EP3884857B1 - Verfahren und systeme zur bestimmung der atemfrequenz und der herzfrequenz aus kardiopulmonalen signalen - Google Patents

Verfahren und systeme zur bestimmung der atemfrequenz und der herzfrequenz aus kardiopulmonalen signalen Download PDF

Info

Publication number
EP3884857B1
EP3884857B1 EP20217334.0A EP20217334A EP3884857B1 EP 3884857 B1 EP3884857 B1 EP 3884857B1 EP 20217334 A EP20217334 A EP 20217334A EP 3884857 B1 EP3884857 B1 EP 3884857B1
Authority
EP
European Patent Office
Prior art keywords
signal
cardiopulmonary
sub
heart
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20217334.0A
Other languages
English (en)
French (fr)
Other versions
EP3884857A1 (de
EP3884857C0 (de
Inventor
Smriti RANI
Anwesha KHASNOBISH
Arindam Ray
Tapas Chakravarty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Consultancy Services Ltd
Original Assignee
Tata Consultancy Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Consultancy Services Ltd filed Critical Tata Consultancy Services Ltd
Publication of EP3884857A1 publication Critical patent/EP3884857A1/de
Application granted granted Critical
Publication of EP3884857B1 publication Critical patent/EP3884857B1/de
Publication of EP3884857C0 publication Critical patent/EP3884857C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the disclosure herein generally relates to monitoring cardiopulmonary signals, and, more particularly, to methods and systems for determining a breathing rate and a heart rate from cardiopulmonary signal based on signal quality.
  • Cardiopulmonary signals contain vital signs of a subject, including a breathing rate and a heart rate.
  • Unobtrusive and continuous monitoring of the cardiopulmonary signals for determining the breathing rate and the heart rate finds importance in long-term health monitoring of healthy as well as patient and infant subjects.
  • the long-term health monitoring includes not only in medical care units and hospitals, but also in other areas such as fitness tracking, stress monitoring, presence detection in rescue operations and so on.
  • WO 2019/158704 A1 discloses a technique for determining breathing rate and heart rate from cardiopulmonary signals. However, determining the breathing rate and the heart rate accurately from the sensitive cardiopulmonary signal is challenging and is always a continuous area of an improvement.
  • Embodiments of the present disclosure present technological improvements as solutions to one or more of the above-mentioned technical problems recognized by the inventors in conventional systems.
  • a processor-implemented method for determining a breathing rate and a heart rate from cardiopulmonary signals comprising the steps of: receiving, via one or more hardware processors, a cardiopulmonary signal of a subject being monitored, from a sensor unit; splitting, via the one or more hardware processors, the cardiopulmonary signal into one or more sub-cardiopulmonary signals, based on a predefined cardiopulmonary signal window duration; pre-processing, via the one or more hardware processors, each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals, to obtain a pre-processed sub-cardiopulmonary signal, for each sub-cardiopulmonary signal; filtering, by a bandpass filter implemented via the one or more hardware processors, the pre-processed sub-cardiopulmonary signal of each sub-cardiopulmonary signal, to obtain a first filtered signal and a second filtered signal, wherein the first filtered signal having frequencies between a predetermined first range of frequencies corresponding to breathing associated with the subject being monitored, and the second filtered
  • a system for determining a breathing rate and a heart rate from cardiopulmonary signals comprising: a memory storing instructions; one or more Input/Output (I/O) interfaces; and one or more hardware processors coupled to the memory via the one or more I/O interfaces, wherein the one or more hardware processors are configured by the instructions to: receive a cardiopulmonary signal of a subject being monitored, from a sensor unit; split the cardiopulmonary signal into one or more sub-cardiopulmonary signals, based on a predefined cardiopulmonary signal window duration; pre-process each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals, to obtain a pre-processed sub-cardiopulmonary signal, for each sub-cardiopulmonary signal; filter, the pre-processed sub-cardiopulmonary signal of each sub-cardiopulmonary signal, to obtain a first filtered signal and a second filtered signal, using a bandpass filter, wherein the first filtered signal having frequencies between a predetermined first range of frequencies corresponding to
  • a computer program product comprising a non-transitory computer readable medium having a computer readable program embodied therein, wherein the computer readable program, when executed on a computing device, causes the computing device to: receive a cardiopulmonary signal of a subject being monitored, from a sensor unit; split the cardiopulmonary signal into one or more sub-cardiopulmonary signals, based on a predefined cardiopulmonary signal window duration; pre-process each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals, to obtain a pre-processed sub-cardiopulmonary signal, for each sub-cardiopulmonary signal; filter, the pre-processed sub-cardiopulmonary signal of each sub-cardiopulmonary signal, to obtain a first filtered signal and a second filtered signal, using a bandpass filter, wherein the first filtered signal having frequencies between a predetermined first range of frequencies corresponding to breathing associated with the subject being monitored, and the second filtered signal having frequencies between a predetermined second range of frequencies corresponding to heartbeats associated
  • Cardiopulmonary signals carryout several hidden components related to vital signs including a breathing rate, a heart rate and other artifacts.
  • Unobtrusive and continuous detection of the vital signs from the cardiopulmonary signals of a subject plays a vital role in monitoring health status of the subject.
  • the expression 'subject' refers to a living being such as a human being or an animal.
  • Conventional systems use different kinds of sensing units to acquire the cardiopulmonary signals of the subject being monitored for checking the health status.
  • it may be always a challenge to acquire a cardiopulmonary signal with good quality so that the vital signs such as the breathing rate and the heart rate may be accurately determined.
  • the state-of-the-art uses different signal processing techniques to determine the heart rate from the cardiopulmonary signal.
  • the signal processing techniques include time-domain based signal processing techniques and frequency-domain based signal processing techniques.
  • Different quality of the cardiopulmonary signals may give different heart rate readings with different available signal processing techniques.
  • a suitable signal processing technique out of the several signal processing techniques to determine the heart rate accurately, based on the signal quality of the cardiopulmonary signal may always be a challenging task.
  • the present disclosure herein provide methods and systems for determining the breathing rate and the heart rate from cardiopulmonary signals, solves the problem of determining the heart rate accurately, from the cardiopulmonary signals.
  • the signal quality of the cardiopulmonary signal and the signal associated with the heart rate, comprised in the cardiopulmonary signal are determined.
  • one of the signal processing technique that best performs, out of a set of signal processing techniques is employed on the cardiopulmonary signal, based on the signal quality, to determine the heart rate.
  • FIG. 1 through FIG.7B where similar reference characters denote corresponding features consistently throughout the figures, there are shown preferred embodiments and these embodiments are described in the context of the following exemplary systems and/or methods.
  • FIG.1 is an exemplary block diagram of a system 100 for determining the breathing rate and the heart rate from the cardiopulmonary signal, in accordance with some embodiments of the present disclosure.
  • the system 100 includes or is otherwise in communication with one or more hardware processors 104, communication interface device(s) or input/output (I/O) interface(s) 106, and one or more data storage devices or memory 102 operatively coupled to the one or more hardware processors 104.
  • the one or more hardware processors 104, the memory 102, and the I/O interface(s) 106 may be coupled to a system bus 108 or a similar mechanism.
  • the I/O interface(s) 106 may include a variety of software and hardware interfaces, for example, a web interface, a graphical user interface, and the like.
  • the I/O interface(s) 106 may include a variety of software and hardware interfaces, for example, interfaces for peripheral device(s), such as a keyboard, a mouse, an external memory, a plurality of sensor devices, a printer and the like. Further, the I/O interface(s) 106 may enable the system 100 to communicate with other devices, such as web servers and external databases.
  • the I/O interface(s) 106 can facilitate multiple communications within a wide variety of networks and protocol types, including wired networks, for example, local area network (LAN), cable, etc., and wireless networks, such as Wireless LAN (WLAN), cellular, or satellite.
  • the I/O interface(s) 106 may include one or more ports for connecting a number of computing systems with one another or to another server computer. Further, the I/O interface(s) 106 may include one or more ports for connecting a number of devices to one another or to another server.
  • the one or more hardware processors 104 may be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate signals based on operational instructions.
  • the one or more hardware processors 104 are configured to fetch and execute computer-readable instructions stored in the memory 102.
  • the expressions 'processors' and 'hardware processors' may be used interchangeably.
  • the system 100 can be implemented in a variety of computing systems, such as laptop computers, portable computer, notebooks, hand-held devices, workstations, mainframe computers, servers, a network cloud and the like.
  • the memory 102 may include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes.
  • volatile memory such as static random access memory (SRAM) and dynamic random access memory (DRAM)
  • non-volatile memory such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes.
  • the memory 102 includes a plurality of modules 102A and a repository 102B for storing data processed, received, and generated by one or more of the plurality of modules 102A.
  • the plurality of modules 102A may include routines, programs, objects, components, data structures, and so on, which perform particular tasks or implement particular abstract data types.
  • the plurality of modules 102A may include programs or computer-readable instructions or coded instructions that supplement applications or functions performed by the system 100.
  • the plurality of modules 102A may also be used as, signal processor(s), state machine(s), logic circuitries, and/or any other device or component that manipulates signals based on operational instructions.
  • the plurality of modules 102A can be used by hardware, by computer-readable instructions executed by the one or more hardware processors 104, or by a combination thereof.
  • the plurality of modules 102A can include various sub-modules (not shown in FIG.1 ).
  • the memory 102 may include information pertaining to input(s)/output(s) of each step performed by the processor(s) 104 of the system 100 and methods of the present disclosure.
  • the repository 102B may include a database or a data engine. Further, the repository 102B amongst other things, may serve as a database or includes a plurality of databases for storing the data that is processed, received, or generated as a result of the execution of the plurality of modules 102A. Although the repository 102B is shown internal to the system 100, it will be noted that, in alternate embodiments, the repository 102B can also be implemented external to the system 100, where the repository 102B may be stored within an external database (not shown in FIG. 1 ) communicatively coupled to the system 100. The data contained within such external database may be periodically updated.
  • new data may be added into the external database and/or existing data may be modified and/or non-useful data may be deleted from the external database.
  • the data may be stored in an external system, such as a Lightweight Directory Access Protocol (LDAP) directory and a Relational Database Management System (RDBMS).
  • LDAP Lightweight Directory Access Protocol
  • RDBMS Relational Database Management System
  • the data stored in the repository 102B may be distributed between the system 100 and the external database.
  • the system 100 is connected to a sensor unit 110.
  • the sensor unit 110 is configured to receive the cardiopulmonary signal from the subject being monitored.
  • the sensor unit 110 may be one or in a combination of a sensor group that are capable of acquiring the cardiopulmonary signal from the subject being monitored.
  • the sensor group includes but are not limited to pneumotacogram, ultrasound sensors, accelerometers including wearable accelerometers, respiratory belts, and radars including single-channel radars and multichannel radars.
  • the radars including an indented radar disclosed in the Indian patent application numbered 201921043573 of the applicant.
  • the sensor unit 110 may be integral part of the system 100 or may be externally connected to the system 100 through the I/O interface(s) 106 either wireless or with a wired connection.
  • FIG.2 illustrates a high-level flow chart of a processor-implemented method for determining the breathing rate and the heart rate from the cardiopulmonary signal, in accordance with some embodiments of the present disclosure.
  • the cardiopulmonary signal is analyzed to check the signal quality.
  • a signal processing technique among the set of signal processing techniques is utilized based on the signal quality, to determine the heart rate of the subject accurately.
  • the breathing rate of the subject is determined by performing a spectrum analysis on the cardiopulmonary signal.
  • FIG.3A and FIG.3B illustrate exemplary flow diagrams of a processor-implemented method for determining the breathing rate and the heart rate from the cardiopulmonary signal, in accordance with some embodiments of the present disclosure.
  • steps of the method 300 including process steps, method steps, techniques or the like may be described in a sequential order, such processes, methods and techniques may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order.
  • the steps of processes described herein may be performed in any practical order. Further, some steps may be performed simultaneously, or some steps may be performed alone or independently.
  • the one or more hardware processors 104 of the system 100 are configured to receive the cardiopulmonary signal of the subject being monitored, from the sensor unit 110.
  • the sensor unit 110 is configured to acquire the cardiopulmonary signal from the subject being monitored. In an embodiment, if the sensor unit 110 is within the system 100, then the system 100 is placed beside or near to the subject being monitored to acquire the cardiopulmonary signal. If the sensor unit 110 is connected to the system 100 but present outside, then the sensor unit 110 is placed beside or near to the subject (sometimes subject may wear the sensor unit 110) the being monitored to acquire the cardiopulmonary signal.
  • the cardiopulmonary signal is a continuous and an unobtrusive time-domain signal represented in seconds.
  • the one or more hardware processors 104 of the system 100 are configured to split the cardiopulmonary signal into one or more sub-cardiopulmonary signals, based on a predefined cardiopulmonary signal window duration.
  • a breath cycle of the subject may be of 3 to 4 seconds duration. If the cardiopulmonary signal window duration is less than 10 seconds, then it may be difficult to capture 2 to 3 breaths in a cycle.
  • the predefined cardiopulmonary signal window duration is at least 10 seconds or multiples of '5' but not '5' (for example, 10 seconds, 15 seconds, 20 seconds etc.).
  • Each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals is separately analyzed and monitored continuously, in the order in which it is received, for determining the heart rate and the breathing rate.
  • the one or more hardware processors 104 of the system 100 are configured to pre-process each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals, to obtain a pre-processed sub-cardiopulmonary signal, for each sub-cardiopulmonary signal.
  • each sub-cardiopulmonary signal of the one or more sub-cardiopulmonary signals is filtered using a bandpass filter to obtain a filtered sub-cardiopulmonary signal for each sub-cardiopulmonary signal.
  • the filtered sub-cardiopulmonary signal may be having frequencies between a predetermined third range of frequencies. The predetermined third range of frequencies corresponding to the breathing and the heartbeats associated with the subject being monitored.
  • the range of frequencies associated with the breathing and the heartbeats at rest state is typically 0.2 Hz to 2 Hz, based on the domain knowledge.
  • the predetermined third range of frequencies may be for example, 0.2 Hz to 2 Hz.
  • the predetermined third range of frequencies may be for example, 0.2 Hz to 3 Hz in case the subject is performing a task such as running, fitness exercises and so on.
  • a mean removal and an amplitude normalization are performed on the filtered sub-cardiopulmonary signal to obtain the pre-processed sub-cardiopulmonary signal.
  • a noise and the other unwanted artifacts present in the filtered sub-cardiopulmonary signal may be removed from the mean removal and the amplitude normalization.
  • the bandpass filter may be a software filter or a hardware filter. If it is the software filter, then such filter may be present as one of the module of the plurality of modules 102A. If it is the hardware filter, then such filter may be integral part of the system 100, wherein the one or more hardware processors 104 may be configured to serve as the bandpass filter, or such filter may be external to the system 100, may be connected or communicated with the system 100 either wirelessly or with the wired connection, through the I/O interface(s) 106.
  • the one or more hardware processors 104 of the system 100 are configured to filter the pre-processed sub-cardiopulmonary signal of each sub-cardiopulmonary signal obtained at step 304 of the method 300, using the bandpass filter to obtain a first filtered signal and a second filtered signal separately.
  • the first filtered signal having frequencies between a predetermined first range of frequencies corresponding to breathing associated with the subject being monitored.
  • the predetermined first range of frequencies may be for example, 0.2 Hz to 0.8 Hz, which is identified as general breathing frequency range based on the domain knowledge.
  • the second filtered signal having frequencies between a predetermined second range of frequencies corresponding to the heartbeats associated with the subject being monitored.
  • the predetermined second range of frequencies may be for example, 1 Hz to 2 Hz, which is identified as general heartbeats frequency range based on the domain knowledge.
  • the one or more hardware processors 104 of the system 100 are configured to determine the breathing rate of the subject being monitored, from the first filtered signal, using a spectrum analysis technique.
  • the first filtered signal is transformed to a frequency domain signal using a Fast Fourier Transform (FFT) technique.
  • FFT Fast Fourier Transform
  • the breathing rate of the subj ect being monitored is obtained in breaths per minute based on a frequency associated with a highest peak of the frequency domain signal.
  • the one or more hardware processors 104 of the system 100 are configured to post-process the second filtered signal associated with each sub-cardiopulmonary signal obtained at step 304 of the method 300, to obtain a post-processed signal.
  • low frequency components having slowly varying nature, that are underlying in the second filtered signal are removed to obtain the post-processed signal.
  • a tenth order polynomial is applied on the second filtered signal to identify the low frequency components and such identified low frequency components are removed from the second filtered signal to obtain the post-processed signal.
  • the post-processed signal associated with each sub-cardiopulmonary signal obtained at step 304 of the method 300 is analyzed and further processed to obtain the heart rate of the subject being monitored.
  • the one or more hardware processors 104 of the system 100 are configured to obtain an overall signal quality value and a heart signal quality value.
  • the overall signal quality value is obtained from each sub-cardiopulmonary signal obtained at step 304 of the method 300.
  • the heart signal quality value is obtained from the second filtered signal corresponding to each sub-cardiopulmonary signal, obtained at step 308 of the method 300.
  • the overall signal quality value and the heart signal quality value helps to assess the signal quality of the cardiopulmonary signal received at step 302 of the method 300 to determine the heart rate accurately.
  • an overall signal autocorrelation curve whose envelope having a triangular contour is generated by applying an autocorrelation function on the sub-cardiopulmonary signal.
  • An area under the envelope of the overall signal autocorrelation curve may be defined as the overall signal quality value for the sub-cardiopulmonary signal.
  • a heart signal autocorrelation curve whose envelope having the triangular contour is generated by applying the autocorrelation function on the second filtered signal corresponding to the sub-cardiopulmonary signal.
  • An area under the envelope of the heart signal autocorrelation curve may be defined as the heart signal quality value for the second filtered signal corresponding to the sub-cardiopulmonary signal.
  • the one or more hardware processors 104 of the system 100 are configured to determine the heart rate of the subject being monitored, using one of a set of signal processing techniques on the post-processed signal obtained at step 312 of the method 300, based on the overall signal quality value obtained at step 314 of the method 300 and the heart signal quality value obtained at step 314 of the method 300.
  • the set of signal processing techniques include: (i) sliding window based additive spectra technique, (ii) mean peak to peak time difference technique and (iii) minimum variance sweep technique.
  • FIG.4 is an exemplary flowchart showing a selection of the signal processing technique from the set of signal processing techniques based on the signal quality, in accordance with some embodiments of the present disclosure.
  • the heart rate is determined from the post-processed signal, using the sliding window based additive spectra technique, when (i) the overall signal quality value is greater than a predefined overall signal quality upper threshold value, and (ii) the heart signal quality value is greater than a predefined heart signal quality upper threshold value.
  • the overall signal quality value is greater than the predefined overall signal quality upper threshold value indicates that the signal quality of the sub-cardiopulmonary signal is good.
  • the heart signal quality value is greater than the predefined heart signal quality upper threshold value, indicates that the signal quality of the heartbeat signal (the second filtered signal obtained at step 308 of the method 300, associated with the sub-cardiopulmonary signal) is good.
  • the frequency domain sliding window based additive spectra technique is employed.
  • the predefined overall signal quality upper threshold value may be for example '4' and the predefined heart signal quality upper threshold value may be for example '2'.
  • the heart rate is determined from the post-processed signal, using the mean peak to peak time difference technique, when (i) the overall signal quality value is greater than a predefined overall signal quality lower threshold value, or (ii) (a) the overall signal quality value is greater than a predefined overall signal quality middle threshold value and (b) the heart signal quality value is greater than a predefined heart signal quality lower threshold value.
  • the above conditions indicate that a mediocre signal quality for both the sub-cardiopulmonary signal and the heartbeat signal (the second filtered signal obtained at step 308 of the method 300, associated with the sub-cardiopulmonary signal). Since some useful information related to heart rate may still present, a time domain based signal processing technique such as the mean peak to peak time difference technique may be employed to determine the heart rate.
  • the predefined overall signal quality middle threshold value may be for example '2.3'
  • the predefined overall signal quality lower threshold value may be for example ⁇ 1'
  • the predefined heart signal quality lower threshold value may be for example ⁇ 1.1'.
  • the heart rate is determined from the post-processed signal, using the minimum variance sweep technique, when (i) the overall signal quality value is greater than the predefined overall signal quality middle threshold value, and (ii) the heart signal quality value is greater than the predefined heart signal quality upper threshold value.
  • the above conditions indicate that a low signal quality for both the sub-cardiopulmonary signal and the heartbeat signal (the second filtered signal obtained at step 308 of the method 300, associated with the sub-cardiopulmonary signal). Since some portions in the sub-cardiopulmonary signal may contain useful information related to heart rate, a time domain based signal processing technique such as the minimum variance sweep technique may be employed to determine the heart rate.
  • the minimum variance sweep technique finds the signal duration where a variance of the mean peak to peak time difference is minimum, so that the particular portion (signal duration) may contain the useful information related to the heart rate.
  • the predefined overall signal quality middle threshold value may be for example '2.3'
  • the predefined heart signal quality upper threshold value may be for example '2'.
  • the heart rate is determined from the post-processed signal, using the sliding window based additive spectra technique, by further splitting the post-processed signal into one or more smaller overlapped signals, based on a predefined spectra signal window duration and a predefined signal overlap percentage value.
  • the predefined spectra signal window duration may be for example 2.5 seconds, but it should be less than that of the predefined cardiopulmonary signal window duration.
  • the predefined cardiopulmonary signal window duration may be a multiple of the predefined spectra signal window duration.
  • each succeeding smaller overlapped signal may have the predefined signal overlap percentage value of the preceding smaller overlapped signal in the one or more smaller overlapped signals.
  • the predefined signal overlap percentage value may be 30%.
  • An overall frequency spectrum is generated by adding a frequency spectrum of each smaller overlapped signal of the one or more smaller overlapped signals. Breathing rate harmonics are removed from the overall frequency spectrum, based on the breathing rate obtained at step 310 of the method 300, to obtain a processed frequency spectrum. A highest peak frequency value obtained from the processed frequency spectrum gives the heart rate of the subject being monitored according to the sliding window based additive spectra technique.
  • FIG. 5A and FIG.5B illustrate graphs showing a first sample cardiopulmonary signal and an associated heart rate signal comprised in the first sample cardiopulmonary signal considered for determining the heart rate using a sliding window based additive spectra technique respectively, in accordance with some embodiments of the present disclosure.
  • the associated heart rate signal comprised in the first sample cardiopulmonary signal is transformed into the frequency domain and the corresponding overall frequency spectrum is generated and the heart rate is calculated from the corresponding overall frequency spectrum.
  • the associated heart rate signal shown in FIG.5B contain a peak having the highest peak frequency value (showing at around 1.25 Hz) based on which the heart rate is determined.
  • the heart rate is determined from the post-processed signal, using the mean peak to peak time difference technique, by determining peak to peak time difference values, from the post-processed signal, a mean peak to peak time difference value is calculated based on the peak to peak time difference values and the heart rate of the subject being monitored is determined by inversing the mean peak to peak time difference value.
  • FIG.6A and FIG.6B illustrate graphs showing a second sample cardiopulmonary signal and the associated heart rate signal comprised in the second sample cardiopulmonary signal considered for determining the heart rate using a mean peak to peak time difference technique respectively, in accordance with some embodiments of the present disclosure.
  • the associated heart rate signal comprised in the second sample cardiopulmonary signal is utilized to determine the heart rate.
  • the associated heart rate signal shown in FIG.6B contain multiple peaks and the peak to peak time difference values for two consecutive peaks are calculated and then the mean peak to peak time difference value is obtained from which the heart rate is determined.
  • the heart rate is determined from the post-processed signal, using the minimum variance sweep technique, by further splitting the post-processed signal into one or more smaller post-processed signals, based on a predefined sweep signal window duration.
  • the predefined sweep signal window duration may be for example 2.5 seconds, but it should be less than that of the predefined cardiopulmonary signal window duration.
  • the predefined cardiopulmonary signal window duration may be a multiple of the predefined sweep signal window duration.
  • the peak to peak time difference values for each smaller post-processed signal of the one or more smaller post-processed signals are determined.
  • a peak to peak time difference variance value for each smaller post-processed signal is calculated, based on the peak to peak time difference values present in the smaller post-processed signal.
  • the breathing rate harmonics from the smaller post-processed signal having a minimum peak to peak time difference variance value are removed based on the breathing rate obtained at step 310 of the method 300.
  • a peak to peak time difference mean value is calculated, based on the peak to peak time difference values present in the smaller post-processed signal having the minimum peak to peak time difference variance value. Then the heart rate is determined by inversing the peak to peak time difference mean value.
  • FIG.7A and FIG.7B illustrate graphs showing a third sample cardiopulmonary signal and the associated heart rate signal comprised in the third sample cardiopulmonary signal considered for determining the heart rate using a minimum variance sweep technique respectively, in accordance with some embodiments of the present disclosure.
  • the associated heart rate signal comprised in the third sample cardiopulmonary signal is utilized to determine the heart rate.
  • a portion (3 Hz to 7 Hz) having the less variance bold highlighted in associated heart rate signal shown in FIG.7B contain multiple peaks and the peak to peak time difference values for two consecutive peaks are calculated and then the mean peak to peak time difference value is obtained from which the heart rate is determined.
  • twin radar indented radar system
  • the twin radar has two single channel 10.525GHz CW radars.
  • the subjects were requested to sit on a chair at a distance of about 70 cm from the twin radar.
  • the subjects wore normal garments (typically two layers of clothing). To minimize motion artifacts, subjects were requested to avoid sudden movements. The subjects were asked to completely relax for 5 minutes and then the cardiopulmonary signal of each subject was collected.
  • the cardiopulmonary signal resulted from the optimal channel selection which is disclosed in the patent application numbered 201921043573 of the applicant is considered for determining the breathing rate and the heart rate in the present disclosure.
  • a video recording of the subjects was done while experimentation to count the chest wall movement for calculating the breathing rate, and a pulse oximeter was used to acquire the heart rate.
  • the second column of the table 1 shows the accuracy of the determined heart rate with respect to the ground tooth. It is seen that the accuracy of the determined heart rate is consistently over 92% for both the trails.
  • the second and third columns of the table 1 shows the number of peaks detected in the signal generated by the pulse oximeter and the heartbeat signal (equivalent of the post-processed signal obtained at step 312 of the method 300) respectively. The number of peaks detected through the pulse oximeter and the heartbeat signal are quite similar and corroborate with the accuracy values of determined heart rate, i.e., the accuracy is high when the number of peaks is close enough.
  • the fourth column shows the accuracy of the heart rate variability (HRV) and we can see that the accuracy of the heart rate measurement being high implies that the parameters associated with the heart rate might have also detected precisely.
  • Table 1 Subject No HR Accuracy (%) PPG data peak count HR data peak count HRV Accuracy (%) 1.1 98.14 20 19 98.24 1.2 90.09 20 16 92.5 2.1 98.36 19 18 98.85 2.2 93 17 19 95.36 3.1 94.29 21 19 95.61 3.2 97.32 21 20 96.88 4.1 95.99 20 21 94.96 4.2 94.76 20 22 93.57 5.1 97.03 18 19 97.43 5.2 92.11 19 23 94.13
  • the heart rate from the cardiopulmonary signal is determined more accurately by using the best signal processing technique based on the signal quality.
  • the methods and the systems mentioned in the present disclosure can effectively detect of the vital signs including the breathing rate and the heart rate from the cardiopulmonary signals of the subject to be monitored.
  • long-term and effective health monitoring of healthy as well as patient and infant subjects is be achieved by the present disclosure.
  • the present disclosure is sensor agnostic, since any sensor unit 110 may be used to acquire the cardiopulmonary signal from the sensor group including but are not limited to pneumotacogram, ultrasound sensors, accelerometers including wearable accelerometers, respiratory belts, and radars.
  • the system 100 is adaptive, simple in design and flexible. Since the system 100 can be used as a portable or handheld, it can be used not only in medical care units and hospitals, but also in other areas such as fitness tracking, stress monitoring, presence detection in rescue operations and so on.
  • the hardware device can be any kind of device which can be programmed including e.g. any kind of computer like a server or a personal computer, or the like, or any combination thereof.
  • the device may also include means which could be e.g. hardware means like e.g. an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of hardware and software means, e.g.
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the means can include both hardware means and software means.
  • the method embodiments described herein could be implemented in hardware and software.
  • the device may also include software means.
  • the embodiments may be implemented on different hardware devices, e.g. using a plurality of CPUs.
  • the embodiments herein can comprise hardware and software elements.
  • the embodiments that are implemented in software include but are not limited to, firmware, resident software, microcode, etc.
  • the functions performed by various modules described herein may be implemented in other modules or combinations of other modules.
  • a computer-usable or computer readable medium can be any apparatus that can comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • a computer-readable storage medium refers to any type of physical memory on which information or data readable by a processor may be stored.
  • a computer-readable storage medium may store instructions for execution by one or more processors, including instructions for causing the processor(s) to perform steps or stages consistent with the embodiments described herein.
  • the term "computer-readable medium” should be understood to include tangible items and exclude carrier waves and transient signals, i.e., be non-transitory. Examples include random access memory (RAM), read-only memory (ROM), volatile memory, nonvolatile memory, hard drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physiology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pulmonology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Claims (13)

  1. Prozessorimplementiertes Verfahren (300) zum Bestimmen einer Atemfrequenz und einer Herzfrequenz aus kardiopulmonalen Signalen, wobei das Verfahren (300) die folgenden Schritte umfasst:
    Empfangen, über einen oder mehrere Hardwareprozessoren, eines kardiopulmonalen Signals eines überwachten Subjekts von einer Sensoreinheit (302);
    Aufteilen, über den einen oder die mehreren Hardwareprozessoren, des kardiopulmonalen Signals in ein oder mehrere sub-kardiopulmonale Signale, basierend auf einer vordefinierten kardiopulmonalen Signalfensterdauer (304);
    Vorverarbeiten, über den einen oder die mehreren Hardwareprozessoren, jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um ein vorverarbeitetes sub-kardiopulmonales Signal für jedes sub-kardiopulmonale Signal (306) zu erhalten;
    Filtern, durch einen Bandpassfilter, der über den einen oder die mehreren Hardwareprozessoren implementiert ist, des vorverarbeiteten sub-kardiopulmonalen Signals jedes sub-kardiopulmonalen Signals, um ein erstes gefiltertes Signal und ein zweites gefiltertes Signal zu erhalten, wobei das erste gefilterte Signal Frequenzen zwischen einem vorbestimmten ersten Frequenzbereich aufweist, der der Atmung entspricht, die dem überwachten Subjekt zugeordnet ist, und das zweite gefilterte Signal Frequenzen zwischen einem vorbestimmten zweiten Frequenzbereich aufweist, der Herzschlägen entspricht, die dem überwachten Subjekt zugeordnet sind (308);
    Bestimmen, über den einen oder die mehreren Hardwareprozessoren, einer Atemfrequenz des überwachten Subjekts aus dem ersten gefilterten Signal unter Verwendung einer Spektrumanalysetechnik (310); dadurch gekennzeichnet, dass das Verfahren ferner die folgenden Schritte umfasst
    Nachverarbeiten, über den einen oder die mehreren Hardwareprozessoren, des zweiten gefilterten Signals, um ein nachverarbeitetes Signal zu erhalten, wobei das Nachverarbeiten das Entfernen von Niederfrequenzkomponenten umfasst, die dem zweiten gefilterten Signal (312) zugrunde liegen;
    Erhalten, über den einen oder die mehreren Hardwareprozessoren, eines Gesamtsignalqualitätswerts jedes sub-kardiopulmonalen Signals und eines Herzsignalqualitätswerts des zweiten gefilterten Signals, das jedem sub-kardiopulmonalen Signal (314) entspricht, wobei das Erhalten des Gesamtsignalqualitätswerts jedes sub-kardiopulmonalen Signals umfasst:
    Erzeugen einer Gesamtsignalautokorrelationskurve, deren Hüllkurve eine dreieckige Kontur aufweist, durch Anwenden einer Autokorrelationsfunktion auf das sub-kardiopulmonale Signal;
    Definieren eines Bereichs unter der Hüllkurve der Gesamtsignalautokorrelationskurve als den Gesamtsignalqualitätswert für das sub-kardiopulmonale Signal; und
    wobei das Erhalten des Herzsignalqualitätswerts des zweiten gefilterten Signals, das jedem sub-kardiopulmonalen Signal entspricht, umfasst:
    Erzeugen einer Herzsignalautokorrelationskurve, deren Hüllkurve die dreieckige Kontur aufweist, durch Anwenden der Autokorrelationsfunktion auf das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht, und
    Definieren eines Bereichs unter der Hüllkurve der Herzsignalautokorrelationskurve als den Herzsignalqualitätswert für das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht; und
    Bestimmen, über den einen oder die mehreren Hardwareprozessoren, einer Herzfrequenz des zu überwachenden Subjekts unter Verwendung einer aus einem Satz von Signalverarbeitungstechniken auf dem nachverarbeiteten Signal basierend auf dem Gesamtsignalqualitätswert und dem Herzsignalqualitätswert, wobei der Satz von Signalverarbeitungstechniken umfasst: (i) eine Gleitfenster-basierte additive Spektrentechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter oberer Gesamtsignalqualitätsschwellenwert ist, und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist, (ii) eine mittlere Spitzen-zu-Spitzen-Zeitdifferenztechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter unterer Gesamtsignalqualitätsschwellenwert ist, oder (ii) (a) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist und (b) der Herzsignalqualitätswert größer als ein vordefinierter unterer Herzsignalqualitätsschwellenwert ist, und (iii) eine Minimale-Varianz-Sweep-Technik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist, und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist (316).
  2. Verfahren nach Anspruch 1, wobei das Vorverarbeiten jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um das vorverarbeitete sub-kardiopulmonale Signal zu erhalten, umfasst:
    Filtern, durch den Bandpassfilter, jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um ein gefiltertes sub-kardiopulmonales Signal zu erhalten, das Frequenzen zwischen einem vorbestimmten dritten Frequenzbereich aufweist, der der Atmung und den Herzschlägen entspricht, die dem überwachten Subjekt zugeordnet sind; und
    Durchführen einer mittleren Entfernung und einer Amplitudennormalisierung an dem gefilterten sub-kardiopulmonalen Signal, um das vorverarbeitete sub-kardiopulmonale Signal zu erhalten.
  3. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens der Atemfrequenz aus dem ersten gefilterten Signal unter Verwendung einer Spektrumanalysetechnik umfasst:
    Transformieren des ersten gefilterten Signals in ein Frequenzbereichssignal unter Verwendung einer schnellen Fourier-Transformations(FFT)-Technik; und
    Bestimmen der Atemfrequenz des überwachten Subjekts in Atemzügen pro Minute basierend auf einer Frequenz, die einer höchsten Spitze des Frequenzbereichssignals zugeordnet ist.
  4. Verfahren nach Anspruch 1, wobei das Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der Gleitfenster-basierten additiven Spektrumtechnik umfasst:
    Aufteilen des nachverarbeiteten Signals in ein oder mehrere kleinere überlappte Signale, basierend auf einer vordefinierten Spektrumsignalfensterdauer und einem vordefinierten Signalüberlappungsprozentwert;
    Erzeugen eines Gesamtfrequenzspektrums basierend auf einem Frequenzspektrum jedes kleineren überlappten Signals des einen oder der mehreren kleineren überlappten Signale;
    Entfernen von Atemfrequenzoberschwingungen aus dem Gesamtfrequenzspektrum basierend auf der Atemfrequenz, um ein verarbeitetes Frequenzspektrum zu erhalten; und
    Berechnen der Herzfrequenz basierend auf einem höchsten Spitzenfrequenzwert, der aus dem verarbeiteten Frequenzspektrum erhalten wird.
  5. Verfahren nach Anspruch 1, wobei das Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der mittleren Spitzen-zu-Spitzen-Zeitdifferenztechnik umfasst:
    Bestimmen von Spitzen-zu-Spitzen-Zeitdifferenzwerten aus dem nachverarbeiteten Signal;
    Berechnen eines mittleren Spitzen-zu-Spitzen-Zeitdifferenzwerts basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten; und
    Bestimmen der Herzfrequenz basierend auf dem mittleren Spitzen-zu-Spitzen-Zeitdifferenzwert.
  6. Verfahren nach Anspruch 1, wobei das Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der minimalen Varianzabtasttechnik umfasst:
    Aufteilen des nachverarbeiteten Signals in ein oder mehrere kleinere nachverarbeitete Signale, basierend auf einer vordefinierten Abtastsignalfensterdauer;
    Bestimmen der Spitzen-zu-Spitzen-Zeitdifferenzwerte für jedes kleinere nachverarbeitete Signal des einen oder der mehreren kleineren nachverarbeiteten Signale;
    Berechnen eines Spitzen-zu-Spitzen-Zeitdifferenzvarianzwerts für jedes kleinere nachverarbeitete Signal basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten, die in dem kleineren nachverarbeiteten Signal vorhanden sind;
    Entfernen von Atemfrequenzoberschwingungen aus dem kleineren nachverarbeiteten Signal mit einem minimalen Spitzen-zu-Spitzen-Zeitdifferenzvarianzwert basierend auf der Atemfrequenz;
    Berechnen eines Spitzen-zu-Spitzen-Zeitdifferenzmittelwerts basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten, die in dem kleineren nachverarbeiteten Signal mit dem minimalen Spitzen-zu-Spitzen-Zeitdifferenzvarianzwert vorhanden sind; und
    Bestimmen der Herzfrequenz basierend auf dem Spitzen-zu-Spitzen-Zeitdifferenzmittelwert.
  7. System (100) zum Bestimmen einer Atemfrequenz und einer Herzfrequenz aus kardiopulmonalen Signalen, wobei das System (100) umfasst:
    einen Speicher (102), der Anweisungen speichert;
    eine oder mehrere Eingabe/Ausgabe(E/A)-Schnittstellen (106); und
    einen oder mehrere Hardwareprozessoren (104), die mit dem Speicher (102) über die eine oder die mehreren E/A-Schnittstellen (106) gekoppelt sind, wobei der eine oder die mehreren Hardwareprozessoren (104) durch die Anweisungen konfiguriert sind zum:
    Empfangen eines kardiopulmonalen Signals eines überwachten Subjekts von einer Sensoreinheit;
    Aufteilen des kardiopulmonalen Signals in ein oder mehrere sub-kardiopulmonale Signale, basierend auf einer vordefinierten kardiopulmonalen Signalfensterdauer;
    Vorverarbeiten jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um ein vorverarbeitetes sub-kardiopulmonales Signal für jedes sub-kardiopulmonale Signal zu erhalten;
    Filtern des vorverarbeiteten sub-kardiopulmonalen Signals jedes sub-kardiopulmonalen Signals, um ein erstes gefiltertes Signal und ein zweites gefiltertes Signal zu erhalten, unter Verwendung eines Bandpassfilters, wobei das erste gefilterte Signal Frequenzen zwischen einem vorbestimmten ersten Frequenzbereich aufweist, der der Atmung entspricht, die dem überwachten Subjekt zugeordnet ist, und das zweite gefilterte Signal Frequenzen zwischen einem vorbestimmten zweiten Frequenzbereich aufweist, der Herzschlägen entspricht, die dem überwachten Subjekt zugeordnet sind;
    Bestimmen einer Atemfrequenz des überwachten Subjekts aus dem ersten gefilterten Signal unter Verwendung einer Spektrumanalysetechnik; dadurch gekennzeichnet, dass der eine oder die mehreren Hardwareprozessoren ferner durch die Anweisungen konfiguriert sind zum
    Nachverarbeiten des zweiten gefilterten Signals, um ein nachverarbeitetes Signal zu erhalten, wobei das Nachverarbeiten das Entfernen von Niederfrequenzkomponenten umfasst, die dem zweiten gefilterten Signal zugrunde liegen;
    Erhalten eines Gesamtsignalqualitätswerts aus jedem sub-kardiopulmonalen Signal und eines Herzsignalqualitätswerts aus dem zweiten gefilterten Signal, das jedem sub-kardiopulmonalen Signal entspricht, wobei das Erhalten des Gesamtsignalqualitätswerts jedes sub-kardiopulmonalen Signals umfasst:
    Erzeugen einer Gesamtsignalautokorrelationskurve, deren Hüllkurve eine dreieckige Kontur aufweist, durch Anwenden einer Autokorrelationsfunktion auf das sub-kardiopulmonale Signal;
    Definieren eines Bereichs unter der Hüllkurve der Gesamtsignalautokorrelationskurve als den Gesamtsignalqualitätswert für das sub-kardiopulmonale Signal; und wobei das Erhalten des Herzsignalqualitätswerts des zweiten gefilterten Signals, das jedem sub-kardiopulmonalen Signal entspricht, umfasst:
    Erzeugen einer Herzsignalautokorrelationskurve, deren Hüllkurve die dreieckige Kontur aufweist, durch Anwenden der Autokorrelationsfunktion auf das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht, und
    Definieren eines Bereichs unter der Hüllkurve der Herzsignalautokorrelationskurve als den Herzsignalqualitätswert für das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht; und
    Bestimmen einer Herzfrequenz des zu überwachenden Subjekts unter Verwendung einer aus einem Satz von Signalverarbeitungstechniken auf dem nachverarbeiteten Signal basierend auf dem Gesamtsignalqualitätswert und dem Herzsignalqualitätswert, wobei der Satz von Signalverarbeitungstechniken umfasst: (i) eine Gleitfenster-basierte additive Spektrentechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter oberer Gesamtsignalqualitätsschwellenwert ist, und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist, (ii) eine mittlere Spitzen-zu-Spitzen-Zeitdifferenztechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter unterer Gesamtsignalqualitätsschwellenwert ist, oder (ii) (a) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist und (b) der Herzsignalqualitätswert größer als ein vordefinierter unterer Herzsignalqualitätsschwellenwert ist, und (iii) eine Minimale-Varianz-Sweep-Technik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist.
  8. System nach Anspruch 7,
    wobei der eine oder die mehreren Hardwareprozessoren (104) ferner konfiguriert sind zum Vorverarbeiten jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um das vorverarbeitete sub-kardiopulmonale Signal zu erhalten, durch:
    Filtern, durch den Bandpassfilter, jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um ein gefiltertes sub-kardiopulmonales Signal zu erhalten, das Frequenzen zwischen einem vorbestimmten dritten Frequenzbereich aufweist, der der Atmung und den Herzschlägen entspricht, die dem überwachten Subjekt zugeordnet sind; und
    Durchführen einer mittleren Entfernung und einer Amplitudennormalisierung an dem gefilterten sub-kardiopulmonalen Signal, um das vorverarbeitete sub-kardiopulmonale Signal zu erhalten.
  9. System nach Anspruch 7,
    wobei der eine oder die mehreren Hardwareprozessoren (104) ferner konfiguriert sind zum Bestimmen der Atemfrequenz aus dem ersten gefilterten Signal unter Verwendung einer Spektrumanalysetechnik durch:
    Transformieren des ersten gefilterten Signals in ein Frequenzbereichssignal unter Verwendung einer schnellen Fourier-Transformations(FFT)-Technik; und
    Bestimmen der Atemfrequenz des überwachten Subjekts in Atemzügen pro Minute basierend auf einer Frequenz, die einer höchsten Spitze des Frequenzbereichssignals zugeordnet ist.
  10. System nach Anspruch 7,
    wobei der eine oder die mehreren Hardwareprozessoren (104) ferner konfiguriert sind zum Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der Gleitfenster-basierten additiven Spektrumtechnik durch:
    Aufteilen des nachverarbeiteten Signals in ein oder mehrere kleinere überlappte Signale, basierend auf einer vordefinierten Spektrumsignalfensterdauer und einem vordefinierten Signalüberlappungsprozentwert;
    Erzeugen eines Gesamtfrequenzspektrums basierend auf einem Frequenzspektrum jedes kleineren überlappten Signals des einen oder der mehreren kleineren überlappten Signale;
    Entfernen von Atemfrequenzoberschwingungen aus dem Gesamtfrequenzspektrum basierend auf der Atemfrequenz, um ein verarbeitetes Frequenzspektrum zu erhalten; und
    Berechnen der Herzfrequenz basierend auf einem höchsten Spitzenfrequenzwert, der aus dem verarbeiteten Frequenzspektrum erhalten wird.
  11. System nach Anspruch 7,
    wobei der eine oder die mehreren Hardwareprozessoren (104) ferner konfiguriert sind zum Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der mittleren Spitzen-zu-Spitzen-Zeitdifferenztechnik durch:
    Bestimmen von Spitzen-zu-Spitzen-Zeitdifferenzwerten aus dem nachverarbeiteten Signal;
    Berechnen eines mittleren Spitzen-zu-Spitzen-Zeitdifferenzwerts basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten; und
    Bestimmen der Herzfrequenz basierend auf dem mittleren Spitzen-zu-Spitzen-Zeitdifferenzwert.
  12. System nach Anspruch 7,
    wobei der eine oder die mehreren Hardwareprozessoren (104) ferner konfiguriert sind zum Bestimmen der Herzfrequenz aus dem nachverarbeiteten Signal unter Verwendung der minimalen Varianzabtasttechnik durch:
    Aufteilen des nachverarbeiteten Signals in ein oder mehrere kleinere nachverarbeitete Signale, basierend auf einer vordefinierten Abtastsignalfensterdauer;
    Bestimmen der Spitzen-zu-Spitzen-Zeitdifferenzwerte für jedes kleinere nachverarbeitete Signal des einen oder der mehreren kleineren nachverarbeiteten Signale;
    Berechnen eines Spitzen-zu-Spitzen-Zeitdifferenzvarianzwerts für jedes kleinere nachverarbeitete Signal basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten, die in dem kleineren nachverarbeiteten Signal vorhanden sind;
    Entfernen von Atemfrequenzoberschwingungen aus dem kleineren nachverarbeiteten Signal mit einem minimalen Spitzen-zu-Spitzen-Zeitdifferenzvarianzwert basierend auf der Atemfrequenz;
    Berechnen eines Spitzen-zu-Spitzen-Zeitdifferenzmittelwerts basierend auf den Spitzen-zu-Spitzen-Zeitdifferenzwerten, die in dem kleineren nachverarbeiteten Signal mit dem minimalen Spitzen-zu-Spitzen-Zeitdifferenzvarianzwert vorhanden sind; und
    Bestimmen der Herzfrequenz basierend auf dem Spitzen-zu-Spitzen-Zeitdifferenzmittelwert.
  13. Computerprogrammprodukt, umfassend ein nichtflüchtiges computerlesbares Medium mit einem darin enthaltenen computerlesbaren Programm, wobei das computerlesbare Programm, wenn es auf einer Rechenvorrichtung ausgeführt wird, die Rechenvorrichtung veranlasst zum:
    Empfangen eines kardiopulmonalen Signals eines überwachten Subjekts von einer Sensoreinheit;
    Aufteilen des kardiopulmonalen Signals in ein oder mehrere sub-kardiopulmonale Signale, basierend auf einer vordefinierten kardiopulmonalen Signalfensterdauer;
    Vorverarbeiten jedes sub-kardiopulmonalen Signals des einen oder der mehreren sub-kardiopulmonalen Signale, um ein vorverarbeitetes sub-kardiopulmonales Signal für jedes sub-kardiopulmonale Signal zu erhalten;
    Filtern des vorverarbeiteten sub-kardiopulmonalen Signals jedes sub-kardiopulmonalen Signals, um ein erstes gefiltertes Signal und ein zweites gefiltertes Signal zu erhalten, unter Verwendung eines Bandpassfilters, wobei das erste gefilterte Signal Frequenzen zwischen einem vorbestimmten ersten Frequenzbereich aufweist, der der Atmung entspricht, die dem überwachten Subjekt zugeordnet ist, und das zweite gefilterte Signal Frequenzen zwischen einem vorbestimmten zweiten Frequenzbereich aufweist, der Herzschlägen entspricht, die dem überwachten Subjekt zugeordnet sind;
    Bestimmen einer Atemfrequenz des überwachten Subjekts aus dem ersten gefilterten Signal unter Verwendung einer Spektrumanalysetechnik; dadurch gekennzeichnet, dass das computerlesbare Programm, wenn es auf der Rechenvorrichtung ausgeführt wird, die Rechenvorrichtung veranlasst zum
    Nachverarbeiten des zweiten gefilterten Signals, um ein nachverarbeitetes Signal zu erhalten, wobei das Nachverarbeiten das Entfernen von Niederfrequenzkomponenten umfasst, die dem zweiten gefilterten Signal zugrunde liegen;
    Erhalten eines Gesamtsignalqualitätswerts aus jedem sub-kardiopulmonalen Signal und eines Herzsignalqualitätswerts aus dem zweiten gefilterten Signal, das jedem sub-kardiopulmonalen Signal entspricht, wobei das Erhalten des Gesamtsignalqualitätswerts jedes sub-kardiopulmonalen Signals umfasst:
    Erzeugen einer Gesamtsignalautokorrelationskurve, deren Hüllkurve eine dreieckige Kontur aufweist, durch Anwenden einer Autokorrelationsfunktion auf das sub-kardiopulmonale Signal;
    Definieren eines Bereichs unter der Hüllkurve der Gesamtsignalautokorrelationskurve als den Gesamtsignalqualitätswert für das sub-kardiopulmonale Signal; und
    wobei das Erhalten des Herzsignalqualitätswerts des zweiten gefilterten Signals, das jedem sub-kardiopulmonalen Signal entspricht, umfasst:
    Erzeugen einer Herzsignalautokorrelationskurve, deren Hüllkurve die dreieckige Kontur aufweist, durch Anwenden der Autokorrelationsfunktion auf das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht, und
    Definieren eines Bereichs unter der Hüllkurve der Herzsignalautokorrelationskurve als den Herzsignalqualitätswert für das zweite gefilterte Signal, das dem sub-kardiopulmonalen Signal entspricht; und
    Bestimmen einer Herzfrequenz des zu überwachenden Subjekts unter Verwendung einer aus einem Satz von Signalverarbeitungstechniken auf dem nachverarbeiteten Signal basierend auf dem Gesamtsignalqualitätswert und dem Herzsignalqualitätswert, wobei der Satz von Signalverarbeitungstechniken umfasst: (i) eine Gleitfenster-basierte additive Spektrentechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter oberer Gesamtsignalqualitätsschwellenwert ist, und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist, (ii) eine mittlere Spitzen-zu-Spitzen-Zeitdifferenztechnik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter unterer Gesamtsignalqualitätsschwellenwert ist, oder (ii) (a) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist und (b) der Herzsignalqualitätswert größer als ein vordefinierter unterer Herzsignalqualitätsschwellenwert ist, und (iii) eine Minimale-Varianz-Sweep-Technik, wenn (i) der Gesamtsignalqualitätswert größer als ein vordefinierter mittlerer Gesamtsignalqualitätsschwellenwert ist und (ii) der Herzsignalqualitätswert größer als ein vordefinierter oberer Herzsignalqualitätsschwellenwert ist.
EP20217334.0A 2020-03-28 2020-12-28 Verfahren und systeme zur bestimmung der atemfrequenz und der herzfrequenz aus kardiopulmonalen signalen Active EP3884857B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IN202021013673 2020-03-28

Publications (3)

Publication Number Publication Date
EP3884857A1 EP3884857A1 (de) 2021-09-29
EP3884857B1 true EP3884857B1 (de) 2024-05-08
EP3884857C0 EP3884857C0 (de) 2024-05-08

Family

ID=73943230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20217334.0A Active EP3884857B1 (de) 2020-03-28 2020-12-28 Verfahren und systeme zur bestimmung der atemfrequenz und der herzfrequenz aus kardiopulmonalen signalen

Country Status (2)

Country Link
US (1) US20210298607A1 (de)
EP (1) EP3884857B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240050069A1 (en) * 2022-08-10 2024-02-15 EchoNous, Inc. Systems and methods for automated ultrasound image recording based on quality scores

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412937B2 (en) * 2017-03-29 2022-08-16 Texas Instruments Incorporated Multi-person vital signs monitoring using millimeter wave (mm-wave) signals
WO2019158704A1 (en) * 2018-02-15 2019-08-22 Biosency Monitoring device for monitoring a physiological parameter and methods thereof

Also Published As

Publication number Publication date
EP3884857A1 (de) 2021-09-29
EP3884857C0 (de) 2024-05-08
US20210298607A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
Sharma et al. Accurate tunable-Q wavelet transform based method for QRS complex detection
US10602942B2 (en) Method of detecting abnormalities in ECG signals
US11311201B2 (en) Feature selection for cardiac arrhythmia classification and screening
US9974488B2 (en) Early detection of hemodynamic decompensation using taut-string transformation
Elgendi Fast QRS detection with an optimized knowledge-based method: Evaluation on 11 standard ECG databases
EP3456246A1 (de) Kaskadierter binärer klassifizierer zur identifizierung von rhythmen in einem einadrigen elektrokardiogramm (ekg)-signal
Zhang Heart rate monitoring from wrist-type photoplethysmographic (PPG) signals during intensive physical exercise
Lanata et al. A novel algorithm for movement artifact removal in ecg signals acquired from wearable systems applied to horses
US10357169B2 (en) Methods for determining whether patient monitor alarms are true or false based on a multi resolution wavelet transform and inter-leads variability
CN110461215A (zh) 使用便携式设备确定健康标志
Lin et al. Reducing the impact of external vibrations on fiducial point detection in seismocardiogram signals
Tadi et al. Comprehensive analysis of cardiogenic vibrations for automated detection of atrial fibrillation using smartphone mechanocardiograms
US20160249862A1 (en) Epsilon-tube filter for blunt noise removal
EP3479759B1 (de) System und computerprogrammprodukt zur klassifizierung kardiopulmonaler ermüdung
US20230277111A1 (en) System and method for saliency detection in long-term ecg monitoring
DE102019104798A1 (de) Vorrichtung und verfahren zur passiven arrhythmiedetektion auf der basis von photoplethysmogramm (ppg)-intervallen zwischen den schlägen und morphologie
Mollakazemi et al. Fetal QRS detection in noninvasive abdominal electrocardiograms using principal component analysis and discrete wavelet transforms with signal quality estimation
Islam et al. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation
EP3884857B1 (de) Verfahren und systeme zur bestimmung der atemfrequenz und der herzfrequenz aus kardiopulmonalen signalen
Kumar et al. STSR: spectro-temporal super-resolution analysis of a reference signal less photoplethysmogram for heart rate estimation during physical activity
Kong et al. Heart rate estimation using PPG signal during treadmill exercise
EP3539464A1 (de) System und verfahren zur klassifizierung einer koronararterienerkrankung basierend auf metadaten und kardiovaskulären signalen
US11666227B2 (en) Method and system for optimum channel selection in twin radar for cardiopulmonary signal monitoring
Jebastine Fetal ECG extraction and QRS detection using advanced adaptive filtering-based signal decomposition and peak threshold technique from abdominal ECG signals
Arsene Design of deep convolutional neural network architectures for denoising electrocardiographic signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220329

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 5/0507 20210101ALI20231023BHEP

Ipc: A61B 5/00 20060101ALI20231023BHEP

Ipc: A61B 5/08 20060101ALI20231023BHEP

Ipc: A61B 5/024 20060101AFI20231023BHEP

INTG Intention to grant announced

Effective date: 20231127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020030557

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240508

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240515