EP3887901A1 - Method for manufacturing an electrochromic glazing - Google Patents

Method for manufacturing an electrochromic glazing

Info

Publication number
EP3887901A1
EP3887901A1 EP19868187.6A EP19868187A EP3887901A1 EP 3887901 A1 EP3887901 A1 EP 3887901A1 EP 19868187 A EP19868187 A EP 19868187A EP 3887901 A1 EP3887901 A1 EP 3887901A1
Authority
EP
European Patent Office
Prior art keywords
layer
transparent conductive
heat treatment
conductive layer
glass panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19868187.6A
Other languages
German (de)
French (fr)
Inventor
Pascal Reutler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3887901A1 publication Critical patent/EP3887901A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode

Definitions

  • the present invention relates to the field of electrochromic glazing and to its manufacturing process.
  • Electrochromic devices and in particular electrochromic glazing comprise in known manner an electrochromic stack comprising a succession of five layers essential for the operation of the device, that is to say the reversible color change following the application of an electrical supply. appropriate. These five functional layers are:
  • -A layer of an electrochromic material capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and de-inserted states are of a distinct color when they are subjected to an appropriate electrical supply; one of these states having a higher light transmission than the other,
  • either of the transparent electrically conductive layers which may be in contact with the transparent substrate.
  • the method of manufacturing by magnetron sputtering of such a mineral electrochromic system with at least five layers comprises one or more stages of heat treatment (annealing) during or after the steps of depositing the layers by magnetron sputtering.
  • Some materials, in particular the metal oxides forming the two outermost transparent conductive layers of the stack, are deposited by magnetron sputtering. To have sufficient crystallinity and conductivity, these conductive layers can be deposited hot, or be deposited cold and undergo, after this cold deposit, a heat treatment. The performance and optical properties of the final product strongly depend on these heat treatment steps.
  • Another known method consists of providing two glass panels and depositing, on each of them, a transparent conductive layer (TC).
  • TC transparent conductive layer
  • the electrochromic layer (EC) and the counter-electrode layer (CE) are each deposited on a transparent conductive layer.
  • the layer of an electronically insulating and ionically conductive electrolyte is arranged on the electrochromic layer (EC) or on the counter-electrode layer (CE). The whole is then assembled to form the glazing.
  • This assembly step further comprises the realization of the connection means for bringing the current to the transparent conductive layers.
  • the transparent conductive layers are deposited cold, the roughness of the layers is low, which has an advantage, but their electrical conductivity is also low so that the performance is lower.
  • the layers are subjected to a heat treatment of the annealed type, this is characterized by a slow rise in temperature and by a high treatment time, usually about one hour in an oven at 400 ° C. , the electrical conductivity of the layers increases so as to improve the performance of the glazing.
  • this treatment involves an increase in the size of the crystals and therefore also in the roughness. This increase in the size of the crystals is also observed if the transparent conductive layers are deposited hot (deposition at a temperature above 150 ° C.).
  • each transparent conductive layer TCO
  • the roughness of the transparent conductive layers is different.
  • electrode (CE) on the other side exert pressure / stress on the electrolyte layer, electronic insulator and ionic conductor at the risk of deforming it.
  • this roughness is uneven, there may exist an uneven thickness locally, that is to say that locally the layer of an ion conducting electrolyte is more compressed, thin, thus rendering the performance of the electrochromic glazing uneven and inhomogeneous.
  • the present invention therefore proposes to resolve these drawbacks by providing a method for producing an electrochromic glazing in which the electrolyte layer has local variations of smaller thickness.
  • the invention relates to a method for manufacturing an electrochromic glazing, said glazing comprising an electrochromic stack comprising: a first transparent conductive layer,
  • electrochromic electrode -a layer of a mineral electrochromic material with cathodic coloring, called electrochromic electrode
  • said method comprising the following steps:
  • - assemble the two glass panels to form a laminated glazing, Characterized in that it further comprises at least one heat treatment step consisting in thermally treating at least one glass panel provided with at least one transparent conductive layer by a rapid heat treatment device before assembling the panels of glass.
  • said heat treatment step is used to treat the transparent conductive layer of each glass panel.
  • a heat treatment step is also used to treat the layer of an electrochromic material and / or the counter-electrode layer.
  • said step of heat treatment of said at least one transparent conductive layer is carried out after the deposition of the first transparent conductive layer on the first glass panel and / or of the second transparent conductive layer on the second glass panel.
  • said heat treatment step is carried out to simultaneously treat the layer of an electrochromic material and the first transparent conductive layer and / or to simultaneously treat the counter-electrode layer and the second transparent conductive layer.
  • the heat treatment device is placed opposite the layer to be treated and is arranged to bring the layer to be treated to a temperature at least equal to 300 ° C.
  • the heat treatment device is arranged to heat treat the layer to be treated for a short time, preferably less than 100 milliseconds.
  • the heat treatment device is a laser device emitting radiation having a wavelength between 300 and 2000 nm.
  • the heat treatment device comprises at least one intense pulsed light lamp emitting radiation having an emission spectrum preferably comprising several lines, in particular at wavelengths ranging from 160 to 1000 nm, each pulse of light preferably having a duration in a range from 0.05 to 20 milliseconds.
  • - fig. 1 is a schematic representation of the electrochromic glazing according to the invention.
  • an electrochromic glazing In Figure 1 is shown an electrochromic glazing 1. Such an electrochromic glazing comprises two glass panels 2 made integral by means of a frame or frame. Between these two glass panels, a complete electrochromic stack 3 is arranged. This stack includes:
  • -A layer of EC electrochromic material capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and de-inserted states are of a distinct color when they are subjected to an appropriate electrical supply ; one of these states having a higher light transmission than the other,
  • the five layers (TC01 / EC / CI / CE / TC02) listed above are the only functional layers essential for the proper functioning of electrochromic glazing.
  • the electrochromic stack 3 can comprise other useful layers, which are however not essential for obtaining an electrochromic behavior. It can for example comprise, between the glass substrate and the adjacent TCO layer, a barrier layer, known to prevent for example the migration of sodium ions.
  • the stack can also include one or more anti-reflection or color adaptation layers comprising for example an alternation of transparent layers with high index and low refractive index. All the mineral layers of the stack are preferably deposited by sputtering, reactive or not, assisted by magnetic field, generally in the same installation under vacuum.
  • the materials capable of serving as transparent conductive oxides for the two transparent conductive layers TCO are known.
  • indium oxide, mixed tin and indium oxide, tin oxide, doped tin oxide, zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide and zinc oxide doped with aluminum and / or gallium Preferably, mixed tin and indium oxide (ITO) or zinc oxide doped with aluminum and / or gallium will be used.
  • the thickness of each of the TCO layers is preferably between 10 and 1000 nm, preferably between 50 and 800 nm.
  • ITO mixed tin and indium oxide
  • it may also be a layer of tin oxide doped with fluorine or antimony, or a multilayer.
  • Each layer of transparent conductive oxide is deposited on one of the glass panels.
  • the two layers of transparent conductive oxide must be connected to respective current supply connectors.
  • These connectors for example bus bar and wires, are respectively brought into contact with the transparent conductive oxide layer TC01 and the transparent conductive oxide layer TC02 to supply the appropriate electrical supply.
  • the EC electrochromic material is preferably based on tungsten oxide (cathodic electrochromic material) or iridium oxide (anodic electrochromic material). These materials can insert cations, in particular protons or lithium ions.
  • the CE counter-electrode is preferably made up of a neutral layer in coloring or, at least, transparent or little colored when the electrochromic layer is in the colored state.
  • the counter electrode is preferably based on an oxide of an element chosen from tungsten, nickel, iridium, chromium, iron, cobalt, rhodium, or based on a mixed oxide d '' at least two of these, including mixed nickel and tungsten oxide. If the electrochromic material is tungsten oxide, therefore a cathodic electrochromic material, the colored state of which corresponds to the most reduced state, an anodic electrochromic material based on nickel oxide or iridium can for example be used for the counter electrode.
  • electrochromic material can in particular be a layer of mixed oxide of vanadium and tungsten or mixed oxide of nickel and tungsten.
  • electrochromic material is iridium oxide
  • a cathodic electrochromic material for example based on tungsten oxide, can play the role of counter-electrode.
  • an optically neutral material in the oxidation states concerned, such as for example cerium oxide or organic materials such as electronic conductive polymers (polyaniline) or Prussian blue.
  • the thickness of the counter electrode is generally between 50 nm and 600 nm, in particular between 150 nm and 250 nm.
  • the electrolyte C1 is in the form of a polymer or a gel, in particular a proton-conducting polymer, for example such as those described in European patents EP 0 253 713 and EP 0 670 346, or a lithium ion conduction polymer, for example such as those described in patents EP 0 382 623, EP 0 518 754 or EP 0 532 408. These are then called mixed electrochromic systems.
  • the electrolyte C1 consists of a mineral layer forming an ionic conductor which is electrically isolated. These electrochromic systems are then designated as “all solid”. Reference may in particular be made to European patents EP 0 867 752 and EP 0 831 360.
  • the thickness of the electrolyte layer can be between 1 nm and 1 mm. Preferably, the thickness will be between 1 and 300 nm and even more preferably between 1 and 50 nm.
  • An electrochromic glazing unit comprising an electrochromic stack is produced according to a manufacturing process, said stack comprising:
  • a layer of an EC electrochromic material capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and uninserted states are of a distinct color when subjected to an appropriate power supply; one of these states having a higher light transmission than the other,
  • a CE counter-electrode layer capable of reversibly inserting ions of the same charge as that which the electrochromic material can insert
  • a first step in the manufacturing process consists in providing two substrates or glass panels 2.
  • the glass panels 2 used are typically float glass, possibly cut, polished and washed.
  • a second step consists in depositing, on each glass panel 2, at least one layer of a transparent conductive oxide TC01 / TC02.
  • a first glass panel 2 is then obtained on which a first layer of a transparent conductive oxide TC01 is deposited and a second glass panel 2 on which is deposited a second layer of a transparent conductive oxide TC02. It will be understood that the term deposit does not mean that the layer is deposited directly on the glass panel but that it can be deposited on an already existing layer.
  • the layer of an electrochromic material EC is deposited on the first glass panel 2 and the layer called the CE counter electrode is deposited on the second glass panel. 2
  • a fourth step consists in depositing at least the layer of ion-conducting electrolyte Cl.
  • This layer of ion-conducting electrolyte Cl is deposited on the layer of an electrochromic material EC or on the layer called the CE counter-electrode.
  • This layer of ion-conducting electrolyte C1 can be deposited in different ways.
  • this layer can be deposited by sputtering, reactive or not, assisted by magnetic field, generally in the same vacuum installation.
  • this layer of ion-conducting electrolyte can be deposited in the form of a gel.
  • a gel process consists in depositing the layer of ion-conducting electrolyte Cl in liquid form on the desired surface.
  • a heat treatment is then carried out in order to obtain the desired layer of electrolyte C1 ionic conductor.
  • a heat treatment step is carried out.
  • This heat treatment is carried out at least on one of the transparent electroconductive layers TC01, TC02, preferably on the transparent conductive oxide layer of each glass panel 2.
  • This heat treatment step is carried out between the second step and the third step in the manufacturing process of electrochromic glazing.
  • the heat treatment acts only on the transparent electroconductive layers TC01, TC02.
  • each panel can be treated by a different heat treatment device or by the same treatment device.
  • a so-called additional heat treatment is also applied to the layer of an electrochromic material EC and / or to the layer called the CE counter-electrode.
  • a heat treatment stage also takes place between the third stage and the fourth stage of the process for manufacturing the electrochromic glazing. It is therefore understood that a heat treatment takes place between the second step and the third step for the treatment of at least one transparent electroconductive layer TC01, TC02 of a glass panel and that another heat treatment takes place between the third step and the fourth step for the treatment of the layer of an EC electrochromic material and / or of the layer called the CE counter-electrode.
  • only one heat treatment step is provided.
  • This heat treatment step is carried out between the third step and the fourth step of the process for manufacturing the electrochromic glazing and is arranged to heat treat the layer of an electrochromic material EC and the first transparent electroconductive layer TC01 or the counter electrode layer CE and the second transparent electroconductive layer TC02. It is therefore understood that the layers TC01 / EC - TC02 / CE of the same glass panel 2 are heat treated simultaneously. It could also be provided that the two glass panels 2 are treated at the same time.
  • This heat treatment is carried out by a rapid heat treatment device, the latter being able to use different technologies.
  • the term rapid heat treatment is understood to mean a heat treatment for which, locally, the layer to be treated undergoes an abrupt / abrupt rise in temperature followed by an abrupt / abrupt reduction in temperature.
  • laser sources are used and are typically laser diodes or fiber lasers, in particular fiber, diode or even disc lasers.
  • Laser diodes make it possible to economically achieve high power densities compared to the electrical power supply, for a small footprint.
  • the size of fiber lasers is even smaller, and the linear power obtained can be even higher.
  • fiber lasers is understood to mean lasers in which the place of generation of the laser light is spatially offset from its place of delivery, the laser light being delivered by means of at least one optical fiber.
  • the laser light is generated in a resonant cavity in which is located the emitting medium which is in the form of a disc, for example a thin disc (of about 0.1 mm thick) in Yb: YAG.
  • the light thus generated is coupled in at least one optical fiber directed towards the place of treatment.
  • Fiber or disc lasers are preferably optically pumped using laser diodes.
  • the radiation from the laser sources is preferably continuous.
  • the wavelength of the laser radiation is in a range from 500 to 2000 nm, preferably from 700 to 1100 nm, in particular from 800 to 1000 nm.
  • Power laser diodes emitting at one or more wavelengths chosen from 808 nm, 880 nm, 915 nm, 940 nm or 980 nm have proved to be particularly suitable.
  • the wavelength is for example 1030 nm (emission wavelength for a Yb: YAG laser).
  • the wavelength is typically 1070 nm.
  • the shaping and redirection optics preferably include lenses and mirrors, and are used as means for positioning, homogenizing and focusing the radiation.
  • the positioning means aim, where appropriate, to arrange the radiation emitted by the laser sources along a line. They include preferably mirrors.
  • the purpose of the homogenization means is to superimpose the spatial profiles of the laser sources in order to obtain homogeneous linear power along the line.
  • the homogenization means preferably comprise lenses allowing the separation of the incident beams into secondary beams and the recombination of said secondary beams into a homogeneous line.
  • the means for focusing the radiation make it possible to focus the radiation on the layer or layers of transparent conductive oxide to be treated, in the form of a line of desired length and width.
  • the focusing means preferably comprise a focusing mirror or a converging lens.
  • the shaping optics are preferably grouped in the form of an optical head positioned at the outlet of the optical fiber or of each optical fiber.
  • the optics for shaping said optical heads preferably comprise lenses, mirrors and prisms and are used as means for transforming, homogenizing and focusing the radiation.
  • the transformation means comprise mirrors and / or prisms and serve to transform the circular beam, obtained at the output of the optical fiber, into a non-circular, anisotropic beam, in the form of a line.
  • the transformation means increase the quality of the beam along one of its axes (fast axis, or axis of width I of the laser line) and decrease the quality of the beam along the other (slow axis, or axis of the length L of the laser line).
  • the homogenization means superimpose the spatial profiles of the laser sources in order to obtain homogeneous linear power along the line.
  • the homogenization means preferably comprise lenses allowing the separation of the incident beams into secondary beams and the recombination of said secondary beams into a homogeneous line.
  • the means for focusing the radiation make it possible to focus the radiation at the working plane, that is to say in the plane of the layer to be treated, in the form of a line of desired length and width.
  • the focusing means preferably comprise a focusing mirror or a converging lens.
  • the length of the line is advantageously equal to the width of the substrate. This length is typically at least 1 m, in particular at least 2 m and in particular at least 3 m. It is also possible to use several lines, disjointed or not, but arranged so as to treat the entire width of the substrate. In this case, the length of each laser line is preferably at least 10 cm or 20 cm, in particular within a range from 30 to 100 cm, in particular from 30 to 75 cm, or even from 30 to 60 cm.
  • the term "length" of the line means the largest dimension of the line, measured at the surface of the transparent conductive oxide layer, and "width" the dimension in a second direction perpendicular to the first.
  • the width (w) of the line corresponds to the distance, in this second direction, between the axis of the beam where the radiation intensity is maximum and the point where the radiation intensity is equal to 1 / e 2 times the maximum intensity. If the longitudinal axis of the laser line is named x, we can define a width distribution along this axis, called w (x).
  • the average width of the or each laser line is preferably at least 35 micrometers, in particular lying in a range from 40 to 100 micrometers or from 40 to 70 micrometers.
  • "average” means the arithmetic average. Over the entire length of the line, the width distribution is narrow in order to limit as far as possible any heterogeneity of treatment.
  • the difference between the largest width and the smallest width is preferably at most 10% of the value of the average width. This figure is preferably at most 5% and even 3%.
  • the laser modules are preferably mounted on a rigid structure, called a "bridge", based on metallic elements, typically made of aluminum.
  • the structure preferably does not include a marble slab.
  • the bridge is preferably positioned parallel to the conveying means conveying the substrate so that the focal plane of the laser line remains parallel to the surface of the substrate to be treated.
  • the bridge comprises at least four feet, the height of which can be individually adjusted to ensure parallel positioning in all circumstances. The adjustment can be ensured by motors located at each foot, either manually or automatically, in conjunction with a distance sensor.
  • the height of the bridge can be adjusted (manually or automatically) to take into account the thickness of the substrate to be treated, and thus ensure that the plane of the substrate coincides with the focal plane of the laser line.
  • the linear power of the laser line is preferably at least 50 W / cm, advantageously 100 W / cm, in particular 200 W / cm, even 300 W / cm and even 400 W / cm. It is even advantageously at least 600 W / cm, in particular 800 W / cm, or even 1000 W / cm.
  • the linear power is measured at the point where the or each laser line is focused on the transparent conductive oxide layer. It can be measured by placing a power detector along the line, for example a calorimetric power meter, such as in particular the Beam Finder S / N 2000716 power meter from the company Cohérent Inc.
  • the power is advantageously distributed in a manner homogeneous over the entire length of the or each line. Preferably, the difference between the highest power and the lowest power is less than 10% of the average power.
  • the radiation comes from at least one intense pulsed light lamp (IPL, Intense Pulsed Light) hereinafter called flash lamp.
  • IPL Intense Pulsed Light
  • Such flash lamps are generally in the form of sealed glass or quartz tubes filled with a rare gas, provided with electrodes at their ends. Under the effect of a short-lived electric pulse, obtained by discharging a capacitor, the gas ionizes and produces a particularly intense incoherent light.
  • the emission spectrum generally comprises at least two emission lines, it is preferably a continuous spectrum having a maximum emission in the near ultraviolet.
  • the lamp is preferably a xenon lamp. It can also be an argon, helium or krypton lamp.
  • the emission spectrum preferably comprises several lines, in particular at wavelengths ranging from 160 to 1000 nm.
  • the duration of each light pulse is preferably in a range from 0.05 to 20 milliseconds, in particular from 0.1 to 5 milliseconds.
  • the repetition rate is preferably within a range from 0.1 to 5 Hz, in particular from 0.2 to 2 Hz.
  • the radiation can come from several lamps arranged side by side, for example 5 to 20 lamps, or even 8 to 15 lamps, so as to simultaneously treat a larger area. In this case, all the lamps can emit flashes simultaneously.
  • the or each lamp is preferably arranged transversely to the longest sides of the substrate.
  • the or each lamp preferably has a length of at least 1 m, in particular 2 m and even 3 m, so that large substrates can be treated.
  • the capacitor is typically charged at a voltage of 500 V to 500 kV.
  • the current density is preferably at least 4000 A / cm 2 .
  • the total energy density emitted by flash lamps, related to the surface of the transparent conductive oxide layer, is preferably between 1 and 100 J / cm 2 , in particular between 1 and 30 J / cm 2 , or even between 5 and 20 J / cm 2 .
  • the high powers and energy densities make it possible to heat the layer to be treated very quickly at high temperatures.
  • each point of the layer to be treated is preferably brought to a temperature of at least 300 ° C., in particular 350 ° C., or even 400 ° C. , and even 500 ° C or 600 ° C.
  • the maximum temperature is normally reached at the moment when the point of the layer to be treated in question passes under the radiation device, for example under the laser line or under the flash lamp.
  • the points on the surface of the layer located under the radiation device for example under the laser line
  • in its immediate surroundings for example within one millimeter
  • the temperature of the electrochromic stack is normally at most 50 ° C., and even 40 ° C or 30 ° C.
  • Each point of the layer to be treated undergoes heat treatment (or is brought to the maximum temperature) for a period advantageously comprised in a range ranging from 0.05 to 10 ms, in particular from 0.1 to 5 ms, or from 0, 1 to 2 ms.
  • this duration is fixed both by the width of the laser line and by the speed of relative movement between the substrate and the laser line.
  • this duration corresponds to the duration of the flash.
  • the speed of the relative movement of movement between the substrate and the or each source of radiation is advantageously at least 2 m / min or 4 m / min, in particular 5 m / min and even 6 m / min or 7 m / min, or even 8 m / min and even 9 m / min or 10 m / min.
  • the speed of the relative movement of movement between the substrate and the source radiation is at least 12 m / min or 15 m / min, in particular 20 m / min and even 25 or 30 m / min.
  • the speed of the relative movement of movement between the substrate and the or each source of radiation varies during treatment by at most 10 % relative, in particular 2% and even 1% compared to its nominal value.
  • the or each radiation source (in particular laser line or flash lamp) is fixed, and the substrate is in motion, so that the relative displacement speeds will correspond to the speed of movement of the substrate.
  • This rapid heat treatment cleverly makes it possible to activate said transparent electroconductive layers, that is to say to increase the conductivity while limiting crystallization.
  • This limitation in crystallization is manifested by a limitation in the size of the crystals formed during this annealing step since the latter does not vary. For example, for ten 10cm 2 samples comprising an ITO layer, half of these samples are not heat treated and half are heat treated. It is noted that the average value of the size of the crystals is 33.3 nm without heat treatment and 34.7 nm with laser treatment.
  • an assembly step called the lamination step, is performed to assemble the two glass panels.
  • this ability to increase the electrical conduction of the transparent electroconductive layers without increasing the size of the crystals and therefore the roughness makes it possible to improve the performance of the electrochromic glazing.
  • a constraint appears at the level of the electrolyte layer C1.
  • This constraint is the result of the roughness of the transparent conductive layers TC01, TC02 on said electrolyte layer, this locally deformed / compressing electrolyte layer so that said electrolyte layer C1 locally has a variation in sound thickness.
  • This local variation in the thickness of the electrolyte layer C1 over its entire surface results in an electrochromic reaction of the electrochromic glazing which is not homogeneous and therefore a drop in performance.
  • a lower roughness therefore makes it possible to less compensate for the variation in thickness and therefore to have a thinner layer of ion-conducting electrolyte and electrical insulator.
  • the speed of passage of the electrochromic glazing from clear mode to opaque mode and vice versa is therefore better.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present invention relates to a method for manufacturing an electrochromic glazing, said glazing having an electrochromic stack comprising: a first transparent conductive layer (TCO1), a layer of an electrochromic material (EC), a layer of an ionic conductive electrolyte (CI), a counter electrode layer (CE), a second transparent conductive layer (TCO2), said method comprising the following steps: providing a first glass panel (2) and a second glass panel (2); depositing a first transparent conductive layer (TCO1) on the first glass panel and a second transparent conductive layer (TCO2) on the second glass panel; depositing a layer of a material (EC) on the first transparent conductive layer (TCO1) and a counter electrode layer (CE) on the second transparent conductive layer (TCO2); depositing the layer of an ionic conductive electrolyte (CI) on either of the layers of an electrochromic material (EC) or counter electrode (CE); assembling the two glass panels to form a laminated glazing. The invention is characterized in that it further comprises at least one heat treatment step consisting in thermally treating at least one transparent conductive layer (TCO1, TCO2) of a glass panel by a rapid thermal treatment device before assembling the glass panels.

Description

DESCRIPTION DESCRIPTION
Titre : PROCEDE DE FABRICATION D’UN VITRAGE ELECTROCHROME Title: PROCESS FOR THE MANUFACTURE OF AN ELECTROCHROME WINDOW
La présente invention est relative au domaine des vitrages électrochromes et à leur procédé de fabrication. The present invention relates to the field of electrochromic glazing and to its manufacturing process.
ART ANTÉRIEUR PRIOR ART
Les dispositifs électrochromes et en particulier les vitrages électrochromes comportent de manière connue un empilement électrochrome comprenant une succession de cinq couches indispensables au fonctionnement du dispositif, c’est-à- dire au changement de couleur réversible suite à l’application d’une alimentation électrique appropriée. Ces cinq couches fonctionnelles sont les suivantes : Electrochromic devices and in particular electrochromic glazing comprise in known manner an electrochromic stack comprising a succession of five layers essential for the operation of the device, that is to say the reversible color change following the application of an electrical supply. appropriate. These five functional layers are:
-Une première couche électroconductrice transparente, -A first transparent electroconductive layer,
-Une couche d’un matériau électrochrome, en mesure d’insérer réversiblement et simultanément des ions, dont les états d’oxydation qui correspondent aux états insérés et désinsérés sont d’une coloration distincte lorsqu’ils sont soumis à une alimentation électrique appropriée; l’un de ces états présentant une transmission lumineuse plus élevée que l’autre, -A layer of an electrochromic material, capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and de-inserted states are of a distinct color when they are subjected to an appropriate electrical supply; one of these states having a higher light transmission than the other,
-Une couche d’un électrolyte isolant électronique et conducteur ionique, -A layer of an electronic insulating electrolyte and ionic conductor,
-une couche contre-électrode, en mesure d’insérer de façon réversible des ions de même charge que celle que le matériau électrochrome peut insérer, et -a counter-electrode layer, capable of reversibly inserting ions of the same charge as that which the electrochromic material can insert, and
-Une deuxième couche électroconductrice transparente, -A second transparent electroconductive layer,
l’une ou l’autre des couches électroconductrices transparentes pouvant être en contact avec le substrat transparent. either of the transparent electrically conductive layers which may be in contact with the transparent substrate.
Dans les systèmes électrochromes les plus répandus, ces cinq couches sont toutes constituées de matériaux solides inorganiques, le plus souvent des oxydes métalliques, et sont déposées par pulvérisation cathodique magnétron sur un substrat en verre. Ils sont communément appelés systèmes électrochromes « tout solide ». In the most widespread electrochromic systems, these five layers all consist of inorganic solid materials, most often metal oxides, and are deposited by sputtering magnetron on a glass substrate. They are commonly called "all solid" electrochromic systems.
Le procédé de fabrication par pulvérisation cathodique magnétron d’un tel système électrochrome minéral avec au moins cinq couches comporte une ou plusieurs étapes de traitement thermique (recuit) pendant ou après les étapes de dépôts des couches par pulvérisation cathodique magnétron. Certains matériaux, notamment les oxydes métalliques formant les deux couches conductrices transparentes les plus à l’extérieur de l’empilement, sont déposés par pulvérisation cathodique magnétron. Pour présenter une cristallinité et une conductivité suffisantes, ces couches conductrices peuvent être déposées à chaud, ou être déposées à froid et subir, après ce dépôt à froid, un traitement thermique. Les performances et propriétés optiques du produit final dépendent fortement de ces étapes de traitement thermique. The method of manufacturing by magnetron sputtering of such a mineral electrochromic system with at least five layers comprises one or more stages of heat treatment (annealing) during or after the steps of depositing the layers by magnetron sputtering. Some materials, in particular the metal oxides forming the two outermost transparent conductive layers of the stack, are deposited by magnetron sputtering. To have sufficient crystallinity and conductivity, these conductive layers can be deposited hot, or be deposited cold and undergo, after this cold deposit, a heat treatment. The performance and optical properties of the final product strongly depend on these heat treatment steps.
Un autre procédé connu consiste à se munir de deux panneaux de verre et à déposer, sur chacun d’eux, une couche conductrice transparente (TC). Another known method consists of providing two glass panels and depositing, on each of them, a transparent conductive layer (TC).
Par la suite selon cet autre procédé, la couche électrochrome (EC) et la couche de contre-électrode (CE) sont déposées chacune sur une couche conductrice transparente. Ensuite, la couche d’un électrolyte isolant électronique et conducteur ionique est agencée sur la couche électrochrome (EC) ou sur la couche de contre-électrode (CE). Le tout est ensuite assemblé pour former le vitrage. Cette étape d’assemblage comprend en outre la réalisation des moyens de connexion pour amener le courant vers les couches conductrices transparentes. Subsequently according to this other method, the electrochromic layer (EC) and the counter-electrode layer (CE) are each deposited on a transparent conductive layer. Next, the layer of an electronically insulating and ionically conductive electrolyte is arranged on the electrochromic layer (EC) or on the counter-electrode layer (CE). The whole is then assembled to form the glazing. This assembly step further comprises the realization of the connection means for bringing the current to the transparent conductive layers.
Si on dépose les couches conductrices transparentes à froid, la rugosité des couches est faible, ce qui présente un avantage, mais leur conductivité électrique est également faible de sorte que les performances sont moindres. Or, si les couches font l’objet d’un traitement thermique du type recuit, celui-ci se caractérisant par une montée en température lente et par un temps de traitement élevé, usuellement d’environ une heure dans un four à 400 °C , la conductivité électrique des couches augmente de sorte à améliorer les performances du vitrage. Mais ce traitement implique une augmentation de la taille des cristaux et donc également de la rugosité. Cette augmentation de la taille des cristaux est également observée si on dépose les couches conductrices transparentes à chaud (dépôt à une température supérieure à 150°C). If the transparent conductive layers are deposited cold, the roughness of the layers is low, which has an advantage, but their electrical conductivity is also low so that the performance is lower. However, if the layers are subjected to a heat treatment of the annealed type, this is characterized by a slow rise in temperature and by a high treatment time, usually about one hour in an oven at 400 ° C. , the electrical conductivity of the layers increases so as to improve the performance of the glazing. However, this treatment involves an increase in the size of the crystals and therefore also in the roughness. This increase in the size of the crystals is also observed if the transparent conductive layers are deposited hot (deposition at a temperature above 150 ° C.).
Or, comme chaque couche conductrice transparente (TCO) est traitée thermiquement de façon indépendante, les rugosités des couches conductrices transparentes sont différentes. Ainsi, lors de l’assemblage des panneaux de verre, l’ensemble formé de la couche conductrice transparente et de la couche électrochrome (EC) d’un côté et l’ensemble formé de la couche conductrice transparente et de la couche de contre-électrode (CE) de lautre coté, avec des rugosités différentes, exercent une pression/contrainte sur la couche de électrolyte, isolant électronique et conducteur ionique au risque de le déformer. Comme cette rugosité est inégale, il peut exister localement une épaisseur inégale c’est-à-dire que, localement, la couche d’un électrolyte conducteur ionique est plus compressée, mince rendant ainsi les performances du vitrage électrochrome inégales et inhomogènes. However, as each transparent conductive layer (TCO) is heat treated independently, the roughness of the transparent conductive layers is different. Thus, during the assembly of the glass panels, the assembly formed of the transparent conductive layer and the electrochromic layer (EC) on one side and the assembly formed of the transparent conductive layer and of the counter layer. electrode (CE) on the other side, with different roughness, exert pressure / stress on the electrolyte layer, electronic insulator and ionic conductor at the risk of deforming it. As this roughness is uneven, there may exist an uneven thickness locally, that is to say that locally the layer of an ion conducting electrolyte is more compressed, thin, thus rendering the performance of the electrochromic glazing uneven and inhomogeneous.
RÉSUMÉ DE L’INVENTION SUMMARY OF THE INVENTION
La présente invention se propose donc de résoudre ces inconvénients en fournissant un procédé de réalisation d’un vitrage électrochrome dans lequel la couche d’électrolyte présente des variations locales d’épaisseur plus faible. The present invention therefore proposes to resolve these drawbacks by providing a method for producing an electrochromic glazing in which the electrolyte layer has local variations of smaller thickness.
A cet effet, l’invention concerne un procédé de fabrication d’un vitrage électrochrome, ledit vitrage comprenant un empilement électrochrome comprenant: -une première couche conductrice transparente, To this end, the invention relates to a method for manufacturing an electrochromic glazing, said glazing comprising an electrochromic stack comprising: a first transparent conductive layer,
-une couche d’un matériau électrochrome minéral à coloration cathodique, appelée électrode électrochrome, -a layer of a mineral electrochromic material with cathodic coloring, called electrochromic electrode,
-une couche d’un électrolyte conducteur ionique et isolant électrique, -a layer of an ion conductive electrolyte and electrical insulator,
-une couche contre- électrode, -a counter electrode layer,
-une seconde couche conductrice transparente, a second transparent conductive layer,
ledit procédé comprenant les étapes suivantes : said method comprising the following steps:
- se munir d’un premier panneau de verre et un second panneau de verre ; - have a first glass panel and a second glass panel;
-déposer une première couche conductrice transparente sur le premier panneau de verre et une seconde couche conductrice transparente sur le second panneau de verre ; depositing a first transparent conductive layer on the first glass panel and a second transparent conductive layer on the second glass panel;
- déposer une couche d’un matériau électrochrome sur la première couche conductrice transparente et une couche contre-électrode sur la seconde couche conductrice transparente; - depositing a layer of an electrochromic material on the first transparent conductive layer and a counter-electrode layer on the second transparent conductive layer;
- déposer une couche d’un électrolyte conducteur ionique sur l’une ou l’autre des couches de matériau électrochrome et contre-électrode; - deposit a layer of an ion-conducting electrolyte on one or the other of the layers of electrochromic material and counter-electrode;
- assembler les deux panneaux de verre pour former un vitrage feuilleté, Caractérisé en ce qu’il comprend, en outre, au moins une étape de traitement thermique consistant à traiter thermiquement au moins un panneau de verre muni d’au moins une couche conductrice transparente par un dispositif de traitement thermique rapide avant d’assembler les panneaux de verre. - assemble the two glass panels to form a laminated glazing, Characterized in that it further comprises at least one heat treatment step consisting in thermally treating at least one glass panel provided with at least one transparent conductive layer by a rapid heat treatment device before assembling the panels of glass.
Selon un exemple, ladite étape de traitement thermique est utilisée pour traiter la couche conductrice transparente de chaque panneau de verre. According to an example, said heat treatment step is used to treat the transparent conductive layer of each glass panel.
Selon un exemple, une étape de traitement thermique est en outre utilisée pour traiter la couche d’un matériau électrochrome et/ou la couche contre-électrode. In one example, a heat treatment step is also used to treat the layer of an electrochromic material and / or the counter-electrode layer.
Selon un exemple, ladite étape de traitement thermique de ladite au moins une couche conductrice transparente est opérée après le dépôt de la première couche conductrice transparente sur le premier panneau de verre et/ou de la seconde couche conductrice transparente sur le second panneau de verre. According to an example, said step of heat treatment of said at least one transparent conductive layer is carried out after the deposition of the first transparent conductive layer on the first glass panel and / or of the second transparent conductive layer on the second glass panel.
Selon un exemple, ladite étape de traitement thermique est opérée pour traiter simultanément la couche d’un matériau électrochrome et la première couche conductrice transparente et/ou pour traiter simultanément la couche contre-électrode et la seconde couche conductrice transparente. According to an example, said heat treatment step is carried out to simultaneously treat the layer of an electrochromic material and the first transparent conductive layer and / or to simultaneously treat the counter-electrode layer and the second transparent conductive layer.
Selon un exemple, le dispositif de traitement thermique est placé en regard de la couche à traiter et est agencé pour porter la couche à traiter à une température au moins égale à 300 °C. According to one example, the heat treatment device is placed opposite the layer to be treated and is arranged to bring the layer to be treated to a temperature at least equal to 300 ° C.
Selon un exemple, le dispositif de traitement thermique est agencé pour traiter thermiquement la couche à traiter pendant une durée brève, de préférence inférieure à 100 millisecondes.. According to one example, the heat treatment device is arranged to heat treat the layer to be treated for a short time, preferably less than 100 milliseconds.
Selon un exemple, le dispositif de traitement thermique est un dispositif laser émettant un rayonnement présentant une longueur d’onde comprise entre 300 et 2000 nm. According to one example, the heat treatment device is a laser device emitting radiation having a wavelength between 300 and 2000 nm.
Selon un exemple, le dispositif de traitement thermique comprend au moins une lampe à lumière intense pulsée émettant un rayonnement présentant un spectre d’émission comprenant de préférence plusieurs raies, notamment à des longueurs d’onde allant de 160 à 1000 nm, chaque impulsion de lumière ayant une durée de préférence comprise dans un domaine allant de 0,05 à 20 millisecondes. According to one example, the heat treatment device comprises at least one intense pulsed light lamp emitting radiation having an emission spectrum preferably comprising several lines, in particular at wavelengths ranging from 160 to 1000 nm, each pulse of light preferably having a duration in a range from 0.05 to 20 milliseconds.
DESCRIPTION DES FIGURES D’autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels: DESCRIPTION OF THE FIGURES Other particularities and advantages will emerge clearly from the description given below, by way of indication and in no way limitative, with reference to the appended drawings, in which:
-la fig. 1 est une représentation schématique du vitrage électrochrome selon l’invention; - fig. 1 is a schematic representation of the electrochromic glazing according to the invention;
DESCRIPTION DETAILLEE DE L’INVENTION DETAILED DESCRIPTION OF THE INVENTION
A la figure 1 est représenté un vitrage électrochrome 1. Un tel vitrage électrochrome comprend deux panneaux de verre 2 rendus solidaires par l’intermédiaire d’un châssis ou cadre. Entre ces deux panneaux de verre, un empilement électrochrome complet 3 est agencé. Cet empilement comprend : In Figure 1 is shown an electrochromic glazing 1. Such an electrochromic glazing comprises two glass panels 2 made integral by means of a frame or frame. Between these two glass panels, a complete electrochromic stack 3 is arranged. This stack includes:
-Une première couche électroconductrice transparente TC01 , -A first transparent electroconductive layer TC01,
-Une couche d’un matériau électrochrome EC, en mesure d’insérer réversiblement et simultanément des ions, dont les états d’oxydation qui correspondent aux états insérés et désinsérés sont d’une coloration distincte lorsqu’ils sont soumis à une alimentation électrique appropriée; l’un de ces états présentant une transmission lumineuse plus élevée que l’autre, -A layer of EC electrochromic material, capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and de-inserted states are of a distinct color when they are subjected to an appropriate electrical supply ; one of these states having a higher light transmission than the other,
-Une couche d’un électrolyte isolant électronique et conducteur ionique Cl, -A layer of an electronic insulating electrolyte and ionic conductor Cl,
-Une couche contre-électrode CE, en mesure d’insérer de façon réversible des ions de même charge que celle que le matériau électrochrome peut insérer, et -A CE counter-electrode layer, capable of reversibly inserting ions of the same charge as that which the electrochromic material can insert, and
-Une deuxième couche électroconductrice transparente TC02. -A second transparent electroconductive layer TC02.
Les cinq couches (TC01/EC/CI/CE/TC02) énumérées ci-dessus sont les seules couches fonctionnelles indispensables au bon fonctionnement du vitrage électrochrome. The five layers (TC01 / EC / CI / CE / TC02) listed above are the only functional layers essential for the proper functioning of electrochromic glazing.
L’empilement électrochrome 3 peut comprendre d’autres couches utiles, qui ne sont toutefois pas indispensables à l’obtention d’un comportement électrochrome. Il peut par exemple comporter, entre le substrat en verre et la couche de TCO adjacente, une couche barrière, connue pour empêcher par exemple la migration des ions sodium. L’empilement peut également comprendre une ou plusieurs couches anti-reflets ou adaptation de couleur comportant par exemple une alternance de couches transparentes à haut indice et bas indice de réfraction. L’ensemble des couches minérales de l’empilement est de préférence déposé par pulvérisation cathodique, réactive ou non, assistée par champ magnétique, généralement dans une même installation sous vide. The electrochromic stack 3 can comprise other useful layers, which are however not essential for obtaining an electrochromic behavior. It can for example comprise, between the glass substrate and the adjacent TCO layer, a barrier layer, known to prevent for example the migration of sodium ions. The stack can also include one or more anti-reflection or color adaptation layers comprising for example an alternation of transparent layers with high index and low refractive index. All the mineral layers of the stack are preferably deposited by sputtering, reactive or not, assisted by magnetic field, generally in the same installation under vacuum.
Les matériaux susceptibles de servir en tant qu’oxydes conducteurs transparents pour les deux couches conductrices transparentes TCO sont connus. On peut citer à titre d’exemple l’oxyde d’indium, l’oxyde mixte d’étain et d’indium, l’oxyde d’étain, l’oxyde d’étain dopé, l’oxyde de zinc, l’oxyde de zinc dopé, l’oxyde de ruthénium, l’oxyde de ruthénium dopé et l’oxyde de zinc dopé à l’aluminium et/ou au gallium. On utilisera de préférence l’oxyde mixte d’étain et d’indium (ITO) ou l’oxyde de zinc dopé à l’aluminium et/ou au gallium. L’épaisseur de chacune des couches TCO est de préférence comprise entre 10 et 1000 nm, de préférence entre 50 et 800 nm. The materials capable of serving as transparent conductive oxides for the two transparent conductive layers TCO are known. By way of example, mention may be made of indium oxide, mixed tin and indium oxide, tin oxide, doped tin oxide, zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide and zinc oxide doped with aluminum and / or gallium. Preferably, mixed tin and indium oxide (ITO) or zinc oxide doped with aluminum and / or gallium will be used. The thickness of each of the TCO layers is preferably between 10 and 1000 nm, preferably between 50 and 800 nm.
Pour une couche d’oxyde mixte d’étain et d’indium (ITO), celle-ci fera, par exemple, 250 nm d’épaisseur, sera notamment déposée à chaud, aura une résistance carré de l’ordre de 10 Ohms. For a layer of mixed tin and indium oxide (ITO), this will be, for example, 250 nm thick, will be notably hot deposited, will have a square resistance of the order of 10 Ohms.
En variante, il peut aussi s’agir d’une couche d’oxyde d’étain dopé au fluor ou à l’antimoine, ou d’un multicouche. Alternatively, it may also be a layer of tin oxide doped with fluorine or antimony, or a multilayer.
Chaque couche d’oxyde conducteur transparent est déposée sur un des panneaux de verre. Each layer of transparent conductive oxide is deposited on one of the glass panels.
Bien entendu les deux couches d’oxyde conducteur transparent doivent être reliées à des connecteurs d’amenée de courant respectifs. Ces connecteurs, par exemple bus bar et fils, sont respectivement mis en contact avec la couche d’oxyde conducteur transparent TC01 et la couche d’oxyde conducteur transparent TC02 pour amener l’alimentation électrique appropriée. Of course, the two layers of transparent conductive oxide must be connected to respective current supply connectors. These connectors, for example bus bar and wires, are respectively brought into contact with the transparent conductive oxide layer TC01 and the transparent conductive oxide layer TC02 to supply the appropriate electrical supply.
Le matériau électrochrome EC est de préférence à base d’oxyde de tungstène (matériau électrochrome cathodique) ou d’oxyde d’iridium (matériau électrochrome anodique). Ces matériaux peuvent insérer des cations, notamment des protons ou des ions lithium. The EC electrochromic material is preferably based on tungsten oxide (cathodic electrochromic material) or iridium oxide (anodic electrochromic material). These materials can insert cations, in particular protons or lithium ions.
La contre-électrode CE est de préférence constituée d’une couche neutre en coloration ou, du moins, transparente ou peu colorée quand la couche électrochrome est à l’état coloré. La contre-électrode est de préférence à base d’un oxyde d’un élément choisi parmi le tungstène, le nickel, l’iridium, le chrome, le fer, le cobalt, le rhodium, ou à base d’un oxyde mixte d’au moins deux de ces éléments, notamment l’oxyde mixte de nickel et de tungstène. Si le matériau électrochrome est l’oxyde de tungstène, donc un matériau électrochrome cathodique, dont l’état coloré correspond à l’état le plus réduit, un matériau électrochrome anodique à base d’oxyde de nickel ou d’iridium peut être par exemple utilisé pour la contre-électrode. Il peut notamment s’agir d’une couche d’oxyde mixte de vanadium et de tungstène ou d’oxyde mixte de nickel et de tungstène. Si le matériau électrochrome est l’oxyde d’iridium, un matériau électrochrome cathodique, par exemple à base d’oxyde de tungstène, peut jouer le rôle de contre-électrode. On peut également utiliser un matériau optiquement neutre dans les états d’oxydation concernés, comme par exemple l’oxyde de cérium ou des matériaux organiques comme les polymères conducteurs électroniques (polyaniline) ou le bleu de Prusse. The CE counter-electrode is preferably made up of a neutral layer in coloring or, at least, transparent or little colored when the electrochromic layer is in the colored state. The counter electrode is preferably based on an oxide of an element chosen from tungsten, nickel, iridium, chromium, iron, cobalt, rhodium, or based on a mixed oxide d '' at least two of these, including mixed nickel and tungsten oxide. If the electrochromic material is tungsten oxide, therefore a cathodic electrochromic material, the colored state of which corresponds to the most reduced state, an anodic electrochromic material based on nickel oxide or iridium can for example be used for the counter electrode. It can in particular be a layer of mixed oxide of vanadium and tungsten or mixed oxide of nickel and tungsten. If the electrochromic material is iridium oxide, a cathodic electrochromic material, for example based on tungsten oxide, can play the role of counter-electrode. One can also use an optically neutral material in the oxidation states concerned, such as for example cerium oxide or organic materials such as electronic conductive polymers (polyaniline) or Prussian blue.
L’épaisseur de la contre-électrode est généralement comprise entre 50 nm et 600 nm, en particulier entre 150 nm et 250 nm. The thickness of the counter electrode is generally between 50 nm and 600 nm, in particular between 150 nm and 250 nm.
Selon une exécution, l’électrolyte Cl se présente sous la forme d’un polymère ou d’un gel, notamment un polymère à conduction protonique, par exemple tel que ceux décrits dans les brevets européens EP 0 253 713 et EP 0 670 346, ou un polymère à conduction d’ions lithium, par exemple tel que ceux décrits dans les brevets EP 0 382 623, EP 0 518 754 ou EP 0 532 408. On parle alors de systèmes électrochromes mixtes. According to one embodiment, the electrolyte C1 is in the form of a polymer or a gel, in particular a proton-conducting polymer, for example such as those described in European patents EP 0 253 713 and EP 0 670 346, or a lithium ion conduction polymer, for example such as those described in patents EP 0 382 623, EP 0 518 754 or EP 0 532 408. These are then called mixed electrochromic systems.
Selon une autre exécution, l’électrolyte Cl est constitué d’une couche minérale formant un conducteur ionique qui est isolé électriquement. Ces systèmes électrochromes sont alors désignés comme étant « tout solide ». On peut notamment se référer aux brevets européens EP 0 867 752 et EP 0 831 360. L’épaisseur de la couche d’électrolyte peut être comprise entre 1 nm et 1 mm. De préférence, l’épaisseur sera comprise entre 1 et 300nm et encore plus préférentiellement entre 1 et 50nm. According to another embodiment, the electrolyte C1 consists of a mineral layer forming an ionic conductor which is electrically isolated. These electrochromic systems are then designated as “all solid”. Reference may in particular be made to European patents EP 0 867 752 and EP 0 831 360. The thickness of the electrolyte layer can be between 1 nm and 1 mm. Preferably, the thickness will be between 1 and 300 nm and even more preferably between 1 and 50 nm.
Un vitrage électrochrome comprenant un empilement electrochrome est fabriqué selon un procédé de fabrication, ledit empilement comprenant : An electrochromic glazing unit comprising an electrochromic stack is produced according to a manufacturing process, said stack comprising:
Une première couche électroconductrice transparente TC01 , A first transparent electroconductive layer TC01,
Une couche d’un matériau électrochrome EC, en mesure d’insérer réversiblement et simultanément des ions, dont les états d’oxydation qui correspondent aux états insérés et désinsérés sont d’une coloration distincte lorsqu’ils sont soumis à une alimentation électrique appropriée; l’un de ces états présentant une transmission lumineuse plus élevée que l’autre, A layer of an EC electrochromic material, capable of reversibly and simultaneously inserting ions, the oxidation states of which correspond to the inserted and uninserted states are of a distinct color when subjected to an appropriate power supply; one of these states having a higher light transmission than the other,
Une couche d’un électrolyte isolant électronique et conducteur ionique A layer of an electronically insulating and ionically conductive electrolyte
Cl, Cl,
une couche contre-électrode CE, en mesure d’insérer de façon réversible des ions de même charge que celle que le matériau électrochrome peut insérer, et a CE counter-electrode layer, capable of reversibly inserting ions of the same charge as that which the electrochromic material can insert, and
Une deuxième couche électroconductrice transparente TC02. A second transparent electroconductive layer TC02.
Une première étape du procédé de fabrication consiste à se munir de deux substrats ou panneaux de verre 2. Les panneaux en verre 2 utilisés sont typiquement du verre float, éventuellement découpé, poli et lavé. A first step in the manufacturing process consists in providing two substrates or glass panels 2. The glass panels 2 used are typically float glass, possibly cut, polished and washed.
Une seconde étape consiste à déposer, sur chaque panneau de verre 2, au moins une couche d’un oxyde conducteur transparent TC01/TC02. On obtient alors un premier panneau de verre 2 sur lequel est déposée une première couche d’un oxyde conducteur transparent TC01 et un second panneau de verre 2 sur lequel est déposée une seconde couche d’un oxyde conducteur transparent TC02. On comprendra que le terme déposer ne signifie pas que la couche est déposée directement sur le panneau de verre mais qu’elle peut être déposée sur une couche déjà existante. A second step consists in depositing, on each glass panel 2, at least one layer of a transparent conductive oxide TC01 / TC02. A first glass panel 2 is then obtained on which a first layer of a transparent conductive oxide TC01 is deposited and a second glass panel 2 on which is deposited a second layer of a transparent conductive oxide TC02. It will be understood that the term deposit does not mean that the layer is deposited directly on the glass panel but that it can be deposited on an already existing layer.
Dans une troisième étape, la couche d’un matériau électrochrome EC est déposée sur le premier panneau de verre 2 et la couche appelée contre- électrode CE est déposée sur le second panneau de verre. 2 In a third step, the layer of an electrochromic material EC is deposited on the first glass panel 2 and the layer called the CE counter electrode is deposited on the second glass panel. 2
Une quatrième étape consiste à déposer au moins la couche d’électrolyte conducteur ionique Cl. A fourth step consists in depositing at least the layer of ion-conducting electrolyte Cl.
Cette couche d’électrolyte conducteur ionique Cl est déposée sur la couche d’un matériau électrochrome EC ou sur la couche appelée contre- électrode CE. This layer of ion-conducting electrolyte Cl is deposited on the layer of an electrochromic material EC or on the layer called the CE counter-electrode.
Cette couche d’électrolyte conducteur ionique Cl peut être déposée de différentes manières. This layer of ion-conducting electrolyte C1 can be deposited in different ways.
Par exemple, cette couche peut être déposée par pulvérisation cathodique, réactive ou non, assistée par champ magnétique, généralement dans une même installation sous vide. For example, this layer can be deposited by sputtering, reactive or not, assisted by magnetic field, generally in the same vacuum installation.
Dans un autre exemple, cette couche d’électrolyte conducteur ionique peut être déposée sous forme de gel. Un tel procédé gel consiste à déposer la couche d’électrolyte conducteur ionique Cl sous forme liquide sur la surface souhaitée. Un traitement thermique est alors opéré pour obtenir la couche d’électrolyte Cl conducteur ionique souhaitée. In another example, this layer of ion-conducting electrolyte can be deposited in the form of a gel. Such a gel process consists in depositing the layer of ion-conducting electrolyte Cl in liquid form on the desired surface. A heat treatment is then carried out in order to obtain the desired layer of electrolyte C1 ionic conductor.
Astucieusement selon l’invention, une étape de traitement thermique est opérée. Ce traitement thermique est effectué au moins sur l’une des couches électroconductrices transparentes TC01 , TC02, de préférence sur la couche d’oxyde conducteur transparente de chaque panneau de verre 2. Cette étape de traitement thermique est opérée entre la seconde étape et la troisième étape du procédé de fabrication du vitrage électrochrome. Dans ce cas, le traitement thermique n’agit que sur les couches électroconductrices transparentes TC01 , TC02. Dans le cas d’un traitement thermique de la couche électroconductrice transparente de chaque panneau de verre 2, chaque panneau peut être traité par un dispositif de traitement thermique différent ou par le même dispositif de traitement. Cleverly according to the invention, a heat treatment step is carried out. This heat treatment is carried out at least on one of the transparent electroconductive layers TC01, TC02, preferably on the transparent conductive oxide layer of each glass panel 2. This heat treatment step is carried out between the second step and the third step in the manufacturing process of electrochromic glazing. In this case, the heat treatment acts only on the transparent electroconductive layers TC01, TC02. In the case of a heat treatment of the transparent electroconductive layer of each glass panel 2, each panel can be treated by a different heat treatment device or by the same treatment device.
Dans une variante, un traitement thermique dit supplémentaire est également appliqué à la couche d’un matériau électrochrome EC et/ou à la couche appelée contre-électrode CE. A ce moment-là, une étape de traitement thermique a également lieu entre la troisième étape et la quatrième étape du procédé de fabrication du vitrage électrochrome. On comprend donc qu’un traitement thermique intervient entre la seconde étape et la troisième étape pour le traitement d’au moins une couche électroconductrice transparente TC01 , TC02 d’un panneau de verre et qu’un autre traitement thermique intervient entre la troisième étape et la quatrième étape pour le traitement de la couche d’un matériau électrochrome EC et/ou de la couche appelée contre- électrode CE. In a variant, a so-called additional heat treatment is also applied to the layer of an electrochromic material EC and / or to the layer called the CE counter-electrode. At this time, a heat treatment stage also takes place between the third stage and the fourth stage of the process for manufacturing the electrochromic glazing. It is therefore understood that a heat treatment takes place between the second step and the third step for the treatment of at least one transparent electroconductive layer TC01, TC02 of a glass panel and that another heat treatment takes place between the third step and the fourth step for the treatment of the layer of an EC electrochromic material and / or of the layer called the CE counter-electrode.
Dans une autre variante, une seule étape de traitement thermique est prévue. Cette étape de traitement thermique est opérée entre la troisième étape et la quatrième étape du procédé de fabrication du vitrage électrochrome et est agencée pour traiter thermiquement la couche d’un matériau électrochrome EC et la première couche électroconductrice transparente TC01 ou la couche contre-électrode CE et la seconde couche électroconductrice transparente TC02. On comprend donc que les couches TC01/EC - TC02/CE d’un même panneau de verre 2 sont traitées thermiquement simultanément. Il pourrait également être prévu que les deux panneaux de verre 2 soient traités en même temps. Ce traitement thermique est opéré par un dispositif de traitement thermique rapide, ce dernier pouvant utiliser différentes technologies. On entend par traitement thermique rapide, un traitement thermique pour lequel, localement, la couche à traiter subit une brusque/brutale montée en température suivie d’une brusque/brutale diminution de la température. In another variant, only one heat treatment step is provided. This heat treatment step is carried out between the third step and the fourth step of the process for manufacturing the electrochromic glazing and is arranged to heat treat the layer of an electrochromic material EC and the first transparent electroconductive layer TC01 or the counter electrode layer CE and the second transparent electroconductive layer TC02. It is therefore understood that the layers TC01 / EC - TC02 / CE of the same glass panel 2 are heat treated simultaneously. It could also be provided that the two glass panels 2 are treated at the same time. This heat treatment is carried out by a rapid heat treatment device, the latter being able to use different technologies. The term rapid heat treatment is understood to mean a heat treatment for which, locally, the layer to be treated undergoes an abrupt / abrupt rise in temperature followed by an abrupt / abrupt reduction in temperature.
Dans le cas de la technologie laser, des sources laser sont utilisées et sont typiquement des diodes laser ou des lasers fibrés, notamment des lasers à fibre, à diodes ou encore à disque. Les diodes laser permettent d’atteindre de manière économique de fortes densités de puissance par rapport à la puissance électrique d’alimentation, pour un faible encombrement. L’encombrement des lasers fibrés est encore plus réduit, et la puissance linéique obtenue peut être encore plus élevée. On entend par lasers fibrés des lasers dans lesquels le lieu de génération de la lumière laser est déporté spatialement par rapport à son lieu de délivrance, la lumière laser étant délivrée au moyen d’au moins une fibre optique. Dans le cas d’un laser à disque, la lumière laser est générée dans une cavité résonnante dans laquelle se trouve le milieu émetteur qui se présente sous la forme d’un disque, par exemple un disque mince (d’environ 0,1 mm d’épaisseur) en Yb:YAG. La lumière ainsi généré est couplée dans au moins une fibre optique dirigée vers le lieu de traitement. Les lasers à fibre ou à disque sont de préférence pompés optiquement à l’aide de diodes laser. In the case of laser technology, laser sources are used and are typically laser diodes or fiber lasers, in particular fiber, diode or even disc lasers. Laser diodes make it possible to economically achieve high power densities compared to the electrical power supply, for a small footprint. The size of fiber lasers is even smaller, and the linear power obtained can be even higher. The term “fiber lasers” is understood to mean lasers in which the place of generation of the laser light is spatially offset from its place of delivery, the laser light being delivered by means of at least one optical fiber. In the case of a disc laser, the laser light is generated in a resonant cavity in which is located the emitting medium which is in the form of a disc, for example a thin disc (of about 0.1 mm thick) in Yb: YAG. The light thus generated is coupled in at least one optical fiber directed towards the place of treatment. Fiber or disc lasers are preferably optically pumped using laser diodes.
Le rayonnement issu des sources laser est de préférence continu. The radiation from the laser sources is preferably continuous.
La longueur d’onde du rayonnement laser est comprise dans un domaine allant de 500 à 2000 nm, de préférence de 700 à 1100 nm, en particulier de 800 à 1000 nm. Des diodes laser de puissance émettant à une ou plusieurs longueurs d’onde choisie parmi 808 nm, 880 nm, 915 nm, 940 nm ou 980 nm se sont révélées particulièrement bien appropriées. Dans le cas d’un laser à disque, la longueur d’onde est par exemple de 1030 nm (longueur d’onde d’émission pour un laser Yb :YAG). Pour un laser à fibre, la longueur d’onde est typiquement de 1070 nm. The wavelength of the laser radiation is in a range from 500 to 2000 nm, preferably from 700 to 1100 nm, in particular from 800 to 1000 nm. Power laser diodes emitting at one or more wavelengths chosen from 808 nm, 880 nm, 915 nm, 940 nm or 980 nm have proved to be particularly suitable. In the case of a disc laser, the wavelength is for example 1030 nm (emission wavelength for a Yb: YAG laser). For a fiber laser, the wavelength is typically 1070 nm.
Dans le cas de lasers non fibrés, les optiques de mise en forme et de redirection comprennent de préférence des lentilles et des miroirs, et sont utilisées comme moyens de positionnement, d’homogénéisation et de focalisation du rayonnement. In the case of non-fiber lasers, the shaping and redirection optics preferably include lenses and mirrors, and are used as means for positioning, homogenizing and focusing the radiation.
Les moyens de positionnement ont pour but le cas échéant de disposer selon une ligne les rayonnements émis par les sources laser. Ils comprennent de préférence des miroirs. Les moyens d’homogénéisation ont pour but de superposer les profils spatiaux des sources laser afin d’obtenir une puissance linéique homogène tout au long de la ligne. Les moyens d’homogénéisation comprennent de préférence des lentilles permettant la séparation des faisceaux incidents en faisceaux secondaires et la recombinaison desdits faisceaux secondaires en une ligne homogène. Les moyens de focalisation du rayonnement permettent de focaliser le rayonnement sur la ou les couches d’oxyde conducteur transparent à traiter, sous la forme d’une ligne de longueur et de largeur voulues. Les moyens de focalisation comprennent de préférence un miroir focalisant ou une lentille convergente. The positioning means aim, where appropriate, to arrange the radiation emitted by the laser sources along a line. They include preferably mirrors. The purpose of the homogenization means is to superimpose the spatial profiles of the laser sources in order to obtain homogeneous linear power along the line. The homogenization means preferably comprise lenses allowing the separation of the incident beams into secondary beams and the recombination of said secondary beams into a homogeneous line. The means for focusing the radiation make it possible to focus the radiation on the layer or layers of transparent conductive oxide to be treated, in the form of a line of desired length and width. The focusing means preferably comprise a focusing mirror or a converging lens.
Dans le cas de lasers fibrés, les optiques de mise en forme sont de préférence regroupées sous la forme d’une tête optique positionnée à la sortie de la fibre optique ou de chaque fibre optique. In the case of fiber lasers, the shaping optics are preferably grouped in the form of an optical head positioned at the outlet of the optical fiber or of each optical fiber.
Les optiques de mise en forme desdites têtes optiques comprennent de préférence des lentilles, des miroirs et des prismes et sont utilisées comme moyens de transformation, d’homogénéisation et de focalisation du rayonnement. The optics for shaping said optical heads preferably comprise lenses, mirrors and prisms and are used as means for transforming, homogenizing and focusing the radiation.
Les moyens de transformation comprennent des miroirs et/ou des prismes et servent à transformer le faisceau circulaire, obtenu en sortie de la fibre optique, en un faisceau non circulaire, anisotrope, en forme de ligne. Pour cela les moyens de transformation augmentent la qualité du faisceau selon l’un de ses axes (axe rapide, ou axe de la largeur I de la ligne laser) et diminuent la qualité du faisceau selon l’autre (axe lent, ou axe de la longueur L de la ligne laser). The transformation means comprise mirrors and / or prisms and serve to transform the circular beam, obtained at the output of the optical fiber, into a non-circular, anisotropic beam, in the form of a line. For this, the transformation means increase the quality of the beam along one of its axes (fast axis, or axis of width I of the laser line) and decrease the quality of the beam along the other (slow axis, or axis of the length L of the laser line).
Les moyens d’homogénéisation superposent les profils spatiaux des sources laser afin d’obtenir une puissance linéique homogène tout au long de la ligne. Les moyens d’homogénéisation comprennent de préférence des lentilles permettant la séparation des faisceaux incidents en faisceaux secondaires et la recombinaison desdits faisceaux secondaires en une ligne homogène. The homogenization means superimpose the spatial profiles of the laser sources in order to obtain homogeneous linear power along the line. The homogenization means preferably comprise lenses allowing the separation of the incident beams into secondary beams and the recombination of said secondary beams into a homogeneous line.
Enfin, les moyens de focalisation du rayonnement permettent de focaliser le rayonnement au niveau du plan de travail, c’est-à-dire dans le plan de la couche à traiter, sous la forme d’une ligne de longueur et de largeur voulues. Les moyens de focalisation comprennent de préférence un miroir focalisant ou une lentille convergente. Finally, the means for focusing the radiation make it possible to focus the radiation at the working plane, that is to say in the plane of the layer to be treated, in the form of a line of desired length and width. The focusing means preferably comprise a focusing mirror or a converging lens.
Lorsqu’une seule ligne laser est utilisée, la longueur de la ligne est avantageusement égale à la largeur du substrat. Cette longueur est typiquement d’au moins 1 m, notamment d’au moins 2 m et en particulier d’au moins 3 m. On peut également utiliser plusieurs lignes, disjointes ou non, mais disposées de manière à traiter toute la largeur du substrat. Dans ce cas, la longueur de chaque ligne laser est de préférence d’au moins 10 cm ou 20 cm, notamment comprise dans un domaine allant de 30 à 100 cm, notamment de 30 à 75 cm, voire de 30 à 60 cm. When only one laser line is used, the length of the line is advantageously equal to the width of the substrate. This length is typically at least 1 m, in particular at least 2 m and in particular at least 3 m. It is also possible to use several lines, disjointed or not, but arranged so as to treat the entire width of the substrate. In this case, the length of each laser line is preferably at least 10 cm or 20 cm, in particular within a range from 30 to 100 cm, in particular from 30 to 75 cm, or even from 30 to 60 cm.
On entend par « longueur » de la ligne la plus grande dimension de la ligne, mesurée au niveau de la surface de la couche d’oxyde conducteur transparent, et par « largeur » la dimension selon une seconde direction perpendiculaire à la première. Comme il est d’usage dans le domaine des lasers, la largeur (w) de la ligne correspond à la distance, selon cette seconde direction, entre l’axe du faisceau où l’intensité du rayonnement est maximale et le point où l’intensité du rayonnement est égale à 1/e2 fois l’intensité maximale. Si l’axe longitudinal de la ligne laser est nommé x, on peut définir une distribution de largeurs selon cet axe, nommée w(x). The term "length" of the line means the largest dimension of the line, measured at the surface of the transparent conductive oxide layer, and "width" the dimension in a second direction perpendicular to the first. As is customary in the field of lasers, the width (w) of the line corresponds to the distance, in this second direction, between the axis of the beam where the radiation intensity is maximum and the point where the radiation intensity is equal to 1 / e 2 times the maximum intensity. If the longitudinal axis of the laser line is named x, we can define a width distribution along this axis, called w (x).
La largeur moyenne de la ou chaque ligne laser est de préférence d’au moins 35 micromètres, notamment comprise dans un domaine allant de 40 à 100 micromètres ou de 40 à 70 micromètres. Dans l’ensemble du présent texte on entend par « moyenne » la moyenne arithmétique. Sur toute la longueur de la ligne, la distribution de largeurs est étroite afin de limiter autant que faire se peut toute hétérogénéité de traitement. Ainsi, la différence entre la largeur la plus grande et la largeur la plus petite vaut de préférence au plus 10% de la valeur de la largeur moyenne. Ce chiffre est de préférence d’au plus 5% et même 3%. The average width of the or each laser line is preferably at least 35 micrometers, in particular lying in a range from 40 to 100 micrometers or from 40 to 70 micrometers. Throughout this text, "average" means the arithmetic average. Over the entire length of the line, the width distribution is narrow in order to limit as far as possible any heterogeneity of treatment. Thus, the difference between the largest width and the smallest width is preferably at most 10% of the value of the average width. This figure is preferably at most 5% and even 3%.
Les modules laser sont de préférence montés sur une structure rigide, appelée « pont », à base d’éléments métalliques, typiquement en aluminium. La structure ne comprend de préférence pas de plaque de marbre. Le pont est de préférence positionné de manière parallèle aux moyens de convoyage convoyant le substrat de sorte que le plan focal de la ligne laser reste parallèle à la surface du substrat à traiter. De préférence, le pont comprend au moins quatre pieds, dont la hauteur peut être individuellement ajustée pour assurer un positionnement parallèle en toutes circonstances. L’ajustement peut être assuré par des moteurs situés au niveau de chaque pied, soit manuellement, soit automatiquement, en relation avec un capteur de distance. La hauteur du pont peut être adaptée (manuellement ou automatiquement) pour prendre en compte l’épaisseur du substrat à traiter, et s’assurer ainsi que le plan du substrat coïncide avec le plan focal de la ligne laser. La puissance linéique de la ligne laser est de préférence d’au moins 50 W/cm, avantageusement 100 W/cm, notamment 200 W/cm, voire 300 W/cm et même 400 W/cm. Elle est même avantageusement d’au moins 600 W/cm, notamment 800 W/cm, voire 1000 W/cm. La puissance linéique est mesurée à l’endroit où la ou chaque ligne laser est focalisée sur la couche d’oxyde conducteur transparent. Elle peut être mesurée en disposant un détecteur de puissance le long de la ligne, par exemple un puissance-mètre calorimétrique, tel que notamment le puissance-mètre Beam Finder S/N 2000716 de la société Cohérent Inc. La puissance est avantageusement répartie de manière homogène sur toute la longueur de la ou chaque ligne. De préférence, la différence entre la puissance la plus élevée et la puissance la plus faible vaut moins de 10% de la puissance moyenne. The laser modules are preferably mounted on a rigid structure, called a "bridge", based on metallic elements, typically made of aluminum. The structure preferably does not include a marble slab. The bridge is preferably positioned parallel to the conveying means conveying the substrate so that the focal plane of the laser line remains parallel to the surface of the substrate to be treated. Preferably, the bridge comprises at least four feet, the height of which can be individually adjusted to ensure parallel positioning in all circumstances. The adjustment can be ensured by motors located at each foot, either manually or automatically, in conjunction with a distance sensor. The height of the bridge can be adjusted (manually or automatically) to take into account the thickness of the substrate to be treated, and thus ensure that the plane of the substrate coincides with the focal plane of the laser line. The linear power of the laser line is preferably at least 50 W / cm, advantageously 100 W / cm, in particular 200 W / cm, even 300 W / cm and even 400 W / cm. It is even advantageously at least 600 W / cm, in particular 800 W / cm, or even 1000 W / cm. The linear power is measured at the point where the or each laser line is focused on the transparent conductive oxide layer. It can be measured by placing a power detector along the line, for example a calorimetric power meter, such as in particular the Beam Finder S / N 2000716 power meter from the company Cohérent Inc. The power is advantageously distributed in a manner homogeneous over the entire length of the or each line. Preferably, the difference between the highest power and the lowest power is less than 10% of the average power.
Selon un mode de réalisation préféré, le rayonnement est issu d’au moins une lampe à lumière intense pulsée (IPL, Intense Pulsed Light) ci-après appelée lampe flash. According to a preferred embodiment, the radiation comes from at least one intense pulsed light lamp (IPL, Intense Pulsed Light) hereinafter called flash lamp.
De telles lampes flash se présentent généralement sous la forme de tubes en verre ou en quartz scellés et remplis d’un gaz rare, munis d’électrodes à leurs extrémités. Sous l’effet d’une impulsion électrique de courte durée, obtenue par décharge d’un condensateur, le gaz s’ionise et produit une lumière incohérente particulièrement intense. Le spectre d’émission comporte généralement au moins deux raies d’émission, il s’agit de préférence d’un spectre continu présentant un maximum d’émission dans le proche ultraviolet. Such flash lamps are generally in the form of sealed glass or quartz tubes filled with a rare gas, provided with electrodes at their ends. Under the effect of a short-lived electric pulse, obtained by discharging a capacitor, the gas ionizes and produces a particularly intense incoherent light. The emission spectrum generally comprises at least two emission lines, it is preferably a continuous spectrum having a maximum emission in the near ultraviolet.
La lampe est de préférence une lampe au xénon. Elle peut également être une lampe à l’argon, à l’hélium ou au krypton. Le spectre d’émission comprend de préférence plusieurs raies, notamment à des longueurs d’onde allant de 160 à 1000 nm. The lamp is preferably a xenon lamp. It can also be an argon, helium or krypton lamp. The emission spectrum preferably comprises several lines, in particular at wavelengths ranging from 160 to 1000 nm.
La durée de chaque impulsion de lumière est de préférence comprise dans un domaine allant de 0,05 à 20 millisecondes, notamment de 0,1 à 5 millisecondes. Le taux de répétition est de préférence compris dans un domaine allant de 0,1 à 5 Hz, notamment de 0,2 à 2 Hz. The duration of each light pulse is preferably in a range from 0.05 to 20 milliseconds, in particular from 0.1 to 5 milliseconds. The repetition rate is preferably within a range from 0.1 to 5 Hz, in particular from 0.2 to 2 Hz.
Le rayonnement peut être issu de plusieurs lampes disposées côte à côte, par exemple 5 à 20 lampes, ou encore 8 à 15 lampes, de manière à traiter simultanément une zone plus large. Toutes les lampes peuvent dans ce cas émettre des flashs de manière simultanée. La ou chaque lampe est de préférence disposée transversalement aux plus grands côtés du substrat. La ou chaque lampe possède une longueur de préférence d’au moins 1 m notamment 2 m et même 3 m de manière à pouvoir traiter des substrats de grande taille. The radiation can come from several lamps arranged side by side, for example 5 to 20 lamps, or even 8 to 15 lamps, so as to simultaneously treat a larger area. In this case, all the lamps can emit flashes simultaneously. The or each lamp is preferably arranged transversely to the longest sides of the substrate. The or each lamp preferably has a length of at least 1 m, in particular 2 m and even 3 m, so that large substrates can be treated.
Le condensateur est typiquement chargé à une tension de 500 V à 500 kV. La densité de courant est de préférence d’au moins 4000 A/cm2. La densité d’énergie totale émise par les lampes flash, rapportée à la surface de la couche d’oxyde conducteur transparent, est de préférence comprise entre 1 et 100 J/cm2, notamment entre 1 et 30 J/cm2, voire entre 5 et 20 J/cm2. The capacitor is typically charged at a voltage of 500 V to 500 kV. The current density is preferably at least 4000 A / cm 2 . The total energy density emitted by flash lamps, related to the surface of the transparent conductive oxide layer, is preferably between 1 and 100 J / cm 2 , in particular between 1 and 30 J / cm 2 , or even between 5 and 20 J / cm 2 .
Les puissances et densités d’énergies élevées permettent de chauffer la couche à traiter très rapidement à des températures élevées. The high powers and energy densities make it possible to heat the layer to be treated very quickly at high temperatures.
Au cours de l’étape de recuit de la couche à traiter du procédé selon l’invention chaque point de la couche à traiter est de préférence porté à une température d’au moins 300°C, notamment 350°C, voire 400°C, et même 500°C ou 600°C. La température maximale est normalement atteinte au moment où le point de la couche à traiter considérée passe sous le dispositif de rayonnement, par exemple sous la ligne laser ou sous la lampe flash. A un instant donné, seuls les points de la surface de la couche situés sous le dispositif de rayonnement (par exemple sous la ligne laser) et dans ses environs immédiats (par exemple à moins d’un millimètre) sont normalement à une température d’au moins 300°C. Pour des distances à la ligne laser (mesurées selon la direction de défilement) supérieures à 2 mm, notamment 5 mm, y compris en aval de la ligne laser, la température de l’empilement électrochrome est normalement d’au plus 50°C, et même 40°C ou 30°C. During the annealing step of the layer to be treated of the process according to the invention, each point of the layer to be treated is preferably brought to a temperature of at least 300 ° C., in particular 350 ° C., or even 400 ° C. , and even 500 ° C or 600 ° C. The maximum temperature is normally reached at the moment when the point of the layer to be treated in question passes under the radiation device, for example under the laser line or under the flash lamp. At a given instant, only the points on the surface of the layer located under the radiation device (for example under the laser line) and in its immediate surroundings (for example within one millimeter) are normally at a temperature of at least 300 ° C. For distances to the laser line (measured along the direction of travel) greater than 2 mm, in particular 5 mm, including downstream of the laser line, the temperature of the electrochromic stack is normally at most 50 ° C., and even 40 ° C or 30 ° C.
Chaque point de la couche à traiter subit le traitement thermique (ou est porté à la température maximale) pendant une durée avantageusement comprise dans un domaine allant de 0,05 à 10 ms, notamment de 0,1 à 5 ms, ou de 0,1 à 2 ms. Dans le cas d’un traitement au moyen d’une ligne laser, cette durée est fixée à la fois par la largeur de la ligne laser et par la vitesse de déplacement relatif entre le substrat et la ligne laser. Dans le cas d’un traitement au moyen d’une lampe flash, cette durée correspond à la durée du flash. Each point of the layer to be treated undergoes heat treatment (or is brought to the maximum temperature) for a period advantageously comprised in a range ranging from 0.05 to 10 ms, in particular from 0.1 to 5 ms, or from 0, 1 to 2 ms. In the case of treatment using a laser line, this duration is fixed both by the width of the laser line and by the speed of relative movement between the substrate and the laser line. In the case of treatment with a flash lamp, this duration corresponds to the duration of the flash.
La vitesse du mouvement de déplacement relatif entre le substrat et la ou chaque source de rayonnement (notamment la ou chaque ligne laser) est avantageusement d’au moins 2 m/min ou 4 m/min, notamment 5 m/min et même 6 m/min ou 7 m/min, ou encore 8 m/min et même 9 m/min ou 10 m/min. Selon certains modes de réalisation, en particulier lorsque l’absorption du rayonnement par l’empilement électrochrome est élevée ou lorsque l’empilement électrochrome peut être déposé avec de grandes vitesses de dépôt, la vitesse du mouvement de déplacement relatif entre le substrat et la source de rayonnement (notamment la ou chaque ligne laser ou lampe flash) est d’au moins 12 m/min ou 15 m/min, notamment 20 m/min et même 25 ou 30 m/min. Afin d’assurer un traitement qui soit le plus homogène possible, la vitesse du mouvement de déplacement relatif entre le substrat et la ou chaque source de rayonnement (notamment la ou chaque ligne laser ou lampe flash) varie lors du traitement d’au plus 10% en relatif, notamment 2% et même 1 % par rapport à sa valeur nominale. The speed of the relative movement of movement between the substrate and the or each source of radiation (in particular the or each laser line) is advantageously at least 2 m / min or 4 m / min, in particular 5 m / min and even 6 m / min or 7 m / min, or even 8 m / min and even 9 m / min or 10 m / min. According to certain embodiments, in particular when the absorption of radiation by the electrochromic stack is high or when the electrochromic stack can be deposited with high deposition rates, the speed of the relative movement of movement between the substrate and the source radiation (in particular the or each laser line or flash lamp) is at least 12 m / min or 15 m / min, in particular 20 m / min and even 25 or 30 m / min. In order to ensure treatment that is as homogeneous as possible, the speed of the relative movement of movement between the substrate and the or each source of radiation (in particular the or each laser line or flash lamp) varies during treatment by at most 10 % relative, in particular 2% and even 1% compared to its nominal value.
De préférence, la ou chaque source de rayonnement (notamment ligne laser ou lampe flash) est fixe, et le substrat est en mouvement, si bien que les vitesses de déplacement relatif correspondront à la vitesse de défilement du substrat. Preferably, the or each radiation source (in particular laser line or flash lamp) is fixed, and the substrate is in motion, so that the relative displacement speeds will correspond to the speed of movement of the substrate.
Ce traitement thermique rapide permet astucieusement d’activer lesdites couches électroconductrices transparentes c’est-à-dire d’augmenter la conductivité tout en limitant la cristallisation. Cette limitation de la cristallisation se manifeste par une limitation de la taille des cristaux formés lors de cette étape de recuit puisque celle-ci ne varie pas. Par exemple, pour une dizaine d’échantillons de 10cm2 comprenant une couche d’ITO, ces échantillons sont, pour moitié, non traités thermiquement et pour moitié traités thermiquement. On constate que la valeur moyenne de la taille des cristaux est de 33.3 nm sans traitement thermique et 34.7 nm avec traitement laser. This rapid heat treatment cleverly makes it possible to activate said transparent electroconductive layers, that is to say to increase the conductivity while limiting crystallization. This limitation in crystallization is manifested by a limitation in the size of the crystals formed during this annealing step since the latter does not vary. For example, for ten 10cm 2 samples comprising an ITO layer, half of these samples are not heat treated and half are heat treated. It is noted that the average value of the size of the crystals is 33.3 nm without heat treatment and 34.7 nm with laser treatment.
Dans une sixième étape, une étape d’assemblage, appelée étape de lamination est opérée pour assembler les deux panneaux de verre. In a sixth step, an assembly step, called the lamination step, is performed to assemble the two glass panels.
Ainsi, avantageusement, cette capacité à augmenter la conduction électrique des couches électroconductrices transparentes sans augmenter la taille des cristaux et donc la rugosité permet d’améliorer les performances du vitrage électrochrome. En effet, lors de l’assemblage des panneaux de verres 2, une contrainte apparaît au niveau de la couche d’électrolyte Cl. Cette contrainte est la résultante de la rugosité des couches conductrices transparentes TC01 , TC02 sur ladite couche d’électrolyte, cette couche d’électrolyte se déformant/compressant localement de sorte que ladite couche d’électrolyte Cl présente, localement, une variation de son épaisseur. Cette variation locale de l’épaisseur de la couche d’électrolyte Cl sur la totalité de sa surface entraîne une réaction électrochromique du vitrage électrochrome qui n’est pas homogène et donc une baisse des performances. Thus, advantageously, this ability to increase the electrical conduction of the transparent electroconductive layers without increasing the size of the crystals and therefore the roughness makes it possible to improve the performance of the electrochromic glazing. In fact, during assembly of the glass panels 2, a constraint appears at the level of the electrolyte layer C1. This constraint is the result of the roughness of the transparent conductive layers TC01, TC02 on said electrolyte layer, this locally deformed / compressing electrolyte layer so that said electrolyte layer C1 locally has a variation in sound thickness. This local variation in the thickness of the electrolyte layer C1 over its entire surface results in an electrochromic reaction of the electrochromic glazing which is not homogeneous and therefore a drop in performance.
De plus, avec une baisse de la rugosité suite à ce traitement thermique rapide, il devient alors possible d’avoir une couche d’électrolyte conducteur ionique et isolant électrique la plus faible possible. En effet, avec une rugosité élevée, il est nécessaire de prévoir une couche d’électrolyte conducteur ionique et isolant électrique Cl ayant une épaisseur qui compense la variation d’épaisseur dû à cette rugosité afin de garder des performances optiques satisfaisantes. Néanmoins, une augmentation de l’épaisseur de la couche d’électrolyte conducteur ionique Cl entraîne une baisse de la vitesse de passage du vitrage électrochrome du mode clair au mode opaque et inversement. In addition, with a decrease in roughness following this rapid heat treatment, it then becomes possible to have the weakest possible layer of ion-conducting electrolyte and electrical insulator. Indeed, with a high roughness, it is necessary to provide a layer of ion-conducting electrolyte and electrical insulator Cl having a thickness which compensates for the variation in thickness due to this roughness in order to keep satisfactory optical performance. However, an increase in the thickness of the layer of ion-conducting electrolyte Cl leads to a decrease in the speed of passage of the electrochromic glazing from light to opaque mode and vice versa.
Ainsi, une rugosité plus faible permet donc de moins compenser la variation d’épaisseur et donc d’avoir une couche d’électrolyte conducteur ionique et isolant électrique moins épaisse. La vitesse de passage du vitrage électrochrome du mode clair au mode opaque et inversement est donc meilleure. Thus, a lower roughness therefore makes it possible to less compensate for the variation in thickness and therefore to have a thinner layer of ion-conducting electrolyte and electrical insulator. The speed of passage of the electrochromic glazing from clear mode to opaque mode and vice versa is therefore better.
Bien entendu, la présente invention ne se limite pas à l’exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l’homme de l’art. Of course, the present invention is not limited to the illustrated example but is susceptible to various variants and modifications which will appear to those skilled in the art.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un vitrage électrochrome, ledit vitrage comprenant un empilement electrochrome comprenant: 1. Method for manufacturing an electrochromic glazing, said glazing comprising an electrochromic stack comprising:
une première couche conductrice transparente (TC01 ), a first transparent conductive layer (TC01),
une couche d’un matériau électrochrome (EC), a layer of electrochromic material (EC),
une couche d’un électrolyte conducteur ionique (Cl), a layer of an ion-conducting electrolyte (Cl),
une couche contre- électrode (CE), a counter electrode layer (CE),
une seconde couche conductrice transparente (TC02), a second transparent conductive layer (TC02),
ledit procédé comprenant les étapes suivantes : said method comprising the following steps:
- se munir d’un premier panneau de verre (2) et un second panneau de verre (2); - provide a first glass panel (2) and a second glass panel (2);
- déposer une première couche conductrice transparente (TC01 ) sur le premier panneau de verre et une seconde couche conductrice transparente (TC02) sur le second panneau de verre; - depositing a first transparent conductive layer (TC01) on the first glass panel and a second transparent conductive layer (TC02) on the second glass panel;
- déposer une couche d’un matériau électrochrome (EC) sur la première couche conductrice transparente (TC01 ) et une couche contre-électrode (CE) sur la seconde couche conductrice transparente (TC02) ; - deposit a layer of an electrochromic material (EC) on the first transparent conductive layer (TC01) and a counter-electrode layer (CE) on the second transparent conductive layer (TC02);
- déposer la couche d’un électrolyte conducteur ionique (Cl) sur l’une ou l’autre des couches d’un matériau électrochrome (EC) ou contre-électrode (CE) ; - deposit the layer of an ion-conducting electrolyte (Cl) on one or the other of the layers of an electrochromic material (EC) or counter-electrode (CE);
- assembler les deux panneaux de verre pour former un vitrage feuilleté - assemble the two glass panels to form a laminated glazing
Caractérisé en ce qu’il comprend, en outre, au moins une étape de traitement thermique consistant à traiter thermiquement au moins un panneau de verre muni d’au moins une couche conductrice transparente (TC01 , TC02) par un dispositif de traitement thermique rapide avant d’assembler les panneaux de verre. Characterized in that it further comprises at least one heat treatment step consisting in thermally treating at least one glass panel provided with at least one transparent conductive layer (TC01, TC02) by a rapid heat treatment device before to assemble the glass panels.
2. Procédé selon la revendication 1 , dans lequel ladite étape de traitement thermique est utilisée pour traiter la couche conductrice transparente de chaque panneau de verre. 2. The method of claim 1, wherein said heat treatment step is used to treat the transparent conductive layer of each glass panel.
3. Procédé selon la revendication 1 , dans lequel une étape de traitement thermique est, en outre, utilisée pour traiter la couche d’un matériau électrochrome (EC) et/ou la couche d’un contre électrode (CE). 3. The method of claim 1, wherein a heat treatment step is further used to treat the layer of an electrochromic material (EC) and / or the layer of a counter electrode (CE).
4. Procédé selon l’une des revendications 1 à 3, dans lequel ladite étape de traitement thermique de ladite au moins une couche conductrice transparente est opérée après le dépôt de la première couche conductrice transparente (TC01 ) sur le premier panneau de verre et/ou de la seconde couche conductrice transparente (TC02) sur le second panneau de verre. 4. Method according to one of claims 1 to 3, wherein said step of heat treatment of said at least one transparent conductive layer is carried out after the deposition of the first transparent conductive layer (TC01) on the first glass panel and / or the second transparent conductive layer (TC02) on the second glass panel.
5. Procédé selon l’une des revendications précédentes, dans lequel ladite étape de traitement thermique utilisée pour traiter la couche d’un matériau électrochrome (EC) et/ou la couche d’un contre électrode (CE) est opérée après le dépôt de la couche d’un matériau électrochrome (EC) et/ou de la couche contre électrode (CE). 5. Method according to one of the preceding claims, in which said heat treatment step used to treat the layer of an electrochromic material (EC) and / or the layer of a counter electrode (CE) is carried out after the deposition of the layer of an electrochromic material (EC) and / or the layer against the electrode (CE).
6. Procédé selon l’une des revendications précédentes, dans lequel ladite étape de traitement thermique est opérée pour traiter simultanément la couche d’un matériau électrochrome (EC) et la première couche conductrice transparente ou pour traiter simultanément la couche contre-électrode (CE) et la seconde couche conductrice transparente. 6. Method according to one of the preceding claims, wherein said heat treatment step is carried out to simultaneously treat the layer of an electrochromic material (EC) and the first transparent conductive layer or to simultaneously treat the counter-electrode layer (CE ) and the second transparent conductive layer.
7. Procédé selon l’une des revendications précédentes, dans lequel le dispositif de traitement thermique est placé en regard de la couche à traiter et en ce que l’étape de traitement thermique est agencée pour porter la couche à traiter à une température au moins égale à 300 °C pendant une durée brève, de préférence inférieure à 100 millisecondes. 7. Method according to one of the preceding claims, wherein the heat treatment device is placed opposite the layer to be treated and in that the heat treatment step is arranged to bring the layer to be treated to a temperature at least equal to 300 ° C for a short time, preferably less than 100 milliseconds.
8. Procédé selon l’une des revendications précédentes, dans lequel le dispositif de traitement thermique est agencé pour traiter thermiquement la couche à traiter pendant une durée brève, de préférence inférieure à 100 millisecondes. 8. Method according to one of the preceding claims, in which the heat treatment device is arranged to heat treat the layer to be treated for a short time, preferably less than 100 milliseconds.
9. Procédé selon les revendications 7 ou 8, dans lequel le dispositif de traitement thermique est un dispositif laser émettant un rayonnement présentant une longueur d’onde comprise entre 300 et 2000 nm. 9. The method of claims 7 or 8, wherein the heat treatment device is a laser device emitting radiation having a wavelength between 300 and 2000 nm.
10. Procédé selon les revendications 7 ou 8, dans lequel le dispositif de traitement thermique comprend au moins une lampe à lumière intense pulsée émettant un rayonnement présentant une longueur d’onde comprise 160 à 1000 nm, l’étape de traitement thermique étant agencée pour que chaque impulsion de lumière ait une durée de préférence comprise dans un domaine allant de 0,05 à 20 millisecondes. 10. The method of claims 7 or 8, wherein the heat treatment device comprises at least one intense pulsed light lamp emitting radiation having a wavelength between 160 and 1000 nm, the heat treatment step being arranged for that each light pulse has a duration preferably in a range from 0.05 to 20 milliseconds.
EP19868187.6A 2018-11-28 2019-11-27 Method for manufacturing an electrochromic glazing Pending EP3887901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872014A FR3088850B1 (en) 2018-11-28 2018-11-28 PROCESS FOR MANUFACTURING AN ELECTROCHROME WINDOW
PCT/FR2019/052821 WO2020109725A1 (en) 2018-11-28 2019-11-27 Method for manufacturing an electrochromic glazing

Publications (1)

Publication Number Publication Date
EP3887901A1 true EP3887901A1 (en) 2021-10-06

Family

ID=66286435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19868187.6A Pending EP3887901A1 (en) 2018-11-28 2019-11-27 Method for manufacturing an electrochromic glazing

Country Status (6)

Country Link
US (1) US20220009825A1 (en)
EP (1) EP3887901A1 (en)
JP (1) JP2022509782A (en)
CN (1) CN113039483A (en)
FR (1) FR3088850B1 (en)
WO (1) WO2020109725A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791510A (en) * 2021-08-06 2021-12-14 河北光兴半导体技术有限公司 Preparation system for electrochromic glass

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601150B1 (en) 1986-07-04 1991-05-31 Saint Gobain Vitrage VARIABLE TRANSMISSION GLAZING OF THE ELECTROCHROME TYPE
FR2642890B1 (en) 1989-02-09 1991-04-12 Saint Gobain Vitrage COLLOIDAL MATERIAL CONDUCTING ALKALINE CATIONS AND APPLICATIONS AS ELECTROLYTES
FR2649691B1 (en) * 1989-07-11 1992-10-30 Saint Gobain Vitrage Int ELECTROCHROME GLAZING
FR2677800B1 (en) 1991-06-14 1993-08-20 Saint Gobain Vitrage Int SOLID ION CONDUCTIVE MATERIAL FROM A POLYMER AND AN ALKALINE CATION SALT, APPLICATION AS AN ELECTROLYTE.
EP0532408A1 (en) 1991-09-13 1993-03-17 Saint-Gobain Vitrage International Proton-conducting polymer and its use as electrolyte in electrochemical devices
FR2716457B1 (en) 1994-02-23 1996-05-24 Saint Gobain Vitrage Int Protonic conductive electrolyte material.
FR2746934B1 (en) 1996-03-27 1998-05-07 Saint Gobain Vitrage ELECTROCHEMICAL DEVICE
FR2753545B1 (en) 1996-09-18 1998-10-16 Saint Gobain Vitrage ELECTROCHEMICAL DEVICE
FR2904123B1 (en) * 2006-07-21 2008-09-12 Saint Gobain ELECTROCHEMICAL / ELECTROCOMMANDABLE DEVICE OF THE WINDOW TYPE AND HAVING VARIABLE OPTICAL AND / OR ENERGY PROPERTIES.
US8080141B2 (en) * 2008-11-18 2011-12-20 Guardian Industries Corp. ITO-coated article and/or method of making the same via heat treating
FR2948356B1 (en) * 2009-07-22 2011-08-19 Saint Gobain ELECTROCHROME DEVICE
FR2963342B1 (en) * 2010-07-27 2012-08-03 Saint Gobain METHOD FOR OBTAINING A MATERIAL COMPRISING A SUBSTRATE WITH A COATING
JP6279578B2 (en) * 2012-08-09 2018-02-14 セイジ・エレクトロクロミクス,インコーポレイテッド Ternary nickel oxide materials for electrochromic devices
US8524526B1 (en) * 2012-08-14 2013-09-03 Guardian Industries Corp. Organic light emitting diode with transparent electrode and method of making same
DK2946246T3 (en) * 2013-01-21 2019-07-01 Kinestral Tech Inc MULTIPLE ELECTROCHROOM FITTING WITH LITHIUM NICKEL-OXID BASED ANODE
US10061177B2 (en) * 2014-07-23 2018-08-28 Kinestral Technologies, Inc. Process for preparing multi-layer electrochromic stacks
WO2016077005A1 (en) * 2014-11-14 2016-05-19 Heliotrope Technologies, Inc. Post-temperable nanocrystal electrochromic devices
FR3031197B1 (en) * 2014-12-31 2017-06-16 Saint Gobain METHOD FOR RAPID THERMAL TREATMENT OF A COMPLETE SOLID ELECTROCHROME STACK

Also Published As

Publication number Publication date
FR3088850A1 (en) 2020-05-29
US20220009825A1 (en) 2022-01-13
WO2020109725A1 (en) 2020-06-04
CN113039483A (en) 2021-06-25
FR3088850B1 (en) 2020-12-11
JP2022509782A (en) 2022-01-24

Similar Documents

Publication Publication Date Title
EP3241068B1 (en) Fast heat treatment method for a complete all-solid-state electrochromic stack
EP0683419B1 (en) Method of supplying power to an electrochromic system
EP3057914A1 (en) Method for producing a substrate coated with a stack including a conductive transparent oxide film
FR2962818A1 (en) ELECTROCHEMICAL DEVICE HAVING ELECTRO - CONTROLLABLE OPTICAL AND / OR ENERGY TRANSMISSION PROPERTIES.
EP2307926A1 (en) Electrochromic device with controlled infrared reflection
EP0445238A1 (en) Method for rapid and uniform heating of a multilayer transparent and/or reflecting optical system with solid polymer electrolyte.
FR2904704A1 (en) ELECTROCHEMICAL DEVICE, AND / OR ELELCTROCOMMANDABLE OF THE GLAZING TYPE AND HAVING VARIABLE OPTICAL AND / OR ENERGY PROPERTIES
BE1020255A3 (en) GLASS PANEL COMPRISING A PERMIERE GLASS SHEET COATED AT LEAST PARTIALLY WITH A CONDUCTIVE COATING OF ELECTRICITY.
EP3532693A1 (en) Multiple glazing
EP3887901A1 (en) Method for manufacturing an electrochromic glazing
FR2729797A1 (en) ACTIVE TRIP LASER AND MICROLASER
EP0656257B1 (en) Proces for making a laminated glass containing metal wires in the thermoplastic interlayer
WO2012089955A1 (en) Electrochemical device having electrically controllable optical and/or energy transmission properties
CA2999205A1 (en) Method for rapid annealing of a stack of thin layers containing an indium overlay
EP0812067A1 (en) Photoconductive electric switch
EP0724316A1 (en) Monolithic solid state mikrolaser with low voltage active Q-switching
WO2021123267A1 (en) Thermal tempering of a working electrode
CA2912800A1 (en) Method for producing a substrate
FR3101359A1 (en) GLAZING EQUIPPED WITH A STACK OF THIN LAYERS
FR2754114A1 (en) SOLID MICROLASER HAVING ELECTRODETIC ELECTRODE SENSING WITH INDEPENDENT ELECTRODES, AND METHOD OF MAKING SAME
FR3143716A1 (en) Vehicle lighting device comprising a light guide provided with a multilayer structure
FR2977040A1 (en) Fabricating electrochemical device by depositing lower electrode coating on substrate, depositing first electrochemically active layer on lower electrode coating, and depositing electrolyte layer on first electrochemically active layer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240122