 2-propyl
- the polymeric dispersant of the present invention may have a weight average particle size of from 50 nanometers (nm) to 300 nm, from 80 nm to 200 nm, or from 90 nm to 150 nm.
- the particle size herein refers to Z-average size and may be measured by a Brookhaven BI-90 Plus Particle Size Analyzer.
- the polymeric dispersant of the present invention can provide better dispersing efficiency for pigments and/or extenders as compared to polymeric dispersants free of structural units of the carbonyl-containing functional monomer.
- the polymeric dispersant of the present invention is useful in many applications such as use in aqueous coating compositions.
- the aqueous coating composition may further comprise one or more polyfunctional carboxylic hydrazides containing at least two hydrazide groups per molecule.
- the polyfunctional carboxylic hydrazides may be selected from adipic dihydrazide, oxalic dihydrazide, isophthalic dihydrazide, polyacrylic polyhydrazide, or mixtures thereof.
- the aqueous coating composition may comprise the polyfunctional carboxylic hydrazide in an amount of from zero to 16%, from 0.5%to 10%, or from 1%to 8%, or from 1.5%to 6%, by weight based on the dry weight of the polymeric dispersant.
- the polymeric dispersant of the present invention is particularly suitable for a two-component epoxy coating composition, preferably a waterborne epoxy coating composition.
- the epoxy coating composition of the present invention is formed from two components–Component A and Component B.
- Component A can be a binder phase and comprises a waterborne epoxy resin, the polymeric dispersant, and pigments and/or extenders, in which, the pigments and/or extenders are preferably dispersed in Component A by the polymeric dispersant.
- Component B is a hardener phase and comprises a hardener (i.e., curing agent) , e.g., an amine curing agent.
- the polymeric dispersant may be present, by dry weight based on the total dry weight of pigments and/or extenders in Component A, 0.1%or more, 0.15%or more, 0.2%or more, or even 0.3%or more, and at the same time, 10%or less, 5%or less, 3%or less, or even 1%or less.
- Component A of the epoxy coating composition of the present invention further comprises one or more waterborne epoxy resins.
- the waterborne epoxy resin useful in the present invention can be a water-based epoxy resin and dispersed/emulsified in water.
- the waterborne epoxy resin can be any conventional, water-dispersible epoxy resins.
- the waterborne epoxy resin can be a self-emulsified epoxy resin, or an emulsion or a dispersion of one or more epoxy compounds and a surfactant (e.g., a nonionic or ionic surfactant) used for emulsifying the epoxy compounds.
- the self-emulsified epoxy resin may be mixed with water to form an aqueous dispersion.
- the self-emulsified epoxy resin can be an adduct of an epoxy compound with a hydrophilic monomer or polymer containing at least one group selected from carboxyl, hydroxyl, sulfonate group, ethylene oxide group or amino group.
- the epoxy compound can be a di-, tri-or tetraglycidyl ether or a di-, or tri-or tetraglycidyl ester.
- suitable epoxy compounds include diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, 1, 4-butanediol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, diglycidyl ester of phthalic acid, 1, 4-cyclohexanedmethanol diglycidyl ether, 1, 3-cyclohexanedmethanol diglycidyl ether, diglycidyl ester of hexahydrophthalic acid, epoxy novolac resins, or mixtures thereof.
- Two or more waterborne epoxy resins can be used as a mixture.
- Commercially available aqueous epoxy dispersions include OUDRASPERSE WB-6001 available from Olin Corporation or BECKOPOX EP 387w/52WA available from Allnex, or mixtures thereof.
- the waterborne epoxy resin can be an aqueous dispersion of acrylic polymer particles imbibed with an epoxy compound (herein “epoxy imbibed latex” .
- epoxy compound include those described above.
- the acrylic polymer particles in the epoxy imbibed latex are characterized by having a sufficient concentration of anti-agglomerating functional groups to stabilize the epoxy imbibed latex against agglomeration.
- the imbibed waterborne epoxy is as described in US2012/0301621A.
- a commercially available epoxy imbibed latexes is MAINCOTE TM AEH-20 available from The Dow Chemical Company (MAINCOTE is a trademark of The Dow Chemical Company) .
- the aqueous dispersion of acrylic polymer particles in the epoxy imbibed latex can be achieved through free radical emulsion or suspension addition polymerization or by dispersion of a preformed polymer under shear into an aqueous medium.
- the acrylic polymer herein refers to a polymer comprising structural units of one or more acrylic monomers.
- an acrylic latex or a styrene-acrylic latex is used.
- the acrylic polymer in the epoxy imbibed latex may contain anti-agglomerating functional groups, which refer to hydrophilic groups that are sufficiently unreactive with the oxirane groups in the epoxy resin.
- the anti-agglomerating functional groups in the acrylic polymer particles can be incorporated into the acrylic polymer particles using monomers containing anti-agglomerating functional groups (anti-agglomerating monomers) .
- the anti-agglomerating functional groups are generally selected from amide groups, acetoacetoxy groups, strong protic acids which are pH adjusted to form their conjugate bases, or a combination thereof.
- Suitable anti-agglomerating functional groups include functional groups of acrylamide; methyl acrylamide; acetoacetoxyethyl methacrylate; acetoacetoxyethyl methacrylate enamine; the ethylenically unsaturated sulfonic acid-containing monomers and salts thereof or the ethylenically unsaturated phosphorous acid-containing monomers and salts thereof described above in preparing the polymeric dispersant such as sodium p-styrene sulfonate; 2-acrylamido-2-methylpropane sulfonic acid or a salt thereof; and phosphoethyl methacrylate or a salt thereof; or combinations thereof.
- the concentration of anti-agglomerating functional groups in the acrylic polymer particles may be 0.5%or higher or 1%or higher, and at the same time, 10%or lower or 5%or lower, by weight based on the weight of the acrylic polymer.
- the acrylic polymer in the epoxy imbibed latex may further include structural units of one or more ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers as described above in the polymeric dispersant, such as acrylic acid, methacrylic acid, and itaconic acid, in an amount of from 0.1%to 5%or up to 20%by weight, based on the weight of the acrylic polymer.
- the acrylic polymer in the epoxy imbibed latex may further include structural units of one or more multi-ethylenically unsaturated monomers such as allyl (meth) acrylate; diallyl phthalate; 1, 4-butylene glycol di (meth) acrylate; 1, 2-ethylene glycol di (meth) acrylate; 1, 6-hexanediol di (meth) acrylate; divinyl benzene; or mixtures thereof.
- one or more ethylenically unsaturated nonionic monomers as described above in the polymeric dispersant section may be also included to form structural units of the acrylic polymer.
- the acrylic polymer particles may be prepared according to the same process for preparing the polymeric dispersant.
- the epoxy imbibed latex useful in the present invention is advantageously prepared as disclosed in US2012/0301621A, e.g., separately from the acrylic polymer dispersion using conventional polymerization techniques (e.g., as described above for preparing the polymeric dispersant) , then combined with the epoxy compound.
- the epoxy compound can be neat or in the form of an aqueous dispersion, preferably as an aqueous dispersion, and more preferably as a micronized aqueous dispersion.
- the dispersion of the epoxy compound is stabilized with a stabilizing amount of a surfactant, preferably at a concentration in the range of 0.5%to 5%by weight.
- Nonionic surfactants are preferred, including alkyl phenol ethoxylate (APEO) free, non-ionic wetting agents such as polyalkylene oxide block copolymers, polyoxyethyleneglycol alkyl ethers, glucoside alkyl ethers, fatty acid esters, glycerol alkyl esters, sorbitan alkyl esters, and polyoxyethylene glycol alkylphenol ethers, including commercially available wetting agents such as TRITON TM X-405 octylphenol ethoxylate available from The Dow Chemical Company.
- APEO alkyl phenol ethoxylate
- non-ionic wetting agents such as polyalkylene oxide block copolymers, polyoxyethyleneglycol alkyl ethers, glucoside alkyl ethers, fatty acid esters, glycerol alkyl esters, sorbitan alkyl esters, and polyoxyethylene glycol alkylphenol ethers, including commercially available
- the epoxy imbibed latex useful in the present invention may have a high solids content, that is, latexes with solids content of at least 40%and particularly in the range of 45-60%, by weight based on the total weight of the epoxy imbibed latex.
- These epoxy imbibed latexes can include high levels of the acrylic polymer, typically in the range of from 20%to 60%or from 30%to 50%, by weight based on the total weight of the acrylic polymer and the epoxy compound.
- the waterborne epoxy resin in Component A of the epoxy coating composition may be present, by dry weight based on the total dry weight of Component A, in an amount of 5%or more, 10%or more, 15%or more, or even 20%or more, and at the same time, 80%or less, 70%or less, 65%or less, or even 60%or less.
- Component A of the epoxy coating composition of the present invention further comprises pigments and/or extenders.
- Pigment herein refers to a particulate inorganic material which is capable of materially contributing to the opacity or hiding capability of a coating. Such materials typically have a refractive index greater than 1.8.
- Inorganic pigments may include, for example, titanium dioxide (TiO 2 ) , zinc oxide, iron oxide, zinc sulfide, barium sulfate, barium carbonate, or mixture thereof.
- Preferred pigment is TiO 2 .
- TiO 2 typically exists in two crystal forms, anastase and rutile. TiO 2 may be also available in concentrated dispersion form.
- Component A of the epoxy coating composition may also comprise one or more extenders.
- Extender herein refers to a particulate inorganic material having a refractive index of less than or equal to 1.8 and greater than 1.3.
- suitable extenders include calcium carbonate, clay, calcium sulfate, aluminosilicates, silicates, zeolites, mica, diatomaceous earth, solid or hollow glass, ceramic beads, nepheline syenite, feldspar, diatomaceous earth, calcined diatomaceous earth, talc (hydrated magnesium silicate) , silica, alumina, kaolin, pyrophyllite, perlite, baryte, wollastonite, opaque polymers such as ROPAQUE TM Ultra E available from The Dow Chemical Company (ROPAQUE is a trademark of The Dow Chemical Company) , or mixtures thereof.
- ROPAQUE is a trademark of The Dow Chemical Company
- the epoxy coating composition of the present invention further comprises Component B.
- Component B includes curing agents such as amine curing agents to cure the epoxy coating composition.
- suitable curing agents include diethylenetriamine, triethylenetetramine, tetraethylene-pentamine, 2, 2, 4-trimethylhexamethylenediamine, 2, 4, 4-trimethylhexamethylenediamine, 1, 6-hexanediamine, 1-ethyl-1, 3-propanediamine, bis (3-aminopropyl) piperazine, N-aminoethylpiperazine, N, N-bis (3-aminopropyl) ethylenediamine, 2, 4-toluenediamine, 2, 6-toluenediamine, 1, 2-diaminocyclohexane, 1, 4-diamino-3, 6-diethylcyclohexane, 1, 2-diamino-4-ethylcyclohexane, 1, 4-diamino-3, 6-diethylcyclohexane,
- curing agents include Epi-cure 8535, 8536, 8537, 8290 and 8292 curing agents available from Hexion; Anquamine 401 and Epilink 381 curing agents available from Air Products; Beckopox EH659W, EH623W and VEH2133W curing agents available from Allnex; and Epotuf 37-680 and 37-681 curing agents available from Reichhold.
- Component A and/or Component B can optionally include other ingredients such as water, a coalescent, a defoamer, a wetting agent, a thickener, or mixtures thereof.
- Defoamers herein refer to chemical additives that reduce and hinder the formation of foam. Defoamers may be silicone-based defoamers, mineral oil-based defoamers, ethylene oxide/propylene oxide-based defoamers, alkyl polyacrylates, or mixtures thereof. Suitable commercially available defoamers include, for example, TEGO Airex 902 W and TEGO Foamex 1488 polyether siloxane copolymer emulsions both available from TEGO, BYK-024 silicone deformer available from BYK, or mixtures thereof. The concentration of the defoamer may be, by weight based on the total dry weight of the epoxy coating composition, generally from zero to 2%, from 0.02%to 0.5%, or from 0.04%to 0.2%.
- the thickeners useful in the present invention may include associative thickeners such as hydrophobically modified ethoxylated urethanes (HEUR) .
- the concentration of the thickener may be, by weight based on the total dry weight of the epoxy coating composition, generally from zero to 10%by weight, from 0.1%to 4%, or from 0.5%to 2%.
- wetting agents herein refer to chemical additives that reduce the surface tension of a coating composition, causing the coating composition to more easily spread across or penetrate the surface of a substrate.
- Wetting agents may be anionic, zwitterionic, or non-ionic.
- the concentration of the wetting agent may be, by weight based on the total dry weight of the epoxy coating composition, from zero to 5%, 0.01%to 2%, or from 0.2%to 1%.
- coalescents herein refer to slow-evaporating solvents that fuse polymer particles into a continuous film under ambient condition.
- suitable coalescents include 2-n-butoxyethanol, dipropylene glycol n-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, propylene glycol methyl ether, propylene glycol n-propyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, triethylene glycol monobutyl ether, dipropylene glycol n-propyl ether, n-butyl ether, or mixtures thereof.
- the concentration of the coalescent may be, by weight based on the total dry weight of the epoxy coating composition, from zero to 10%, from 0.01%to 9%, or from 1%to 8%.
- the epoxy coating composition of the present invention may further comprise any one or combination of the following additives: buffers, neutralizers, humectants, mildewcides, biocides, anti-skinning agents, colorants, flowing agents, anti-oxidants, plasticizers, leveling agents, adhesion promoters, and grind vehicles.
- these additives may be present in a combined amount of from zero to 10%, from 0.01%to 2%, or from 0.05%to 1%, by weight based on the total weight of the epoxy coating composition.
- Component A and Component B are mixed together to form the epoxy coating composition prior to application.
- the amount of the curing agent used generally varies from about 1: 0.75 to 1: 1.5 and preferably from 1: 1 to 1: 1.4, active hydrogen equivalent to oxirane equivalent of the waterborne epoxy resin.
- the weight ratio of Component A to Component B in the epoxy coating composition may be from 90: 1 to 1: 1, from 40: 1 to 2: 1, from 25: 1 to 4: 1, or from 15: 1 to 5: 1, affording flexibility in operation.
- the epoxy coating composition of the present invention may have a pigment volume concentration (PVC) of from 5%to 90%, for example, 10%or more, 15%or more, 20%or more, or even 25%or more, at the same time, 85%or less, 80%or less, 70%or less, 60%or less, 50%or less, 40%or less, 35%or less, or even 30%or less.
- PVC pigment volume concentration
- PVC% [Volume (Pigment + Extender) /Volume (Pigment + Extender + Binder) ] ⁇ 100%
- the binder herein includes the waterborne epoxy resin in Component A and the curing agent in Component B.
- the solids content of the epoxy coating composition of the present invention may be from 20%to 70%by weight, from 25%to 65%by weight, or from 30%to 50%by weight.
- the epoxy coating composition of the present invention is substantially free of the polyfunctional carboxylic hydrazides described above, for example, in an amount less than 0.5%, less than 0.1%, or even zero, by weight based on the dry weight of the polymeric dispersant.
- the epoxy coating composition of the present invention may be prepared by admixing Component A and Component B as described above.
- the pigments and/or extenders are preferably mixed with the polymeric dispersant to form a slurry of the pigments and/or extenders.
- the obtained admixture may be then subjected to shearing in a grinding or milling device as is well known in the pigment dispersion art.
- grinding or milling devices include roller mills, ball mills, bead mills, attrittor mills and include mills in which the admixture is continuously recirculated.
- the shearing of the admixture is continued for a time sufficient to disperse the pigments and/or extenders.
- the waterborne epoxy resin and other ingredients are added to the pigment and/or extender grinds under low speed stirring to form Component A.
- the epoxy coating composition of the present invention provides coatings made therefrom with improved salt spray corrosion resistance.
- the epoxy coating composition exhibits a blister rating better than “2MD” at a dry film thickness of 50-60 ⁇ m after at least 110 hours, or even 175 hours, of exposure to salt spray when coated onto a corrosion susceptible substrate, such as cold rolled steel.
- the coating composition may also have good stability, for example, good storage stability as indicated by a viscosity change of 10 Krebs Units (KU) or less for Component A after storage.
- KU Krebs Units
- the present invention also relates to a method of improving corrosion resistance of a coating.
- the method may comprise (i) providing the epoxy coating composition of the present invention, (ii) applying the epoxy coating composition to a substrate; and (iii) drying, or allowing to dry, the epoxy coating composition to obtain the coating, wherein the coating has an improved corrosion resistance as defined above.
- the epoxy coating composition can be applied to, and adhered to, various substrates. Examples of suitable substrates include wood, metals, plastics, foams, stones, elastomeric substrates, glass, fabrics, concrete, or cementitious substrates.
- the epoxy coating composition is suitable for various applications such as marine and protective coatings, automotive coatings, traffic paint, Exterior Insulation and Finish Systems (EIFS) , roof mastic, wood coatings, coil coatings, plastic coatings, can coatings, architectural coatings, and civil engineering coatings.
- the epoxy coating composition is particularly suitable for industrial coatings.
- the epoxy coating composition of the present invention can be applied to a substrate by incumbent means including brushing, dipping, rolling and spraying.
- the aqueous composition is preferably applied by spraying.
- the standard spray techniques and equipment for spraying such as air-atomized spray, air spray, airless spray, high volume low pressure spray, and electrostatic spray such as electrostatic bell application, and either manual or automatic methods can be used.
- the epoxy coating composition can dry, or allow to dry, to form a film (this is, coating) at room temperature (20-25°C) , or at an elevated temperature, for example, from 35 to 60°C.
- a Stormer viscometer was used to analyze the medium shear viscosity (KU as units) of Component A (epoxy side) of a coating composition according to ASTM (American Society for Testing and Materials) D562-10 (2014) .
- the Component A 510 grams (g)
- Initial KU 1 an initial viscosity was measured and denoted as Initial KU 1 .
- the Component A was then equilibrated at room temperature overnight and then a viscosity overnight was measured and denoted as Final KU 1 .
- the overnight viscosity change, denoted as delta KU (overnight) is determined by Final KU 1 minus Initial KU 1 .
- total delta KU is calculated by the sum of delta KU (overnight) and delta KU (heatage) , that is, (Final KU 1 -Initial KU 1 ) + (Final KU 2 -Initial KU 2 ) .
- the total delta KU being 10 KU or less indicates acceptable storage stability. The smaller the total delta KU, the better the storage stability.
- the surface of cold rolled steel panels were cleaned prior to coating application. Then a coating composition was applied on the cold rolled steel panels by drawdown bar and allowed to dry in a constant temperature room (CTR, 25°C, 50%relative humidity ( “RH” )) for 7 days prior to testing.
- CTR constant temperature room
- RH 50%relative humidity
- the obtained dry coating films had a thickness in the range of 50-60 ⁇ m.
- the coated panels were sealed by 3M tape and a scribe mark made with a razor blade was scratched into the bottom half of the panels immediately before exposure.
- Salt spray corrosion resistance was tested by exposure of the as prepared panels to a salt spray environment (5%sodium chloride fog) in accordance with ASTM B-117-2011. Panels were exposed to the salt spray environment for 110 hours, and then removed to rate blistering.
- Blister ratings were conducted in accordance with ASTM D714-02 (2009) and included a number and one or more letters.
- the letter is a qualitative representation of the density of bubbles, whereby “F” refers to few, “D” refers to dense, “M” refers to medium, “MD” refers to medium dense, and “D” refers to dense.
- the number refers to the size of the blister, whereby 0 is the largest size, 10 is no blister. The bigger the number, the smaller the size of blister. Blistering ratings better than “2MD” indicate acceptable salt spray corrosion resistance.
- GPC analysis was performed generally by Agilent 1200.
- a dispersant sample was dissolved in dimethylformamide (with formic acid, 100: 2, v/v) with a concentration of about 5 mg/mL and then filtered through 0.45 ⁇ m Polytetra fluoroethylene (PTFE) filter prior to the GPC analysis.
- PTFE Polytetra fluoroethylene
- the GPC analysis was conducted using the following conditions: Column: One PL guard column (7.5mm*50mm, 5 um) and two Mixed E or D columns (7.5x300mm) in tandem; column temperature: 50 °C; mobile phase: dimethylformamide (with formic acid, 100: 2, v/v) ; flow rate: 0.7 mL/minute; Injection volume: 100 L; detector: Agilent Refractive Index detector, 50 °C; and calibration curve: PL Polyethylene Glycol standards with molecular weights ranging from 31630 to 1010 g/mol, using polynom 3 fitness.
- the pH of a dispersant was first adjusted to 8.8 by NH 3 ⁇ H 2 O to give a neutralized dispersant.
- Water (125 g) , TiO 2 (Ti-Pure R-902, 37.5 g) , an anti-rust pigment (Nubirox 106, 45 g) , talc (Talc 800, 75 g) , and barium sulfate (Blanc Fixe N BaSO 4 1250, 90 g) were added to a 0.5 L plastic straight cylinder to form a paste. Then the neutralized dispersant obtained above (0.1-0.3 g) was added to the above formed paste.
- the resultant slurry was measured for low shear viscosity (Brookfield 4 # /60 rpm) with a Brookfield Viscometer (LVDV-II+) .
- the neutralized dispersant was continuously added into the slurry until the viscosity of the slurry didn’ t drop.
- the dispersing efficiency was recorded as percentage of the dry weight of the dispersant to the dry weight of the total amount of pigments and extenders at the lowest point of the low shear viscosity of the slurry. The lower the percentage, the better the dispersing efficiency.
- a monomer aqueous solution was prepared by mixing deionized (DI) water (200 g) , MA-80A (154.8 g) , PEM (55.2 g) and DAAM (10 g) .
- DI water 200 g was added.
- a chain regulator solution of SHP 16.62 g SHP dissolved in 15 g DI water
- the monomer aqueous solution, an initiator solution of SPS (16.62 g SPS dissolved in 20 g DI water) , and another chain regulator solution of SHP (16.62 g SHP dissolved in 20 g DI water) were gradually fed into the reactor at 78°C over 85 minutes, 100 minutes, and 85 minutes, respectively.
- an initiator solution of SPS (16.62 g SPS dissolved in 20 g DI water)
- another chain regulator solution of SHP (16.62 g SHP dissolved in 20 g DI water)
- the dispersant A was prepared according to the same procedure as preparing the dispersant 1 above, except that the monomer aqeuous solution used herein was prepared by mixing DI water (236.8 g) , MA-80A (138 g) , and PEM (55.2 g) .
- a monomer emulsion was prepared by mixing STY (225.00 g) , AMPS 2405 (90.00 g) , PEM (18.00 g) , MMA (12.00 g) , nDDM (12.87 g) , and Disponil Fes 993 surfactant (18.30 g, sodium salt of a fatty polyglycol ether sulphate, available from BASF) in water (70 g) .
- a three-liter, five-necked flask equipped with a mechanical stirrer, N 2 sweep, a thermocouple, and a condenser was charged with water (405 g) and Disponil Fes 993 (1.95 g) .
- the resultant solution in the flask was heated to 86 °C.
- An initiator solution of SPS (1.30 g SPS dissolved in 5 g water) was added. Two minutes later, the monomer emulsion was fed. Simultaneously, another initiator solution of SPS (1.06 g SPS dissolved in 60 g water) was co-fed over a period of 90 minutes while the flask temperature was maintained around 86 °C, holding for 10 minutes after the end of the feeds.
- a chaser system including an aqueous solution of ferrous sulfate (4 g, 0.2%) , t-BHP (1.18 g) dissolved in water (5 g) , as well as IAA (0.58 g) dissolved in water (5 g) were added. After holding for 15 minutes, the identical chaser system was charged again. Finally the resultant dispersion was cooled to ambient temperature and filtered through 325 mesh size screen to afford a copolymer emulsion with total solids of 30%.
- the dispersant 2 was prepared according to the same procedure as preparing the dispersant B above, except that the monomer emulsion was prepared by mixing STY (180.00 g) , AMPS 2405 (90.00 g) , PEM (18 g) , MMA (12.00 g) , DAAM (45.00 g) , nDDM (12.87 g) , and Disponil Fes 993 (18.30 g) in water (70 g) .
- the dispersant 3 was prepared according to the same procedure as preparing the dispersant B above, except that the monomer emulsion was prepared by mixing STY (195.00 g) , AMPS 2405 (90.00 g) , PEM (18.00 g) , MMA (12.00 g) , DAAM (30.00 g) , nDDM (12.87 g) , and Disponil Fes 993 (18.30 g) in water (70 g) .
- Preparation of Component A Firstly, water, the above obtained dispersant, NH 3 ⁇ H 2 O neutralizer, Tego 902W defoamer, Tego 1488 defoamer, and Tego Twin 4100 surfactant were mixed, followed by adding Ti-Pure R-902 TiO 2 , Nubirox 106 Zinc phosphate, Talc 800, and Blanc Fixe N BaSO 4 1250 barium sulfate. The obtained mixture was then ground under 1,500 rpm agitation for about 30 minutes to form grinds.
- Component B Beckopox EH 613W/80WA hardener was diluted with water and stirred for 10 minutes to form Component B.
- Component A and Component B were stored separately. Upon application, Component B was added to Component A at stoichiometry ratio (epoxy: amine) of 1.27: 1.0 and stirred for about 15 minutes.
- ACRYSOL is a trademark of The Dow Chemical Company.
- coating compositions were evaluated according to the test methods described above and results are given in Table 3.
- comparative dispersants A and B had poor storage stability while all coating formulations formulated with dispersants 1-3 demonstrated acceptable storage stability, as indicated by total delta KU being 10 or less for the Component A of the coating compositions.
- dispersants 1-3 provided coatings made therefrom with better salt spray corrosion resistance than the dispersants A and B (ablister rating of 2MD) after exposure to salt spray test for 110 hours or 175 hours.
- dispersants A and B showed lower dispersing efficiency than dispersant 1, and dispersants 2 and 3, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- The present invention relates to a waterborne epoxy coating composition.
- INTRODUCTION
- Epoxy coatings are extensively used in construction coatings and protective coatings because of their chemical resistance, corrosion protection and mechanical properties. Waterborne epoxy binders have much less environmental concerns than conventional solvent epoxy resins.
- Waterborne epoxy coating compositions are typically formed from two components, a waterborne epoxy component (Component A) and a hardener component (Component B) . The two components are mixed prior to application of the coating compositions to prevent coagulation. When pigments and/or extenders are included in waterborne epoxy coating compositions, dispersants are usually used to disperse pigments and/or extenders in Component A. Conventional anionic acrylic polymeric dispersants derived from carboxylic acid monomers can afford sufficient dispersing efficiency for pigments and/or extenders, but usually cause a colloidal stability issue of Component A due to the reaction of acrylic carboxylate groups of the acrylic polymer dispersant with oxirane groups of an epoxy resin. Use of non-ionic dispersants may solve the above described stability issue, but usually requires higher loading to provide comparable dispersing efficiency as compared to anionic acrylic polymeric dispersants, thus negatively impact anti-corrosion properties. Another approach is to disperse pigments and/or extenders into the hardener component of waterborne epoxy coating compositions. For example, US2012/0301621A discloses a coating composition comprising aqueous dispersions of acrylic polymer particles imbibed with epoxy resins in Component A, and pigments and a curing agent added in Component B at a weight ratio of Component A to Component B being about 3: 2, but operation difficulties may arise in regard to incorporation of Component B to a similar amount of Component A.
- Therefore, it is desirable to provide a novel polymeric dispersant suitable for a stable two-component epoxy coating composition that comprises pigments and/or extenders dispersed in a waterborne epoxy component by the polymeric dispersant, and a hardener component, which provides coatings made therefrom with improved corrosion resistance properties.
- SUMMARY OF THE INVENTION
- The present invention provides a novel polymeric dispersant that can provide desirable dispersing efficiency for pigments and/or extenders and a two-component epoxy coating composition comprising the polymeric dispersant. The two-component epoxy coating composition comprising an epoxy component A (hereinafter “Component A” ) comprising a waterborne epoxy resin, the polymeric dispersant, and pigments and/or extenders dispersed therein, and a component B (hereinafter “Component B” ) comprising a curing agent. Component A and Component B are mixed prior to application of the epoxy coating composition. The epoxy coating composition of the present invention has good storage stability as indicated by viscosity change of 10 Krebs Units (KU) or less after storage. The epoxy coating composition can also provide coatings made therefrom with improved salt spray corrosion resistance as indicated by a blister rating better than “2MD” at a dry film thickness of 50-60 μm after at least 110 hours of exposure to salt spray when coated onto a corrosion susceptible substrate. The dispersing efficiency, storage stability and salt spray test may be measured according the test methods described in the Examples section below.
- In a first aspect, the present invention is a polymeric dispersant comprising, by weight based on the dry weight of the polymeric dispersant,
- (a) from 11%to 60%of structural units of an acid monomer and/or a salt thereof selected from the group consisting of an ethylenically unsaturated sulfonic acid-containing monomer or a salt thereof, an ethylenically unsaturated phosphorous acid-containing monomer or a salt thereof, or mixtures thereof;
- (b) from 0.5%to 20%of structural units of a carbonyl-containing functional monomer; and
- (c) from 20%to 88.5%of structural units of an ethylenically unsaturated nonionic monomer;
- wherein the polymeric dispersant has a weight average molecular weight of from 300 to 40,000 Daltons.
- In a second aspect, the present invention is a two-component epoxy coating composition comprising: an epoxy component A and a component B comprising a curing agent, wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of the first aspect, and pigments and/or extenders.
- In a third aspect, the present invention is a method of preparing a two-component epoxy coating composition. The method comprises admixing an epoxy component A and a component B comprising a curing agent, wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of the first aspect, and pigments and/or extenders.
- “Aqueous” composition or dispersion herein means that particles dispersed in an aqueous medium. By “aqueous medium” herein is meant water and from zero to 30%, by weight based on the weight of the medium, of water-miscible compound (s) such as, for example, alcohols, glycols, glycol ethers, glycol esters, and the like.
- “Acrylic” in the present invention includes (meth) acrylic acid, (meth) alkyl acrylate, (meth) acrylamide, (meth) acrylonitrile and their modified forms such as (meth) hydroxyalkyl acrylate. Throughout this document, the word fragment “ (meth) acryl” refers to both “methacryl” and “acryl” . For example, (meth) acrylic acid refers to both methacrylic acid and acrylic acid, and methyl (meth) acrylate refers to both methyl methacrylate and methyl acrylate.
- As used herein, the term structural units, also known as polymerized units, of the named monomer refers to the remnant of the monomer after polymerization. For example, a structural unit of methyl methacrylate is as illustrated:
-
- where the dotted lines represent the points of attachment of the structural unit to the polymer backbone.
- The polymeric dispersant of the present invention comprises structural units of one or more acid monomers and/or salts thereof. The acid monomers and/or salts thereof are selected from the group consisting of an ethylenically unsaturated sulfonic acid-containing monomer, an ethylenically unsaturated phosphorous acid-containing monomer, salts thereof, or combinations thereof.
- The ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof useful in the present invention may include sodium styrene sulfonate (SSS) , sodium vinyl sulfonate (SVS) , 2-acrylamido-2-methylpropanesulfonic acid (AMPS) , salts of the ethylenically unsaturated sulfonic acid-containing monomer such as sodium 2-acrylamido-2-methylpropane sulfonate, or mixtures thereof. The polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, zero or more, 5%or more, 6%or more, 7%or more, 8%or more, 9%or more, or even 10%or more, and at the same time, 60%or less, 50%or less, 40%or less, 30%or less, 25%or less, 20%or less, or even 15%or less of structural units of the ethylenically unsaturated sulfonic acid-containing monomers and/or salt thereof.
- The ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof useful in the present invention can be dihydrogen phosphate esters of an alcohol in which the alcohol contains or is substituted with a polymerizable vinyl or olefinic group. Suitable ethylenically unsaturated phosphorous acid-containing monomers and salts thereof may include, for example, phosphoalkyl (meth) acrylates such as phosphoethyl (meth) acrylate, phosphopropyl (meth) acrylate, phosphobutyl (meth) acrylate, salts of phosphoalkyl (meth) acrylates, and mixtures thereof; CH 2=C (R) -C (O) -O- (R pO) n-P (O) (OH) 2, wherein R=H or CH 3 and R p=alkyl, n is from 1 to 20, such as SIPOMER PAM-100, SIPOMER PAM-200, SIPOMER PAM-300, and SIPOMER PAM-4000 all available from Solvay; phosphoalkoxy (meth) acrylates such as phospho ethylene glycol (meth) acrylate, phospho di-ethylene glycol (meth) acrylate, phospho tri-ethylene glycol (meth) acrylate, phospho propylene glycol (meth) acrylate, phospho di-propylene glycol (meth) acrylate, phospho tri-propylene glycol (meth) acrylate, allyl ether phosphate, salts thereof, or mixtures thereof. Preferred ethylenically unsaturated phosphorous acid-containing monomers and salts thereof are selected from the group consisting of phosphoethyl (meth) acrylate, phosphopropyl (meth) acrylate, phosphobutyl (meth) acrylate, salts thereof, and mixtures thereof; more preferably, phosphoethyl methacrylate (PEM) . The polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 1.5%or more, 2%or more, 3%or more, 4%or more, or even 5%or more, and at the same time, 60%or less, 50%or less, 40%or less, 30%or less, 20%or less, or even 15%or less of structural units of the ethylenically unsaturated phosphorous-containing monomer and/or salt thereof.
- The polymeric dispersant of the present invention may comprise, by weight based on the dry weight of the polymeric dispersant, the structural units of the acid monomer and/or salts thereof in a combined amount of 11%or more, 12%or more, 15%or more, 18%or more, or even 20%or more, and at the same time, 60%or less, 55%or less, 50%or less, 45%or less, 40%or less, 35%or less, 33%or less, 30%or less, or even 28%or less. Preferably, the polymeric dispersant comprises a combination of the structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof with structural units of the ethylenically unsaturated phosphorous-acid containing monomer and/or salt thereof; and preferably at a weight ratio of 0.3 or higher, 0.35 or higher, 0.4 or higher, 0.45 or higher, 0.5 or higher, 0.55 or higher, 0.6 or higher, or even 0.65 or higher, and at the same time, 20.0 or less, 18.0 or less, 15.0 or less, 12.0 or less, 10.0 or less, 7.5 or less, 6.0 or less, 5.0 or less, 4.0 or less, 3.5 or less, or even 3.0 or less. “Weight ratio” herein refers to the weight ratio of the structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof to the structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof.
- The polymeric dispersant of the present invention may also comprise structural units of one or more carbonyl-containing functional monomers. Examples of suitable carbonyl-containing functional monomers include diacetone methacrylamide, diacetone acrylamide (DAAM) , acetoacetoxy or acetoacetamide functional monomers including, for example, acetoacetoxyethyl (meth) acrylate such as acetoacetoxyethyl methacrylate (AAEM) , acetoacetoxypropyl (meth) acrylate, acetoacetoxybutyl (meth) acrylate, 2, 3-di (acetoacetamido) propyl (meth) acrylate, 2, 3-di (acetoacetoxy) propyl (meth) acrylate, acetoacetamidoethyl (meth) acrylate, acetoacetamidopropyl (meth) acrylate, allyl acetoacetates, acetoactamidobutyl (meth) acrylate, vinyl acetoacetates, and acetoacetamides; or mixtures thereof. Preferred carbonyl-containing functional monomer is diacetone acrylamide. The polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 0.5%or more, 1%or more, 1.5%or more, 2%or more, 2.5%or more, 3%or more, 3.5%or more, 4%or more, 4.5%or more, 5%or more, 5.5%or more, 6%or more, 6.5%or more, 7%or more, or even 8%or more, and at the same time, 20%or less, 18%or less, 15%or less, 12%or less, or even 10%or less of structural units of the carbonyl-containing functional monomer.
- The polymeric dispersant of the present invention may also comprise structural units of one or more ethylenically unsaturated nonionic monomers. The term “nonionic monomers” herein refers to monomers that do not bear an ionic charge between pH=1-14. Suitable examples of the ethylenically unsaturated nonionic monomers include, for example, alkyl esters of (meth) acrylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, lauryl methacrylate, (meth) acrylonitrile; hydroxy-functional alkyl (meth) acrylates; alkoxylated (meth) acrylates; styrene and substituted styrenes; butadiene; ethylene, propylene, α-olefins such as 1-decene; vinyl acetate, vinyl butyrate, vinyl versatate and other vinyl esters; and vinyl monomers such as vinyl chloride and vinylidene chloride; or combinations thereof. Suitable hydroxy-functional alkyl (meth) acrylates may include hydroxyethyl (meth) acrylate such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate; hydroxypropyl (meth) acrylate such as 2-hydroxypropylacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, and 3-hydroxypropyl methacrylate; hydroxybutyl (meth) acrylates such as 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, and 4-hydroxybutyl methacrylate; 6-hydroxyhexyl acrylate; 6-hydroxyhexylmethacrylate; 3-hydroxy-2-ethylhexyl acrylate; 3-hydroxy-2-ethylhexyl methacrylate; or mixtures thereof. The alkoxylated (meth) acrylate may comprise ethylene oxide (-CH 2CH 2O-) units, propylene oxide (-CH (CH 3) CH 2O-) units, butylene oxide (-C (CH 3) 2CH 2O-) units, or combinations thereof. These units may alternate or may be present in the form of polyethylene oxide, polypropylene oxide, and/or polybutylene oxide blocks. The alkoxylated (meth) acrylate may comprise from 4 to 50, from 5 to 45, from 6 to 40, from 8 to 35, from 9 to 30, or from 10 to 25 of the ethylene oxide units. Suitable commercially available alkoxylated (meth) acrylates include Bisomer S10W (methoxy polyethylene glycol 1000 methacrylate) available from GEO Specialty Chemicals UK Ltd. Preferred ethylenically unsaturated nonionic monomers are ethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, butyl acrylate, butyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, isodecyl methacrylate, lauryl methacrylate, styrene, methoxy polyethylene glycol methacrylate, or mixtures thereof. The polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, 25%or more, 30%or more, 35%or more, 40%or more, 45%or more, 50%or more, 55%or more, or even 60%or more, and at the same time, 88.5%or less, 85%or less, 82%or less, 80%or less, 75%or less, 70%or less, or even 65%or less of structural units of the ethylenically unsaturated nonionic monomer.
- The polymeric dispersant of the present invention may optionally comprise structural units of one or more additional α, β-ethylenically unsaturated carboxylic acid monomers. Examples of suitable α, β-ethylenically unsaturated carboxylic acid monomers include monobasic acids such as acrylic, methacrylic, crotonic, and acyloxypropionic acids; and dibasic acid monomers such as maleic, fumaric, and itaconic acids; or mixtures thereof. The polymeric dispersant may comprise, by weight based on the dry weight of the polymeric dispersant, less than 10%of structural units of the additional α, β-ethylenically unsaturated carboxylic acid monomer, for example, less than 9%, less than 8%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.1%, or even zero of structural units of the additional α, β-ethylenically unsaturated carboxylic acid monomer.
- In some embodiments, the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 5%to 20%of structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof such as SSS, SVS, AMPS, salts thereof, or mixtures thereof; from 4%to 20%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof such as PEM; from 4%to 15%of structural units of diacetone acrylamide, from 55%to 85%of structural units of the ethylenically unsaturated nonionic monomer such as ethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, butyl acrylate, butyl methacrylate, methyl methacrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, isodecyl methacrylate, lauryl methacrylate, styrene, methoxy polyethylene glycol methacrylate, or mixtures thereof; and optionally from zero to 5%of structural units of the additional α, β-ethylenically unsaturated carboxylic acid monomer such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, or mixtures thereof. In some further embodiments, the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 10%to 20%of structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof; from 5%to 15%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof; from 4%to 15%of structural units of diacetone acrylamide, from 55%to 80%of structural units of the ethylenically unsaturated nonionic monomer; and optionally from zero to 5%of structural units of the additional α, β-ethylenically unsaturated carboxylic acid monomer.
- In some other embodiments, the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 15%to 60%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof such as PEM, from 2%to 15%of structural units of diacetone acrylamide, from 25%to 80%of structural units of the alkoxylated (meth) acrylate, the hydroxy-functional alkyl (meth) acrylate, or combinations thereof, including, for example, methoxy polyethylene glycol methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropylacrylate, or mixtures thereof. In some further embodiments, the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 20%to 50%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof, from 2%to 15%of structural units of diacetone acrylamide, and from 30%to 75%of structural units of the alkoxylated (meth) acrylate, the hydroxy-functional alkyl (meth) acrylate, or combinations thereof, and optionally from zero to 5%by weight of structural units of the additional α, β-ethylenically unsaturated carboxylic acid monomer.
- The polymeric dispersant of the present invention may have a weight average molecular weight of from 300 to 40,000 daltons, for example, 500 daltons or more, 800 daltons or more, 1,000 daltons or more, 1,500 daltons or more, 2,000 daltons or more, 2,500 daltons or more, 3,000 daltons or more, 3,500 daltons or more, 4,000 daltons or more, 4,500 daltons or more, 5,000 daltons or more, 5,500 daltons or more, or even 6,000 daltons or more, and at the same time, 38,000 daltons or less, 35,000 daltons or less, 32,000 daltons or less, 30,000 daltons or less, 28,000 daltons or less, 25,000 daltons or less, 24,000 daltons or less, 22,000 daltons or less, 21,000 daltons or less, 20,000 daltons or less, 19,000 daltons or less, 18,000 daltons or less, 17,000 daltons or less, 16,000 daltons or less, 15,000 daltons or less, 14,000 daltons or less, 13,000 daltons or less, 12,000 daltons or less, or even 10,000 daltons or less. The weight average molecular weight herein is measured by Gel Permeation Chromatography (GPC) according to the test method described in the Examples section below.
- The polymeric dispersant of the present invention may be prepared by free-radical polymerization of the monomers described above, for example, aqueous solution polymerization or emulsion polymerization. Dosage of each monomer, based on the total weight of monomers, is substantially the same as dosage of structural units of such monomer based on the dry weight of the polymeric dispersant. Total weight concentration of monomers for preparing the polymeric dispersant is equal to 100%. A mixture of monomers for preparing the polymeric dispersant, may be added as a monomer solution in water or as an emulsion in water; or added in one or more additions or continuously, linearly or nonlinearly, over the reaction period of preparing the polymeric dispersant. Temperature suitable for the polymerization process may be lower than 100℃, for example, in the range of from 30 to 99℃ or in the range of from 50 to 97℃. Multistage free-radical polymerization using the monomers described above can be used, which at least two stages are formed sequentially, and usually results in the formation of the multistage polymer comprising at least two polymer compositions.
- In the polymerization process for preparing the polymeric dispersant, free radical initiators may be used. The polymerization process may be thermally initiated or redox initiated aqueous solution polymerization or emulsion polymerization. Examples of suitable free radical initiators include hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid, and salts thereof; potassium permanganate, and ammonium or alkali metal salts of peroxydisulfuric acid. The free radical initiators may be used typically at a level of from 0.01%to 15%, from 0.01%to 5%, or from 0.01%to 3%, by weight based on the total weight of monomers. Redox systems comprising the above described initiators coupled with a suitable reductant may be used in the polymerization process. Examples of suitable reductants include sodium sulfoxylate formaldehyde, ascorbic acid, isoascorbic acid, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, acetone bisulfite, glycolic acid, hydroxymethanesulfonic acid, glyoxylic acid hydrate, lactic acid, glyceric acid, malic acid, tartaric acid and salts of the preceding acids. Metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt may be used to catalyze the redox reaction. Chelating agents for the metals may optionally be used.
- In the polymerization process for preparing the polymeric dispersant, one or more surfactants may be used. The surfactants may be added prior to or during the polymerization of the monomers, or combinations thereof. A portion of the surfactant can also be added after the polymerization. These surfactants may include anionic and/or nonionic emulsifiers. Examples of suitable surfactants include alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids; sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols. In some preferred embodiments, the alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates surfactant are used. The surfactant may be used in an amount of from zero to 10%, preferably from 0.05%to 3%, by weight based on the weight of total monomers used for preparing the polymeric dispersant.
- In the polymerization process for preparing the polymeric dispersant, a chain transfer agent may be used. Examples of suitable chain transfer agents used in emulsion polymerization include n-dodecylmercaptan (nDDM) , and 3-mercaptopropionic acid, methyl 3-mercaptopropionate (MMP) , butyl 3-mercaptopropionate (BMP) , benzenethiol, azelaic alkyl mercaptan, or mixtures thereof. Example of suitable chain transfer agents used in aqueous solution polymerization include sodium hyphophosphite, phosphorous acid, sodium metabisulfite, sodium bisulfite, or mixtures thereof. The chain transfer agent may be used in an effective amount to control the molecular weight of the polymeric dispersant. Preferably, the chain transfer agent is used in an amount of 0.001%or more, 0.01%or more, or even 0.1%or more, or even 1%or more, and at the same time, 20%or less, 15%or less, 10%or less, or even 5%or less by weight based on the total weight of monomers used for preparing the polymeric dispersant.
- The obtained polymeric dispersant of the present invention may have a pH value of from 0.5 to 5.0, from 1.0 to 4.5, or from 1.5 to 4.0. The polymeric dispersant may have a viscosity of from 0 to 100 centipoises (cP) , from 0 to 80 cP, or from 0 to 60 cP, as measured by 2 #spindle of Brookfield viscosity meter at 60 rpm.
- The polymeric dispersant of the present invention may become water-soluble or partially water-soluble upon neutralization. Neutralization can be conducted by adding one or more bases into the polymeric dispersant. Examples of suitable bases include ammonia; alkali metal or alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate; primary, secondary, and tertiary amines, such as triethyl amine, ethylamine, propylamine, monoisopropylamine, monobutylamine, hexylamine, ethanolamine, diethyl amine, dimethyl amine, tributylamine, triethanolamine, dimethoxyethylamine, 2-ethoxyethylamine, 3-ethoxypropylamine, dimethylethanolamine, diisopropanolamine, morpholine, ethylenediamine, 2-diethylaminoethylamine, 2, 3-diaminopropane, 1, 2-propylenediamine, neopentanediamine, dimethylaminopropylamine, hexamethylenediamine, 4, 9-dioxadodecane-1, 12-diamine, polyethyleneimine or polyvinylamine; aluminum hydroxide; or mixtures thereof.
- The polymeric dispersant of the present invention may have a weight average particle size of from 50 nanometers (nm) to 300 nm, from 80 nm to 200 nm, or from 90 nm to 150 nm. The particle size herein refers to Z-average size and may be measured by a Brookhaven BI-90 Plus Particle Size Analyzer.
- The polymeric dispersant of the present invention can provide better dispersing efficiency for pigments and/or extenders as compared to polymeric dispersants free of structural units of the carbonyl-containing functional monomer. The polymeric dispersant of the present invention is useful in many applications such as use in aqueous coating compositions. The aqueous coating composition may further comprise one or more polyfunctional carboxylic hydrazides containing at least two hydrazide groups per molecule. The polyfunctional carboxylic hydrazides may be selected from adipic dihydrazide, oxalic dihydrazide, isophthalic dihydrazide, polyacrylic polyhydrazide, or mixtures thereof. The aqueous coating composition may comprise the polyfunctional carboxylic hydrazide in an amount of from zero to 16%, from 0.5%to 10%, or from 1%to 8%, or from 1.5%to 6%, by weight based on the dry weight of the polymeric dispersant.
- The polymeric dispersant of the present invention is particularly suitable for a two-component epoxy coating composition, preferably a waterborne epoxy coating composition. The epoxy coating composition of the present invention is formed from two components–Component A and Component B. Component A can be a binder phase and comprises a waterborne epoxy resin, the polymeric dispersant, and pigments and/or extenders, in which, the pigments and/or extenders are preferably dispersed in Component A by the polymeric dispersant. Component B is a hardener phase and comprises a hardener (i.e., curing agent) , e.g., an amine curing agent. The polymeric dispersant may be present, by dry weight based on the total dry weight of pigments and/or extenders in Component A, 0.1%or more, 0.15%or more, 0.2%or more, or even 0.3%or more, and at the same time, 10%or less, 5%or less, 3%or less, or even 1%or less.
- Component A of the epoxy coating composition of the present invention further comprises one or more waterborne epoxy resins. The waterborne epoxy resin useful in the present invention can be a water-based epoxy resin and dispersed/emulsified in water. The waterborne epoxy resin can be any conventional, water-dispersible epoxy resins. The waterborne epoxy resin can be a self-emulsified epoxy resin, or an emulsion or a dispersion of one or more epoxy compounds and a surfactant (e.g., a nonionic or ionic surfactant) used for emulsifying the epoxy compounds. The self-emulsified epoxy resin may be mixed with water to form an aqueous dispersion. The self-emulsified epoxy resin can be an adduct of an epoxy compound with a hydrophilic monomer or polymer containing at least one group selected from carboxyl, hydroxyl, sulfonate group, ethylene oxide group or amino group. The epoxy compound can be a di-, tri-or tetraglycidyl ether or a di-, or tri-or tetraglycidyl ester. Examples of suitable epoxy compounds include diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, 1, 4-butanediol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, diglycidyl ester of phthalic acid, 1, 4-cyclohexanedmethanol diglycidyl ether, 1, 3-cyclohexanedmethanol diglycidyl ether, diglycidyl ester of hexahydrophthalic acid, epoxy novolac resins, or mixtures thereof. Two or more waterborne epoxy resins can be used as a mixture. Commercially available aqueous epoxy dispersions include OUDRASPERSE WB-6001 available from Olin Corporation or BECKOPOX EP 387w/52WA available from Allnex, or mixtures thereof.
- In some embodiments, the waterborne epoxy resin can be an aqueous dispersion of acrylic polymer particles imbibed with an epoxy compound (herein “epoxy imbibed latex” . The epoxy compound include those described above. The acrylic polymer particles in the epoxy imbibed latex are characterized by having a sufficient concentration of anti-agglomerating functional groups to stabilize the epoxy imbibed latex against agglomeration. The imbibed waterborne epoxy is as described in US2012/0301621A. A commercially available epoxy imbibed latexes is MAINCOTE TM AEH-20 available from The Dow Chemical Company (MAINCOTE is a trademark of The Dow Chemical Company) .
- The aqueous dispersion of acrylic polymer particles in the epoxy imbibed latex can be achieved through free radical emulsion or suspension addition polymerization or by dispersion of a preformed polymer under shear into an aqueous medium. The acrylic polymer herein refers to a polymer comprising structural units of one or more acrylic monomers. Preferably, an acrylic latex or a styrene-acrylic latex is used.
- The acrylic polymer in the epoxy imbibed latex may contain anti-agglomerating functional groups, which refer to hydrophilic groups that are sufficiently unreactive with the oxirane groups in the epoxy resin. The anti-agglomerating functional groups in the acrylic polymer particles can be incorporated into the acrylic polymer particles using monomers containing anti-agglomerating functional groups (anti-agglomerating monomers) . The anti-agglomerating functional groups are generally selected from amide groups, acetoacetoxy groups, strong protic acids which are pH adjusted to form their conjugate bases, or a combination thereof. Examples of suitable anti-agglomerating functional groups include functional groups of acrylamide; methyl acrylamide; acetoacetoxyethyl methacrylate; acetoacetoxyethyl methacrylate enamine; the ethylenically unsaturated sulfonic acid-containing monomers and salts thereof or the ethylenically unsaturated phosphorous acid-containing monomers and salts thereof described above in preparing the polymeric dispersant such as sodium p-styrene sulfonate; 2-acrylamido-2-methylpropane sulfonic acid or a salt thereof; and phosphoethyl methacrylate or a salt thereof; or combinations thereof. The concentration of anti-agglomerating functional groups in the acrylic polymer particles may be 0.5%or higher or 1%or higher, and at the same time, 10%or lower or 5%or lower, by weight based on the weight of the acrylic polymer. The acrylic polymer in the epoxy imbibed latex may further include structural units of one or more α, β-ethylenically unsaturated carboxylic acid monomers as described above in the polymeric dispersant, such as acrylic acid, methacrylic acid, and itaconic acid, in an amount of from 0.1%to 5%or up to 20%by weight, based on the weight of the acrylic polymer.
- The acrylic polymer in the epoxy imbibed latex may further include structural units of one or more multi-ethylenically unsaturated monomers such as allyl (meth) acrylate; diallyl phthalate; 1, 4-butylene glycol di (meth) acrylate; 1, 2-ethylene glycol di (meth) acrylate; 1, 6-hexanediol di (meth) acrylate; divinyl benzene; or mixtures thereof. Moreover, one or more ethylenically unsaturated nonionic monomers as described above in the polymeric dispersant section may be also included to form structural units of the acrylic polymer. The acrylic polymer particles may be prepared according to the same process for preparing the polymeric dispersant.
- The epoxy imbibed latex useful in the present invention is advantageously prepared as disclosed in US2012/0301621A, e.g., separately from the acrylic polymer dispersion using conventional polymerization techniques (e.g., as described above for preparing the polymeric dispersant) , then combined with the epoxy compound. The epoxy compound can be neat or in the form of an aqueous dispersion, preferably as an aqueous dispersion, and more preferably as a micronized aqueous dispersion. When the epoxy compound is added as an aqueous dispersion, the dispersion of the epoxy compound is stabilized with a stabilizing amount of a surfactant, preferably at a concentration in the range of 0.5%to 5%by weight. Nonionic surfactants are preferred, including alkyl phenol ethoxylate (APEO) free, non-ionic wetting agents such as polyalkylene oxide block copolymers, polyoxyethyleneglycol alkyl ethers, glucoside alkyl ethers, fatty acid esters, glycerol alkyl esters, sorbitan alkyl esters, and polyoxyethylene glycol alkylphenol ethers, including commercially available wetting agents such as TRITON TM X-405 octylphenol ethoxylate available from The Dow Chemical Company. When the epoxy compound combined with the acrylic polymer dispersion as a neat compound, imbibing is facilitated by agitation at or above room temperature. The weight average particle size of the epoxy imbibed latex is typically in the range of from 150 to 350 nm. Weight average particle size is determined using light scattering.
- The epoxy imbibed latex useful in the present invention may have a high solids content, that is, latexes with solids content of at least 40%and particularly in the range of 45-60%, by weight based on the total weight of the epoxy imbibed latex. These epoxy imbibed latexes can include high levels of the acrylic polymer, typically in the range of from 20%to 60%or from 30%to 50%, by weight based on the total weight of the acrylic polymer and the epoxy compound.
- The waterborne epoxy resin in Component A of the epoxy coating composition may be present, by dry weight based on the total dry weight of Component A, in an amount of 5%or more, 10%or more, 15%or more, or even 20%or more, and at the same time, 80%or less, 70%or less, 65%or less, or even 60%or less.
- Component A of the epoxy coating composition of the present invention further comprises pigments and/or extenders. “Pigment” herein refers to a particulate inorganic material which is capable of materially contributing to the opacity or hiding capability of a coating. Such materials typically have a refractive index greater than 1.8. Inorganic pigments may include, for example, titanium dioxide (TiO 2) , zinc oxide, iron oxide, zinc sulfide, barium sulfate, barium carbonate, or mixture thereof. Preferred pigment is TiO 2. TiO 2 typically exists in two crystal forms, anastase and rutile. TiO 2 may be also available in concentrated dispersion form. Component A of the epoxy coating composition may also comprise one or more extenders. “Extender” herein refers to a particulate inorganic material having a refractive index of less than or equal to 1.8 and greater than 1.3. Examples of suitable extenders include calcium carbonate, clay, calcium sulfate, aluminosilicates, silicates, zeolites, mica, diatomaceous earth, solid or hollow glass, ceramic beads, nepheline syenite, feldspar, diatomaceous earth, calcined diatomaceous earth, talc (hydrated magnesium silicate) , silica, alumina, kaolin, pyrophyllite, perlite, baryte, wollastonite, opaque polymers such as ROPAQUE TM Ultra E available from The Dow Chemical Company (ROPAQUE is a trademark of The Dow Chemical Company) , or mixtures thereof.
- The epoxy coating composition of the present invention further comprises Component B. Component B includes curing agents such as amine curing agents to cure the epoxy coating composition. Examples of suitable curing agents include diethylenetriamine, triethylenetetramine, tetraethylene-pentamine, 2, 2, 4-trimethylhexamethylenediamine, 2, 4, 4-trimethylhexamethylenediamine, 1, 6-hexanediamine, 1-ethyl-1, 3-propanediamine, bis (3-aminopropyl) piperazine, N-aminoethylpiperazine, N, N-bis (3-aminopropyl) ethylenediamine, 2, 4-toluenediamine, 2, 6-toluenediamine, 1, 2-diaminocyclohexane, 1, 4-diamino-3, 6-diethylcyclohexane, 1, 2-diamino-4-ethylcyclohexane, 1, 4-diamino-3, 6-diethylcyclohexane, 1-cyclohexyl-3, 4-diaminocyclohexane, isophorone-diamine, norboranediamine, 4, 4′-diaminodicyclohexylmethane, 4, 4′-diaminodicyclohexylmethane, 4, 4′-diaminodicyclohexyl-propane, 2, 2-bis (4-aminocyclohexyl) propane, 3, 3′-dimethyl-4, 4′-diaminodicyclohexylmethane, 3-amino-1-cyclohexane-amino-propane, 1, 3-and 1, 4-bis (aminomethyl) cyclohexane, m-xylylenediamine, p-xylylenediamine, polyoxypropylenediamines, polyamidoamines and aminoplast resins formed by the reaction of ureas and melamines with aldehydes. Commercially available curing agents include Epi-cure 8535, 8536, 8537, 8290 and 8292 curing agents available from Hexion; Anquamine 401 and Epilink 381 curing agents available from Air Products; Beckopox EH659W, EH623W and VEH2133W curing agents available from Allnex; and Epotuf 37-680 and 37-681 curing agents available from Reichhold.
- Component A and/or Component B can optionally include other ingredients such as water, a coalescent, a defoamer, a wetting agent, a thickener, or mixtures thereof.
- “Defoamers” herein refer to chemical additives that reduce and hinder the formation of foam. Defoamers may be silicone-based defoamers, mineral oil-based defoamers, ethylene oxide/propylene oxide-based defoamers, alkyl polyacrylates, or mixtures thereof. Suitable commercially available defoamers include, for example, TEGO Airex 902 W and TEGO Foamex 1488 polyether siloxane copolymer emulsions both available from TEGO, BYK-024 silicone deformer available from BYK, or mixtures thereof. The concentration of the defoamer may be, by weight based on the total dry weight of the epoxy coating composition, generally from zero to 2%, from 0.02%to 0.5%, or from 0.04%to 0.2%.
- The thickeners useful in the present invention may include associative thickeners such as hydrophobically modified ethoxylated urethanes (HEUR) . The concentration of the thickener may be, by weight based on the total dry weight of the epoxy coating composition, generally from zero to 10%by weight, from 0.1%to 4%, or from 0.5%to 2%.
- “Wetting agents” herein refer to chemical additives that reduce the surface tension of a coating composition, causing the coating composition to more easily spread across or penetrate the surface of a substrate. Wetting agents may be anionic, zwitterionic, or non-ionic. The concentration of the wetting agent may be, by weight based on the total dry weight of the epoxy coating composition, from zero to 5%, 0.01%to 2%, or from 0.2%to 1%.
- “Coalescents” herein refer to slow-evaporating solvents that fuse polymer particles into a continuous film under ambient condition. Examples of suitable coalescents include 2-n-butoxyethanol, dipropylene glycol n-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, propylene glycol methyl ether, propylene glycol n-propyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, triethylene glycol monobutyl ether, dipropylene glycol n-propyl ether, n-butyl ether, or mixtures thereof. The concentration of the coalescent may be, by weight based on the total dry weight of the epoxy coating composition, from zero to 10%, from 0.01%to 9%, or from 1%to 8%.
- In addition to the components described above, the epoxy coating composition of the present invention may further comprise any one or combination of the following additives: buffers, neutralizers, humectants, mildewcides, biocides, anti-skinning agents, colorants, flowing agents, anti-oxidants, plasticizers, leveling agents, adhesion promoters, and grind vehicles. When present, these additives may be present in a combined amount of from zero to 10%, from 0.01%to 2%, or from 0.05%to 1%, by weight based on the total weight of the epoxy coating composition.
- Component A and Component B are mixed together to form the epoxy coating composition prior to application. The amount of the curing agent used generally varies from about 1: 0.75 to 1: 1.5 and preferably from 1: 1 to 1: 1.4, active hydrogen equivalent to oxirane equivalent of the waterborne epoxy resin. The weight ratio of Component A to Component B in the epoxy coating composition may be from 90: 1 to 1: 1, from 40: 1 to 2: 1, from 25: 1 to 4: 1, or from 15: 1 to 5: 1, affording flexibility in operation.
- The epoxy coating composition of the present invention may have a pigment volume concentration (PVC) of from 5%to 90%, for example, 10%or more, 15%or more, 20%or more, or even 25%or more, at the same time, 85%or less, 80%or less, 70%or less, 60%or less, 50%or less, 40%or less, 35%or less, or even 30%or less. PVC may be determined according to the following equation:
- PVC%= [Volume (Pigment + Extender) /Volume (Pigment + Extender + Binder) ] ×100%
- The binder herein includes the waterborne epoxy resin in Component A and the curing agent in Component B.
- The solids content of the epoxy coating composition of the present invention may be from 20%to 70%by weight, from 25%to 65%by weight, or from 30%to 50%by weight. The epoxy coating composition of the present invention is substantially free of the polyfunctional carboxylic hydrazides described above, for example, in an amount less than 0.5%, less than 0.1%, or even zero, by weight based on the dry weight of the polymeric dispersant.
- The epoxy coating composition of the present invention may be prepared by admixing Component A and Component B as described above. The pigments and/or extenders are preferably mixed with the polymeric dispersant to form a slurry of the pigments and/or extenders. The obtained admixture may be then subjected to shearing in a grinding or milling device as is well known in the pigment dispersion art. Such grinding or milling devices include roller mills, ball mills, bead mills, attrittor mills and include mills in which the admixture is continuously recirculated. The shearing of the admixture is continued for a time sufficient to disperse the pigments and/or extenders. The waterborne epoxy resin and other ingredients are added to the pigment and/or extender grinds under low speed stirring to form Component A.
- The epoxy coating composition of the present invention provides coatings made therefrom with improved salt spray corrosion resistance. For example, the epoxy coating composition exhibits a blister rating better than “2MD” at a dry film thickness of 50-60 μm after at least 110 hours, or even 175 hours, of exposure to salt spray when coated onto a corrosion susceptible substrate, such as cold rolled steel. The coating composition may also have good stability, for example, good storage stability as indicated by a viscosity change of 10 Krebs Units (KU) or less for Component A after storage. The salt spray and storage stability tests may be conducted according to the test methods described in the Examples section below.
- The present invention also relates to a method of improving corrosion resistance of a coating. The method may comprise (i) providing the epoxy coating composition of the present invention, (ii) applying the epoxy coating composition to a substrate; and (iii) drying, or allowing to dry, the epoxy coating composition to obtain the coating, wherein the coating has an improved corrosion resistance as defined above. The epoxy coating composition can be applied to, and adhered to, various substrates. Examples of suitable substrates include wood, metals, plastics, foams, stones, elastomeric substrates, glass, fabrics, concrete, or cementitious substrates. The epoxy coating composition is suitable for various applications such as marine and protective coatings, automotive coatings, traffic paint, Exterior Insulation and Finish Systems (EIFS) , roof mastic, wood coatings, coil coatings, plastic coatings, can coatings, architectural coatings, and civil engineering coatings. The epoxy coating composition is particularly suitable for industrial coatings.
- The epoxy coating composition of the present invention can be applied to a substrate by incumbent means including brushing, dipping, rolling and spraying. The aqueous composition is preferably applied by spraying. The standard spray techniques and equipment for spraying such as air-atomized spray, air spray, airless spray, high volume low pressure spray, and electrostatic spray such as electrostatic bell application, and either manual or automatic methods can be used. After the epoxy coating composition of the present invention has been applied to a substrate, the epoxy coating composition can dry, or allow to dry, to form a film (this is, coating) at room temperature (20-25℃) , or at an elevated temperature, for example, from 35 to 60℃.
- EXAMPLES
- Some embodiments of the invention will now be described in the following Examples, wherein all parts and percentages are by weight unless otherwise specified.
- The following abbreviations are used in the examples:
- ST: Styrene, MMA: Methyl methacrylate, PEM: Phosphoethyl methacrylate, SPS: Sodium persulfate, t-BHP: tert-Butyl hydroperoxide, IAA: isoascorbic acid, DAAM: Diacetone acrylamide, SHP: sodium hyphophosphite, nDDM: n-Dodecyl mercaptan, AMPS 2405: 50%aqueous solution of sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) from Lubrizol, and MA-80A: methacrylic ester of methoxypolyethylene glycol (8 ethylene oxide units) available from Nippon Nyukazai) .
- The following standard analytical equipment and methods are used in the Examples.
- Storage Stability
- A Stormer viscometer was used to analyze the medium shear viscosity (KU as units) of Component A (epoxy side) of a coating composition according to ASTM (American Society for Testing and Materials) D562-10 (2014) . In a 500 mL container, the Component A (510 grams (g) ) was formed at room temperature based on formulations given in Table 2 below, and then an initial viscosity was measured and denoted as Initial KU 1. The Component A was then equilibrated at room temperature overnight and then a viscosity overnight was measured and denoted as Final KU 1. The overnight viscosity change, denoted as delta KU (overnight) , is determined by Final KU 1 minus Initial KU 1. Then, a portion of the Component A (180 g) was poured into a 200 ml plastic bottle, and then an initial viscosity was measured and denoted as Initial KU 2. The plastic bottle was stored in an oven at 50℃ for 7 days, and then allowed to cool to room temperature to test a final viscosity, denoted as Final KU 2. The heatage viscosity change, denoted as delta KU (heatage) , is determined by Final KU 2 minus Initial KU 2. Thus, the total viscosity change, denoted as total delta KU, is calculated by the sum of delta KU (overnight) and delta KU (heatage) , that is, (Final KU 1-Initial KU 1) + (Final KU 2-Initial KU 2) . The total delta KU being 10 KU or less indicates acceptable storage stability. The smaller the total delta KU, the better the storage stability.
- Salt Spray Test
- The surface of cold rolled steel panels were cleaned prior to coating application. Then a coating composition was applied on the cold rolled steel panels by drawdown bar and allowed to dry in a constant temperature room (CTR, 25℃, 50%relative humidity ( “RH” )) for 7 days prior to testing. The obtained dry coating films had a thickness in the range of 50-60 μm. The coated panels were sealed by 3M tape and a scribe mark made with a razor blade was scratched into the bottom half of the panels immediately before exposure. Salt spray corrosion resistance was tested by exposure of the as prepared panels to a salt spray environment (5%sodium chloride fog) in accordance with ASTM B-117-2011. Panels were exposed to the salt spray environment for 110 hours, and then removed to rate blistering. Blister ratings were conducted in accordance with ASTM D714-02 (2009) and included a number and one or more letters. The letter is a qualitative representation of the density of bubbles, whereby “F” refers to few, “D” refers to dense, “M” refers to medium, “MD” refers to medium dense, and “D” refers to dense. The number refers to the size of the blister, whereby 0 is the largest size, 10 is no blister. The bigger the number, the smaller the size of blister. Blistering ratings better than “2MD” indicate acceptable salt spray corrosion resistance.
- GPC Analysis
- GPC analysis was performed generally by Agilent 1200. A dispersant sample was dissolved in dimethylformamide (with formic acid, 100: 2, v/v) with a concentration of about 5 mg/mL and then filtered through 0.45 μm Polytetra fluoroethylene (PTFE) filter prior to the GPC analysis. The GPC analysis was conducted using the following conditions: Column: One PL guard column (7.5mm*50mm, 5 um) and two Mixed E or D columns (7.5x300mm) in tandem; column temperature: 50 ℃; mobile phase: dimethylformamide (with formic acid, 100: 2, v/v) ; flow rate: 0.7 mL/minute; Injection volume: 100 L; detector: Agilent Refractive Index detector, 50 ℃; and calibration curve: PL Polyethylene Glycol standards with molecular weights ranging from 31630 to 1010 g/mol, using polynom 3 fitness.
- Dispersing Efficiency
- The pH of a dispersant was first adjusted to 8.8 by NH 3·H 2O to give a neutralized dispersant. Water (125 g) , TiO 2 (Ti-Pure R-902, 37.5 g) , an anti-rust pigment (Nubirox 106, 45 g) , talc (Talc 800, 75 g) , and barium sulfate (Blanc Fixe N BaSO 4 1250, 90 g) were added to a 0.5 L plastic straight cylinder to form a paste. Then the neutralized dispersant obtained above (0.1-0.3 g) was added to the above formed paste. After grinding the paste under 1,500 rpm agitation for about 2 minutes, the resultant slurry was measured for low shear viscosity (Brookfield 4 #/60 rpm) with a Brookfield Viscometer (LVDV-II+) . The neutralized dispersant was continuously added into the slurry until the viscosity of the slurry didn’ t drop. The dispersing efficiency was recorded as percentage of the dry weight of the dispersant to the dry weight of the total amount of pigments and extenders at the lowest point of the low shear viscosity of the slurry. The lower the percentage, the better the dispersing efficiency.
- Synthesis of polymeric dispersant 1
- Firstly, a monomer aqueous solution was prepared by mixing deionized (DI) water (200 g) , MA-80A (154.8 g) , PEM (55.2 g) and DAAM (10 g) . In a 500 mL reactor with a mechanical stirrer, a condenser, a thermometer and nitrogen (N 2) purging line, DI water (200 g) was added. When the reactor temperature was increased up to 88 ℃, a chain regulator solution of SHP (16.62 g SHP dissolved in 15 g DI water) was added into reactor. After 3 minutes, the monomer aqueous solution, an initiator solution of SPS (16.62 g SPS dissolved in 20 g DI water) , and another chain regulator solution of SHP (16.62 g SHP dissolved in 20 g DI water) were gradually fed into the reactor at 78℃ over 85 minutes, 100 minutes, and 85 minutes, respectively. When all feeds were finished, feed pipes were rinsed and the reactor was kept at 88℃ for 15 minutes. Then the reactor temperature was cooled down to room temperature to give an aqueous solution.
- Synthesis of polymeric dispersant A
- The dispersant A was prepared according to the same procedure as preparing the dispersant 1 above, except that the monomer aqeuous solution used herein was prepared by mixing DI water (236.8 g) , MA-80A (138 g) , and PEM (55.2 g) .
- Synthesis of polymeric dispersant B
- Firstly, a monomer emulsion was prepared by mixing STY (225.00 g) , AMPS 2405 (90.00 g) , PEM (18.00 g) , MMA (12.00 g) , nDDM (12.87 g) , and Disponil Fes 993 surfactant (18.30 g, sodium salt of a fatty polyglycol ether sulphate, available from BASF) in water (70 g) . A three-liter, five-necked flask equipped with a mechanical stirrer, N 2 sweep, a thermocouple, and a condenser was charged with water (405 g) and Disponil Fes 993 (1.95 g) . The resultant solution in the flask was heated to 86 ℃. An initiator solution of SPS (1.30 g SPS dissolved in 5 g water) was added. Two minutes later, the monomer emulsion was fed. Simultaneously, another initiator solution of SPS (1.06 g SPS dissolved in 60 g water) was co-fed over a period of 90 minutes while the flask temperature was maintained around 86 ℃, holding for 10 minutes after the end of the feeds. After cooling to 60 ℃, a chaser system including an aqueous solution of ferrous sulfate (4 g, 0.2%) , t-BHP (1.18 g) dissolved in water (5 g) , as well as IAA (0.58 g) dissolved in water (5 g) were added. After holding for 15 minutes, the identical chaser system was charged again. Finally the resultant dispersion was cooled to ambient temperature and filtered through 325 mesh size screen to afford a copolymer emulsion with total solids of 30%.
- Synthesis of polymeric dispersant 2
- The dispersant 2 was prepared according to the same procedure as preparing the dispersant B above, except that the monomer emulsion was prepared by mixing STY (180.00 g) , AMPS 2405 (90.00 g) , PEM (18 g) , MMA (12.00 g) , DAAM (45.00 g) , nDDM (12.87 g) , and Disponil Fes 993 (18.30 g) in water (70 g) .
- Synthesis of polymeric dispersant 3
- The dispersant 3 was prepared according to the same procedure as preparing the dispersant B above, except that the monomer emulsion was prepared by mixing STY (195.00 g) , AMPS 2405 (90.00 g) , PEM (18.00 g) , MMA (12.00 g) , DAAM (30.00 g) , nDDM (12.87 g) , and Disponil Fes 993 (18.30 g) in water (70 g) .
- Properties of the above obtained polymeric dispersants are given in Table 1.
- Table 1. Properties of polymeric dispersants
-
- Coating compositions
- Two-component (2k) coating compositions of Examples (Exs) 1-3 and Comparative (Comp) Exs A and B were prepared, based on formulations given in Table 2, according to the procedure as follows,
- Preparation of Component A: Firstly, water, the above obtained dispersant, NH 3·H 2O neutralizer, Tego 902W defoamer, Tego 1488 defoamer, and Tego Twin 4100 surfactant were mixed, followed by adding Ti-Pure R-902 TiO 2, Nubirox 106 Zinc phosphate, Talc 800, and Blanc Fixe N BaSO 4 1250 barium sulfate. The obtained mixture was then ground under 1,500 rpm agitation for about 30 minutes to form grinds. Then, letdown additives including Texanol coalescent, 15%aqueous NaNO 2 inhibitor solution, ACRYSOL TM RM-12W thickener, water, as well as AEH-20 dispersion were added to the grinds and further stirred for 30 minutes to form Component A (Total: 509.92 g) . The dispersant used in each coating composition is given in Table 3.
- Preparation of Component B: Beckopox EH 613W/80WA hardener was diluted with water and stirred for 10 minutes to form Component B.
- Before application of a coating composition to a substrate, Component A and Component B were stored separately. Upon application, Component B was added to Component A at stoichiometry ratio (epoxy: amine) of 1.27: 1.0 and stirred for about 15 minutes.
- Table 2. Formulation of 2K Waterborne Acrylic/Epoxy Hybrid Dispersion
-
-
- ACRYSOL is a trademark of The Dow Chemical Company.
- The above obtained coating compositions were evaluated according to the test methods described above and results are given in Table 3. As shown in Table 3, comparative dispersants A and B had poor storage stability while all coating formulations formulated with dispersants 1-3 demonstrated acceptable storage stability, as indicated by total delta KU being 10 or less for the Component A of the coating compositions. In addition, dispersants 1-3 provided coatings made therefrom with better salt spray corrosion resistance than the dispersants A and B (ablister rating of 2MD) after exposure to salt spray test for 110 hours or 175 hours. Moreover, dispersants A and B showed lower dispersing efficiency than dispersant 1, and dispersants 2 and 3, respectively.
- Table 3. Properties of Coating Compositions
-
Claims (15)
- A polymeric dispersant comprising, by weight based on the dry weight of the polymeric dispersant,(a) from 11%to 60%of structural units of an acid monomer and/or a salt thereof selected from the group consisting of an ethylenically unsaturated sulfonic acid-containing monomer or a salt thereof, an ethylenically unsaturated phosphorous acid-containing monomer or a salt thereof, or mixtures thereof;(b) from 0.5%to 20%of structural units of a carbonyl-containing functional monomer; and(c) from 20%to 88.5%of structural units of an ethylenically unsaturated nonionic monomer;wherein the polymeric dispersant has a weight average molecular weight of from 300 to 40,000 Daltons.
- The polymeric dispersant of claim 1, wherein the carbonyl-containing functional monomer is diacetone acrylamide.
- The polymeric dispersant of claim 1, wherein the polymeric dispersant comprises, by weight based on the dry weight of the polymeric dispersant, from 4%to 15%of structural units of the carbonyl-containing functional monomer.
- The polymeric dispersant of claim 1 comprising, by weight based on the dry weight of the polymeric dispersant, from 15%to 35%of structural units of the acid monomer and/or the salt thereof.
- The polymeric dispersant of claim 1, wherein the weight ratio of the structural unit of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof to the structural unit of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof is in the range of from 0.3 to 20.
- The polymeric dispersant of claim 1, wherein the acid monomer and/or the salt thereof is selected from the group consisting of phosphoethyl (meth) acrylate, phosphopropyl (meth) acrylate, phosphobutyl (meth) acrylate, salts thereof; sodium styrene sulfonate, sodium vinyl sulfonate, acrylamido-2-methylpropanesulfonic acid, a salt of acrylamido-2-methylpropanesulfonic acid, sodium 2-acrylamido-2-methylpropane sulfonate; or mixtures thereof.
- The polymeric dispersant of claim 1, further comprising less than 10%of structural units of an additional α, β-ethylenically unsaturated carboxylic acid monomer, by weight based on the dry weight of the polymeric dispersant.
- The polymeric dispersant of claim 1 comprising, by weight based on the dry weight of the polymeric dispersant,from 5%to 20%of structural units of the ethylenically unsaturated sulfonic acid-containing monomer and/or salt thereof,from 4%to 20%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof,from 4%to 15%of structural units of diacetone acrylamide, andfrom 55%to 85%of structural units of the ethylenically unsaturated nonionic monomer.
- The polymeric dispersant of claim 1 comprising, by weight based on the dry weight of the polymeric dispersant,from 15%to 60%of structural units of the ethylenically unsaturated phosphorous acid-containing monomer and/or salt thereof,from 2%to 15%of structural units of diacetone acrylamide, andfrom 25%to 80%of structural units of the alkoxylated (meth) acrylate, the hydroxy-functional alkyl (meth) acrylate, or combinations thereof.
- The polymeric dispersant of claim 1, having a weight average molecular weight of from 1,000 to 20,000 Daltons.
- A two-component epoxy coating composition comprising: an epoxy component A and a component B comprising a curing agent, wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of any one of claims 1-10, and pigments and/or extenders.
- The epoxy coating composition of claim 11, wherein the polymeric dispersant is present, by dry weight based on the total dry weight of pigments and/or extenders, in an amount of from 0.1%to 10%.
- The epoxy coating composition of claim 11, wherein the waterborne epoxy resin is an aqueous dispersion of acrylic polymer particles imbibed with an epoxy compound.
- The epoxy coating composition of claim 11, wherein the weight ratio of the epoxy component A and the component B is from 90: 1 to 1: 1.
- A method of preparing a two-component epoxy coating composition, comprising: admixing an epoxy component A and a component B comprising a curing agent,wherein the epoxy component A comprises a waterborne epoxy resin, a polymeric dispersant of any one of claims 1-10, and pigments and/or extenders.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/118894 WO2020113366A1 (en) | 2018-12-03 | 2018-12-03 | Dispersant and waterborne epoxy coating composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3891233A1 true EP3891233A1 (en) | 2021-10-13 |
EP3891233A4 EP3891233A4 (en) | 2022-07-20 |
Family
ID=70974075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18941961.7A Pending EP3891233A4 (en) | 2018-12-03 | 2018-12-03 | Dispersant and waterborne epoxy coating composition |
Country Status (8)
Country | Link |
---|---|
US (1) | US20210363363A1 (en) |
EP (1) | EP3891233A4 (en) |
CN (1) | CN112996872B (en) |
AU (1) | AU2018451574A1 (en) |
BR (1) | BR112021008339A2 (en) |
CA (1) | CA3121018A1 (en) |
MX (1) | MX2021005637A (en) |
WO (1) | WO2020113366A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7334231B2 (en) * | 2018-03-20 | 2023-08-28 | グラファイト イノベーション アンド テクノロジーズ インコーポレイティド | Multifunctional coating for use in damp environments |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3129518B2 (en) * | 1992-04-24 | 2001-01-31 | ビーエーエスエフディスパージョン株式会社 | Crosslinkable aqueous pigment dispersion |
EP1277766B1 (en) * | 2001-07-20 | 2009-06-24 | Rohm And Haas Company | Polymer compound containing silicon ester moiety and composition therefrom |
ES2300056T3 (en) * | 2004-08-26 | 2008-06-01 | Lubrizol Advanced Materials, Inc. | IMPROVED STABILITY COATING COMPOSITIONS. |
US8816016B2 (en) * | 2008-09-09 | 2014-08-26 | Rohm And Haas Company | Reduced corrosion curable composition |
US9090793B2 (en) * | 2010-12-17 | 2015-07-28 | Celanese International Corporation | Aqueous latex coating compositions |
JP5443526B2 (en) | 2011-03-01 | 2014-03-19 | ローム アンド ハース カンパニー | Epoxy resin absorbent polymer particles |
US8658742B2 (en) | 2011-05-26 | 2014-02-25 | Rohm And Haas Company | Epoxy resin imbibed polymer particles |
CA2818445C (en) * | 2012-07-31 | 2020-07-14 | Rohm And Haas Company | Sulfonic acid monomer based compositions |
CN104910745A (en) * | 2014-03-13 | 2015-09-16 | 陶氏环球技术有限公司 | Pigmented coating composition with a sulfonic acid functionalized dispersant and a phosphorus acid functionalized binder |
US9708501B2 (en) * | 2014-04-17 | 2017-07-18 | Rohm And Haas Company | Polymer dispersion and its application in high pigment volume concentration coatings |
EP3218420B1 (en) * | 2014-11-13 | 2019-07-10 | Rohm and Haas Company | Polymer dispersion and its application in high pigment volume concentration paints |
US10487166B2 (en) * | 2014-12-19 | 2019-11-26 | Dow Global Technologies Llc | Aqueous polymer dispersion and process of making the same |
BR112019007295B1 (en) * | 2016-11-02 | 2022-05-17 | Dow Global Technologies Llc | coating composition |
CN107459602B (en) | 2017-08-31 | 2020-04-28 | 衡水新光新材料科技有限公司 | Primer emulsion and preparation method and application thereof |
-
2018
- 2018-12-03 BR BR112021008339-1A patent/BR112021008339A2/en not_active Application Discontinuation
- 2018-12-03 US US17/285,150 patent/US20210363363A1/en active Pending
- 2018-12-03 AU AU2018451574A patent/AU2018451574A1/en active Pending
- 2018-12-03 WO PCT/CN2018/118894 patent/WO2020113366A1/en unknown
- 2018-12-03 MX MX2021005637A patent/MX2021005637A/en unknown
- 2018-12-03 CA CA3121018A patent/CA3121018A1/en active Pending
- 2018-12-03 CN CN201880099311.4A patent/CN112996872B/en active Active
- 2018-12-03 EP EP18941961.7A patent/EP3891233A4/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20210363363A1 (en) | 2021-11-25 |
AU2018451574A1 (en) | 2021-06-17 |
EP3891233A4 (en) | 2022-07-20 |
CN112996872A (en) | 2021-06-18 |
WO2020113366A1 (en) | 2020-06-11 |
CN112996872B (en) | 2023-02-24 |
MX2021005637A (en) | 2021-09-08 |
CA3121018A1 (en) | 2020-06-11 |
BR112021008339A2 (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017416631B2 (en) | Waterborne epoxy coating composition | |
KR102604755B1 (en) | Aqueous polymer dispersions and aqueous coating compositions comprising the same | |
US11142601B2 (en) | Aqueous polymer dispersion and aqueous coating composition comprising the same | |
US11912871B2 (en) | Aqueous polymer dispersion and process of making the same | |
CN112996872B (en) | Dispersant and aqueous epoxy coating composition | |
WO2021046673A1 (en) | Aqueous dispersion of polymeric particles | |
US12110394B2 (en) | Aqueous polymer dispersion and process of making the same | |
EP4237459A1 (en) | Aqueous dispersion of polymer additive and process thereof | |
EP4217430A1 (en) | Emulsion polymer and process for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20220617 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09D 133/08 20060101ALI20220611BHEP Ipc: C08L 33/08 20060101ALI20220611BHEP Ipc: C08F 220/28 20060101ALI20220611BHEP Ipc: C08F 212/08 20060101ALI20220611BHEP Ipc: C09D 163/00 20060101AFI20220611BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230502 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C09D0163000000 Ipc: C09D0005080000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 220/28 20060101ALI20240705BHEP Ipc: C09D 133/08 20060101ALI20240705BHEP Ipc: C08L 33/08 20060101ALI20240705BHEP Ipc: C08F 20/28 20060101ALI20240705BHEP Ipc: C08F 212/08 20060101ALI20240705BHEP Ipc: C09D 163/00 20060101ALI20240705BHEP Ipc: C09D 7/45 20180101ALI20240705BHEP Ipc: C08G 59/50 20060101ALI20240705BHEP Ipc: C09D 5/08 20060101AFI20240705BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240801 |