EP3886929A1 - Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system - Google Patents

Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system

Info

Publication number
EP3886929A1
EP3886929A1 EP19809853.5A EP19809853A EP3886929A1 EP 3886929 A1 EP3886929 A1 EP 3886929A1 EP 19809853 A EP19809853 A EP 19809853A EP 3886929 A1 EP3886929 A1 EP 3886929A1
Authority
EP
European Patent Office
Prior art keywords
hydrogel
copolymer
chitosan
diffusing agent
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19809853.5A
Other languages
German (de)
French (fr)
Inventor
Jean-Claude Giannotta
Charles CALLEJA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NVD
Original Assignee
NVD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NVD filed Critical NVD
Publication of EP3886929A1 publication Critical patent/EP3886929A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/14Materials or treatment for tissue regeneration for ear reconstruction or ear implants, e.g. implantable hearing aids

Definitions

  • the present invention relates to a biocompatible hydrogel. It further relates to a process for the preparation of such a hydrogel, to the use of the hydrogel and to a kit.
  • hydrogels For certain formulations of hydrogels, clinical publications mention a lasting biocompatibility of these hydrogels and their propensity to form crosslinked viscoelastic structures of interest for soft tissues in the case of external use, for example (wound care, Knapp et al., Clinical experiences with a new gel-like wound dressing after skin transplantation, A textbooke Traumatologie, December 1984, pp. 275-281) or articular.
  • Chitosan is a biopolymer, biocompatible and biodegradable which has multiple biomedical uses, in particular in cross-linked form in three dimensions.
  • a biomaterial Croisier et al, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, Volume 49, Issue 4, April 2013.
  • the products of its degradation (glucosamine) are biocompatible, but the durability of the network is variable, in particular according to the mechanical and chemical constraints applied.
  • a technical problem which the invention proposes to solve is to produce for the health sector a new hydrogel which has improved properties compared to the hydrogels of chitosan or polyacrylamide of the art. anterior, forming effective support systems, having a carrying capacity in situ, and capable of allowing the release of a diffusing agent.
  • the solution of the invention to this problem first relates to a hydrogel comprising, on the one hand, between 0.3% and 30% by weight of dry matter of a copolymer formed at least of acrylamide, chitosan and N, N'-methylenebisacrylamide and, on the other hand, a diffusing agent.
  • the hydrogel has a viscoelastic matrix structure which allows prolonged mechanical hydration or visco-supplementation of the diffusing agent which is located, fixed, protected and released by the hydrogel during its degradation in situ.
  • the hydrogel makes it possible to avoid the aggregates of diffusing agents and, consequently, the initial excessive releases.
  • the diffusing agent is chosen from inert ingredients having advantageous biomechanical properties or active agents, preferably substances of plant origin such as genepi extracts, substances of marine origin, such as extracts of green mussels. from New Zealand (Perna canaliculus), ortho-silicic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti inflammatory drugs, such as flunixin, ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonyl of bromelain, arnica, collagen, antioxidants, fatty acids - the diffusing agent is included in a cargo ship chosen from microcapsules, microparticles and polymeric vehicles, preferably biodegradable microcapsules,
  • the second object of the invention is a method of manufacturing a hydrogel as defined above, comprising the following steps: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide and an initiator radical, in an aqueous medium to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and adding a diffusing agent to obtain the hydrogel.
  • the process comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in an aqueous medium, to obtain a copolymer incorporating the diffusing agent then washing with water of the copolymer incorporating the diffusing agent to obtain the hydrogel.
  • the process comprises the following stages: copolymerization of acrylamide and chitosan introduced with a mass ratio of between 1/1 and 1/8, at a temperature between 20 and 60 ° C, preferably between 40 and 60 ° C , in the presence of N, N'-methylenebisacrylamide introduced with a mass ratio relative to the acrylamide of between 1/50 and 1/1000, preferably between 1/100 and 1/500, and of a radical initiator with a mass ratio with respect to acrylamide between 1/100 and 1/10 chosen from potassium persulfate or ammonium persulfate, optionally in combination with tetramethylethylenediamine with a mass ratio with respect to acrylamide between 1/2000 and 1/20, in an aqueous medium to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and addition of the diffusing agent between 0.001% and 30% by weight of the total weight of the hydrogel, the diffusing agent being chosen from inert ingredients
  • the third object of the invention is the use of a hydrogel as defined above, in a mechanical visco-supplementation system, for external or internal use.
  • the visco-supplementation system is a lubricant; - the visco-supplementation system is a cross-linked matrix with carrying or storage capacity; - the visco-supplementation system is a moisturizer; - the diffusing agent begins to diffuse between the 2nd and the 30th day after the administration, preferably between the 10th and the 20th day, in particular from the 15th day; and - the broadcasting agent is released over a period of between 2 weeks and 12 months, preferably between 1 month and 6 months.
  • a fourth object of the invention is a kit for external or internal mechanical visco-supplementation comprising a copolymer of acrylamide and of chitosan crosslinked with N, N'-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension, said copolymer and said diffusing agent being premixed during manufacture in the form of a hydrogel or mixed extemporaneously to form a final hydrogel.
  • FIG. 1 shows schematically the grafting reaction of chitosan on polyacrylamide by intervention of a radical reaction (creation of free radicals using a radical initiator, noted I), and the crosslinking of the copolymer under the action N, N'- methylenebisacrylamide, according to the invention, o, p, q, r, n and m are the numbers of units of monomers;
  • FIG. 2A is a table which presents, after drying of the hydrogels (50 ° C. for more than 12 hours, and weighing of the dry matter, the mass percentage of dry matter.
  • the V14 hydrogel is the copolymer of the invention ( 3.75% dry matter)
  • the hydrogel V 5 is pure polyacrylamide
  • V20 is the copolymer with the diffusing agent.
  • FIG. 2B represents a comparison of the infrared spectra with Fourier transform (FT-IR), detailed in example 2, of the chitosanolyacrylamide-MBA (V14) copolymer (MBA for N, N'-methylenebisacrylamide) present in l hydrogel of the invention without diffusing agent, then V20 with diffusing agent, of a “pure” polyacrylamide gel (V 5) and “pure” chitosan (Chitosan);
  • FT-IR Fourier transform
  • FIG. 2C represents a comparison of the infrared spectra with Fourier transform (FT-IR), detailed in Example 2, of the chitosanolyacrylamide-MBA (V14) copolymer (MBA for N, N'-methylenebisacrylamide) present in l hydrogel of the invention, a “pure” polyacrylamide gel (V 5) and “pure” chitosan (Chitosan);
  • FT-IR Fourier transform
  • FIG. 3A shows a dissolution test of the copolymer present in the hydrogel of the invention, in acetic acid, as described in Example 2 and Figure 3B illustrates the absence of dissolution of the copolymer in the acetic acid by filtration of the hydrogel after the dissolution test described in Example 2;
  • FIG. 5 is a diagram illustrating the copolymer washing step during which the residual monomers, represented by black circles, leave the three-dimensional network formed by the copolymer and represented in white, and are replaced by water molecules (gray circles) by an osmotic phenomenon;
  • FIG. 6 is a diagram which illustrates the washing of the copolymer in a dialysis membrane
  • FIG. 7A is a photograph showing the placement of the dialysis membrane on the neck of an injection gun
  • - Figure 7B is a photograph which shows the filling of the dialysis membrane using the injection gun
  • - Figure 7C is a photograph which shows the closure of the dialysis membranes by clips and nodes
  • FIG. 8 compares the relative difference in mass gain, in percentage, of an unconstrained hydrogel in a tulle bag (black diamonds) and a constrained hydrogel in a dialysis membrane (gray triangles);
  • FIG. 10 represents the relative difference in mass gain, in percentage, as a function of time in minutes of two hydrogels of 5% dry matter, of a copolymer as defined in the invention (squares), and a polymer of the prior art, a reference polyacrylamide-MBA (diamonds), in the presence of water;
  • Figure 1 1 A represents the relative difference in weight gain, in percentage, as a function of time in minutes, of different copolymers as defined in the invention and N4 a (N * 1): Hydrogel 4.8 % PAAG-Chitosan copolymer,
  • N4 a (N * 2): 4.8% hydrogel PAAG-Chitosan copolymer
  • N4 a (N * 3): 4.8% hydrogel PAAG-Chitosan copolymer
  • N4 3a / 2 (N * 4): Hydrogel 4.8% PAAG-Chitosan copolymer, with + 50% of crosslinker MethylBisAcrylamide,
  • N4 a / 2 (N * 5): 4.8% hydrogel PAAG-Chitosan copolymer, with 50% of crosslinker MethylBisAcrylamide;
  • FIGS. 12A and 12B present tables from the XTT tests “In vitro Cytotoxicity Assay, Cell Growth Analysis via XTT-Staining and Grading Score Analysis”;
  • FIG. 13 illustrates the formula of chitosan, obtained by deacetylation of chitin.
  • Chitosan contains glucosamine (group on the right in the figure);
  • FIG. 14 is a graph which corresponds to the IRFT spectrum of a sample referenced 1904-E0012452 of a 2.5% polyacrylamide hydrogel (in dark gray) and of a sample according to the invention referenced 1904-E0012453 of a hydrogel 5% polyacrylamide-chitosan copolymer (in light gray);
  • FIG. 15A is an electron scanning microscopy (SEM) image illustrating the crosslinked structure of the copolymer of the invention, after cryogenics and the FIG. 15B is a SEM image illustrating the crosslinked structure of the hydrogel of the invention, after cryogenics, in which a particle of the diffusing agent appears in a cell of the three-dimensional network;
  • SEM electron scanning microscopy
  • FIG. 16 is a table which indicates the contents of residual acrylamide and methyl bis-acrylamide monomers, after dialysis. These values are below the measurement limits of 4ppm;
  • FIG. 17 illustrates the fact that the hydrogel copolymer according to the invention is formed by creating a macromolecular chain which is then organized in the form of a three-dimensional network thanks to the crosslinking agent (methyl bis-acrylamide);
  • FIGS. 18A, 18B and 18C are NMR curves of the 5% polyacrylamide-chitosan copolymer (FIG. 18A) which have several distinctive points, in particular specific for chitosan in 1% solution at 3.2, 3.6 and 4, 9 ppm (Fig. 18B) and in significant proportion compared to the NMR of the 2.5% polyacrylamide hydrogel alone (Fig. 18C).
  • the invention relates on the one hand to a hydrogel for the health sector comprising between 0.3% and 30% by weight of dry matter of a copolymer formed at least of acrylamide, chitosan and N, N'-methylenebisacrylamide and, on the other hand, a diffusing agent.
  • a “hydrogel” is a gel, that is, a three-dimensional network of solids diluted in a fluid, the fluid of which is water (usually 80% or more by weight of the total weight of the hydrogel).
  • the three-dimensional network of solids is generally a network of polymers. These are insoluble in water, but are able to swell substantially in the presence of a large amount of water.
  • the hydrogel of the invention comprises or consists of a three-dimensional molecular network trapping water molecules and carrying a diffusing agent.
  • the three-dimensional molecular network is formed by a chitosan-polyacrylamide-MBA copolymer.
  • Water is present in the hydrogel in an amount of 70 to 99.7% by weight, preferably in an amount of 90 to 96% by weight of water, excluding diffusing agent.
  • the copolymer hydrogel according to the invention has the capacity to carry diffusing agents, in particular submicron capsules.
  • the microstructure of the three-dimensional network of this hydrogel has cells the size of which is compatible with the particles carried away, which polyacrylamide gels produced according to the prior art do not offer.
  • the hydrogel according to the invention has a capacity 3 times greater in carrying water (hydrophilic swelling) compared to a hydrogel of the same concentration in polyacrylamide only. It therefore requires less substance with a copolymer hydrogel to provide as much hydration as with a polyacrylamide gel with equal initial dry matter concentrations.
  • the hydrogel of the invention is "biocompatible", that is to say that it does not degrade the biological medium in which it is used. This biocompatibility comes from the large amount of water absorbed by the hydrogel and from the non-toxic three-dimensional structure formed by a copolymer of chitosan and polyacrylamide crosslinked with N, N’-methylenebisacrylamide.
  • the hydrogel of the invention is "biodegradable" in the sense that it degrades to form entities which are not harmful to the environment in which it is found.
  • one of the hydrogel degradation products of the invention for example containing chitosan, is glucosamine, which is also produced naturally by the body from glucose and glutamine.
  • Glucosamine plays a key role in maintaining the integrity of cartilage in all joints. It supports the lubricating action of synovial fluid, a natural lubricant for the joints.
  • the hydrogel of the invention is a chitosan-polyacrylamide-MBA hydrogel comprising a diffusing agent.
  • This hydrogel therefore comprises a chitosan-polyacrylamide-MBA copolymer formed at least from acrylamide, chitosan and N, N’-methylenebisacrylamide.
  • Acrylamide is a monomer of synthetic origin. During polymerization, the monomers gather into a macromolecule which loses its toxicity. Also, it is very important to construct the three-dimensional network as best as possible and to wash the hydrogel after crosslinking so as to extract all of the residual potential monomers.
  • Chitosan is a material of natural and renewable origin. This biocompatible and biodegradable material, has no toxicity, is soluble in acetic acid and is capable of chemically grafting to other molecules. There are many different types of molecules reacting on chitosan. Mention may in particular be made of polyethylene glycol, polyvinyl alcohol, polyacrylic acid, hydroxycellulose, polyacrylates, polyacrylics, and polyacrylamide.
  • Chitosan is a polysaccharide composed of the random distribution of D-glucosamine linked in B- (1 -4) (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). It is produced by chemical deacetylation (in an alkaline medium) or enzymatic of chitin, the component of the exoskeleton of arthropods (crustaceans) or the endoskeleton of cephalopods (squid %), sometimes also of plant origin (walls mushrooms) or of synthetic origin. This raw material is demineralized by treatment with hydrochloric acid, then deproteinized in the presence of soda or potassium hydroxide and finally discolored thanks to an oxidizing agent.
  • the degree of acetylation is the percentage of acetylated units compared to the number of total units, it can be determined by Fourier transform infrared spectroscopy (IR-TF) or by a strong base titration. Chitosan is soluble in an acid medium unlike chitin which is insoluble. It is important to distinguish between the degree of acetylation (DA) and the degree of deacetylation (DD). One being the complement of the other, that is to say that chitosan having a DD of 85%, has 15% of acetyl groups and 85% of amine groups on its chains.
  • Chitosan is a macromolecule whose molar mass is between 50 kDa and 400 kDa (g / mole) which can also be viewed by a number of patterns from a few hundred to 2 or 3 thousand.
  • the hydrogel comprises for example between 0.15% and 3% by weight of chitosan of the total weight of the hydrogel. In a more specific example, the hydrogel comprises between 0.30% and 2% by weight of chitosan of the total weight of the hydrogel.
  • N, N’-methylenebisacrylamide is a crosslinking agent.
  • N, N’-methylenebisacrylamide makes it possible to obtain a three-dimensional structure, in particular by the formation of covalent bonds between the chitosan-polyacrylamide chains.
  • a constituent copolymer of the hydrogel according to the invention is formed of a succession of repeating units, called monomers, linked together by covalent bonds. It is understood by “copolymer”, within the meaning of the present invention, a polymer resulting from the copolymerization of at least two types of monomers, chemically different. Within the meaning of the invention, the copolymer is a material homogeneous with random, alternating and statistical sequence of the various monomers constituting it.
  • the hydrogel of the invention comprises between 0.3% and 30% by weight, of the total weight of the hydrogel, of dry matter in copolymer. In another embodiment, it comprises between 0.3 and 30.4%, in particular between 0.3033 and 30.4%, more particularly between 0.3415 and 30.4% by weight, of the total weight of the hydrogel, from dry matter in copolymer. In another embodiment, the hydrogel of the invention comprises between 0.3033 and 30%, especially between 0.3415 and 30% by weight, of the total weight of the hydrogel, of dry matter in copolymer. Below 0.3% by weight of the total weight of the dry matter hydrogel in copolymer, the hydrogel may form more difficultly or not form all, that is to say that the mixture stays liquid.
  • the hydrogel may progressively become too hard and no longer be applicable or implantable or injectable.
  • the proportion by weight of dry matter of the copolymer is equal to or greater than 2% by weight of the total weight of the hydrogel, or even 4%.
  • this proportion by weight of dry matter of the copolymer is less than or equal to 15%, or even 10%.
  • the hydrogel of the invention is substantially free of pyrogen.
  • the terms "substantially free of pyrogen” are understood to mean a substantial exemption from substances inducing a rise in temperature.
  • Various methods exist for identifying the presence of pyrogens and are well known to those skilled in the art.
  • a method for identifying the presence of pyrogen consists in injecting a rabbit with 10 ml of solution per kg of body weight and measuring its temperature. If the rabbit's body temperature increases by 0.6 ° C, or if the total increase is more than 1.4 ° C in three rabbits, the solution is not substantially free of pyrogens.
  • a MAT test (Monocyte Activation Test" - marketed, for example, by Merck TM under the names PyroDetect TM and / or PyroMAT TM introduced in the European Pharmacopoeia in 2010.
  • This test was developed as an alternative to methods using animals and aims to offer the possibility of carrying out tests pyrogens in humans in an in vitro system.
  • water substantially free of pyrogen is said to be pyrogen-free.
  • the hydrogel according to the invention also comprises a diffusing agent and / or another agent or ingredient.
  • the term "diffusing agent” is understood to mean an ingredient or an active agent capable of diffusing apart from the hydrogel.
  • the diffusing agent can be chosen from inert ingredients having interesting or active biomechanical properties. These agents can be substances of plant origin such as extracts of genepi, substances of marine origin such as extracts of New Zealand green mussels (Perna canaliculus), orthosilic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti-inflammatory drugs, such as flunixin , ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonylmethane, bromelain, arnica, collagen, antioxidants, fatty acids.
  • substances of plant origin such
  • the diffusing agent of the invention can also be included in a cargo ship.
  • This cargo is defined as a matrix capable of carrying the diffusing agent in the hydrogel.
  • different cargo techniques can allow the diffusion agent to be taken on board, such as encapsulation or vectorization, the so-called dripping technology, the creation of emulsions or coatings. specific, polymeric grafting.
  • the cargo can be chosen from microcapsules, microparticles or even polymeric vehicles.
  • the size of the particles used is for example between 200 nm and 20,000 nm, which makes them particles larger than those of nanoparticles whose European standard describes a size less than 100 nm for more than 50% of between them.
  • the diffusing agent included or not in a cargo ship, is retained in the hydrogel, either by physical retention, or by molecular interactions, covalent or not, examples of non-covalent interactions being ionic interactions, hydrogen bonding, or by any combination of these retention methods.
  • the pore size defined by the three-dimensional matrix structure of the hydrogel copolymer, can prevent the diffusing agent from being released until the hydrogel is degraded by one or more mechanisms.
  • the diffusing agent can thus be released either by a change in pH or temperature, or under a mechanical action.
  • the final hydrogel of the invention comprises between 0.0001% and 30% by mass of diffusing agent, out of the total mass.
  • the diffusing agent comprises approximately 1% and 25% by mass, relative to the total mass of the final hydrogel.
  • the diffusing agent of the invention is an ortho-silicic acid, an organic silicon, or silanol.
  • the diffusing agent is in the form of microparticles whose size (average diameter) is between 200 nm and 20,000 nm. These microparticles are therefore larger than those of nanoparticles whose European standard describes a size less than 100 nm for more than 50% of them.
  • the mass ratio between acrylamide and chitosan is between 1/1 and 1/8. Preferably, it is between 1/2 and 1/6. In another embodiment, the mass ratio between chitosan and acrylamide is between 1/100 and 1/2. It is, in particular, between 1/8 and 1/2, in particular between 1/6 and 1/2.
  • the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000.
  • the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/100 and 1/500.
  • the hydrogel of the invention comprises the copolymer formed at least by acrylamide, chitosan and N, N'-methylenebisacrylamide, and the diffusing agent, according to the following ratio in% by weight of the total weight of the final hydrogel:
  • diffusing agent 0.001% and 30%
  • the hydrogel of the invention comprises the copolymer formed at least by acrylamide, chitosan and N, N'- methylenebisacrylamide, and the diffusing agent, according to the following ratio in% by weight of the total weight of the final hydrogel:
  • diffusing agent 0.001% and 30%
  • the invention relates to a process for manufacturing a hydrogel as defined above.
  • the method comprises the following steps: copolymerization of acrylamide and chitosan, in the presence of N, N’-methylenebisacrylamide and of a radical initiator, in an aqueous medium, to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and adding the diffusing agent to obtain the hydrogel.
  • the process comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in an aqueous medium, to obtain a copolymer incorporating the diffusing agent then washing with water of the copolymer incorporating the diffusing agent to obtain the hydrogel.
  • chitosan copolymerizes with polyacrylamide by covalently bonding to it.
  • N N’-methylènebisacrylamide
  • the system crosslinks in a three-dimensional network.
  • the MBA makes it possible to covalently link different chains of chitosan-polyacrylamide to form a three-dimensional network.
  • the chitosan is added in an acidic aqueous solution, that is to say an aqueous solution whose pH is lower than 6.
  • the acidic aqueous solution comprises an organic acid, in particular an organic acid whose pKa is between 4 and 6, such as a carboxylic acid.
  • the acidic aqueous solution comprises acetic acid or hydrochloric acid.
  • the concentration of chitosan in the acidic aqueous solution is 0.1 to 5% by weight of the total weight of the solution.
  • the acidic aqueous solution of chitosan is mixed with the acrylamide at a temperature between 20 and 60 ° C. Preferably the temperature is between 40 and 60 ° C.
  • the mass ratio between acrylamide and chitosan is between 1/1 and 1/8. In another embodiment, the mass ratio between the chitosan and the acrylamide is between 1/100 and 1/2, in particular between 1/8 and 1/2, in particular between 1/6 and 1/2.
  • the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000.
  • the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/100 and 1/500.
  • the copolymerization reaction is initiated by a radical initiator.
  • the radical initiator is chosen from potassium persulfate or ammonium persulfate.
  • the mass ratio between the radical initiator and the acrylamide is between 1/100 and 1/10.
  • the radical initiator can optionally be used in combination with tetramethylethylenediamine (TEMED).
  • TEMED is optional during copolymerization.
  • the mass ratio between TEMED and acrylamide is between 1/2000 and 1/20.
  • the absence of TEMED, a toxic catalyst allows the formation of a hydrogel based on partially natural and biocompatible materials, and thus allows a more responsible bio-design.
  • the hydrogel is formed from a copolymerization of chitosan with acrylamide.
  • the copolymer is crosslinked using N, N ’bis-acrylamide.
  • the optimization of this crosslinking consists in making it as complete as possible so that, on the one hand, the three-dimensional network is the best formed and that, on the other hand, the monomers (acrylamide and N, N 'bis-acrylamic) toxic are as few as possible.
  • caution requires “washing” the hydrogels formed so that any residual monomers in the hydrogel can be removed.
  • the "washing" of the hydrogel therefore consists in immersing this hydrogel in water and using the phenomenon of osmosis to evacuate these monomers. According to the principle of osmosis, molecules move from areas with high concentrations to areas with lower concentrations. This displacement is described by Fick's law which expresses a linear relationship between the flow of matter and the concentration gradient thereof.
  • the copolymer makes it possible to remove contaminants and to ensure the absence of such contaminants within the hydrogel.
  • Contaminants in the copolymer can be residual monomers, radical initiator residues, organic acids.
  • repeated washing with water and analysis of the washing water, in particular by FT-IR makes it possible to measure the level of residual monomers which have not participated in the copolymerization and / or crosslinking reaction and also ensures the absence of these residual monomers in the hydrogel.
  • the hydrogel of the invention comprises less than 20 mg / ml of acrylamide and less than 20 U E / device of endotoxins.
  • the diffusing agent can be added in the solid state or suspended in water.
  • the diffusing agent can be added in suspension in pyrogenic water.
  • the method of the invention comprises the following steps: copolymerization of acrylamide and chitosan introduced with a mass ratio of between 1/1 and 1/8, at a temperature between 20 and 60 ° C. , preferably between 40 and 60 ° C, in the presence of N, N'-methylenebisacrylamide introduced with a mass ratio with respect to the acrylamide of between 1/50 and 1/1000, preferably between 1/100 and 1 / 500, and of a radical initiator chosen from potassium persulfate or ammonium persulfate, optionally in combination with tetramethylethylenediamine, in an aqueous medium to obtain a copolymer; washing the copolymer with water over 3 to 15 washes for 48-240 hours to obtain a washed copolymer; and addition of the diffusing agent between 0.001% and 30%, to obtain the final hydrogel.
  • the method comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in a aqueous medium, to obtain a copolymer incorporating the diffusing agent; washing the copolymer incorporating the diffusing agent with water to obtain the hydrogel.
  • the chitosan is dissolved in an aqueous solution at a pH of between 2 and 5, with magnetic or mechanical stirring, then neutralized and filtered under vacuum.
  • the aqueous solution having a pH between 2 and 5 is ideally an aqueous solution of hydrochloric acid or acetic acid.
  • the copolymer incorporating the diffusing agent is extruded through specific pore grids before the washing step.
  • the washing step is carried out by dialysis, using dialysis membranes.
  • a gel containment system is put in place so as to limit the swelling thereof while affecting as little as possible the movement of residual monomers towards the washing water.
  • Figure 6B This is shown schematically in Figure 6B.
  • the water is changed regularly (once every 12 hours for example) and the agitation is facilitated by using magnetic agitation, mechanical agitation (blades), agitation by water pump, etc. .
  • a first washing test was carried out to compare the effectiveness of a dialysis tube compared to a tube large enough not to limit swelling.
  • Figures 7A, 7B and 7C illustrate the placement of the membrane on the neck, the filling of the membrane with a gun and the closure of the membranes with clips and knots.
  • Figure 8 presents the results obtained in terms of relative deviation from weight gain versus time.
  • the washing of the hydrogel lasts several days (5 to 6 days) so that most of the residual monomers can be removed.
  • the residual monomer level decreases all the more quickly than the osmosis conditions are favorable, that is to say that the water is changed regularly and that the agitation is sufficient.
  • the experimental results make it possible to define the minimum washing time of 2 days.
  • the washing step implemented during the preparation of the hydrogel is carried out by weighing the hydrogels each time the water in the tank is changed. These mass measurements make it possible to construct the curve for the evolution of the relative difference in mass gain as a function of time ( Figures 1 1 A and 1 1 B).
  • the curve shows a plateau corresponding to the confinement of the hydrogel within the membrane. We note that this plateau takes values understood between 50 and 70% much lower than the previous 200 to 300%, illustrating the good control of the expansion of the gel during washing.
  • the invention relates to the use of a hydrogel in a mechanical visco-supplementation system, for external or internal use.
  • the mechanical visco-supplementation according to the invention makes it possible to physically embed the diffusing agent in situ, to support the normal physiological and rheological conditions of wounds, joints or in the event of gastric ulcers, in particular in horses.
  • the hydrogel of the invention is used for internal use in an implantable mechanical visco-supplementation system for supporting the soft tissues of mammals, see bones and cartilage according to the diffusing agent.
  • Soft tissues are elements of the body, such as adipose tissue, connective tissue, synovial membrane of the joint capsule muscles, tendons, dermis or epidermis.
  • Mechanical visco-supplementation for internal use consists of locally implanting the hydrogel which acts as a support agent for the synovial membrane, synovial fluid or bone and cartilage as appropriate.
  • the hydrogel thus allows the joint to support its mobility by a biomechanical action.
  • the mechanical visco-supplementation system for internal use is a lubricant.
  • the hydrogel of the invention is used for external use in a mechanical visco-supplementation system.
  • mechanical visco-supplementation consists in applying locally the hydrogel which acts as an agent to support healing. This support for healing results in the maintenance of wound humidity during healing thanks to the large amount of water present in the hydrogel.
  • the mechanical visco-supplementation system for external use is a moisturizer.
  • the use of the hydrogel according to the invention allows a delayed effect of the diffusing agent included in the hydrogel.
  • the diffusing agent begins to diffuse between the 2nd and the 30th day after administration, preferably between the 10th and the 20th day, in particular from the 15th day.
  • the use of the hydrogel according to the invention also allows a prolonged effect of the diffusing agent included in the hydrogel.
  • the diffusing agent is released over a period between 2 weeks and 12 months, preferably between 1 month and 6 months.
  • the mechanical visco-supplementation systems of the invention require fewer applications and the effect is manifested for an extended period, of at least two weeks.
  • This prolonged mechanical visco-supplementation of the diffusing agent which is located, fixed, protected then released by the hydrogel is made possible thanks to the viscoelastic matrix structure of the hydrogel.
  • the invention relates to an external or internal visco-supplementation kit comprising a copolymer of acrylamide and of chitosan crosslinked with N, N'-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension, said copolymer and said diffusing agent being premixed in the form of a hydrogel or mixed extemporaneously to form a hydrogel.
  • This kit comprises a copolymer formed at least from acrylamide and chitosan and crosslinked with N, N’-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension.
  • the copolymer and the diffusing agent are either premixed in the form of a hydrogel, or mixed extemporaneously to form a hydrogel.
  • KPS Potassium Persulfate
  • a gel is collected which is weighed and the weight of 20.00 g is found.
  • copolymer is well crosslinked since it is insoluble in acetic acid.
  • the dynamic viscoelasticity of the copolymer obtained after washes is measured and compared to the dynamic viscoelasticity of the copolymer obtained before washes, to that of the copolymer obtained after addition of acetic acid and to that of the copolymer obtained after shearing.
  • the hydrogel according to the invention has improved biocompatibility compared to a hydrogel containing only polyacrylamide.
  • the hydrogel according to the invention comprises chitosan copolymerized with polyacrylamide, chitosan comprises polyglucosamine sequences having a biocompatibility, which shows in vitro results of a better biocompatibility, with in particular an absence of cytotoxicity.
  • An XTT cytotoxicity test is performed by Eurofins Medical Device TM, in accordance with ISO 10993-5: 2009, under conditions of good laboratory practice (GLP).
  • the test relates to the hydrogel described by the invention, namely a 5% polyacrylamide-chitosan NVC-0 hydrogel copolymer and a 4% polyacrylamide hydrogel containing silver ions (Bioform / Noltrex TM brand).
  • An extraction was carried out with stirring for 24 h in a cell culture medium, the extracts being incubated for 24 h to 48 h with L929 cells.
  • the mitochondrial dehydrogenase of the NVC-0 polyacrylamide-chitosan hydrogel is 101% (SD 0.07) and that of the hydrogel of 4% polyacrylamide is 95% (SD 0.05).
  • the NVC-0 hydrogel according to the invention has a total absence of cytotoxicity (no reduction in mitochondrial dehydrogenase, at all dilutions), unlike the other hydrogel.
  • the hydrogel of the invention has, on this XTT test, an improved biocompatibility of + 6% compared to the hydrogel containing only polyacrylamide.
  • the hydrogel of the invention has the advantage of biodegradability of the chitosan which it contains, in addition to glucosamine and N-acetylglucosamine, substances naturally present in the human body.
  • Glucosamine is known for its support in particular of the osteo-articular system.
  • the biodegradability of chitosan can vary from a few tens of days to a few months depending on the enzyme media and the characteristics of the polyglucosamine.
  • the formula shown in Figure 14 describes chitosan, thus indicating the presence of glucosamine as a constituent unit of the polymer.
  • IR-TF Infrared Spectroscopy
  • the IR-TF analysis indicates the presence of the chitosan bonds in the hydrogel proposed by the invention. This hydrogel brings a biodegradability, in particular in glucosamine naturally present in the human body, compared to a hydrogel only of polyacrylamide.
  • the copolymer hydrogel according to the invention has a carrying capacity, in particular of submicron capsules.
  • the microstructure of the three-dimensional network of this hydrogel has alveoli the size of which is compatible with the particles carried away, which polyacrylamide gels produced according to the prior art do not offer.
  • the Joint Center for Applied Microscopy (CCMA) of the University of Nice carried out cryoimaging by scanning electron microscope (SEM) of the NVC-0 hydrogel according to the invention, containing microcapsules of organic silicon.
  • Samples of NVC-0 hydrogel and NVC-0-C hydrogel containing microcapsules were successively immersed in liquid nitrogen, sublimated and then fractionated to pass to SEM. The analysis was carried out 7 weeks in post production of the batches.
  • the polyacrylamide-chitosan copolymer hydrogel has a carrying capacity which is illustrated by SEM.
  • SEM The results of this imaging also show biocompatible protection of the hydrogel against microcapsules, which are not deteriorated for 7 weeks in the hydrogel.
  • FIG. 15A (Cryoimaging by SEM (x10,000) of the copolymer hydrogel NVC-0), a dense and relatively homogeneous crosslinked network is observed, with cells of size 0.1 -0.5 microns on the copolymer hydrogel samples.
  • FIG. 15A Chroimaging by SEM (x10,000) of the copolymer hydrogel NVC-0
  • the copolymer hydrogel according to the invention offers a capacity for supplementation, either by the degradation of chitosan to glucosamine (Example 4), or by the water contained in the hydrogel (Example 8), or by the degradation of microcapsules, such that contains for example orthosilicic acid.
  • the organic silicon during its degradation makes it possible to supplement in silicon, substance naturally present in the body but not renewed with age.
  • the hydrogel according to the invention proposes a release capacity for on-board microcapsules, with delayed release over time. Thanks to the biodegradability of the hydrogel containing chitosan (Example 4), the on-board microcapsules (Example 5) could be released as a function of time. This characteristic provides supplementation over time and locally of substances carried by the hydrogel according to the invention.
  • a first preliminary study was carried out to assess the release kinetics of microcapsules carrying orthosilicic acid in a synthetic medium of synovial fluid type.
  • the particles were incubated in the artificial fluid containing 3 g / L of hyaluronic acid at a concentration of 0.6 mg / ml in particles.
  • a dialysis / filtration system made it possible to separate the dissolved fractions from the particles (below).
  • the dissolved orthosilicic acid was then assayed by ICP-AES.
  • the hydrogel according to the invention is manufactured by implementing an efficient dialysis step, making it possible to remove the residual monomers from the synthesis, under very low quantification limits (less than 4 ppm), as mentioned in the table in figure 16.
  • the copolymer in the form of a hydrogel is extruded several times through extrusion screens between 50 and 500 microns depending on the hydrogels.
  • This extrusion allows an optimal dialysis which begins with the choice of dialysis bags with pores adapted according to the consistency of the hydrogel, ideally from 6 to 50 kD MWCO (Molecular weight cut-off in kilo Daltons).
  • the extruded hydrogel is bagged and then placed in water according to different durations, ideally from 2 to 7 days, depending on the quality of the synthesis and the viscosity of the chitosan retained.
  • the GCMS or UPLC / UV method measures residual monomers such as acrylamide or methyl-bis-acrylamide.
  • the 5% polyacrylamide-chitosan copolymer hydrogel was tested and the concentration measurements of any residual monomers indicate values below the quantification limits of 4 ppm by the various methods.
  • the PAAG-CH copolymer hydrogel according to the invention has a capacity 3 times greater in the water transport (hydrophilic swelling) compared to a hydrogel of the same polyacrylamide concentration only. It therefore requires less substance with a copolymer hydrogel to provide as much hydration as with a polyacrylamide gel at equal initial concentration.
  • Two hydrogels are synthesized, one 5% polyacrylamide copolymer containing chitosan (NVC-0) and the other containing only polyacrylamide (PAAG). Following their extrusion and then dialysis, weighings are carried out every 12 hours to measure the relative difference in weight gain in water. Studies have also been conducted by varying the rates of crosslinking or percentage of polyacrylamide. The presence of the copolymerized chitosan in the hydrogel brings a significant increase in the relative difference in water intake.
  • the 5% polyacrylamide hydrogel reaches a swelling plateau of 25% maximum of its weight.
  • the 5% polyacrylamide-chitosan copolymer exceeds the water carrying capacity of a polyacrylamide hydrogel upon dialysis and continues to swell beyond 75% of its weight in water after 5 days, for example.
  • the copolymerization of chitosan on the polyacrylamide takes place by the creation of covalent bonds between the macromolecular chain of chitosan via free radicals formed by the action of a peroxide and the polyacrylamide chain in formation from acrylamide monomers.
  • the copolymer is formed creating a macromolecular chain which is then organized in the form of a three-dimensional network thanks to the crosslinking agent (methyl bisacrylamamide).
  • polyacrylamide / chitosan copolymer is a specific polymer which is different from polyacrylamide.
  • the hydrogel obtained by the crosslinking of these copolymer and crosslinking chains forms a different network of acrylamide which is verified in particular by the much higher swelling rate in the case of the copolymer than in the case of acrylamide (Example 7 ).
  • a polyacrylamide-chitosan copolymer hydrogel and a polyacrylamide hydrogel are tested by the NMR method.
  • the samples are evaporated, the dry matter hydrated with D20 water and then evaporated again.
  • the dry materials were dissolved in a preparation D20 / Ac0D 1/1.
  • the 1 H NMR spectrum was recorded on a Bruker TM 400 MHz device at 50 ° C.
  • the NMR of the copolymer has several distinctive points, in particular specific to chitosan at 3.2, 3.6 and 4.9 ppm (Figure 18B) and in significant proportion compared to the NMR of the polyacrylamide hydrogel alone (Figure 18C).
  • the NMR of the copolymer hydrogel described in the patent confirms the different nature of the polymer compared to a polyacrylamide hydrogel or a simple mixture with polyacrylamide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention relates to a biocompatible hydrogel comprising between 0.3% and 30% by weight of dry matter of a copolymer formed at least from acrylamide, chitosan and N,N'-methylenebisacrylamide, as well as a diffusing agent.

Description

HYDROGEL BIOCOMPATIBLE, PROCEDE DE PREPARATION ET UTILISATION DANS UN SYSTEME DE VISCO-SUPPLEMENTATION BIOCOMPATIBLE HYDROGEL, PREPARATION METHOD AND USE IN A VISCO-SUPPLEMENTATION SYSTEM
MECANIQUE MECHANICAL
Domaine technique de l'invention Technical field of the invention
La présente invention concerne un hydrogel biocompatible. Elle concerne en outre un procédé de préparation d'un tel hydrogel, une utilisation de l’hydrogel et un kit. The present invention relates to a biocompatible hydrogel. It further relates to a process for the preparation of such a hydrogel, to the use of the hydrogel and to a kit.
Art antérieur Prior art
L’usage médical d’hydrogels contenant de la polyacrylamide uniquement a tout d’abord été divulgué dans le document brevet publié sous le numéro EP0742022A, publié le 13/1 1 /1996. The medical use of hydrogels containing polyacrylamide only was first disclosed in the patent document published under number EP0742022A, published on 1/13/1/1996.
D’autres documents brevets publiés ultérieurement ont concerné l’usage d’hydrogels biocompatibles en polyacrylamide, en santé humaine, comme agent de comblement, prothèses ou visco-supplément (US7678146E3, EP308801 1 A). Other patent documents published subsequently have concerned the use of biocompatible polyacrylamide hydrogels, in human health, as a filling agent, prostheses or visco-supplement (US7678146E3, EP308801 1 A).
Pour certaines formulations d’hydrogels, des publications cliniques mentionnent une biocompatibilité durable de ces hydrogels et leur propension à former des structures réticulées viscoélastiques intéressantes pour les tissus mous dans le cas d’un usage externe, par exemple (soins des plaies, Knapp étal, Clinical expériences with a new gel-like wound dressing after skin transplantation, Aktuelle Traumatologie, décembre 1984, pp. 275-281 ) ou articulaire. For certain formulations of hydrogels, clinical publications mention a lasting biocompatibility of these hydrogels and their propensity to form crosslinked viscoelastic structures of interest for soft tissues in the case of external use, for example (wound care, Knapp et al., Clinical experiences with a new gel-like wound dressing after skin transplantation, Aktuelle Traumatologie, December 1984, pp. 275-281) or articular.
Des recherches in vitro ont mis en avant la possible capacité des hydrogels réticulés à base de polyacrylamide à former des réservoirs pour un relargage contrôlé et différé de biomolécules (Ferreira ét al, Design of a Drug-Delivery System Based On Polyacrylamide Hydrogels, Evaluation of Structural Properties, Laboratories and Démonstrations, octobre 2000). In vitro research has highlighted the possible capacity of crosslinked polyacrylamide hydrogels to form reservoirs for controlled and delayed release of biomolecules (Ferreira et al, Design of a Drug-Delivery System Based On Polyacrylamide Hydrogels, Evaluation of Structural Properties, Laboratories and Demonstrations, October 2000).
De nombreuses études ont montré les bénéfices d’une supplémentation in-situ de biomolécules véhiculées dans des microcapsules, microsphères ou vecteurs, contenus dans des hydrogels et ce, au sein d'articulations par exemple, avec des microsphères de chitosan. Janssen ét al, Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities, Polymers 2014, 6, pp. 799-819. Une difficulté à résoudre est de réussir à fixer, protéger et retenir in-situ des microcapsules biocompatibles en évitant les agrégats et ainsi les relargages excessifs initiaux pouvant déclencher de possibles inflammations. Numerous studies have shown the benefits of in situ supplementation of biomolecules carried in microcapsules, microspheres or vectors, contained in hydrogels and this, within joints for example, with chitosan microspheres. Janssen et al, Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities, Polymers 2014, 6, pp. 799-819. A difficulty to be resolved is to succeed in fixing, protecting and retaining in situ biocompatible microcapsules while avoiding aggregates and thus the initial excessive salting-out which can trigger possible inflammations.
Le chitosan est un biopolymère, biocompatible et biodégradable qui présente de multiples usages biomédicaux notamment sous forme réticulé en trois dimensions comme biomatériau (Croisier et al, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, Volume 49, Issue 4, avril 2013). Les produits de sa dégradation (glucosamine) sont biocompatibles, mais la durabilité du réseau est variable, notamment suivant les contraintes mécaniques et chimiques appliquées. Chitosan is a biopolymer, biocompatible and biodegradable which has multiple biomedical uses, in particular in cross-linked form in three dimensions. as a biomaterial (Croisier et al, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, Volume 49, Issue 4, April 2013). The products of its degradation (glucosamine) are biocompatible, but the durability of the network is variable, in particular according to the mechanical and chemical constraints applied.
Dans ce contexte, il existe un besoin grandissant de concevoir un système de soutien mécanique à usage médical qui puisse répondre aux enjeux de biocompatibilité, biodégradabilité, visco-supplémentation et capacité d’emport in- situ. In this context, there is a growing need to design a mechanical support system for medical use that can meet the challenges of biocompatibility, biodegradability, visco-supplementation and carrying capacity in situ.
Résumé de l'invention Summary of the invention
Compte tenu de ce qui précède, un problème technique, que se propose de résoudre l'invention, est de réaliser pour le secteur de la Santé un nouvel hydrogel qui présente des propriétés améliorées par rapport aux hydrogels de chitosan ou de polyacrylamide de l'art antérieur, formant des systèmes performants de soutien, présentant une capacité d’emport in situ, et susceptibles de permettre la libération d'un agent diffusant. In view of the above, a technical problem which the invention proposes to solve is to produce for the health sector a new hydrogel which has improved properties compared to the hydrogels of chitosan or polyacrylamide of the art. anterior, forming effective support systems, having a carrying capacity in situ, and capable of allowing the release of a diffusing agent.
La solution de l'invention à ce problème a pour premier objet un hydrogel comprenant, d'une part, entre 0,3% et 30% en poids de matière sèche d’un copolymère formé au moins d’acrylamide, de chitosan et de N,N'- méthylènebisacrylamide et, d'autre part, un agent diffusant. The solution of the invention to this problem first relates to a hydrogel comprising, on the one hand, between 0.3% and 30% by weight of dry matter of a copolymer formed at least of acrylamide, chitosan and N, N'-methylenebisacrylamide and, on the other hand, a diffusing agent.
Ainsi, l’hydrogel présente une structure matricielle viscoélastique qui permet une hydratation ou visco-supplémentation mécanique prolongée de l’agent diffusant qui est localisé, fixé, protégé et relargué par l’hydrogel au cours de sa dégradation in situ. L’hydrogel permet d’éviter les agrégats d’agents diffusants et, par voie de conséquence, les relargages excessifs initiaux. Thus, the hydrogel has a viscoelastic matrix structure which allows prolonged mechanical hydration or visco-supplementation of the diffusing agent which is located, fixed, protected and released by the hydrogel during its degradation in situ. The hydrogel makes it possible to avoid the aggregates of diffusing agents and, consequently, the initial excessive releases.
Avantageusement, - l’agent diffusant est choisi parmi des ingrédients inertes ayant des propriétés biomécaniques intéressantes ou des actifs, préférentiellement des substances d'origine végétale telles que les extraits de génépi, des substances d'origine marine, telles que les extraits de moules vertes de Nouvelle Zélande (Perna canaliculus), de l'acide ortho-silicique, du silicium organique, du silanol, des vitamines telles que les vitamines A, D3, E ou C, des métaux tels que l'or ou l'argent, des analgésiques tels que la lidocaïne, xylazine, détomidine, des anti inflammatoires non stéroïdiens, tels que flunixine, kétoprofène, aspirine, des corticostéroïdes tels que la prednisolone, triamcinolone, de l’acide hyaluronique, des glycosaminoglycanes, de la chondroïtine sulfate, du méthylsulfonylméthane, de la bromélaïne, de l’arnica, du collagène, des antioxydants, des acides gras - l’agent diffusant est compris dans un cargo choisi parmi des microcapsules, des microparticules et des véhicules polymériques, de préférence des microcapsules biodégradables; - l’hydrogel est substantiellement exempt d’agents pyrogènes ; - le rapport massique entre l’acrylamide et le chitosan est compris entre 1 /1 et 1 /8 ; - le rapport massique entre le N,N’-méthylènebisacrylamide et l’acrylamide est compris entre 1/50 et 1/1000, de préférence compris entre 1 /100 et 1 /500 ; et - le rapport suivant des constituants en % en poids du poids total de l’hydrogel : acrylamide compris entre 0,3% et 20%; chitosan compris entre 0,0375% et 10%; N,N’- méthylènebisacrylamide compris entre 0,004% et 0,4% ; agent diffusant 0,001 % et 30%; et H2O jusqu’à 100%. Advantageously, the diffusing agent is chosen from inert ingredients having advantageous biomechanical properties or active agents, preferably substances of plant origin such as genepi extracts, substances of marine origin, such as extracts of green mussels. from New Zealand (Perna canaliculus), ortho-silicic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti inflammatory drugs, such as flunixin, ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonyl of bromelain, arnica, collagen, antioxidants, fatty acids - the diffusing agent is included in a cargo ship chosen from microcapsules, microparticles and polymeric vehicles, preferably biodegradable microcapsules; - the hydrogel is substantially free of pyrogenic agents; - The mass ratio between acrylamide and chitosan is between 1/1 and 1/8; - The mass ratio between N, N'-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000, preferably between 1/100 and 1/500; and the following ratio of the constituents in% by weight of the total weight of the hydrogel: acrylamide of between 0.3% and 20%; chitosan between 0.0375% and 10%; N, N'-methylenebisacrylamide between 0.004% and 0.4%; diffusing agent 0.001% and 30%; and H2O up to 100%.
L'invention a pour second objet, un procédé de fabrication d’un hydrogel tel que défini ci-dessus, comprenant les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’-méthylènebisacrylamide et d’un initiateur radicalaire, dans un milieu aqueux pour obtenir un copolymère ; lavage du copolymère à l’eau pour obtenir un copolymère lavé ; et ajout d’un agent diffusant pour obtenir l’hydrogel. The second object of the invention is a method of manufacturing a hydrogel as defined above, comprising the following steps: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide and an initiator radical, in an aqueous medium to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and adding a diffusing agent to obtain the hydrogel.
Dans un mode de réalisation privilégié, le procédé comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’- méthylènebisacrylamide, d’un agent diffusant, et d’un initiateur radicalaire, dans un milieu aqueux, pour obtenir un copolymère incorporant l’agent diffusant puis lavage à l’eau du copolymère incorporant l’agent diffusant pour obtenir l’hydrogel. In a preferred embodiment, the process comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in an aqueous medium, to obtain a copolymer incorporating the diffusing agent then washing with water of the copolymer incorporating the diffusing agent to obtain the hydrogel.
Avantageusement, le procédé comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan introduits avec un rapport massique compris entre 1 /1 et 1 /8, à une température comprise entre 20 et 60°C, de préférence entre 40 et 60°C, en présence de N,N’-méthylènebisacrylamide introduit avec un rapport massique par rapport à l’acrylamide compris entre 1 /50 et 1 /1000, de préférence compris entre 1 /100 et 1 /500, et d’un initiateur radicalaire avec un rapport massique par rapport à l’acrylamide entre 1 /100 et 1 /10 choisi parmi le persulfate de potassium ou le persulfate d’ammonium, éventuellement en association avec la tétraméthyléthylènediamine avec un rapport massique par rapport à l’acrylamide entre 1 /2000 et 1 /20, dans un milieu aqueux pour obtenir un copolymère ; lavage du copolymère à l’eau pour obtenir un copolymère lavé ; et ajout de l’agent diffusant entre 0,001 % et 30% en % en poids du poids total de l’hydrogel, l’agent diffusant étant choisi parmi des ingrédients inertes ayant des propriétés biomécaniques intéressantes ou des actifs, ces agents étant préférentiellement des substances d'origine végétale telles que les extraits de génépi, des substances d'origine marine telles que les extraits de moules vertes de Nouvelle Zélande (Perna canaliculus), de l’acide ortho-silicique, du silicium organique, du silanol, des vitamines telles que les vitamines A, D3, E ou C, des métaux tels que l'or ou l'argent, des analgésiques tels que la lidocaïne, xylazine, détomidine, des anti-inflammatoires non stéroïdiens, tels que flunixine, kétoprofène, aspirine, des corticostéroïdes tels que la prednisolone, triamcinolone, de l’acide hyaluronique, des glycosaminoglycanes, de la chondroïtine sulfate, du méthylsulfonylméthane, de la bromélaïne, de l’arnica, du collagène, des antioxydants, des acides gras, éventuellement compris dans un cargo choisi parmi des microcapsules, des microparticules ou des véhicules polymériques, de préférence des microcapsules biodégradables, pour obtenir l’hydrogel. Advantageously, the process comprises the following stages: copolymerization of acrylamide and chitosan introduced with a mass ratio of between 1/1 and 1/8, at a temperature between 20 and 60 ° C, preferably between 40 and 60 ° C , in the presence of N, N'-methylenebisacrylamide introduced with a mass ratio relative to the acrylamide of between 1/50 and 1/1000, preferably between 1/100 and 1/500, and of a radical initiator with a mass ratio with respect to acrylamide between 1/100 and 1/10 chosen from potassium persulfate or ammonium persulfate, optionally in combination with tetramethylethylenediamine with a mass ratio with respect to acrylamide between 1/2000 and 1/20, in an aqueous medium to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and addition of the diffusing agent between 0.001% and 30% by weight of the total weight of the hydrogel, the diffusing agent being chosen from inert ingredients having biomechanical properties interesting or active ingredients, these agents preferably being substances of plant origin such as extracts of genepi, substances of marine origin such as extracts of New Zealand green mussels (Perna canaliculus), ortho-silicic acid , organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, non-inflammatory drugs steroids, such as flunixin, ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonylmethane, bromelain, arnica, collagen, antioxidants , fatty acids, possibly included in a cargo ship chosen from microcapsules, microparticles or polymeric vehicles, preferably biodegradable microcapsules, to obtain the hydrogel.
L’invention a pour troisième objet une utilisation d’un hydrogel tel que défini ci- dessus, dans un système de visco-supplémentation mécanique, en usage externe ou interne. The third object of the invention is the use of a hydrogel as defined above, in a mechanical visco-supplementation system, for external or internal use.
Avantageusement, - le système de visco-supplémentation est un lubrifiant; - le système de visco-supplémentation est une matrice réticulée avec capacité d’emport ou stockage; - le système de visco-supplémentation est un hydratant ; - l’agent diffusant commence à diffuser entre le 2ème et le 30ème jour après l’administration, de préférence entre le 10ème et le 20ème jour, en particulier à compter du 15ème jour ; et - l’agent diffusant est libéré sur une période comprise entre 2 semaines et 12 mois, de préférence entre 1 mois et 6 mois. Advantageously, the visco-supplementation system is a lubricant; - the visco-supplementation system is a cross-linked matrix with carrying or storage capacity; - the visco-supplementation system is a moisturizer; - the diffusing agent begins to diffuse between the 2nd and the 30th day after the administration, preferably between the 10th and the 20th day, in particular from the 15th day; and - the broadcasting agent is released over a period of between 2 weeks and 12 months, preferably between 1 month and 6 months.
L’invention a pour quatrième objet, un kit de visco-supplémentation mécanique externe ou interne comprenant un copolymère d’acrylamide et de chitosan réticulé avec du N,N’-méthylènebisacrylamide, et un agent diffusant en phase solide ou en suspension, ledit copolymère et ledit agent diffusant étant préalablement mélangés lors de la fabrication sous la forme d’un hydrogel ou mélangés extemporanément pour former un hydrogel final. A fourth object of the invention is a kit for external or internal mechanical visco-supplementation comprising a copolymer of acrylamide and of chitosan crosslinked with N, N'-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension, said copolymer and said diffusing agent being premixed during manufacture in the form of a hydrogel or mixed extemporaneously to form a final hydrogel.
Brève description des figures Brief description of the figures
L'invention sera mieux comprise à la lecture de la description non limitative qui suit, rédigée au regard des dessins annexés, dans lesquels : The invention will be better understood on reading the following non-limiting description, drawn up with reference to the appended drawings, in which:
- la figure 1 schématise la réaction de greffage du chitosan sur la polyacrylamide par intervention d’une réaction radicalaire (création de radicaux libres à l’aide d’un initiateur de radicaux, noté I), et la réticulation du copolymère sous l’action du N, N’- méthylènebisacrylamide, selon l’invention, o, p, q, r, n et m sont les nombres de motifs de monomères ; - Figure 1 shows schematically the grafting reaction of chitosan on polyacrylamide by intervention of a radical reaction (creation of free radicals using a radical initiator, noted I), and the crosslinking of the copolymer under the action N, N'- methylenebisacrylamide, according to the invention, o, p, q, r, n and m are the numbers of units of monomers;
- la figure 2A est un tableau qui présente, après séchage des hydrogels (50°C pendant plus de 12 heures, et pesée de la matière sèche, le pourcentage massique de matière sèche. L’hydrogel V14 est le copolymère de l’invention (3.75% de matière sèche), l’hydrogel V 5 est la polyacrylamide pure et V20 est le copolymère avec l’agent diffusant. FIG. 2A is a table which presents, after drying of the hydrogels (50 ° C. for more than 12 hours, and weighing of the dry matter, the mass percentage of dry matter. The V14 hydrogel is the copolymer of the invention ( 3.75% dry matter), the hydrogel V 5 is pure polyacrylamide and V20 is the copolymer with the diffusing agent.
- la figure 2B représente une comparaison des spectres infrarouge à transformée de Fourier (FT-IR), détaillés dans l’exemple 2, du copolymère chitosan- polyacrylamide-MBA (V14) (MBA pour N,N'-méthylènebisacrylamide) présent dans l’hydrogel de l’invention sans agent diffusant, puis le V20 avec agent diffusant, d’un gel de polyacrylamide « pure » (V 5) et du chitosan « pur » (Chitosan) ; FIG. 2B represents a comparison of the infrared spectra with Fourier transform (FT-IR), detailed in example 2, of the chitosanolyacrylamide-MBA (V14) copolymer (MBA for N, N'-methylenebisacrylamide) present in l hydrogel of the invention without diffusing agent, then V20 with diffusing agent, of a “pure” polyacrylamide gel (V 5) and “pure” chitosan (Chitosan);
- la figure 2C représente une comparaison des spectres infrarouge à transformée de Fourier (FT-IR), détaillés dans l’exemple 2, du copolymère chitosan- polyacrylamide-MBA (V14) (MBA pour N,N'-méthylènebisacrylamide) présent dans l’hydrogel de l’invention, d’un gel de polyacrylamide « pure » (V 5) et du chitosan « pur » (Chitosan) ; FIG. 2C represents a comparison of the infrared spectra with Fourier transform (FT-IR), detailed in Example 2, of the chitosanolyacrylamide-MBA (V14) copolymer (MBA for N, N'-methylenebisacrylamide) present in l hydrogel of the invention, a “pure” polyacrylamide gel (V 5) and “pure” chitosan (Chitosan);
- le tableau de la figure 2D liste les pics majoritaires de FT-IR du copolymère chitosan-polyacrylamide-MBA ; - The table in Figure 2D lists the majority FT-IR peaks of the chitosan-polyacrylamide-MBA copolymer;
- la figure 3A montre un essai de dissolution du copolymère présent dans l’hydrogel de l’invention, dans l’acide acétique, tel que décrit dans l’exemple 2 et la figure 3B illustre l’absence de dissolution du copolymère dans l’acide acétique par la filtration de l’hydrogel après l’essai de dissolution décrit dans l’exemple 2 ; - Figure 3A shows a dissolution test of the copolymer present in the hydrogel of the invention, in acetic acid, as described in Example 2 and Figure 3B illustrates the absence of dissolution of the copolymer in the acetic acid by filtration of the hydrogel after the dissolution test described in Example 2;
- la figure 4 montre les tangentes de pertes suite aux mesures de viscoélasticité, dans les différents cas étudiés pour le copolymère de l’invention ; - Figure 4 shows the loss tangents following viscoelasticity measurements, in the different cases studied for the copolymer of the invention;
- la figure 5 est un schéma qui illustre l’étape de lavage du copolymère pendant laquelle les monomères résiduels, représentés par des cercles noirs, sortent du réseau tridimensionnel formé par le copolymère et représenté en blanc, et sont remplacés par des molécules d’eau (cercles gris) par un phénomène osmotique ; - Figure 5 is a diagram illustrating the copolymer washing step during which the residual monomers, represented by black circles, leave the three-dimensional network formed by the copolymer and represented in white, and are replaced by water molecules (gray circles) by an osmotic phenomenon;
- la figure 6 est un schéma qui illustre le lavage du copolymère dans une membrane de dialyse ; - Figure 6 is a diagram which illustrates the washing of the copolymer in a dialysis membrane;
- la figure 7A est une photographie qui montre la mise en place de la membrane de dialyse sur le col d’un pistolet à injection ; - Figure 7A is a photograph showing the placement of the dialysis membrane on the neck of an injection gun;
- la figure 7B est une photographie qui montre le remplissage de la membrane de dialyse à l’aide du pistolet à injection ; - la figure 7C est une photographie qui montre la fermeture des membranes de dialyse par des clips et des noeuds ; - Figure 7B is a photograph which shows the filling of the dialysis membrane using the injection gun; - Figure 7C is a photograph which shows the closure of the dialysis membranes by clips and nodes;
- la figure 8 compare l’écart relatif de la prise de masse, en pourcentage, d’un hydrogel non contraint dans un sac de tulle (losanges noirs) et d’un hydrogel contraint dans une membrane de dialyse (triangles gris) ; - Figure 8 compares the relative difference in mass gain, in percentage, of an unconstrained hydrogel in a tulle bag (black diamonds) and a constrained hydrogel in a dialysis membrane (gray triangles);
- la figure 9 représente l’écart relatif de la prise de masse de deux hydrogels, en pourcentage, en fonction du temps, en minutes, lors du lavage du copolymère dans une membrane de dialyse ; - Figure 9 shows the relative difference in the mass gain of two hydrogels, in percentage, as a function of time, in minutes, during the washing of the copolymer in a dialysis membrane;
- la figure 10 représente l’écart relatif de la prise de masse, en pourcentage, en fonction du temps en minutes de deux hydrogels de 5% de matière sèche, d’un copolymère tel que défini dans l’invention (carrés), et d’un polymère de l’art antérieur, un polyacrylamide-MBA de référence (losanges), en présence d’eau ; FIG. 10 represents the relative difference in mass gain, in percentage, as a function of time in minutes of two hydrogels of 5% dry matter, of a copolymer as defined in the invention (squares), and a polymer of the prior art, a reference polyacrylamide-MBA (diamonds), in the presence of water;
- la figure 1 1 A représente l’écart relatif de la prise de masse, en pourcentage, en fonction du temps en minutes, de différents copolymères tels que définis dans l’invention et N4 a (N*1 ): Hydrogel 4,8 % copolymère PAAG-Chitosan, - Figure 1 1 A represents the relative difference in weight gain, in percentage, as a function of time in minutes, of different copolymers as defined in the invention and N4 a (N * 1): Hydrogel 4.8 % PAAG-Chitosan copolymer,
N4 a (N*2) : Hydrogel 4,8 % copolymère PAAG-Chitosan, N4 a (N * 2): 4.8% hydrogel PAAG-Chitosan copolymer,
N4 a (N*3) : Hydrogel 4,8 % copolymère PAAG-Chitosan, N4 a (N * 3): 4.8% hydrogel PAAG-Chitosan copolymer,
N4 3a/2 (N*4) : Hydrogel 4,8 % copolymère PAAG-Chitosan, avec + 50% de réticulant MethylBisAcrylamide, N4 3a / 2 (N * 4): Hydrogel 4.8% PAAG-Chitosan copolymer, with + 50% of crosslinker MethylBisAcrylamide,
N4 a/2 (N*5) : Hydrogel 4,8 % copolymère PAAG-Chitosan, avec 50% de réticulant MethylBisAcrylamide ; N4 a / 2 (N * 5): 4.8% hydrogel PAAG-Chitosan copolymer, with 50% of crosslinker MethylBisAcrylamide;
- la figure 1 1 B représente l’écart relatif de la prise de masse, en pourcentage, en fonction du temps en minutes, de 8 hydrogels de copolymère fabriqués consécutivement tels que définis dans l’invention ; - Figure 1 1 B represents the relative difference in mass gain, in percentage, as a function of time in minutes, of 8 hydrogels of copolymer produced consecutively as defined in the invention;
- les figures 12A et 12B présentent des tableaux issus des tests XTT“In vitro Cytotoxicity Assay, Cell Growth Analysis via XTT-Staining and Grading Score Analysis” ; - Figures 12A and 12B present tables from the XTT tests “In vitro Cytotoxicity Assay, Cell Growth Analysis via XTT-Staining and Grading Score Analysis”;
- la figure 13 illustre la formule du chitosan, obtenu par déacétylation de la chitine. Le chitosan contient de la glucosamine (groupement de droite sur la figure) ; - Figure 13 illustrates the formula of chitosan, obtained by deacetylation of chitin. Chitosan contains glucosamine (group on the right in the figure);
- la figure 14 est un graphique qui correspond au spectre IRFT d’un échantillon référencé 1904-E0012452 d’un hydrogel 2.5% polyacrylamide (en gris foncé) et de d’un échantillon selon l’invention référencé 1904-E0012453 d’un hydrogel copolymère 5% polyacrylamide-chitosan (en gris clair) ; - Figure 14 is a graph which corresponds to the IRFT spectrum of a sample referenced 1904-E0012452 of a 2.5% polyacrylamide hydrogel (in dark gray) and of a sample according to the invention referenced 1904-E0012453 of a hydrogel 5% polyacrylamide-chitosan copolymer (in light gray);
- la figure 15A est une image de microscopie à balayage électronique (MEB) illustrant la structure réticulée du copolymère de l’invention, après cryogénie et la figure 15B est une image de MEB illustrant la structure réticulée de l’hydrogel de l’invention, après cryogénie, dans laquelle une particule de l’agent diffusant apparaît dans une alvéole du réseau tridimensionnel ; FIG. 15A is an electron scanning microscopy (SEM) image illustrating the crosslinked structure of the copolymer of the invention, after cryogenics and the FIG. 15B is a SEM image illustrating the crosslinked structure of the hydrogel of the invention, after cryogenics, in which a particle of the diffusing agent appears in a cell of the three-dimensional network;
- la figure 16 est un tableau qui indique les teneurs en monomères résiduels d’acrylamide et méthyl bis-acrylamide, après dialyse. Ces valeurs sont en inférieures aux limites de mesures de 4ppm ; - Figure 16 is a table which indicates the contents of residual acrylamide and methyl bis-acrylamide monomers, after dialysis. These values are below the measurement limits of 4ppm;
- la figure 17 illustre le fait que le copolymère de l’hydrogel selon l’invention se forme en créant une chaîne macromoléculaire qui s’organise ensuite sous la forme d’un réseau tridimensionnel grâce au réticulant (méthyl bis-acrylamide) ; - Figure 17 illustrates the fact that the hydrogel copolymer according to the invention is formed by creating a macromolecular chain which is then organized in the form of a three-dimensional network thanks to the crosslinking agent (methyl bis-acrylamide);
- les figures 18A, 18B et 18C sont des courbes RMN du copolymère 5% polyacrylamide-chitosan (Fig. 18A) qui présentent plusieurs points distinctifs, notamment spécifiques du chitosan en solution à 1 % à 3,2, 3,6 et 4,9 ppm (Fig. 18B) et en proportion significative par rapport à la RMN de l’hydrogel 2,5% de polyacrylamide seule (Fig. 18C). FIGS. 18A, 18B and 18C are NMR curves of the 5% polyacrylamide-chitosan copolymer (FIG. 18A) which have several distinctive points, in particular specific for chitosan in 1% solution at 3.2, 3.6 and 4, 9 ppm (Fig. 18B) and in significant proportion compared to the NMR of the 2.5% polyacrylamide hydrogel alone (Fig. 18C).
Description détaillée de l'invention Detailed description of the invention
Selon la présente invention, les termes « compris entre... et... » utilisés pour définir des intervalles de valeurs doivent être compris comme intégrant les bornes inférieure et supérieure de ces intervalles. Les termes « % en poids » doivent être compris comme « % en poids par rapport au poids total de l’hydrogel ». According to the present invention, the terms "between ... and ..." used to define ranges of values must be understood as integrating the lower and upper limits of these ranges. The terms "% by weight" should be understood as "% by weight relative to the total weight of the hydrogel".
Selon un premier objet, l’invention concerne d’une part un hydrogel pour le secteur de la Santé comprenant entre 0,3% et 30% en poids de matière sèche d’un copolymère formé au moins d’acrylamide, de chitosan et de N,N’- méthylènebisacrylamide et, d’autre part, un agent diffusant. According to a first object, the invention relates on the one hand to a hydrogel for the health sector comprising between 0.3% and 30% by weight of dry matter of a copolymer formed at least of acrylamide, chitosan and N, N'-methylenebisacrylamide and, on the other hand, a diffusing agent.
Un « hydrogel » est un gel, c’est-à-dire un réseau tridimensionnel de solides dilué dans un fluide, dont le fluide est de l’eau (généralement 80% ou plus en poids du poids total de l’hydrogel). Le réseau tridimensionnel de solides est généralement un réseau de polymères. Ces derniers sont insolubles dans l'eau, mais sont capables de gonfler substantiellement en présence d'une grande quantité d'eau. A "hydrogel" is a gel, that is, a three-dimensional network of solids diluted in a fluid, the fluid of which is water (usually 80% or more by weight of the total weight of the hydrogel). The three-dimensional network of solids is generally a network of polymers. These are insoluble in water, but are able to swell substantially in the presence of a large amount of water.
En référence à la figure 1 , l’hydrogel de l’invention comprend ou est constitué par un réseau moléculaire tridimensionnel piégeant des molécules d’eau et embarquant un agent diffusant. Le réseau moléculaire tridimensionnel est formé par un copolymère chitosan-polyacrylamide-MBA. L'eau est présente, dans l'hydrogel, à raison de 70 à 99,7% en poids, préférentiellement à raison de 90 à 96% en poids d’eau, hors agent diffusant. L’hydrogel copolymère selon l’invention a une capacité d’emport d’agents diffusants, notamment de capsules submicroniques. La microstructure du réseau tridimensionnel de cet hydrogel présente des alvéoles dont la taille est compatible avec les particules emportées, ce que des gels de polyacrylamide réalisés selon l’art antérieur ne proposent pas. En outre, et ainsi que cela est montré dans les exemples de la présente description, l’hydrogel selon l’invention possède une capacité 3 fois supérieure dans l’emport d’eau (gonflement hydrophile) par rapport à un hydrogel de même concentration en polyacrylamide uniquement. Il faut donc moins de substance avec un hydrogel copolymère pour offrir autant d’hydratation qu’avec un gel de polyacrylamide à concentrations de matière sèche initiale égales. Referring to Figure 1, the hydrogel of the invention comprises or consists of a three-dimensional molecular network trapping water molecules and carrying a diffusing agent. The three-dimensional molecular network is formed by a chitosan-polyacrylamide-MBA copolymer. Water is present in the hydrogel in an amount of 70 to 99.7% by weight, preferably in an amount of 90 to 96% by weight of water, excluding diffusing agent. The copolymer hydrogel according to the invention has the capacity to carry diffusing agents, in particular submicron capsules. The microstructure of the three-dimensional network of this hydrogel has cells the size of which is compatible with the particles carried away, which polyacrylamide gels produced according to the prior art do not offer. In addition, and as shown in the examples of the present description, the hydrogel according to the invention has a capacity 3 times greater in carrying water (hydrophilic swelling) compared to a hydrogel of the same concentration in polyacrylamide only. It therefore requires less substance with a copolymer hydrogel to provide as much hydration as with a polyacrylamide gel with equal initial dry matter concentrations.
L’hydrogel de l’invention est « biocompatible », c’est-à-dire qu’il ne dégrade pas le milieu biologique dans lequel il est utilisé. Cette biocompatibilité provient de la grande quantité d’eau absorbée par l’hydrogel et de la structure tridimensionnelle non-toxique formée par un copolymère de chitosan et de polyacrylamide réticulé par du N,N’-méthylènebisacrylamide. The hydrogel of the invention is "biocompatible", that is to say that it does not degrade the biological medium in which it is used. This biocompatibility comes from the large amount of water absorbed by the hydrogel and from the non-toxic three-dimensional structure formed by a copolymer of chitosan and polyacrylamide crosslinked with N, N’-methylenebisacrylamide.
L’hydrogel de l’invention est « biodégradable » en ce sens qu’il se dégrade en formant des entités non dommageables pour l’environnement dans lequel il se trouve. En particulier, l’un des produits de dégradation de l’hydrogel de l’invention par exemple contenant du chitosan, est la glucosamine, qui est par ailleurs produite naturellement par l’organisme à partir du glucose et de la glutamine. La glucosamine joue un rôle prépondérant dans le maintien de l’intégrité du cartilage de l’ensemble des articulations. Elle soutient l’action lubrifiante du liquide synovial, un lubrifiant naturel des articulations. The hydrogel of the invention is "biodegradable" in the sense that it degrades to form entities which are not harmful to the environment in which it is found. In particular, one of the hydrogel degradation products of the invention, for example containing chitosan, is glucosamine, which is also produced naturally by the body from glucose and glutamine. Glucosamine plays a key role in maintaining the integrity of cartilage in all joints. It supports the lubricating action of synovial fluid, a natural lubricant for the joints.
L’hydrogel de l’invention est un hydrogel de chitosan-polyacrylamide-MBA comprenant un agent diffusant. Cet hydrogel comprend donc un copolymère chitosan-polyacrylamide-MBA formé au moins d’acrylamide, de chitosan et de N,N’- méthylènebisacrylamide. The hydrogel of the invention is a chitosan-polyacrylamide-MBA hydrogel comprising a diffusing agent. This hydrogel therefore comprises a chitosan-polyacrylamide-MBA copolymer formed at least from acrylamide, chitosan and N, N’-methylenebisacrylamide.
L’acrylamide est un monomère d’origine synthétique. Lors de la polymérisation, les monomères se rassemblent en une macromolécule qui perd sa toxicité. Aussi, il est très important de construire le mieux possible le réseau tridimensionnel et de laver l’hydrogel après réticulation de manière à extraire la totalité des monomères potentiels résiduels. Acrylamide is a monomer of synthetic origin. During polymerization, the monomers gather into a macromolecule which loses its toxicity. Also, it is very important to construct the three-dimensional network as best as possible and to wash the hydrogel after crosslinking so as to extract all of the residual potential monomers.
Le chitosan est un matériau d’origine naturelle et renouvelable. Ce matériau biocompatible et biodégradable, ne présente aucune toxicité, est soluble dans l’acide acétique et est capable de se greffer chimiquement à d’autres molécules. Les différents types de molécules réagissant sur le chitosan sont nombreux. On peut notamment citer le polyéthylène glycol, l’alcool polyvinylique, l’acide polyacrylique, l’hydroxy-cellulose, des polyacrylates, des polyacryliques, et le polyacrylamide. Chitosan is a material of natural and renewable origin. This biocompatible and biodegradable material, has no toxicity, is soluble in acetic acid and is capable of chemically grafting to other molecules. There are many different types of molecules reacting on chitosan. Mention may in particular be made of polyethylene glycol, polyvinyl alcohol, polyacrylic acid, hydroxycellulose, polyacrylates, polyacrylics, and polyacrylamide.
Le chitosan est un polyoside composé de la distribution aléatoire de D-glucosamine liée en B-(1 -4) (unité désacétylée) et de N-acétyle-D-glucosamine (unité acétylée). Il est produit par désacétylation chimique (en milieu alcalin) ou enzymatique de la chitine, le composant de l'exosquelette des arthropodes (crustacés) ou de l'endosquelette des céphalopodes (calmars...), parfois aussi d’origine végétale (parois des champignons) ou d’origine synthétique. Cette matière première est déminéralisée par traitement à l'acide chlorhydrique, puis déprotéinée en présence de soude ou de potasse et enfin décolorée grâce à un agent oxydant. Le degré d'acétylation (DA) est le pourcentage d'unités acétylées par rapport au nombre d'unités totales, il peut être déterminé par spectroscopie infrarouge à transformée de Fourier (IR-TF) ou par un titrage par une base forte. Le chitosan est soluble en milieu acide contrairement à la chitine qui est insoluble. Il est important de faire la distinction entre le degré d'acétylation (DA) et le degré de déacétylation (DD). L'un étant le complémentaire de l'autre c'est-à-dire que du chitosan ayant un DD de 85 %, possède 15 % de groupements acétyles et 85 % de groupements amines sur ses chaînes. Chitosan is a polysaccharide composed of the random distribution of D-glucosamine linked in B- (1 -4) (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). It is produced by chemical deacetylation (in an alkaline medium) or enzymatic of chitin, the component of the exoskeleton of arthropods (crustaceans) or the endoskeleton of cephalopods (squid ...), sometimes also of plant origin (walls mushrooms) or of synthetic origin. This raw material is demineralized by treatment with hydrochloric acid, then deproteinized in the presence of soda or potassium hydroxide and finally discolored thanks to an oxidizing agent. The degree of acetylation (DA) is the percentage of acetylated units compared to the number of total units, it can be determined by Fourier transform infrared spectroscopy (IR-TF) or by a strong base titration. Chitosan is soluble in an acid medium unlike chitin which is insoluble. It is important to distinguish between the degree of acetylation (DA) and the degree of deacetylation (DD). One being the complement of the other, that is to say that chitosan having a DD of 85%, has 15% of acetyl groups and 85% of amine groups on its chains.
Le chitosan est une macromolécule dont la masse molaire est comprise entre 50 kDa et 400 kDa (g/mole) qui peut être également visualisée par un nombre de motifs de quelques centaines à 2 ou 3 milliers. L’hydrogel comprend par exemple entre 0,15% et 3% en poids de chitosan du poids total de l’hydrogel. Dans un exemple plus particulier, l’hydrogel comprend entre 0,30% et 2% en poids de chitosan du poids total de l’hydrogel. Chitosan is a macromolecule whose molar mass is between 50 kDa and 400 kDa (g / mole) which can also be viewed by a number of patterns from a few hundred to 2 or 3 thousand. The hydrogel comprises for example between 0.15% and 3% by weight of chitosan of the total weight of the hydrogel. In a more specific example, the hydrogel comprises between 0.30% and 2% by weight of chitosan of the total weight of the hydrogel.
Le N,N’-méthylènebisacrylamide est un agent de réticulation. Dans la présente invention, le N,N’-méthylènebisacrylamide permet d’obtenir une structure tridimensionnelle, en particulier par la formation de liaisons covalentes entre les chaînes de chitosan-polyacrylamide. N, N’-methylenebisacrylamide is a crosslinking agent. In the present invention, N, N’-methylenebisacrylamide makes it possible to obtain a three-dimensional structure, in particular by the formation of covalent bonds between the chitosan-polyacrylamide chains.
Un copolymère constitutif de l’hydrogel selon l’invention est formé d’une succession de motifs de répétition, nommés monomères, liés entre eux par des liaisons covalentes. Il est entendu par « copolymère », au sens de la présente invention, un polymère issu de la copolymérisation d'au moins deux types de monomères, chimiquement différents. Au sens de l’invention, le copolymère est un matériau homogène à enchaînement aléatoire, alterné et statistique des différents monomères le constituant. A constituent copolymer of the hydrogel according to the invention is formed of a succession of repeating units, called monomers, linked together by covalent bonds. It is understood by “copolymer”, within the meaning of the present invention, a polymer resulting from the copolymerization of at least two types of monomers, chemically different. Within the meaning of the invention, the copolymer is a material homogeneous with random, alternating and statistical sequence of the various monomers constituting it.
Dans un mode de réalisation, l’hydrogel de l’invention comprend entre 0,3% et 30% en poids, du poids total de l’hydrogel, de matière sèche en copolymère. Dans un autre mode de réalisation, il comprend entre 0,3 et 30,4%, en particulier entre 0,3033 et 30,4%, plus particulièrement entre 0,3415 et 30,4% en poids, du poids total de l’hydrogel, de matière sèche en copolymère. Dans un autre mode de réalisation, l’hydrogel de l’invention comprend entre 0,3033 et 30%, notamment entre 0,3415 et 30% en poids, du poids total de l’hydrogel, de matière sèche en copolymère. En dessous de 0,3% en poids du poids total de l’hydrogel de matière sèche en copolymère, l’hydrogel risque de se former plus difficilement ou de ne pas se former de tout, c’est-à-dire que le mélange reste liquide. Au-delà de 30%, particulièrement au-delà de 30,4%, en poids du poids total de l’hydrogel de matière sèche en copolymère, l’hydrogel risque progressivement de devenir trop dur et de ne plus être applicable ou implantable ou injectable. Avantageusement, la proportion en poids de matière sèche du copolymère est égale ou supérieure à 2% en poids du poids total de l’hydrogel, ou encore 4%. Avantageusement, cette proportion en poids de matière sèche du copolymère est inférieure ou égale à 15%, ou encore 10%. In one embodiment, the hydrogel of the invention comprises between 0.3% and 30% by weight, of the total weight of the hydrogel, of dry matter in copolymer. In another embodiment, it comprises between 0.3 and 30.4%, in particular between 0.3033 and 30.4%, more particularly between 0.3415 and 30.4% by weight, of the total weight of the hydrogel, from dry matter in copolymer. In another embodiment, the hydrogel of the invention comprises between 0.3033 and 30%, especially between 0.3415 and 30% by weight, of the total weight of the hydrogel, of dry matter in copolymer. Below 0.3% by weight of the total weight of the dry matter hydrogel in copolymer, the hydrogel may form more difficultly or not form all, that is to say that the mixture stays liquid. Above 30%, particularly beyond 30.4%, by weight of the total weight of the dry matter hydrogel in copolymer, the hydrogel may progressively become too hard and no longer be applicable or implantable or injectable. Advantageously, the proportion by weight of dry matter of the copolymer is equal to or greater than 2% by weight of the total weight of the hydrogel, or even 4%. Advantageously, this proportion by weight of dry matter of the copolymer is less than or equal to 15%, or even 10%.
Dans un mode de réalisation, l’hydrogel de l’invention est substantiellement exempt de pyrogène. Au sens de l’invention, il est entendu par les termes « substantiellement exempt de pyrogène » une exemption substantielle de substances induisant une élévation de la température. Différentes méthodes existent pour identifier la présence de pyrogènes et sont bien connues de l’homme du métier. En particulier, une méthode permettant d’identifier la présence de pyrogène consiste à injecter à un lapin 10 ml_ de solution par kg de poids corporel et à mesurer sa température. Si la température corporelle du lapin augmente de 0,6°C, ou si l’augmentation totale est de plus de 1 ,4°C sur trois lapins, la solution n’est pas substantiellement exempte de pyrogènes. Une autre méthode permettant d’identifier la présence de pyrogène consiste à utiliser un test MAT ("Monocyte Activation Test" - "Test d'Activation des Monocytes") commercialisé, par exemple, par Merck™ sous les dénominations PyroDetect™ et/ou PyroMAT™ introduit dans la Pharmacopée européenne en 2010. Ce test a été développé comme alternative aux méthodes utilisant des animaux et vise à offrir la possibilité de réaliser les tests des pyrogènes chez l'humain dans un système in vitro. Au sens de l’invention, une eau substantiellement exempte de pyrogène est dite apyrogène. In one embodiment, the hydrogel of the invention is substantially free of pyrogen. For the purposes of the invention, the terms "substantially free of pyrogen" are understood to mean a substantial exemption from substances inducing a rise in temperature. Various methods exist for identifying the presence of pyrogens and are well known to those skilled in the art. In particular, a method for identifying the presence of pyrogen consists in injecting a rabbit with 10 ml of solution per kg of body weight and measuring its temperature. If the rabbit's body temperature increases by 0.6 ° C, or if the total increase is more than 1.4 ° C in three rabbits, the solution is not substantially free of pyrogens. Another method for identifying the presence of pyrogen consists in using a MAT test ("Monocyte Activation Test" - marketed, for example, by Merck ™ under the names PyroDetect ™ and / or PyroMAT ™ introduced in the European Pharmacopoeia in 2010. This test was developed as an alternative to methods using animals and aims to offer the possibility of carrying out tests pyrogens in humans in an in vitro system. Within the meaning of the invention, water substantially free of pyrogen is said to be pyrogen-free.
Dans un mode de réalisation, l’hydrogel selon l’invention comprend également un agent diffusant et/ou un autre agent ou ingrédient. In one embodiment, the hydrogel according to the invention also comprises a diffusing agent and / or another agent or ingredient.
Au sens de la présente invention, il est entendu par « agent diffusant » un ingrédient ou un actif capable de diffuser en dehors de l’hydrogel. L’agent diffusant peut être choisi parmi des ingrédients inertes ayant des propriétés biomécaniques intéressantes ou actifs. Ces agents peuvent être des substances d'origine végétale telles que les extraits de génépi, des substances d'origine marine telles que les extraits de moules vertes de Nouvelle Zélande (Perna canaliculus), de l’acide ortho- silicique, du silicium organique, du silanol, des vitamines telles que les vitamines A, D3, E ou C, des métaux tels que l'or ou l'argent, des analgésiques tels que la lidocaïne, xylazine, détomidine, des anti-inflammatoires non stéroïdiens, tels que flunixine, kétoprofène, aspirine, des corticostéroïdes tels que la prednisolone, triamcinolone, de l’acide hyaluronique, des glycosaminoglycanes, de la chondroïtine sulfate, du méthylsulfonylméthane, de la bromélaïne, de l’arnica, du collagène, des antioxydants, des acides gras. For the purposes of the present invention, the term "diffusing agent" is understood to mean an ingredient or an active agent capable of diffusing apart from the hydrogel. The diffusing agent can be chosen from inert ingredients having interesting or active biomechanical properties. These agents can be substances of plant origin such as extracts of genepi, substances of marine origin such as extracts of New Zealand green mussels (Perna canaliculus), orthosilic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti-inflammatory drugs, such as flunixin , ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonylmethane, bromelain, arnica, collagen, antioxidants, fatty acids.
Dans un mode de réalisation, l’agent diffusant de l’invention peut également être compris dans un cargo. Ce cargo est défini comme une matrice capable d’embarquer l’agent diffusant, dans l’hydrogel. Selon l’invention, différentes techniques de cargo peuvent permettre d’embarquer l’agent diffusant, telles que l’encapsulation ou la vectorisation, la technologie dite d'égouttage (dripping technology en langue anglaise), la création d'émulsions ou de revêtements spécifiques, le greffage polymérique. En particulier, le cargo peut être choisi parmi des microcapsules, des microparticules ou encore des véhicules polymériques. La taille des particules utilisées est par exemple comprise entre 200 nm et 20 000 nm, ce qui fait d'elles des particules de taille supérieure à celles des nanoparticules dont la norme européenne décrit une taille inférieure à 100 nm pour plus de 50 % d'entre elles. In one embodiment, the diffusing agent of the invention can also be included in a cargo ship. This cargo is defined as a matrix capable of carrying the diffusing agent in the hydrogel. According to the invention, different cargo techniques can allow the diffusion agent to be taken on board, such as encapsulation or vectorization, the so-called dripping technology, the creation of emulsions or coatings. specific, polymeric grafting. In particular, the cargo can be chosen from microcapsules, microparticles or even polymeric vehicles. The size of the particles used is for example between 200 nm and 20,000 nm, which makes them particles larger than those of nanoparticles whose European standard describes a size less than 100 nm for more than 50% of between them.
L’agent diffusant, compris ou non dans un cargo, est retenu dans l’hydrogel, soit par rétention physique, soit par interactions moléculaires, covalentes ou non, des exemples d’interactions non covalentes étant des interactions ioniques, liaison hydrogène, soit par toute combinaison de ces modes de rétention. Notamment, la taille des pores, définie par la structure matricielle tridimensionnelle du copolymère de l’hydrogel, peut empêcher l’agent diffusant d'être libéré jusqu'à ce que l'hydrogel subisse une dégradation par un ou plusieurs mécanismes. L’agent diffusant peut ainsi être libéré soit par un changement de pH ou de température, soit sous une action mécanique. The diffusing agent, included or not in a cargo ship, is retained in the hydrogel, either by physical retention, or by molecular interactions, covalent or not, examples of non-covalent interactions being ionic interactions, hydrogen bonding, or by any combination of these retention methods. In particular, the pore size, defined by the three-dimensional matrix structure of the hydrogel copolymer, can prevent the diffusing agent from being released until the hydrogel is degraded by one or more mechanisms. The diffusing agent can thus be released either by a change in pH or temperature, or under a mechanical action.
Dans un mode de réalisation, l’hydrogel final de l’invention comprend entre 0,0001 % et 30 % en masse d’agent diffusant, sur la masse totale. De façon préférentielle, l’agent diffusant comprend environ 1 % et 25 % en masse, par rapport à la masse totale de l’hydrogel final. In one embodiment, the final hydrogel of the invention comprises between 0.0001% and 30% by mass of diffusing agent, out of the total mass. Preferably, the diffusing agent comprises approximately 1% and 25% by mass, relative to the total mass of the final hydrogel.
Dans un mode de réalisation particulier, l’agent diffusant de l’invention est un acide ortho-silicique, un silicium organique, ou du silanol. In a particular embodiment, the diffusing agent of the invention is an ortho-silicic acid, an organic silicon, or silanol.
Dans un mode de réalisation particulier, l’agent diffusant est sous la forme de microparticules dont la taille (diamètre moyen) est comprise entre 200 nm et 20 000 nm. Ces microparticules sont donc de taille supérieure à celles des nanoparticules dont la norme européenne décrit une taille inférieure à 100 nm pour plus de 50 % d'entre elles. In a particular embodiment, the diffusing agent is in the form of microparticles whose size (average diameter) is between 200 nm and 20,000 nm. These microparticles are therefore larger than those of nanoparticles whose European standard describes a size less than 100 nm for more than 50% of them.
Dans un mode de réalisation, le rapport massique entre l’acrylamide et le chitosan est compris entre 1 /1 et 1 /8. Préférentiellement, il est compris entre 1 /2 et 1 /6. Dans un autre mode de réalisation, le rapport massique entre le chitosan et l’acrylamide est compris entre 1 /100 et 1 /2. Il est, en particulier, compris entre 1 /8 et 1/2, notamment entre 1 /6 et 1 /2. In one embodiment, the mass ratio between acrylamide and chitosan is between 1/1 and 1/8. Preferably, it is between 1/2 and 1/6. In another embodiment, the mass ratio between chitosan and acrylamide is between 1/100 and 1/2. It is, in particular, between 1/8 and 1/2, in particular between 1/6 and 1/2.
Dans un mode de réalisation, le rapport massique entre le N,N’- méthylènebisacrylamide et l’acrylamide est compris entre 1 /50 et 1/1000. De préférence, le rapport massique entre le N,N’-méthylènebisacrylamide et l’acrylamide est compris entre 1 /100 et 1 /500. In one embodiment, the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000. Preferably, the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/100 and 1/500.
Dans un mode de réalisation particulier, l’hydrogel de l’invention comprend le copolymère formé au moins par l’acrylamide, le chitosan et le N,N’- méthylènebisacrylamide, et l’agent diffusant, selon le rapport suivant en % en poids du poids total de l’hydrogel final : In a particular embodiment, the hydrogel of the invention comprises the copolymer formed at least by acrylamide, chitosan and N, N'-methylenebisacrylamide, and the diffusing agent, according to the following ratio in% by weight of the total weight of the final hydrogel:
Acrylamide 0,3% et 20% Acrylamide 0.3% and 20%
Chitosan 0,0375% et 10% Chitosan 0.0375% and 10%
N,N’-méthylènebisacrylamide 0,004% et 0,4% N, N’-methylenebisacrylamide 0.004% and 0.4%
agent diffusant 0,001 % et 30% diffusing agent 0.001% and 30%
H2O de manière complémentaire jusqu’à 100 %. H2O in a complementary manner up to 100%.
Dans un autre mode de réalisation particulier, l’hydrogel de l’invention comprend le copolymère formé au moins par l’acrylamide, le chitosan et le N, N’- méthylènebisacrylamide, et l’agent diffusant, selon le rapport suivant en % en poids du poids total de l’hydrogel final : In another particular embodiment, the hydrogel of the invention comprises the copolymer formed at least by acrylamide, chitosan and N, N'- methylenebisacrylamide, and the diffusing agent, according to the following ratio in% by weight of the total weight of the final hydrogel:
Acrylamide 0,3% et 20% Acrylamide 0.3% and 20%
Chitosan 0,003% et 10% Chitosan 0.003% and 10%
N,N’-méthylènebisacrylamide 0,0003% et 0,4% N, N’-methylenebisacrylamide 0.0003% and 0.4%
agent diffusant 0,001 % et 30% diffusing agent 0.001% and 30%
H2O de manière complémentaire jusqu’à 100. H2O in addition up to 100.
Selon un second objet, l’invention concerne un procédé de fabrication d’un hydrogel tel que défini ci-dessus. According to a second object, the invention relates to a process for manufacturing a hydrogel as defined above.
Dans un premier mode de réalisation, le procédé comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’- méthylènebisacrylamide et d’un initiateur radicalaire, dans un milieu aqueux, pour obtenir un copolymère ; lavage du copolymère à l’eau pour obtenir un copolymère lavé ; et ajout de l’agent diffusant pour obtenir l’hydrogel. In a first embodiment, the method comprises the following steps: copolymerization of acrylamide and chitosan, in the presence of N, N’-methylenebisacrylamide and of a radical initiator, in an aqueous medium, to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and adding the diffusing agent to obtain the hydrogel.
Dans un mode de réalisation privilégié, le procédé comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’- méthylènebisacrylamide, d’un agent diffusant, et d’un initiateur radicalaire, dans un milieu aqueux, pour obtenir un copolymère incorporant l’agent diffusant puis lavage à l’eau du copolymère incorporant l’agent diffusant pour obtenir l’hydrogel. In a preferred embodiment, the process comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in an aqueous medium, to obtain a copolymer incorporating the diffusing agent then washing with water of the copolymer incorporating the diffusing agent to obtain the hydrogel.
Au cours du procédé de fabrication, le chitosan copolymérise avec la polyacrylamide en se liant sur elle de façon covalente. Sous l’action du N,N’- méthylènebisacrylamide (MBA), le système réticule selon un réseau tridimensionnel. Le MBA permet de lier de manière covalente différentes chaînes de chitosan-polyacrylamide pour former un réseau tridimensionnel. During the manufacturing process, chitosan copolymerizes with polyacrylamide by covalently bonding to it. Under the action of N, N’-methylènebisacrylamide (MBA), the system crosslinks in a three-dimensional network. The MBA makes it possible to covalently link different chains of chitosan-polyacrylamide to form a three-dimensional network.
Le chitosan est ajouté en solution aqueuse acide, c’est-à-dire une solution aqueuse dont le pH est inférieur à 6. De préférence la solution aqueuse acide comprend un acide organique, notamment un acide organique dont le pKa est compris entre 4 et 6, tel qu’un acide carboxylique. En particulier la solution aqueuse acide comprend de l’acide acétique ou acide chlorhydrique. The chitosan is added in an acidic aqueous solution, that is to say an aqueous solution whose pH is lower than 6. Preferably the acidic aqueous solution comprises an organic acid, in particular an organic acid whose pKa is between 4 and 6, such as a carboxylic acid. In particular, the acidic aqueous solution comprises acetic acid or hydrochloric acid.
La concentration du chitosan dans la solution aqueuse acide est de 0.1 à 5% en poids du poids total de la solution. The concentration of chitosan in the acidic aqueous solution is 0.1 to 5% by weight of the total weight of the solution.
La solution aqueuse acide de chitosan est mélangée à l’acrylamide à une température comprise entre 20 et 60°C. De préférence la température est comprise entre 40 et 60°C. Le rapport massique entre l’acrylamide et le chitosan est compris entre 1 /1 et 1 /8. Dans un autre mode de réalisation, le rapport massique entre le chitosan et l’acrylamide est compris entre 1 /100 et 1 /2, en particulier entre 1/8 et 1 /2, notamment entre 1 /6 et 1 /2. The acidic aqueous solution of chitosan is mixed with the acrylamide at a temperature between 20 and 60 ° C. Preferably the temperature is between 40 and 60 ° C. The mass ratio between acrylamide and chitosan is between 1/1 and 1/8. In another embodiment, the mass ratio between the chitosan and the acrylamide is between 1/100 and 1/2, in particular between 1/8 and 1/2, in particular between 1/6 and 1/2.
Le rapport massique entre le N,N’-méthylènebisacrylamide et l’acrylamide est compris entre 1 /50 et 1 /1000. De préférence, le rapport massique entre le N,N’- méthylènebisacrylamide et l’acrylamide est compris entre 1/100 et 1 /500. The mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000. Preferably, the mass ratio between N, N’-methylenebisacrylamide and acrylamide is between 1/100 and 1/500.
La réaction de copolymérisation est initiée par un initiateur radicalaire. En particulier, l’initiateur radicalaire est choisi parmi le persulfate de potassium ou le persulfate d’ammonium. Le rapport massique entre l’initiateur radicalaire et l’acrylamide est compris entre 1/100 et 1 /10. L’initiateur radicalaire peut éventuellement être utilisé en association avec de la tétraméthyléthylènediamine (TEMED). Le TEMED est facultatif lors de la copolymérisation. Ainsi, le rapport massique entre la TEMED et l’acrylamide est compris entre 1 /2000 et 1 /20. L’absence de TEMED, catalyseur toxique, permet la formation d’un hydrogel à base de matériaux en partie naturels et biocompatibles, et ainsi permet une bio-conception plus responsable. The copolymerization reaction is initiated by a radical initiator. In particular, the radical initiator is chosen from potassium persulfate or ammonium persulfate. The mass ratio between the radical initiator and the acrylamide is between 1/100 and 1/10. The radical initiator can optionally be used in combination with tetramethylethylenediamine (TEMED). TEMED is optional during copolymerization. Thus, the mass ratio between TEMED and acrylamide is between 1/2000 and 1/20. The absence of TEMED, a toxic catalyst, allows the formation of a hydrogel based on partially natural and biocompatible materials, and thus allows a more responsible bio-design.
Lavage de l’hydrogel Washing the hydrogel
L’hydrogel est formé à partir d’une copolymérisation du chitosan avec l’acrylamide. Le copolymère est réticulé grâce à la N, N’ bis-acrylamide. L’optimisation de cette réticulation consiste à rendre celle-ci la plus complète possible de manière à ce que, d’une part, le réseau tridimensionnel soit le mieux formé et que, d’autre part, les monomères (acrylamide et N, N’ bis-acrylamique) toxiques soient le moins présents possibles. Néanmoins, la prudence nécessite de « laver » les hydrogels formés de manière à ce que les éventuels monomères résiduels au sein de l’hydrogel puissent être évacués. Le « lavage » de l’hydrogel consiste donc à plonger cet hydrogel dans de l’eau et utiliser le phénomène d’osmose pour évacuer ces monomères. Selon le principe de l’osmose, les molécules se déplacent des zones où les concentrations sont élevées vers les zones à concentrations plus faibles. Ce déplacement est décrit par la loi de Fick qui exprime une relation linéaire entre le flux de matière et le gradient de concentration de celle-ci. The hydrogel is formed from a copolymerization of chitosan with acrylamide. The copolymer is crosslinked using N, N ’bis-acrylamide. The optimization of this crosslinking consists in making it as complete as possible so that, on the one hand, the three-dimensional network is the best formed and that, on the other hand, the monomers (acrylamide and N, N 'bis-acrylamic) toxic are as few as possible. However, caution requires "washing" the hydrogels formed so that any residual monomers in the hydrogel can be removed. The "washing" of the hydrogel therefore consists in immersing this hydrogel in water and using the phenomenon of osmosis to evacuate these monomers. According to the principle of osmosis, molecules move from areas with high concentrations to areas with lower concentrations. This displacement is described by Fick's law which expresses a linear relationship between the flow of matter and the concentration gradient thereof.
Ainsi que cela est présenté à la figure 6A, deux phénomènes au moins se produisent. Les monomères résiduels piégés au sein de l’hydrogel (symbolisé par la couleur gris clair) vont être évacués vers l’eau de « lavage » (symbolisé par la couleur gris foncé). A l’inverse, l’eau à l’extérieur du gel va entrer au sein de l’hydrogel. Il s’ensuit de ce phénomène de lavage par osmose, un gonflement de l’hydrogel. Quelques essais préliminaires d’hydrogels « lavés » montrent la variation de masse (en pourcents) en fonction du temps. Ainsi que cela apparaît à la figure 9, cette variation de l’écart relatif de prise de masse croit linéairement en fonction du temps jusqu’à obtenir près de 200 % (gonflement de 3 fois) dans le cas de l’hydrogel N4a et de l’ordre de 300 % (gonflement de 4 fois), dans le cas de l’hydrogel N4a/2 pour un temps d’immersion de 4 jours environ. As shown in Figure 6A, at least two phenomena occur. The residual monomers trapped within the hydrogel (symbolized by the light gray color) will be discharged to the "washing" water (symbolized by the dark gray color). Conversely, the water outside the gel will enter the hydrogel. It follows from this phenomenon of washing by osmosis, a swelling of the hydrogel. Some preliminary tests of “washed” hydrogels show the variation in mass (in percent) as a function of time. As shown in Figure 9, this variation in the relative gain in mass increases linearly over time until almost 200% (swelling 3 times) in the case of the hydrogel N4a and around 300% (swelling 4 times), in the case of the N4a / 2 hydrogel for an immersion time of approximately 4 days.
Il est clair que l’expansion importante des hydrogels va se traduire par une réduction inversement proportionnelle, de la quantité de matière sèche intrinsèque au gel. It is clear that the significant expansion of hydrogels will result in an inversely proportional reduction in the amount of dry matter intrinsic to the gel.
Le lavage du copolymère à l’eau permet l’élimination de contaminants et d’assurer une absence de tels contaminants au sein de l’hydrogel. Les contaminants du copolymère peuvent être des monomères résiduels, des résidus d’initiateurs radicalaires, des acides organiques. En particulier, des lavages répétés à l’eau et une analyse de l’eau de lavage, notamment par FT-IR, permet de mesurer le taux de monomères résiduels n’ayant pas participé à la réaction de copolymérisation et/ou de réticulation et permet également d’assurer l’absence de ces monomères résiduels dans l’hydrogel. En particulier, l’hydrogel de l’invention comprend moins de 20 mg/mL en acrylamide et moins de 20 U E/dispositif en endotoxines. Washing the copolymer with water makes it possible to remove contaminants and to ensure the absence of such contaminants within the hydrogel. Contaminants in the copolymer can be residual monomers, radical initiator residues, organic acids. In particular, repeated washing with water and analysis of the washing water, in particular by FT-IR, makes it possible to measure the level of residual monomers which have not participated in the copolymerization and / or crosslinking reaction and also ensures the absence of these residual monomers in the hydrogel. In particular, the hydrogel of the invention comprises less than 20 mg / ml of acrylamide and less than 20 U E / device of endotoxins.
L’agent diffusant, éventuellement compris dans un cargo, peut être ajouté à l’état solide ou en suspension dans l’eau. En particulier, l’agent diffusant peut être ajouté en suspension dans de l’eau apyrogène. The diffusing agent, possibly included in a cargo ship, can be added in the solid state or suspended in water. In particular, the diffusing agent can be added in suspension in pyrogenic water.
Dans un mode de réalisation particulier, le procédé de l’invention comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan introduits avec un rapport massique compris entre 1 /1 et 1 /8, à une température comprise entre 20 et 60°C, de préférence entre 40 et 60°C, en présence de N,N’-méthylènebisacrylamide introduit avec un rapport massique par rapport à l’acrylamide compris entre 1 /50 et 1 /1000, de préférence compris entre 1 /100 et 1 /500, et d’un initiateur radicalaire choisi parmi le persulfate de potassium ou le persulfate d’ammonium, éventuellement en association avec la tétraméthyléthylènediamine, dans un milieu aqueux pour obtenir un copolymère ; lavage du copolymère à l’eau sur 3 à 15 lavages pendant 48-240 heures pour obtenir un copolymère lavé ; et ajout de l’agent diffusant entre 0.001 % et 30%, pour obtenir l’hydrogel final. In a particular embodiment, the method of the invention comprises the following steps: copolymerization of acrylamide and chitosan introduced with a mass ratio of between 1/1 and 1/8, at a temperature between 20 and 60 ° C. , preferably between 40 and 60 ° C, in the presence of N, N'-methylenebisacrylamide introduced with a mass ratio with respect to the acrylamide of between 1/50 and 1/1000, preferably between 1/100 and 1 / 500, and of a radical initiator chosen from potassium persulfate or ammonium persulfate, optionally in combination with tetramethylethylenediamine, in an aqueous medium to obtain a copolymer; washing the copolymer with water over 3 to 15 washes for 48-240 hours to obtain a washed copolymer; and addition of the diffusing agent between 0.001% and 30%, to obtain the final hydrogel.
Dans un second mode de réalisation, le procédé comprend les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’- méthylènebisacrylamide, d’un agent diffusant, et d’un initiateur radicalaire, dans un milieu aqueux, pour obtenir un copolymère incorporant l’agent diffusant ; lavage du copolymère incorporant l’agent diffusant à l’eau pour obtenir l’hydrogel. In a second embodiment, the method comprises the following stages: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide, of a diffusing agent, and of a radical initiator, in a aqueous medium, to obtain a copolymer incorporating the diffusing agent; washing the copolymer incorporating the diffusing agent with water to obtain the hydrogel.
Avantageusement, avant la réaction de copolymérisation, le chitosan est dissout en solution aqueuse à un pH compris entre 2 et 5, sous agitation magnétique ou mécanique, puis neutralisé et filtré sous vide. La solution aqueuse ayant un pH compris entre 2 et 5 est idéalement une solution aqueuse d’acide chlorhydrique ou d’acide acétique. Advantageously, before the copolymerization reaction, the chitosan is dissolved in an aqueous solution at a pH of between 2 and 5, with magnetic or mechanical stirring, then neutralized and filtered under vacuum. The aqueous solution having a pH between 2 and 5 is ideally an aqueous solution of hydrochloric acid or acetic acid.
Avantageusement, le copolymère incorporant l’agent diffusant est extrudé au travers des grilles de pores spécifiques avant l’étape de lavage. Advantageously, the copolymer incorporating the diffusing agent is extruded through specific pore grids before the washing step.
Selon un mode de réalisation avantageux, l’étape de lavage est réalisée par dialyse, au moyen de membranes de dialyse. Dans ce cas, on met en place un système de contention du gel de manière à limiter le gonflement de celui-ci en affectant le moins possible, le déplacement des monomères résiduels vers l’eau de lavage. Cela est schématisé à la figure 6B. Pour améliorer l’efficacité du lavage, on change l’eau régulièrement (une fois toutes les 12 heures par exemple) et on facilite l’agitation en utilisant une agitation magnétique, une agitation mécanique (pales), agitation par pompe à eau, etc. Un premier essai de lavage a été mené pour comparer l’efficacité d’un tube de dialyse comparé à un tube suffisamment large pour ne pas limiter le gonflement. Les figures 7A, 7B et 7C illustrent la mise en place de la membrane sur le col, le remplissage de la membrane à l’aide d’un pistolet et la fermeture des membranes par des clips et des noeuds. La Figure 8 présente les résultats obtenus en termes d’écart relatif de prise de mase en fonction du temps. According to an advantageous embodiment, the washing step is carried out by dialysis, using dialysis membranes. In this case, a gel containment system is put in place so as to limit the swelling thereof while affecting as little as possible the movement of residual monomers towards the washing water. This is shown schematically in Figure 6B. To improve the washing efficiency, the water is changed regularly (once every 12 hours for example) and the agitation is facilitated by using magnetic agitation, mechanical agitation (blades), agitation by water pump, etc. . A first washing test was carried out to compare the effectiveness of a dialysis tube compared to a tube large enough not to limit swelling. Figures 7A, 7B and 7C illustrate the placement of the membrane on the neck, the filling of the membrane with a gun and the closure of the membranes with clips and knots. Figure 8 presents the results obtained in terms of relative deviation from weight gain versus time.
On notera que, dans des cas standards, le lavage de l’hydrogel dure plusieurs jours (5 à 6 jours) de manière à ce que la plus grande part de monomères résiduels puisse être évacuée. Le taux de monomères résiduel décroit d’autant plus rapidement que les conditions d’osmose sont favorables, c’est-à-dire que l’eau est changée régulièrement et que l’agitation est suffisante. Les résultats expérimentaux permettent de définir le temps minimum de lavage de 2 jours. It will be noted that, in standard cases, the washing of the hydrogel lasts several days (5 to 6 days) so that most of the residual monomers can be removed. The residual monomer level decreases all the more quickly than the osmosis conditions are favorable, that is to say that the water is changed regularly and that the agitation is sufficient. The experimental results make it possible to define the minimum washing time of 2 days.
L’étape de lavage mise en oeuvre au cours de la préparation de l’hydrogel est réalisée en mettant en oeuvre la pesée des hydrogels à chaque changement de l’eau dans le bac. Ces mesures de masse permettent de construire la courbe d’évolution de l’écart relatif de la prise de masse en fonction du temps (Figures 1 1 A et 1 1 B). La courbe montre un plateau correspondant au confinement de l’hydrogel au sein de la membrane. Nous notons que ce plateau prend des valeurs comprises entre 50 et 70 % bien inférieures à celles antérieures des 200 à 300 %, illustrant la bonne maîtrise de l’expansion du gel au cours du lavage. The washing step implemented during the preparation of the hydrogel is carried out by weighing the hydrogels each time the water in the tank is changed. These mass measurements make it possible to construct the curve for the evolution of the relative difference in mass gain as a function of time (Figures 1 1 A and 1 1 B). The curve shows a plateau corresponding to the confinement of the hydrogel within the membrane. We note that this plateau takes values understood between 50 and 70% much lower than the previous 200 to 300%, illustrating the good control of the expansion of the gel during washing.
Selon un troisième objet, l’invention concerne l’utilisation d’un hydrogel dans un système de visco-supplémentation mécanique, en usage externe ou interne. According to a third object, the invention relates to the use of a hydrogel in a mechanical visco-supplementation system, for external or internal use.
La visco-supplémentation mécanique selon l’invention permet d’embarquer physiquement l’agent diffusant in situ, pour un soutien des conditions physiologiques et rhéologiques normales de plaies, d’articulations ou en cas d’ulcères gastriques, notamment chez le cheval. The mechanical visco-supplementation according to the invention makes it possible to physically embed the diffusing agent in situ, to support the normal physiological and rheological conditions of wounds, joints or in the event of gastric ulcers, in particular in horses.
Dans un mode de réalisation, l’hydrogel de l’invention est utilisé en usage interne dans un système de visco-supplémentation mécanique implantable pour le soutien des tissus mous des mammifères, voir des os et cartilage selon l’agent diffusant. Les tissus mous sont des éléments du corps, tels que les tissus adipeux, tissus conjonctifs, membrane synoviale de la capsule articulaire muscles, tendons, derme ou épiderme. In one embodiment, the hydrogel of the invention is used for internal use in an implantable mechanical visco-supplementation system for supporting the soft tissues of mammals, see bones and cartilage according to the diffusing agent. Soft tissues are elements of the body, such as adipose tissue, connective tissue, synovial membrane of the joint capsule muscles, tendons, dermis or epidermis.
La visco-supplémentation mécanique en usage interne consiste à implanter localement l’hydrogel qui agit comme un agent de soutien de la membrane synoviale, du liquide synovial ou de l’os et cartilage selon les cas. L’hydrogel permet ainsi à l’articulation de soutenir sa mobilité par une action biomécanique. Mechanical visco-supplementation for internal use consists of locally implanting the hydrogel which acts as a support agent for the synovial membrane, synovial fluid or bone and cartilage as appropriate. The hydrogel thus allows the joint to support its mobility by a biomechanical action.
Avantageusement, le système de visco-supplémentation mécanique en usage interne est un lubrifiant. Advantageously, the mechanical visco-supplementation system for internal use is a lubricant.
Dans un autre mode de réalisation, l’hydrogel de l’invention est utilisé en usage externe dans un système de visco-supplémentation mécanique. En usage externe, la visco-supplémentation mécanique consiste à appliquer localement l’hydrogel qui agit comme un agent d’accompagnement à la cicatrisation. Cet accompagnement à la cicatrisation se traduit par le maintien d’une humidité de la plaie lors de la cicatrisation grâce à la grande quantité d’eau présente dans l’hydrogel. In another embodiment, the hydrogel of the invention is used for external use in a mechanical visco-supplementation system. For external use, mechanical visco-supplementation consists in applying locally the hydrogel which acts as an agent to support healing. This support for healing results in the maintenance of wound humidity during healing thanks to the large amount of water present in the hydrogel.
Avantageusement, le système de visco-supplémentation mécanique en usage externe est un hydratant. Advantageously, the mechanical visco-supplementation system for external use is a moisturizer.
L’utilisation de l’hydrogel selon l’invention permet un effet différé de l’agent diffusant compris dans l’hydrogel. En particulier, l’agent diffusant commence à diffuser entre le 2ème et le 30ème jour après l’administration, de préférence entre le 10ème et le 20ème jour, en particulier à compter du 15ème jour. The use of the hydrogel according to the invention allows a delayed effect of the diffusing agent included in the hydrogel. In particular, the diffusing agent begins to diffuse between the 2nd and the 30th day after administration, preferably between the 10th and the 20th day, in particular from the 15th day.
L’utilisation de l’hydrogel selon l’invention permet également un effet prolongé de l’agent diffusant compris dans l’hydrogel. De préférence, l’agent diffusant est libéré sur une période comprise entre 2 semaines et 12 mois, de préférence entre 1 mois et 6 mois. The use of the hydrogel according to the invention also allows a prolonged effect of the diffusing agent included in the hydrogel. Preferably, the diffusing agent is released over a period between 2 weeks and 12 months, preferably between 1 month and 6 months.
Ainsi, les systèmes de visco-supplémentation mécanique de l’invention nécessitent moins d’applications et l’effet se manifeste pendant une période prolongée, d’au moins deux semaines. Cette visco-supplémentation mécanique prolongée de l’agent diffusant qui est localisé, fixé, protégé puis libéré par l’hydrogel est rendue possible grâce à la structure matricielle viscoélastique de l’hydrogel. Les effets de l’hydrogel viscoélastique, dont la libération différée et prolongée de l’agent diffusant, perdurent de manière significative. Dans ces conditions, l’hydrogel diffuse petit à petit au bout de quelques semaines après l’usage et ce pendant plusieurs semaines, comme s'il en résultait un usage de manière continue dans les plaies ou l'articulation, pendant un tel laps de temps. Il en résulte par exemple une simplification sensible de l’accompagnement des articulations en apportant une visco-supplémentation durable et réduisant d'une manière importante le nombre d’applications ou implantations. Thus, the mechanical visco-supplementation systems of the invention require fewer applications and the effect is manifested for an extended period, of at least two weeks. This prolonged mechanical visco-supplementation of the diffusing agent which is located, fixed, protected then released by the hydrogel is made possible thanks to the viscoelastic matrix structure of the hydrogel. The effects of viscoelastic hydrogel, whose delayed and prolonged release of the diffusing agent, persist significantly. Under these conditions, the hydrogel gradually diffuses after a few weeks after use and this for several weeks, as if it resulted in continuous use in wounds or the joint, during such a lapse of time. This results, for example, in a significant simplification of support for joints by providing lasting visco-supplementation and significantly reducing the number of applications or implantations.
Selon un quatrième objet, l’invention concerne un kit de visco-supplémentation externe ou interne comprenant un copolymère d’acrylamide et de chitosan réticulé avec du N,N’-méthylènebisacrylamide, et un agent diffusant en phase solide ou en suspension, ledit copolymère et ledit agent diffusant étant préalablement mélangés sous la forme d’un hydrogel ou mélangés extemporanément pour former un hydrogel. According to a fourth object, the invention relates to an external or internal visco-supplementation kit comprising a copolymer of acrylamide and of chitosan crosslinked with N, N'-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension, said copolymer and said diffusing agent being premixed in the form of a hydrogel or mixed extemporaneously to form a hydrogel.
Ce kit comprend un copolymère formé au moins d’acrylamide et de chitosan et réticulé avec du N,N’-méthylènebisacrylamide, et un agent diffusant en phase solide ou en suspension. Le copolymère et l’agent diffusant sont soit préalablement mélangés sous la forme d’un hydrogel, soit mélangés extemporanément pour former un hydrogel. This kit comprises a copolymer formed at least from acrylamide and chitosan and crosslinked with N, N’-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension. The copolymer and the diffusing agent are either premixed in the form of a hydrogel, or mixed extemporaneously to form a hydrogel.
EXEMPLES EXAMPLES
EXEMPLE 1 : PREPARATION DU COPOLYMERE CONSTITUTIF DEEXAMPLE 1: PREPARATION OF THE COPOLYMER CONSTITUTING
L’HYDROGEL SELON L’INVENTION HYDROGEL ACCORDING TO THE INVENTION
a) Produits intervenants dans le mélange a) Products involved in the mixture
- Solution d’acrylamide à 40 % dans l’eau, Sigma Aldrich™ (Grade biologie moléculaire/transfert embryonnaire/pharma) - 40% acrylamide solution in water, Sigma Aldrich ™ (Grade molecular biology / embryo transfer / pharma)
- Solution N, N’-méthylène bis acrylamide à 2% dans l’eau, Sigma Aldrich™ (Grade biologie moléculaire/transfert embryonnaire/pharma) - Solution de Chitosan à 1 % dans l’acide acétique 0,1 M, Sigma Aldrich™ (350 kDa > 75 % déacétylation, Grade biologie moléculaire/transfert embryonnaire/pharma)- Solution N, N'-methylene bis acrylamide 2% in water, Sigma Aldrich ™ (Grade molecular biology / embryo transfer / pharma) - 1% Chitosan solution in 0.1 M acetic acid, Sigma Aldrich ™ (350 kDa> 75% deacetylation, molecular biology grade / embryo transfer / pharma)
- Persulfate de Potassium (KPS) (> 99 %) en poudre, Sigma Aldrich™ (Grade biologie moléculaire/transfert embryonnaire/pharma) - Potassium Persulfate (KPS) (> 99%) powder, Sigma Aldrich ™ (Grade molecular biology / embryo transfer / pharma)
- Eau pour préparations injectables (eau ppi) - Water for injections (ppi water)
- Ballon en verre de 1 L - 1 L glass flask
- Agitateur magnétique (de marque Fischer Bioblock Scientic™), rotation 500 tours/mn - Magnetic stirrer (Fischer Bioblock Scientic ™ brand), rotation 500 rpm
- Température de 40 °C (régulation par thermocouple Heidolph™ EKT 3001 ) c) Protocole général - Temperature of 40 ° C (regulation by Heidolph ™ EKT 3001 thermocouple) c) General protocol
1 . Etape 1 1. Step 1
Verser la solution de Chitosan dans le ballon préchauffé à 40 °C, conserver cette température et maintenir l’agitation à 500 tours/mn Pour the Chitosan solution into the flask preheated to 40 ° C, keep this temperature and keep stirring at 500 rpm
2. Etape 2 2. Step 2
Mélanger la solution d’acrylamide à la solution de N, N’-méthylènebisacrylamide. Verser le mélange dans le ballon 1 minute après le chitosan Mix the acrylamide solution with the N, N’-methylenebisacrylamide solution. Pour the mixture into the flask 1 minute after the chitosan
3. Etape 3 3. Step 3
Dissoudre l’APS (persulfate d’ammonium) ou KPS dans une partie de l’eau complémentaire, en remuant jusqu’à dissolution complète. Dissolve the APS (ammonium persulfate) or KPS in part of the additional water, stirring until completely dissolved.
Verser progressivement cette solution, 1 minute après avoir versé la solution (acrylamide et N, N’, méthylène bis acrylamide) Gradually pour this solution, 1 minute after pouring the solution (acrylamide and N, N ’, methylene bis acrylamide)
4. Etape 4 4. Step 4
Verser l’eau ppi jusqu’au volume total désiré Pour the ppi water up to the desired total volume
5. Etape 5 5. Step 5
Conserver l’agitation magnétique et la température pendant une durée de 45 mn pour une copolymérisation du Chitosan sur la polyacrylamide et pour une réticulation avec la N, N’ méthylène bis acrylamide Keep the magnetic stirring and the temperature for a period of 45 min for a copolymerization of Chitosan on the polyacrylamide and for crosslinking with N, N ’methylene bis acrylamide
6. Etape 6 6. Step 6
Laisser reposer 24 heures pour laisser complètement se former le gel Let stand 24 hours to allow the gel to fully form
7. Etape 7 7. Step 7
Procéder à plusieurs (3 à 5) rinçages dans de l’eau ppi pendant 96 heures puis égoutter le gel et le conserver à température ambiante Carry out several (3 to 5) rinses in ppi water for 96 hours then drain the gel and store it at room temperature
d) Différentes formulations testées d) Different formulations tested
EXEMPLE 2. CARACTERISATION DU COPOLYMERE CONSTITUTIF DEEXAMPLE 2. CHARACTERIZATION OF THE COPOLYMER CONSTITUTING
L’HYDROGEL SELON L’INVENTION HYDROGEL ACCORDING TO THE INVENTION
a) Caractérisation par infra-rouge à transformée de Fourier (FTIR) du copolymère présent dans l’hydrogel a) Characterization by infrared with Fourier transform (FTIR) of the copolymer present in the hydrogel
Des mesures FTIR, sur de la matière sèche, ont été menées pour comparer les spectres du copolymère chitosan-polyacrylamide-MBA présent dans l’hydrogel de copolymère de l’invention à 3,75%, sans agent diffusant (V14), à 3,75% avec agent diffusant (V20) versus du polyacrylamide « pure » à plus de 3,5 % sans chitosan (V 5) et du chitosan « pur » (Chitosan). Les pesées des matières sèches sont contenues dans la figure 2A. FTIR measurements, on dry matter, were carried out to compare the spectra of the chitosan-polyacrylamide-MBA copolymer present in the copolymer hydrogel of the invention at 3.75%, without diffusing agent (V14), at 3 , 75% with diffusing agent (V20) versus “pure” polyacrylamide to more than 3.5% without chitosan (V 5) and “pure” chitosan (Chitosan). The dry matter weighings are contained in Figure 2A.
Les spectres sont représentés sur les figures 2B et 2C Une analyse plus précise des spectres s’est portée sur les différences entre l’hydrogel sans agent diffusant (V14) versus hydrogel pur polyacrylamide (V 5) et du chitosan. Les liaisons spécifiques sont reportées sur la figure 2D. The spectra are shown in Figures 2B and 2C A more precise analysis of the spectra focused on the differences between the hydrogel without diffusing agent (V14) versus pure polyacrylamide hydrogel (V 5) and chitosan. The specific links are shown in Figure 2D.
Les conclusions expérimentales confirment la littérature publiée sur les greffages de type de copolymères. The experimental conclusions confirm the literature published on grafting of the copolymer type.
1. Les pics du V14 a 1450 cm-1 et 3182 cm-1 sont les caractéristiques uniques d’une copolymérisation entre chitosan et polyacrylamide. 1. The peaks of V14 at 1450 cm -1 and 3182 cm -1 are the unique characteristics of a copolymerization between chitosan and polyacrylamide.
2. Le pic à 3350 cm-1 (N-H) observé sur le chitosan et moins sur le copolymère est caractéristique de la consommation de cette liaison pour le greffage selon la bibliographie. 3. Les pics à 1375 cm-1 (C-H) et 1 1 13 cm-1 (C-0) observés sur le chitosan mais qui disparaissent sur le copolymère et le gel pur de polyacrylamide : la littérature attribue cela au greffage chitosan avec la polyacrylamide. 2. The peak at 3350 cm -1 (NH) observed on the chitosan and less on the copolymer is characteristic of the consumption of this bond for grafting according to the bibliography. 3. The peaks at 1375 cm -1 (CH) and 1 1 13 cm -1 (C-0) observed on the chitosan but which disappear on the copolymer and the pure polyacrylamide gel: the literature attributes this to the chitosan grafting with the polyacrylamide.
Six pics spécifiques et distinctifs du copolymère chitosan-polyacrylamide-MBA sont identifiés dans les mesures FTIR, ce qui confirme la copolymérisation. Six specific and distinctive peaks of the chitosan-polyacrylamide-MBA copolymer are identified in the FTIR measurements, which confirms the copolymerization.
Cette analyse FTIR vérifie bien que le chitosan et la polyacrylamide se sont liés de manière covalente donnant naissance à un seul copolymère. This FTIR analysis verifies that the chitosan and the polyacrylamide are covalently linked giving rise to a single copolymer.
b) Test de dissolution du copolymère dans l’acide acétique à 1 % b) Dissolution test of the copolymer in 1% acetic acid
Essai de dissolution du chitosan dans l'acide acétique dilué à 1 /100: Dissolution test of chitosan in acetic acid diluted to 1/100:
On pèse 49,5 d'eau, 0,5 g d'acide acétique pur, 0,5 g de chitosan. We weigh 49.5 of water, 0.5 g of pure acetic acid, 0.5 g of chitosan.
On mélange dans un bêcher et on laisse agir, tel que représenté sur la figure 3A. Au bout de 30 mn, sous agitation mécanique à la main, le chitosan est dissout. Essai de dissolution du copolymère chitosan-polyacrylamide-MBA dans l'acide acétique dilué à 1 /100 : Mix in a beaker and leave to act, as shown in FIG. 3A. After 30 min, with mechanical stirring by hand, the chitosan is dissolved. Dissolution test of the chitosan-polyacrylamide-MBA copolymer in acetic acid diluted to 1/100:
On pèse 49,5 d'eau, 0,5 g d'acide acétique pur, 20 g de chitosan-polyacrylamide- MBA. We weigh 49.5 of water, 0.5 g of pure acetic acid, 20 g of chitosan-polyacrylamide-MBA.
On mélange dans un gobelet et on laisse agir, tel que représenté sur la figure 3A. Au bout de 60 mn, sous agitation mécanique à la main, on utilise un filtre, comme illustré par la figure 3B. Mix in a beaker and leave to act, as shown in Figure 3A. After 60 min, with mechanical stirring by hand, a filter is used, as illustrated in FIG. 3B.
On recueille un gel que l'on pèse et on retrouve le poids de 20,00 g. A gel is collected which is weighed and the weight of 20.00 g is found.
Il est possible de conclure que le copolymère est bien réticulé puisque insoluble dans l'acide acétique. It can be concluded that the copolymer is well crosslinked since it is insoluble in acetic acid.
c) Caractérisation de la viscoélasticité dynamique du copolymère c) Characterization of the dynamic viscoelasticity of the copolymer
La viscoélasticité dynamique du copolymère obtenu après lavages est mesurée et comparée à la viscoélasticité dynamique du copolymère obtenu avant lavages, à celle du copolymère obtenu après ajout d’acide acétique et à celle du copolymère obtenu après cisaillement. The dynamic viscoelasticity of the copolymer obtained after washes is measured and compared to the dynamic viscoelasticity of the copolymer obtained before washes, to that of the copolymer obtained after addition of acetic acid and to that of the copolymer obtained after shearing.
Comme le rappellent les conclusions des essais figure 4 qui illustre les tangentes de pertes (G”/G’) du copolymère chitosan-polyacrylamide-MBA avant lavage (en haut à gauche), après lavage (en haut à droite), après 1 h dans l’acide acétique (en bas à gauche) et après cisaillement à la seringue (en bas à droite), cette mesure de viscoélasticité révèle des valeurs significatives du module élastique caractéristique de la réticulation. Ainsi, elle prouve l’existence d’un réseau tridimensionnel dans le cas de l’hydrogel de copolymère chitosan-greffé-polyacrylamide, comme dans le cas de l’hydrogel de polyacrylamide pure. En parallèle aux valeurs de modules de cisaillement obtenues, les valeurs de tangente de pertes montrent une présence marquée de l’élasticité vis-à-vis de la viscosité, caractéristique d’un système réticulé. As recalled by the conclusions of the tests in FIG. 4 which illustrates the loss tangents (G ”/ G ') of the chitosan-polyacrylamide-MBA copolymer before washing (top left), after washing (top right), after 1 h in acetic acid (bottom left) and after shearing with a syringe (bottom right), this measure of viscoelasticity reveals significant values of the elastic modulus characteristic of crosslinking. Thus, it proves the existence of a three-dimensional network in the case of the hydrogel of chitosan-grafted-polyacrylamide copolymer, as in the case of the hydrogel of pure polyacrylamide. In parallel with the modulus values of shear obtained, the loss tangent values show a marked presence of elasticity vis-à-vis the viscosity, characteristic of a crosslinked system.
De plus, cette étude montre également que la réticulation du système copolymérisé est effective, car le gel formé n’est pas dissout dans l’acide acétique, contrairement aux molécules linéaires de chitosan. In addition, this study also shows that the crosslinking of the copolymerized system is effective, because the gel formed is not dissolved in acetic acid, unlike the linear molecules of chitosan.
Cet état de réticulation subsiste aux différentes opérations (lavage, cisaillement par l’entrée et sortie de la seringue). This state of crosslinking remains during the various operations (washing, shearing by the entry and exit of the syringe).
EXEMPLE 3 : BIOCOMPATIBLITE AMELIOREE DE L’HYDROGEL SELON EXAMPLE 3: IMPROVED BIOCOMPATIBLITY OF HYDROGEL ACCORDING TO
L’INVENTION PAR RAPPORT A UN HYDROGEL COMPRENANT UNIQUEMENTTHE INVENTION RELATING TO A HYDROGEL INCLUDING ONLY
DE LA POLYACRYLAMIDE POLYACRYLAMIDE
L’hydrogel selon invention présente une biocompatibilité améliorée par rapport à un hydrogel contenant seulement de la polyacrylamide. En effet, l’hydrogel selon l’invention comprend du chitosan copolymérisé à la polyacrylamide, le chitosan comporte des séquences de polyglucosamine présentant une biocompatibilité, qui montre des résultats in vitro d’une meilleure biocompatibilité, avec notamment une absence de cytotoxicité. The hydrogel according to the invention has improved biocompatibility compared to a hydrogel containing only polyacrylamide. Indeed, the hydrogel according to the invention comprises chitosan copolymerized with polyacrylamide, chitosan comprises polyglucosamine sequences having a biocompatibility, which shows in vitro results of a better biocompatibility, with in particular an absence of cytotoxicity.
Un test XTT de cytotoxicité est réalisé par Eurofins Medical Device™, suivant la norme ISO 10993-5:2009, dans des conditions de bonne pratique de laboratoire (BPL). Le test concerne l’hydrogel décrit par l’invention, à savoir un hydrogel copolymère 5 % polyacrylamide-chitosan NVC-0 et un hydrogel de 4 % polyacrylamide contenant des ions d’argent (marque Bioform/Noltrex™). Une extraction a été réalisée sous agitation de 24 h dans un milieu de culture cellulaire, les extraits étant incubés pendant 24 h-48 h avec des cellules L929. La valeur de la baisse du taux de déshydrogénase mitochondriale des milieux de cultures, comparée à la mesure de contrôle de la référence, a servi de mesure de la cytotoxicité, ceci à 4 différentes concentrations d’hydrogel dans le milieu (100 %, 66,7 %, 44,4 %, 29,6 %). Une activité de déshydrogénase mitochondriale supérieure à 70 % indique une biocompatibilité du produit selon la norme. An XTT cytotoxicity test is performed by Eurofins Medical Device ™, in accordance with ISO 10993-5: 2009, under conditions of good laboratory practice (GLP). The test relates to the hydrogel described by the invention, namely a 5% polyacrylamide-chitosan NVC-0 hydrogel copolymer and a 4% polyacrylamide hydrogel containing silver ions (Bioform / Noltrex ™ brand). An extraction was carried out with stirring for 24 h in a cell culture medium, the extracts being incubated for 24 h to 48 h with L929 cells. The value of the drop in the mitochondrial dehydrogenase level of the culture media, compared to the reference control measure, served as a measure of the cytotoxicity, this at 4 different concentrations of hydrogel in the medium (100%, 66, 7%, 44.4%, 29.6%). Mitochondrial dehydrogenase activity greater than 70% indicates biocompatibility of the product according to the standard.
Résultats : Results:
Pour une concentration de 100 % (i.e. aucune dilution des hydrogels dans le milieu), la déshydrogénase mitochondriale de l’hydrogel NVC-0 polyacrylamide-chitosan est de 101 % (SD 0.07) et celle de l’hydrogel de 4 % polyacrylamide est de 95 % (SD 0.05). Ainsi que cela apparaît aux figures 13A et 13B, l’hydrogel NVC-0 selon l’invention présente une absence totale de cytotoxicité (aucune baisse déshydrogénase mitochondriale, et ce à toutes les dilutions), contrairement à l’autre l’hydrogel. L’hydrogel de l’invention présente sur ce test XTT, une biocompatibilité améliorée de +6 % par rapport à l’hydrogel contenant uniquement de la polyacrylamide. For a concentration of 100% (ie no dilution of the hydrogels in the medium), the mitochondrial dehydrogenase of the NVC-0 polyacrylamide-chitosan hydrogel is 101% (SD 0.07) and that of the hydrogel of 4% polyacrylamide is 95% (SD 0.05). As shown in Figures 13A and 13B, the NVC-0 hydrogel according to the invention has a total absence of cytotoxicity (no reduction in mitochondrial dehydrogenase, at all dilutions), unlike the other hydrogel. The hydrogel of the invention has, on this XTT test, an improved biocompatibility of + 6% compared to the hydrogel containing only polyacrylamide.
EXEMPLE 4 : E3IODEGRADAE3ILITE AMELIOREE DE L’HYDROGEL SELONEXAMPLE 4: IMPROVED E3IODEGRADAE3ILITE OF HYDROGEL ACCORDING TO
L’INVENTION PAR RAPPORT A UN HYDROGEL COMPRENANT UNIQUEMENTTHE INVENTION RELATING TO A HYDROGEL INCLUDING ONLY
DE LA POLYACRYLAMIDE POLYACRYLAMIDE
L’hydrogel de l’invention présente l’avantage d’une biodégradabilité du chitosan qu’il contient, de surcroît en glucosamine et N-acétylglucosamine, substances naturellement présentes dans le corps humain. La glucosamine est connue pour son soutien notamment du système ostéo-articulaire. La biodégradabilité du chitosan pouvant varier de quelques dizaines de jours à quelques mois en fonction des milieux enzymatiques et des caractéristiques de la polyglucosamine. La formule montrée à la figure 14 décrit le chitosan, indiquant donc la présence de glucosamine comme motif constitutif du polymère. The hydrogel of the invention has the advantage of biodegradability of the chitosan which it contains, in addition to glucosamine and N-acetylglucosamine, substances naturally present in the human body. Glucosamine is known for its support in particular of the osteo-articular system. The biodegradability of chitosan can vary from a few tens of days to a few months depending on the enzyme media and the characteristics of the polyglucosamine. The formula shown in Figure 14 describes chitosan, thus indicating the presence of glucosamine as a constituent unit of the polymer.
Une Spectroscopie Infra-Rouge à Transformée de Fourier (IR-TF) entre 4000 et 400 cm-1 est réalisée afin de déterminer la nature chimique des liaisons constitutives de l’hydrogel 5% copolymère NVC-0 et un hydrogel contenant uniquement de la polyacrylamide. Un prélèvement de chaque échantillon a été mis sous étuve à 30°C pendant 40 heures afin de réaliser les analyses par Spectroscopie IR-TF en mode ATR (Réflexion Totale Atténuée) sur extrait sec. Le spectre est enregistré entre 4000 cm-1 et 400 cm-1. L’ATR est une technique non destructive qui s’adapte aux matériaux ayant une forte absorbance. Fourier Transformed Infrared Spectroscopy (IR-TF) between 4000 and 400 cm -1 is carried out in order to determine the chemical nature of the constitutive bonds of the 5% hydrogel NVC-0 copolymer and a hydrogel containing only polyacrylamide . A sample of each sample was placed in an oven at 30 ° C for 40 hours in order to carry out the analyzes by IR-TF spectroscopy in ATR (Total Attenuated Reflection) mode on dry extract. The spectrum is recorded between 4000 cm -1 and 400 cm -1 . ATR is a non-destructive technique that adapts to materials with high absorbency.
Résultats : Results:
Il apparaît un pic caractéristique vers 1072 cm-1 (repéré sur les spectres) qui est présent pour l’échantillon de l’hydrogel copolymère NVC-0 ainsi que cela est montré à la figure 15. Il s’agit d’une bande d’absorption caractéristique observée uniquement sur celui-ci. Cette bande vers 1072 cm-1 peut être caractéristique des modes de vibration de type déformation des groupements C-O-C (du chitosan). L’analyse IR-TF indique la présence des liaisons du chitosan dans l’hydrogel proposé par l’invention. Cet hydrogel apporte une biodégradabilité, notamment en glucosamine naturellement présente dans le corps humain, comparé à un hydrogel uniquement de polyacrylamide. EXEMPLE 5 : CAPACITE D’EMPORT DE L’HYDROGEL SELON L’INVENTIONA characteristic peak appears around 1072 cm -1 (identified on the spectra) which is present for the sample of the copolymer hydrogel NVC-0 as shown in FIG. 15. It is a band d characteristic absorption observed only thereon. This band around 1072 cm -1 can be characteristic of the vibration modes of deformation type of the COC groups (of chitosan). The IR-TF analysis indicates the presence of the chitosan bonds in the hydrogel proposed by the invention. This hydrogel brings a biodegradability, in particular in glucosamine naturally present in the human body, compared to a hydrogel only of polyacrylamide. EXAMPLE 5 CAPACITY FOR CARRYING OUT HYDROGEL ACCORDING TO THE INVENTION
L’hydrogel copolymère selon l’invention a une capacité d’emport, notamment de capsules submicroniques. La microstructure du réseau tridimensionnel de cet hydrogel présente des alvéoles dont la taille est compatible avec les particules emportées, ce que des gels de polyacrylamide réalisés selon l’art antérieur ne proposent pas.The copolymer hydrogel according to the invention has a carrying capacity, in particular of submicron capsules. The microstructure of the three-dimensional network of this hydrogel has alveoli the size of which is compatible with the particles carried away, which polyacrylamide gels produced according to the prior art do not offer.
Le Centre Commun de Microscopie Appliquée (CCMA) de l’Université de Nice a réalisé la cryoimagerie par Microscope Electronique à Balayage (MEB) de l’hydrogel NVC-0 selon l’invention, contenant des microcapsules de silicium organique. Des échantillons de l’hydrogel NVC-0 et de l’hydrogel NVC-0-C contenant des microcapsules ont été plongés successivement dans l’azote liquide, sublimés puis fractionnés pour être passés au MEB. L’analyse a été effectuée 7 semaines en post production des lots. The Joint Center for Applied Microscopy (CCMA) of the University of Nice carried out cryoimaging by scanning electron microscope (SEM) of the NVC-0 hydrogel according to the invention, containing microcapsules of organic silicon. Samples of NVC-0 hydrogel and NVC-0-C hydrogel containing microcapsules were successively immersed in liquid nitrogen, sublimated and then fractionated to pass to SEM. The analysis was carried out 7 weeks in post production of the batches.
Résultats : Results:
L’hydrogel copolymère polyacrylamide-chitosan offre une capacité d’emport qui est illustrée par MEB. Les résultats de cette imagerie montrent également une protection biocompatible de l’hydrogel vis à vis de microcapsules, qui ne sont pas détériorées 7 semaines au sein de l’hydrogel. Ainsi que cela est montré la figure 15A (Cryoimagerie par MEB (x10,000) de l’hydrogel copolymère NVC-0), un réseau réticulé dense et relativement homogène est observé, avec des alvéoles de taille 0,1 -0,5 microns sur les échantillons d’hydrogels copolymères. Ainsi que cela est montré à la figure 15B (Cryoimagerie par MEB (x23,000) de l’hydrogel copolymère NVC-0-C (7 semaines post production)), une microcapsule d’une taille de 0,6 microns est observée par MEB sur l’hydrogel contenant des microcapsules, 7 semaines après la production et intégration de microcapsules en silicium organique de 0,6-0, 8 microns. The polyacrylamide-chitosan copolymer hydrogel has a carrying capacity which is illustrated by SEM. The results of this imaging also show biocompatible protection of the hydrogel against microcapsules, which are not deteriorated for 7 weeks in the hydrogel. As shown in FIG. 15A (Cryoimaging by SEM (x10,000) of the copolymer hydrogel NVC-0), a dense and relatively homogeneous crosslinked network is observed, with cells of size 0.1 -0.5 microns on the copolymer hydrogel samples. As shown in FIG. 15B (Cryoimaging by SEM (x23,000) of the copolymer hydrogel NVC-0-C (7 weeks post production)), a microcapsule with a size of 0.6 microns is observed by SEM on the hydrogel containing microcapsules, 7 weeks after production and integration of organic silicon microcapsules of 0.6-0.8 microns.
EXEMPLE 6 : CAPACITE DE SUPPLEMENTATION DE L’HYDROGEL SELON EXAMPLE 6: HYDROGEL SUPPLEMENTATION CAPACITY ACCORDING TO
L’INVENTION THE INVENTION
L’hydrogel copolymère selon l’invention offre une capacité de supplémentation, soit par la dégradation du chitosan en glucosamine (Exemple 4), soit par l’eau contenue dans l’hydrogel (Exemple 8), soit par la dégradation de microcapsules, telles que contenant par exemple de l’acide orthosilicique. Le silicium organique lors de sa dégradation permet de supplémenter en silicium, substance naturellement présente dans le corps mais non renouvelée avec l’âge. Il apparaît que l’hydrogel selon l’invention propose une capacité de relargage des microcapsules embarquées, avec un relargage différé dans le temps. Grâce à la biodégradabilité de l’hydrogel contenant du chitosan (Exemple 4), les microcapsules embarquées (Exemple 5), pourraient être libérées en fonction du temps. Cette caractéristique offre une supplémentation dans la durée et en local de substances embarquées par l’hydrogel selon l’invention. The copolymer hydrogel according to the invention offers a capacity for supplementation, either by the degradation of chitosan to glucosamine (Example 4), or by the water contained in the hydrogel (Example 8), or by the degradation of microcapsules, such that contains for example orthosilicic acid. The organic silicon during its degradation makes it possible to supplement in silicon, substance naturally present in the body but not renewed with age. It appears that the hydrogel according to the invention proposes a release capacity for on-board microcapsules, with delayed release over time. Thanks to the biodegradability of the hydrogel containing chitosan (Example 4), the on-board microcapsules (Example 5) could be released as a function of time. This characteristic provides supplementation over time and locally of substances carried by the hydrogel according to the invention.
Résumé de l’expérience : Summary of the experience:
Une première étude préliminaire a été conduite afin d’évaluer la cinétique de relargage de microcapsules embarquant de l’acide orthosilicique dans un milieu synthétique de type fluide synovial. Les particules ont été incubées dans le fluide artificiel contenant 3 g/L d’acide hyaluronique à une concentration de 0,6 mg/mL en particules. Un système de dialyse/filtration a permis de séparer les fractions dissoutes des particules (ci-dessous). L’acide orthosilicique dissout a ensuite été dosé par ICP-AES. A first preliminary study was carried out to assess the release kinetics of microcapsules carrying orthosilicic acid in a synthetic medium of synovial fluid type. The particles were incubated in the artificial fluid containing 3 g / L of hyaluronic acid at a concentration of 0.6 mg / ml in particles. A dialysis / filtration system made it possible to separate the dissolved fractions from the particles (below). The dissolved orthosilicic acid was then assayed by ICP-AES.
Résultats : Results:
L’analyse a permis de démontrer qu’une quantité significative d’acide orthosilicique est détectable dans le compartiment « dissouts ». Après 15 jours d’incubation, des particules sont toujours visibles dans le compartiment « particules » et ont été titrées par ICP. Ces données préliminaires suggèrent une dégradation lente des particules pour supplémenter en acide orthosilicique. The analysis has shown that a significant amount of orthosilicic acid is detectable in the "dissolved" compartment. After 15 days of incubation, particles are still visible in the "particles" compartment and have been titrated by ICP. These preliminary data suggest slow degradation of the particles to supplement orthosilicic acid.
EXEMPLE 7 : FABRICATION DE L’HYDROGEL - DIALYSE EXAMPLE 7: MANUFACTURE OF HYDROGEL - DIALYSIS
L’hydrogel selon l’invention est fabriqué en mettant en oeuvre une étape de dialyse performante, permettant d’éliminer les monomères résiduels de la synthèse, sous les limites de quantifications très basses (inférieures à 4 ppm), ainsi que cela est mentionné dans le tableau de la figure 16. The hydrogel according to the invention is manufactured by implementing an efficient dialysis step, making it possible to remove the residual monomers from the synthesis, under very low quantification limits (less than 4 ppm), as mentioned in the table in figure 16.
Le copolymère sous forme d’hydrogel est extrudé plusieurs fois au travers de grilles d’extrusion entre 50 et 500 microns suivant les hydrogels. Cette extrusion permet une dialyse optimale qui commence par le choix de sacs de dialyses aux pores adaptés en fonction de la consistance de l’hydrogel, idéalement de 6 à 50 kD MWCO (Molecular weight cut-off en kilo Daltons). L’hydrogel extrudé est mis en sac puis mis en eau suivant différentes durées, idéalement de 2 à 7 jours, suivant la qualité de la synthèse et de la viscosité du chitosan retenu. The copolymer in the form of a hydrogel is extruded several times through extrusion screens between 50 and 500 microns depending on the hydrogels. This extrusion allows an optimal dialysis which begins with the choice of dialysis bags with pores adapted according to the consistency of the hydrogel, ideally from 6 to 50 kD MWCO (Molecular weight cut-off in kilo Daltons). The extruded hydrogel is bagged and then placed in water according to different durations, ideally from 2 to 7 days, depending on the quality of the synthesis and the viscosity of the chitosan retained.
La méthode GCMS ou UPLC/UV permet de mesurer les monomères résiduels tels que l’acrylamide ou le méthyl-bis-acrylamide. The GCMS or UPLC / UV method measures residual monomers such as acrylamide or methyl-bis-acrylamide.
Résultats : Results:
L’hydrogel copolymère 5 % polyacrylamide-chitosan a été testé et les mesures de concentration des éventuels monomères résiduels indiquent des valeurs inférieures aux limites de quantification de 4 ppm par les différentes méthodes. The 5% polyacrylamide-chitosan copolymer hydrogel was tested and the concentration measurements of any residual monomers indicate values below the quantification limits of 4 ppm by the various methods.
EXEMPLE 7 : « GONFLEMENT HYDROPHILE » DE L’HYDROGEL SELON EXAMPLE 7 "HYDROPHILIC SWELLING" OF HYDROGEL ACCORDING TO
L’INVENTION THE INVENTION
Ainsi que cela est illustré à la figure 10, l’hydrogel copolymère PAAG-CH selon l’invention possède une capacité 3 fois supérieure dans l’emport d’eau (gonflement hydrophile) par rapport à un hydrogel de même concentration en polyacrylamide uniquement. Il faut donc moins de substance avec un hydrogel copolymère pour offrir autant d’hydratation qu’avec un gel de polyacrylamide à concentration initiale égale. As illustrated in FIG. 10, the PAAG-CH copolymer hydrogel according to the invention has a capacity 3 times greater in the water transport (hydrophilic swelling) compared to a hydrogel of the same polyacrylamide concentration only. It therefore requires less substance with a copolymer hydrogel to provide as much hydration as with a polyacrylamide gel at equal initial concentration.
Deux hydrogels sont synthétisés, l’un copolymère 5 % de polyacrylamide contenant du chitosan (NVC-0) et l’autre ne contenant que de la polyacrylamide (PAAG). Suite à leur extrusion, puis mise en dialyse des pesées sont effectuées toutes les 12 h pour mesurer l’écart relatif de la prise de poids en eau. Des études ont été aussi menées en faisant varier les taux de réticulation ou de pourcentage de polyacrylamide. La présence du chitosan copolymérisé dans l’hydrogel apporte une augmentation significative de l’écart relatif en prise d’eau. Two hydrogels are synthesized, one 5% polyacrylamide copolymer containing chitosan (NVC-0) and the other containing only polyacrylamide (PAAG). Following their extrusion and then dialysis, weighings are carried out every 12 hours to measure the relative difference in weight gain in water. Studies have also been conducted by varying the rates of crosslinking or percentage of polyacrylamide. The presence of the copolymerized chitosan in the hydrogel brings a significant increase in the relative difference in water intake.
Résultats : Results:
A partir de 3 jours de dialyse, l’hydrogel de 5 % polyacrylamide atteint un plateau de gonflement de 25 % maximum de son poids. Le copolymère 5 % polyacrylamide- chitosan dépasse la capacité d’emport d’eau d’un hydrogel de polyacrylamide dès la mise en dialyse et continue de gonfler au-delà de 75 % de son poids en eau au bout de 5 jours par exemple. From 3 days of dialysis, the 5% polyacrylamide hydrogel reaches a swelling plateau of 25% maximum of its weight. The 5% polyacrylamide-chitosan copolymer exceeds the water carrying capacity of a polyacrylamide hydrogel upon dialysis and continues to swell beyond 75% of its weight in water after 5 days, for example.
EXEMPLE 8 : COPOLYMERISATION DU CHITOSAN SUR LA EXAMPLE 8: COPOLYMERIZATION OF CHITOSAN ON THE
POLYACRYLAMIDE DANS UN HYDROGEL SELON L’INVENTION POLYACRYLAMIDE IN A HYDROGEL ACCORDING TO THE INVENTION
Ainsi que cela est montré à la figure 17, Selon l’invention, la copolymérisation du chitosan sur la polyacrylamide s’opère par la création de liaisons covalentes entre la chaîne macromoléculaire du chitosan par l’intermédiaire des radicaux libres formés par l’action d’un peroxyde et la chaîne de polyacrylamide en formation à partir des monomères d’acrylamide. As shown in FIG. 17, according to the invention, the copolymerization of chitosan on the polyacrylamide takes place by the creation of covalent bonds between the macromolecular chain of chitosan via free radicals formed by the action of a peroxide and the polyacrylamide chain in formation from acrylamide monomers.
Le copolymère se forme créant une chaîne macromoléculaire qui s’organise ensuite sous la forme d’un réseau tridimensionnel grâce au réticulant (méthyl bis- acrylamide). The copolymer is formed creating a macromolecular chain which is then organized in the form of a three-dimensional network thanks to the crosslinking agent (methyl bisacrylamamide).
Ainsi le copolymère polyacrylamide/chitosan, est un polymère spécifique et différent de la polyacrylamide. L’hydrogel obtenu par la réticulation de ces chaînes de copolymère et de réticulant forme un réseau différent d’acrylamide qui se vérifie notamment par le taux de gonflement beaucoup plus élevé dans le cas du copolymère que dans le cas de l’acrylamide (Exemple 7). Thus the polyacrylamide / chitosan copolymer is a specific polymer which is different from polyacrylamide. The hydrogel obtained by the crosslinking of these copolymer and crosslinking chains forms a different network of acrylamide which is verified in particular by the much higher swelling rate in the case of the copolymer than in the case of acrylamide (Example 7 ).
Résumé de l’expérience : Summary of the experience:
Un hydrogel copolymère polyacrylamide-chitosan et un hydrogel de polyacrylamide sont testés par la méthode RMN. Les échantillons sont évaporés, les matières sèches hydratées avec de l’eau D20 puis évaporées à nouveau. Les matières sèches ont été solubilisées dans une préparation D20/Ac0D 1 /1 . Le spectre RMN 1 H a été enregistré sur appareil Bruker™ 400 MHz à 50 °C. A polyacrylamide-chitosan copolymer hydrogel and a polyacrylamide hydrogel are tested by the NMR method. The samples are evaporated, the dry matter hydrated with D20 water and then evaporated again. The dry materials were dissolved in a preparation D20 / Ac0D 1/1. The 1 H NMR spectrum was recorded on a Bruker ™ 400 MHz device at 50 ° C.
Résultats : Results:
La RMN du copolymère (Figure 18A) présente plusieurs points distinctifs, notamment spécifiques du chitosan à 3.2, 3.6 et 4.9 ppm (Figure 18B) et en proportion significative par rapport à la RMN de l’hydrogel de polyacrylamide seule (Figure 18C). The NMR of the copolymer (Figure 18A) has several distinctive points, in particular specific to chitosan at 3.2, 3.6 and 4.9 ppm (Figure 18B) and in significant proportion compared to the NMR of the polyacrylamide hydrogel alone (Figure 18C).
La RMN de l’hydrogel copolymère décrit dans le brevet confirme la nature différente du polymère par rapport à un hydrogel de polyacrylamide ou simple mélange avec de la polyacrylamide. The NMR of the copolymer hydrogel described in the patent confirms the different nature of the polymer compared to a polyacrylamide hydrogel or a simple mixture with polyacrylamide.

Claims

Revendications Claims
1 . Hydrogel biocompatible comprenant, d’une part, entre 0,3 % et 30 % en poids de matière sèche d’un copolymère formé au moins d’acrylamide, de chitosan et de N,N’-méthylènebisacrylamide et, d’autre part, un agent diffusant. 1. Biocompatible hydrogel comprising, on the one hand, between 0.3% and 30% by weight of dry matter of a copolymer formed at least of acrylamide, chitosan and N, N'-methylenebisacrylamide and, on the other hand, a diffusing agent.
2. Hydrogel selon la revendication 1 , caractérisé en ce que le copolymère formé au moins d’acrylamide, de chitosan et de N,N’-méthylènebisacrylamide a pour formule : 2. Hydrogel according to claim 1, characterized in that the copolymer formed at least of acrylamide, of chitosan and of N, N’-methylenebisacrylamide has the formula:
3. Hydrogel selon l’une des revendications 1 ou 2, caractérisé en ce que l’agent diffusant est choisi parmi des ingrédients inertes, qui présentent des propriétés biomécaniques ou des actifs, préférentiellement des substances d’origine végétale telles que les extraits de génépi, des substances d’origine marine telles que les extraits de moules vertes de Nouvelle Zélande (Perna canaliculus), de l’acide ortho- silicique, du silicium organique, du silanol, des vitamines telles que les vitamines A, D3, E ou C, des métaux tels que l’or ou l’argent, des analgésiques tels que la lidocaïne, xylazine, détomidine, des anti-inflammatoires non stéroïdiens, tels que flunixine, kétoprofène, aspirine, des corticostéroïdes tels que la prednisolone, triamcinolone, de l’acide hyaluronique, des glycosaminoglycanes, de la chondroïtine sulfate, du méthylsulfonylméthane, de la bromélaïne, de l’arnica, du collagène, des antioxydants, des acides gras. 3. Hydrogel according to one of claims 1 or 2, characterized in that the diffusing agent is chosen from inert ingredients, which have biomechanical properties or active agents, preferably substances of plant origin such as genepi extracts , substances of marine origin such as extracts of New Zealand green mussels (Perna canaliculus), orthosilicic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C , metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti-inflammatory drugs, such as flunixin, ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, l hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonylmethane, bromelain, arnica, collagen, antioxidants, fatty acids.
4. Hydrogel selon l’une quelconque des revendications 1 , 2 ou 3, caractérisé en ce que l’agent diffusant est compris dans un cargo choisi parmi des microcapsules, des microparticules et des véhicules polymériques. 4. Hydrogel according to any one of claims 1, 2 or 3, characterized in that the diffusing agent is included in a cargo ship chosen from microcapsules, microparticles and polymeric vehicles.
5. Hydrogel selon l’une quelconque des revendications précédentes, caractérisé en ce que l’agent diffusant forme des microparticules de taille comprise entre 200 nm et 20 000 nm. 5. Hydrogel according to any one of the preceding claims, characterized in that the diffusing agent forms microparticles of size between 200 nm and 20,000 nm.
6. Hydrogel selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il est substantiellement exempt de pyrogène. 6. Hydrogel according to any one of the preceding claims, characterized in that it is substantially free of pyrogen.
7. Hydrogel selon l’une quelconque des revendications précédentes, caractérisé en ce que le rapport massique entre le N,N’-méthylènebisacrylamide et l’acrylamide est compris entre 1 /50 et 1 /1000, de préférence compris entre 1/100 et 1 /500. 7. Hydrogel according to any one of the preceding claims, characterized in that the mass ratio between N, N'-methylenebisacrylamide and acrylamide is between 1/50 and 1/1000, preferably between 1/100 and 1/500.
8. Hydrogel selon l’une quelconque des revendications précédentes, comprenant le rapport suivant des constituants en % en poids du poids total de l’hydrogel : polyacrylamide : entre 0,3 % et 20 % 8. Hydrogel according to any one of the preceding claims, comprising the following ratio of constituents in% by weight of the total weight of the hydrogel: polyacrylamide: between 0.3% and 20%
chitosan : entre 0,0375 % et 10 % chitosan: between 0.0375% and 10%
N,N’-méthylènebisacrylamide :entre 0,004 % et 0,4 % N, N’-methylenebisacrylamide: between 0.004% and 0.4%
agent diffusant : entre 0,001 % et 30 % diffusing agent: between 0.001% and 30%
H2O : complément jusqu’à 100 %. H2O: supplement up to 100%.
9. Procédé de fabrication d’un hydrogel selon l’une des revendications précédentes, comprenant les étapes suivantes : copolymérisation d’acrylamide et de chitosan, en présence de N,N’-méthylènebisacrylamide et d’un initiateur radicalaire, dans un milieu aqueux, pour obtenir un copolymère ; lavage du copolymère à l’eau pour obtenir un copolymère lavé ; et ajout de l’agent diffusant pour obtenir l’hydrogel. 9. A method of manufacturing a hydrogel according to one of the preceding claims, comprising the following steps: copolymerization of acrylamide and chitosan, in the presence of N, N'-methylenebisacrylamide and a radical initiator, in an aqueous medium , to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and adding the diffusing agent to obtain the hydrogel.
10. Procédé selon la revendication 9, caractérisé en ce que l’étape d’ajout de l’agent diffusant est préalable à l’étape de copolymérisation de l’acrylamide et du chitosan en présence de N,N’-méthylènebisacrylamide et de l’initiateur radicalaire, de manière que le réseau tridimensionnel formé par le copolymère se construise autour de l’agent diffusant. 10. Method according to claim 9, characterized in that the step of adding the diffusing agent is prior to the step of copolymerization of acrylamide and chitosan in the presence of N, N'-methylenebisacrylamide and l radical initiator, so that the three-dimensional network formed by the copolymer is built around the diffusing agent.
1 1 . Procédé selon l’une des revendications 9 ou 10, comprenant les étapes suivantes de : copolymérisation d’acrylamide et de chitosan à une température comprise entre 20°C et 60°C, de préférence entre 40°C et 60°C, en présence de N,N’-méthylènebisacrylamide introduit avec un rapport massique par rapport à l’acrylamide compris entre 1 /50 et 1 /1000, de préférence compris entre 1 /100 et 1 /500, et d’un initiateur radicalaire avec un rapport massique par rapport à l’acrylamide entre 1 /100 et 1 /10 choisi parmi le persulfate de potassium ou le persulfate d’ammonium, de préférence le persulfate de potassium, éventuellement en association avec la tétraméthyléthylènediamine avec un rapport massique par rapport à l’acrylamide entre 1 /2000 et 1 /20, dans un milieu aqueux pour obtenir un copolymère ; lavage du copolymère à l’eau pour obtenir un copolymère lavé ; et ajout de l’agent diffusant entre 0,001 % et 30% en % en poids du poids total de l’hydrogel, l’agent diffusant étant choisi parmi des ingrédients inertes, qui présentent des propriétés biomécaniques ou des actifs, ces agents étant préférentiellement des substances d'origine végétale telles que les extraits de génépi, des substances d'origine marine telles que les extraits de moules vertes de Nouvelle Zélande (Perna canaliculus), de l’acide ortho-silicique, du silicium organique, du silanol, des vitamines telles que les vitamines A, D3, E ou C, des métaux tels que l'or ou l'argent, des analgésiques tels que la lidocaïne, xylazine, détomidine, des anti inflammatoires non stéroïdiens, tels que flunixine, kétoprofène, aspirine, des corticostéroïdes tels que la prednisolone, triamcinolone, de l’acide hyaluronique, des glycosaminoglycanes, de la chondroïtine sulfate, du méthylsulfonylméthane, de la bromélaïne, de l’arnica, du collagène, des antioxydants, des acides gras, éventuellement compris dans un cargo choisi parmi des microcapsules, des microparticules ou des véhicules polymériques, de préférence des microcapsules biodégradables, pour obtenir l’hydrogel. 1 1. Method according to one of claims 9 or 10, comprising the following steps of: copolymerization of acrylamide and chitosan at a temperature between 20 ° C and 60 ° C, preferably between 40 ° C and 60 ° C, in the presence of N, N'-methylenebisacrylamide introduced with a mass ratio relative to the acrylamide of between 1/50 and 1/1000, preferably between 1/100 and 1/500, and of a radical initiator with a mass ratio compared to the acrylamide between 1/100 and 1/10 chosen from potassium persulfate or ammonium persulfate, preferably potassium persulfate, optionally in combination with tetramethylethylenediamine with a mass ratio compared to acrylamide between 1/2000 and 1/20, in an aqueous medium to obtain a copolymer; washing the copolymer with water to obtain a washed copolymer; and addition of the diffusing agent between 0.001% and 30% by weight of the total weight of the hydrogel, the diffusing agent being chosen from inert ingredients, which have biomechanical properties or active agents, these agents preferably being substances of vegetable origin such as extracts of genepi, substances of marine origin such as extracts of New Zealand green mussels (Perna canaliculus), ortho-silicic acid, organic silicon, silanol, vitamins such as vitamins A, D3, E or C, metals such as gold or silver, pain relievers such as lidocaine, xylazine, detomidine, nonsteroidal anti-inflammatory drugs, such as flunixin, ketoprofen, aspirin, corticosteroids such as prednisolone, triamcinolone, hyaluronic acid, glycosaminoglycans, chondroitin sulfate, methylsulfonylmethane, bromelain, arnica, collagen, antioxidants, fatty acids, possibly com taken from a cargo ship chosen from microcapsules, microparticles or polymeric vehicles, preferably biodegradable microcapsules, to obtain the hydrogel.
12. Procédé selon l’une des revendications 9 à 1 1 , caractérisé en ce que l’étape de lavage du copolymère est réalisée par dialyse, au moyen de membranes de dialyse. 12. Method according to one of claims 9 to 1 1, characterized in that the washing step of the copolymer is carried out by dialysis, by means of dialysis membranes.
13. Utilisation d’un hydrogel selon l’une des revendications 1 à 8, dans un système de visco-supplémentation mécanique, en usage externe ou interne. 13. Use of a hydrogel according to one of claims 1 to 8, in a mechanical visco-supplementation system, for external or internal use.
14. Utilisation d’un hydrogel selon la revendication 13, dans un système de visco- supplémentation mécanique, en usage interne. 14. Use of a hydrogel according to claim 13, in a mechanical visco-supplementation system, for internal use.
15 Utilisation d’un hydrogel selon la revendication 14, pour le soutien des tissus mous des mammifères, voir des os et du cartilage. 15 Use of a hydrogel according to claim 14, for the support of soft tissues of mammals, see bones and cartilage.
16. Utilisation selon la revendication 13, caractérisée en ce que le système de visco- supplémentation est un hydratant. 16. Use according to claim 13, characterized in that the visco-supplementation system is a moisturizer.
17. Utilisation selon l’une quelconque des revendications 10 à 16, caractérisée en ce que l’agent diffusant commence à diffuser entre le 2ème et le 30ème jour après l’administration, de préférence entre le 10ème et le 20ème jour, en particulier à compter du 15ème jour. 17. Use according to any one of claims 10 to 16, characterized in that the diffusing agent begins to diffuse between the 2nd and the 30th day after administration, preferably between the 10th and the 20th day, in particular at from the 15th day.
18. Utilisation selon l’une quelconque des revendications 10 à 17, caractérisée en ce que l’agent diffusant est libéré sur une période comprise entre 2 semaines et 12 mois, de préférence entre 1 mois et 6 mois. 18. Use according to any one of claims 10 to 17, characterized in that the diffusing agent is released over a period of between 2 weeks and 12 months, preferably between 1 month and 6 months.
19. Kit de visco-supplémentation mécanique externe ou interne comprenant un copolymère d’acrylamide et de chitosan réticulé avec du N,N’- méthylènebisacrylamide, et un agent diffusant en phase solide ou en suspension, ledit copolymère et ledit agent diffusant étant préalablement mélangés sous la forme d’un hydrogel lors de la fabrication ou mélangés extemporanément pour former un hydrogel. 19. External or internal mechanical visco-supplementation kit comprising a copolymer of acrylamide and of chitosan crosslinked with N, N'-methylenebisacrylamide, and a diffusing agent in solid phase or in suspension, said copolymer and said diffusing agent being previously mixed in the form of a hydrogel during manufacture or mixed extemporaneously to form a hydrogel.
EP19809853.5A 2018-11-30 2019-12-02 Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system Pending EP3886929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872196A FR3089115B1 (en) 2018-11-30 2018-11-30 BIOCOMPATIBLE HYDROGEL, METHOD OF PREPARATION AND USE IN A MECHANICAL VISCO-SUPPLEMENTATION SYSTEM
PCT/EP2019/083356 WO2020109628A1 (en) 2018-11-30 2019-12-02 Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system

Publications (1)

Publication Number Publication Date
EP3886929A1 true EP3886929A1 (en) 2021-10-06

Family

ID=67107500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19809853.5A Pending EP3886929A1 (en) 2018-11-30 2019-12-02 Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system

Country Status (5)

Country Link
US (1) US12102735B2 (en)
EP (1) EP3886929A1 (en)
CA (1) CA3119242A1 (en)
FR (1) FR3089115B1 (en)
WO (1) WO2020109628A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112516374B (en) * 2020-11-30 2022-03-29 华南理工大学 Chitosan/Mxene antibacterial composite sponge for hemostasis and preparation method thereof
CN113144283B (en) * 2021-04-26 2022-06-28 广东海洋大学 TSCP-GelMA hydrogel for promoting wound healing and preparation and application thereof
WO2023239695A1 (en) * 2022-06-06 2023-12-14 Phrixionls, Llc Prophylaxis and treatment of degraded cartilage
CN116768435B (en) * 2023-05-29 2024-05-07 浙江赛诚生态科技有限公司 Environment-friendly silt stabilizing curing agent and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA10911C2 (en) 1994-08-10 1996-12-25 Мале Впроваджувальне Підприємство "Іhтерфалл" Biocompatible hydrogel
MY130475A (en) 2000-08-25 2007-06-29 Contura As Polyacrylamide hydrogel and its use as an endoprosthesis
RU2545806C1 (en) 2013-12-26 2015-04-10 Международная коммерческая компания "НЬЮКРОСС ВЕНТУРЕС ЛТД" Medical material matrexin based on polyacrylamide hydrogel and method for producing it (versions)

Also Published As

Publication number Publication date
FR3089115A1 (en) 2020-06-05
FR3089115B1 (en) 2020-11-20
WO2020109628A1 (en) 2020-06-04
US20220111124A1 (en) 2022-04-14
CA3119242A1 (en) 2020-06-04
US12102735B2 (en) 2024-10-01

Similar Documents

Publication Publication Date Title
EP3886929A1 (en) Biocompatible hydrogel, process for producing same, and use thereof in a mechanical viscosupplementation system
Figueroa-Pizano et al. Effect of freeze-thawing conditions for preparation of chitosan-poly (vinyl alcohol) hydrogels and drug release studies
Rokhade et al. Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline
Rokhade et al. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine
Buranachai et al. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery
Tam et al. Factors influencing alginate gel biocompatibility
Bajpai et al. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate
EP2099847B1 (en) Hydrogel and biomedical applications thereof
Araujo et al. Novel porous scaffolds of pH responsive chitosan/carrageenan‐based polyelectrolyte complexes for tissue engineering
CA2991000A1 (en) Method for the production of hydrogel comprising chitosan and negatively charged polyelectrolytes, and cellular, porous material resulting from said hydrogel
WO2005012364A2 (en) Complex matrix for biomedical use
Schuurmans et al. Complex coacervation-based loading and tunable release of a cationic protein from monodisperse glycosaminoglycan microgels
WO2012013895A1 (en) Particles consisting of a chitosan polyelectrolyte complex and of an anionic polysaccharide, and having improved stability
Hesan et al. The synthesis and characterization of core-shell nanogels based on alginate and chitosan for the controlled delivery of mupirocin
Bensouiki et al. Evaluation of anti-inflammatory activity and in vitro drug release of ibuprofen-loaded nanoparticles based on sodium alginate and chitosan
Goodarzi et al. Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application
Thien Electrospun chitosan/PVA nanofibers for drug delivery
Van Tomme et al. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres
Aw et al. Pickering emulsion hydrogel beads for curcumin encapsulation and food application
Suflet et al. Hydrogels based on monobasic curdlan phosphate for biomedical applications
Valentino et al. Development of alginate-spermidine micro/nanogels as potential antioxidant and anti-inflammatory tool in peripheral nerve injuries. Formulation studies and physico-chemical characterization
Armutcu et al. Evaluation of controlled hydroxychloroquine releasing performance from calcium-alginate beads
Vieira et al. Methacrylated gellan gum/poly-l-lysine polyelectrolyte complex beads for cell-based therapies
Yerriswamy et al. Synthesis and characterization of sodium alginate-g-2-hydroxyethyl methacrylate interpenetrating beads for controlled release of acebutolol hydrochloride
Mallikarjuna et al. Chitosan based biodegradable hydrogel microspheres for controlled release of an anti HIV drug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220810

18RA Request filed for re-establishment of rights before grant

Effective date: 20230228

18RR Decision to grant the request for re-establishment of rights before grant

Free format text: NICHT ANGENOMMEN

Effective date: 20240917