EP3877713A1 - Procédé et appareil de séparation d'air par distillation cryogénique - Google Patents

Procédé et appareil de séparation d'air par distillation cryogénique

Info

Publication number
EP3877713A1
EP3877713A1 EP18867318.0A EP18867318A EP3877713A1 EP 3877713 A1 EP3877713 A1 EP 3877713A1 EP 18867318 A EP18867318 A EP 18867318A EP 3877713 A1 EP3877713 A1 EP 3877713A1
Authority
EP
European Patent Office
Prior art keywords
column
flow
enriched
nitrogen
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18867318.0A
Other languages
German (de)
English (en)
Inventor
Benoit Davidian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3877713A1 publication Critical patent/EP3877713A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Definitions

  • the present invention relates to a method and apparatus for air separation by cryogenic distillation.
  • the invention consists in using a part of a nitrogen cycle which ensures the reboiling and reflux of the mono-column operating at low pressure to operate the condenser of the argon column.
  • the proposed scheme is better in energy than those of the prior art, especially for high argon yields.
  • a single-column apparatus operating at low pressure (or BP) with a nitrogen cycle and with a withdrawal of a rich pseudo-liquid at an intermediate point of the LP column to feed the condenser of the argon column.
  • This liquid could be taken between the head of the column and the withdrawal of argon-enriched gas sent to the argon column.
  • the liquid would be pumped to the argon column condenser, vaporize and be sent to the LP column at a level below the liquid draw point.
  • a method according to the preamble of claim 1 is known from US4818262 and FR2705141.
  • a method for separating air by cryogenic distillation in a column system comprising a first column operating at a first pressure and a second column operating at a second pressure, the first pressure being substantially equal to the second pressure in which:
  • the nitrogen-enriched flow rate is compressed in a compressor and the compressed flow rate is used to heat a first column bottom-reboiler producing a nitrogen-enriched at least partially condensed flow,
  • auxiliary flow is expanded in a turbine where it liquefies at least partially and sends the flow at least partially liquefied at the top of the first column.
  • the auxiliary flow is partially liquefied at the outlet of a wheel of the turbine, or even in the wheel of the turbine,
  • the flow enriched in nitrogen is heated in a heat exchanger upstream of the compressor, the compressed flow enriched in nitrogen cools in the heat exchanger and is then sent at least partly to the reboiler of the tank,
  • a part of the compressed flow enriched in nitrogen is expanded in a second turbine and returned to the heat exchanger,
  • the inlet temperature of the turbine and / or the second turbine and / or the compressor is a cryogenic temperature
  • An argon-rich liquid flow is sent from the head of the second column to the head of the first column,
  • the first and second parts of the nitrogen-enriched at least partially condensed flow have different pressures and / or temperatures, the second part preferably being at a higher pressure than that of the first part;
  • an apparatus for separating air by cryogenic distillation in a column system comprising a first column operating at a first pressure having a bottom reboiler and a second column operating at a second pressure. having a top condenser, the first pressure being substantially equal to the second pressure, a compressor, a turbine, a conduit for supplying compressed, purified and cooled air to an intermediate point of the first column, a line for withdrawing a tank-enriched oxygen of the first column and / or an oxygen-enriched gas of the first column and a line for withdrawing a flow enriched with nitrogen to the top of the first column and to send to the compressor, a pipe to send an argon enriched flow from an intermediate point of the first column to the tank of the second column, a pipe to extract a flow rich in argon at the head of the second column, a pipe for sending the compressed nitrogen enriched flow into the compressor to the first column bottom reboiler to produce a nitrogen-enriched at least partially conden
  • the device does not include auxiliary flow heating means upstream of the turbine.
  • the apparatus comprises a heat exchanger and means for sending the nitrogen-enriched flow to heat up in the heat exchanger upstream of the compressor.
  • the apparatus comprises means for sending the compressed nitrogen-enriched flow from the compressor to the heat exchanger to cool.
  • the apparatus comprises a second turbine and means for sending therein.
  • the apparatus comprises means for sending an argon-rich liquid flow from the head of the second column to the head of the first column.
  • the invention consists in using a part of the nitrogen cycle which ensures the reboiling and reflux of the LP mono-column to operate the condenser of the argon column.
  • the ring nitrogen is condensed in the vaporizer of the LP column. Part of the nitrogen is totally, preferentially partially subcooled and sent to the condenser of the argon column.
  • the condenser In the condenser, it vaporizes at an intermediate pressure between the pressure of the nitrogen cycle and the pressure of the LP column, its vaporization for condensing the rising vapor in the argon column to ensure the reflux of the Argon column.
  • Nitrogen vaporized at an intermediate pressure is then expanded in a turbine to the head of the LP column.
  • This turbine being very cold, a slightly diphasic mixture is obtained at the outlet, the liquid part also contributing to the reflux of the LP column.
  • the cold produced by the turbine can bring all or part of the cooling capacity to output the argon produced directly in liquid form, to be sent to a storage for example.
  • the maintenance of the argon column in operation avoids disturbing or even stopping the LP column (by massive sending of the liquid retained in the argon column to the LP column), which makes reliable the production of oxygen, whatever the disturbances to the argon column.
  • the nitrogen puff can be evacuated for example by a purge at the condenser of the argon column or the head of the argon column, while having the argon column which works vis-à-vis the difficult separation argon / oxygen .
  • this allows, by minimizing the operational risks, to facilitate the removal of the denitrogenation column to purify the argon column argon by nitrogen, by adding some theoretical plates directly above the argon quenching in the LP column. , to greatly reduce the nitrogen content before entering the argon column.
  • Figure 1 shows an air separation apparatus using a single column 1 to produce oxygen and nitrogen as well as an argon column 2.
  • Column 1 operates between 1.013 bara and 2 bara, for example at 1.3 bara.
  • the argon column 2 operates at between 1.013 bar and 2 bara, for example at 1.3 bara.
  • Compressed air purified with water and carbon dioxide 3 is cooled in a heat exchanger 5 and sent to an intermediate point of a separation column 1.
  • Distillation air is separated to produce liquid enriched in oxygen in the bottom of the column and nitrogen gas 7 at the top of the column.
  • a flow 47 enriched with argon is taken and sent to an argon column 2.
  • Liquid or gaseous argon 51 is produced at the top of the column 2 and the tank liquid 49 is sent to the column 1 at the withdrawal of the column 1. Neither the liquid 49 nor the gas 47 are pressurized or relaxed between the two columns (beyond the pressure losses and hydrostatic heights) .
  • the apparatus is kept cold and carries out the distillation through a nitrogen cycle.
  • the nitrogen taken at the top of the column 1 serves to cool a heat exchanger 11 and is then divided in two, a portion 9 being heated in the heat exchanger 5 and a portion 13 being used to produce cold and provide the energy for the distillation.
  • the nitrogen 13 is heated in a heat exchanger 15, compressed in a compressor 19, cooled in the cooler 21 to form the flow 23 and then returned to the exchanger 15.
  • the flow 23 is divided into two .
  • a portion 29 is cooled to the cold end of the exchanger 15 and then serves to heat the bottom reboiler 31 of the column 1.
  • the rest of the nitrogen 25 at an intermediate temperature of the exchanger 15 is expanded in a turbine 27 and joined the nitrogen 13 to start again in the exchanger 15.
  • Nitrogen 29 After being used to heat the reboiler 31, the nitrogen 29 which is condensed is cooled in the subcooler 11 and then divided in half. Nitrogen 29 can be split in half before the subcooler, allowing the two parts to be subcooled differently.
  • a portion 33 is expanded in a valve and then sent as a reflux liquid at the top of column 1.
  • the other part 35 is sent, at a pressure greater than that of column 1, to the top condenser 37 of column 2 where it vaporizes at least partially.
  • the nitrogen 39 thus formed is expanded in the turbine 41 and the expanded flow rate 43 feeds the head of the column 1, possibly through a separator pot and sending the liquid, itself possibly pumped and the gas in two separate conduits .
  • the nitrogen 43 expanded in the turbine 41 partially liquefies at the outlet of the turbine wheel, or even in the wheel, the pressure and temperature conditions at the wheel outlet being such that, for example, half of the isentropic relaxation.
  • the rate of liquid in the wheel or at the exit thereof is then between 0.5% and 10%, preferably between 2% and 5%. If it is desired to limit this level of liquid in order to avoid mechanical damage to the turbine, provision may be made to heat the nitrogen before expansion, for example in the subcooler 11.
  • the rest of the expansion is carried out in the volute of the turbine. turbine where it continues to cool and liquefy at least a portion of the rest of the gas.
  • the liquid part thus formed contributes to the reflux of the BP 1 column.
  • the architecture of this apparatus can be that of a conventional apparatus, namely using columns with circular section in one piece, equipped with structured packings or trays.
  • the column is replaced by a stack of square or rectangular section modules, each module being isolated and containing an element allowing the exchange of material and heat, such as packings.
  • the separation is carried out at low temperature by distillation, the liquids being distilled down from one module to another and the gases rising from one module to another. In this way the fluid to be separated is introduced into a module and a fluid enriched in a component of the fluid leaves another module of the same stack.
  • An argon option can be defined by inserting a module at an intermediate position of the LP column, at the level of the argon belly, and the cold box, without having to modify the rest of the equipment.
  • the liquid nitrogen condensed in the vaporizer and then subcooled is expanded in a valve and then sent into a two-phase pipe at the top of the LP column.
  • it is partially expanded in the same valve and sent in the same pipe to the interposed module where a part is partially relaxed, then sent to the condenser of the Argon column and the other part is totally relaxed and sent to the head of the BP column through the same pipe as the base version.
  • the intercalated module also includes pipe extensions / ducts for splicing the pipes / ducts that are placed along the LP column at the argon belly.
  • the nitrogen cycle remains unchanged between the argon-free option and the argon option, with equipment over-dimensioning (in particular nitrogen cycle compressor) limited to 10%, or even 5%, or even without over-sizing. . It is therefore easy to standardize and / or modularize to satisfy both options.
  • the addition of the ad hoc turbine to the argon condenser provides the necessary cooling capacity for the liquefaction of argon, without impacting the rest of the refrigeration budget of the unit.
  • the invention is particularly well compared with the state of the art, in particular with high efficiency of argon as illustrated in FIG. 2 which compares the energy of separation of oxygen with the argon yield.
  • the gain is amplified by the non-necessity to take margins vis-à-vis the operation of the separation apparatus.
  • an external nitrogen cycle is used to partially heat the bottom reboiler of the low pressure column, the rest of the heating being provided by the gas at the top of the column MP.

Abstract

Dans un procédé de séparation d'air par distillation cryogénique dans un système de colonne comprenant une première colonne (1) opérant à une première pression et une deuxième colonne (2) opérant à une deuxième pression, on envoie un débit enrichi en argon (47) d'un point intermédiaire de la première colonne vers la cuve de la deuxième colonne et on soutire un débit riche en argon (51) en tête de la deuxième colonne, on comprime un débit enrichi en azote (7,13,17) de la première colonne dans un compresseur (19), on envoie le débit comprimé à un condenseur de tête (37) de la deuxième colonne après une étape de détente et on détend le débit vaporisé dans le condenseur dans une turbine (41) où il se liquéfie au moins partiellement.

Description

Procédé et appareil de séparation d’air par distillation cryogénique
La présente invention est relative à un procédé et à un appareil de séparation d’air par distillation cryogénique.
Dans un appareil de séparation d’air avec une distillation monocolonne à basse pression pour séparer l’air, on cherche à produire de l’argon sans disposer de liquide riche issu d’une colonne moyenne pression pour faire fonctionner le condenseur de la colonne argon.
L’invention consiste à utiliser une partie d’un cycle azote qui assure le rebouillage et le reflux de la mono-colonne opérant à basse pression pour faire fonctionner le condenseur de la colonne argon.
Sans complexifier le schéma du procédé, cela permet en plus de bénéficier d’une grande souplesse d’opération : en cas de bouffée d’azote vers la colonne argon, on peut toujours assurer la condensation en tête de la colonne argon, et donc maintenir la production d’oxygène sans risque d’arrêter la colonne argon, puis la colonne opérant à basse pression.
Par ailleurs, le schéma proposé est meilleur en énergie que ceux de l’art antérieur, notamment pour des hauts rendements d’argon.
L’homme de l’art pourrait concevoir un appareil mono-colonne opérant à basse pression (ou BP) avec un cycle azote et avec un soutirage d’un pseudo- liquide riche à un point intermédiaire de la colonne BP pour alimenter le condenseur de la colonne argon. Ce liquide pourrait être pris entre la tête de la colonne et le soutirage de gaz enrichi en argon envoyé vers la colonne argon. Le liquide serait pompé pour arriver au condenseur de la colonne argon, s’y vaporiserait et serait ensuite envoyé à la colonne BP à un niveau en dessous du point de soutirage du liquide.
• Il est connu pour un appareil mono-colonne BP sur cycle azote d’avoir le condenseur de la colonne argon qui fonctionne sur un cycle argon, tel que décrit dans la figure 3c de l’article de R. Agrawal « Heat pumps for thermally linked distillation columns : an exercise for argon production from air », Ind Eng. Chem. Res. 1994, 33, pp. 2717-2730. • Il est également connu de GB1258568 d’utiliser un cycle azote pour le rebouillage de la colonne BP, l’azote liquéfié servant comme reflux pour la colonne BP et pour refroidir le condenseur de la colonne argon. Le condenseur de tête de la colonne argon opère à la même pression que la colonne BP. La colonne argon opère par contre à une pression plus élevée que la colonne basse pression, comme le montre la vanne sur le gaz entre les deux colonnes et la pompe sur le liquide entre les deux colonnes.
Un procédé selon le préambule de la revendication 1 est connu de US4818262 et FR2705141.
Selon un objet de l’invention, il est prévu un procédé de séparation d’air par distillation cryogénique dans un système de colonne comprenant une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression, la première pression étant sensiblement égale à la deuxième pression dans lequel :
i) On envoie de l’air comprimé, épuré et refroidi à un point intermédiaire de la première colonne, on soutire un liquide enrichi en oxygène en cuve de la première colonne et/ou on soutire un gaz enrichi en oxygène de la première colonne et on soutire un débit enrichi en azote en tête de la première colonne,
ii) On envoie un débit enrichi en argon d’un point intermédiaire de la première colonne vers la cuve de la deuxième colonne et on soutire un débit riche en argon en tête de la deuxième colonne,
iii) On comprime le débit enrichi en azote dans un compresseur et on utilise le débit comprimé pour chauffer un rebouilleur de cuve de la première colonne produisant un débit au moins partiellement condensé enrichi en azote,
iv) On divise le débit au moins partiellement condensé enrichi en azote en une première et une deuxième parties, on envoie la première partie en tête de la première colonne après une étape de détente et on envoie la deuxième partie à un condenseur de tête de la deuxième colonne après une étape de détente où la deuxième partie se vaporise au moins partiellement pour former un débit auxiliaire caractérisé en ce que
v) On détend le débit auxiliaire dans une turbine où il se liquéfie au moins partiellement et on envoie le débit au moins partiellement liquéfié en tête de la première colonne. Selon d’autres aspects facultatifs :
• le débit auxiliaire est partiellement liquéfié à la sortie d’une roue de la turbine, voire dans la roue de la turbine,
• on obtient à la sortie de la roue ou dans celle-ci un débit auxiliaire détendu contenant entre 0,5% et 10%, préférentiellement entre 2% et 5% de liquide,
• le débit auxiliaire est directement détendu dans la turbine, sans réchauffement préalable,
• le débit enrichi en azote est réchauffé dans un échangeur de chaleur en amont du compresseur, le débit comprimé enrichi en azote se refroidit dans l’échangeur de chaleur et est ensuite envoyé au moins en partie au rebouilleur de cuve,
• une partie du débit comprimé enrichi en azote est détendue dans une deuxième turbine et renvoyée à l’échangeur de chaleur,
• la température d’entrée de la turbine et/ou de la deuxième turbine et/ou du compresseur est une température cryogénique,
• on envoie un débit liquide riche en argon de la tête de la deuxième colonne vers la tête de la première colonne,
• en opération on ne soutire aucun débit de purge du condenseur de la deuxième colonne,
• après les étapes de détente, les première et deuxième parties du débit au moins partiellement condensé enrichi en azote ont des pressions et/ou des températures différentes, la deuxième partie se trouvant de préférence à une pression supérieure à celle de la première partie,
• les première et deuxième colonnes opèrent à la même pression.
Selon un autre aspect de l’invention, il est prévu un appareil de séparation d’air par distillation cryogénique dans un système de colonne comprenant une première colonne opérant à une première pression ayant un rebouilleur de cuve et une deuxième colonne opérant à une deuxième pression ayant un condenseur de tête, la première pression étant sensiblement égale à la deuxième pression, un compresseur, une turbine, une conduite pour envoyer de l’air comprimé, épuré et refroidi à un point intermédiaire de la première colonne, une conduite pour soutirer un liquide enrichi en oxygène en cuve de la première colonne et/ou un gaz enrichi en oxygène de la première colonne et une conduite pour soutirer un débit enrichi en azote en tête de la première colonne et pour l’envoyer vers le compresseur, une conduite pour envoyer un débit enrichi en argon d’un point intermédiaire de la première colonne vers la cuve de la deuxième colonne, une conduite pour soutirer un débit riche en argon en tête de la deuxième colonne, une conduite pour envoyer le débit enrichi en azote comprimé dans le compresseur vers le rebouilleur de cuve de la première colonne afin de produire un débit au moins partiellement condensé enrichi en azote, des moyens pour diviser le débit au moins partiellement condensé enrichi en azote en une première et une deuxième parties, des moyens pour envoyer la première partie en tête de la première colonne après une étape de détente, des moyens pour envoyer la deuxième partie au condenseur de tête de la deuxième colonne après une étape de détente où la deuxième partie se vaporise au moins partiellement pour former un débit auxiliaire, des moyens pour envoyer le débit auxiliaire dans la turbine où il se liquéfie au moins partiellement et des moyens pour envoyer le débit au moins partiellement liquéfié en tête de la première colonne, ces moyens comprenant éventuellement un séparateur de phases pour séparer le liquide et le gaz formés pour les envoyer ensuite séparément à la première colonne.
Selon d’autres aspect facultatifs de l’invention :
• l’appareil ne comprend pas de moyens de réchauffement du débit auxiliaire en amont de la turbine.
· l’appareil comprend un échangeur de chaleur et des moyens pour envoyer le débit enrichi en azote se réchauffer dans l’échangeur de chaleur en amont du compresseur.
• l’appareil comprend des moyens pour envoyer le débit comprimé enrichi en azote du compresseur vers l’échangeur de chaleur pour se refroidir.
· l’appareil comprend une deuxième turbine et des moyens pour y envoyer.
• une partie du débit comprimé enrichi en azote.
• l’appareil comprend des moyens pour envoyer un débit liquide riche en argon de la tête de la deuxième colonne vers la tête de la première colonne.
• aucune turbine d’air n’est présente.
L’invention consiste à utiliser une partie du cycle azote qui assure le rebouillage et le reflux de la mono-colonne BP pour faire fonctionner le condenseur de la colonne argon. L’azote de cycle est condensé dans le vaporiseur de la colonne BP. Une partie de l’azote est totalement, préférentiellement partiellement sous-refroidi et envoyé dans le condenseur de la colonne argon.
Dans le condenseur, il se vaporise à une pression intermédiaire entre la pression du cycle azote et la pression de la colonne BP, sa vaporisation permettant de condenser la vapeur montante dans la colonne argon pour assurer le reflux de la colonne Argon.
L’azote vaporisé à une pression intermédiaire est alors détendu dans une turbine vers la tête de la colonne BP. Cette turbine étant très froide, on obtient en sortie un mélange légèrement diphasique, la partie liquide contribuant aussi au reflux de la colonne BP. Le froid produit par la turbine permet d’apporter tout ou partie de la puissance frigorifique pour sortir l’argon produit directement sous forme liquide, pour être envoyé vers un stockage par exemple.
En cas de bouffée d’azote vers la colonne argon, on va pouvoir continuer à assurer un reflux dans la colonne argon en réduisant la pression intermédiaire de façon à baisser la température de l’azote vaporisé, ce qui permet de continuer à condenser la vapeur montante chargée en azote et donc devenue plus froide. Le soutirage d’argon est arrêté car il ne respecte pas la spécification en azote. La puissance frigorifique de la turbine est fortement réduite puisque la pression intermédiaire a été réduite, mais cela est sans conséquence puisqu’on ne produit plus d’argon liquide.
Le maintien de la colonne argon en fonctionnement évite de perturber, voire arrêter la colonne BP (par envoi massif du liquide retenu dans la colonne argon vers la colonne BP), ce qui permet de fiabiliser la production d’oxygène, quelles que soient les perturbations vers la colonne argon.
La bouffée d’azote peut être évacuée par exemple par une purge au niveau du condenseur de la colonne argon ou de la tête de la colonne argon, tout en ayant la colonne argon qui fonctionne vis-à-vis de la séparation difficile argon/oxygène.
Dès que la bouffée d’azote est évacuée, on récupère tout de suite la production d’argon aux bonnes spécifications azote et oxygène, contrairement à un appareil plus classique où une bouffée d’azote va arrêter la colonne argon, nécessitant de refaire entièrement l’inventaire de liquide dans la colonne argon lors de son redémarrage. Cette grande tolérance permet d’avoir un fonctionnement en opération très proche du rendement argon maxi atteignable pour la marche de procédé considérée, sans prendre de marge opératoire pour éviter les arrêts intempestifs liés notamment aux bouffées d’azote.
De même, cela permet, en minimisant les risques opérationnels, de faciliter la suppression de la colonne de déazotation pour épurer en azote l’argon produit par la colonne argon, en ajoutant quelques plateaux théoriques directement au- dessus du piquage argon dans la colonne BP, pour réduire fortement la teneur en azote avant d’entrer dans la colonne argon.
II n’est pas utile de prévoir en opération une purge du bain du condenseur de la colonne argon, car on n’a pas de liquide riche en oxygène et potentiellement en impuretés secondaires de l’air. La purge peut ne servir qu’à l’arrêt par exemple pour vider le bain de liquide cryogénique.
L’invention sera décrite en plus de détail en se référant aux figures.
La Figure 1 représente un appareil de séparation d’air utilisant une simple colonne 1 pour produire de l’oxygène et de l’azote ainsi qu’une colonne argon 2.
La colonne 1 opère entre 1 ,013 bara et 2 bara, par exemple à 1 ,3 bara.
La colonne argon 2 opère à entre 1 ,013 bara et 2 bara, par exemple à 1 ,3 bara.
Dans cet exemple les deux colonnes opèrent à la même pression.
De l’air comprimé et épuré en eau et en dioxyde de carbone 3 est refroidi dans un échangeur de chaleur 5 et envoyé à un point intermédiaire d’une colonne de séparation 1. Par distillation l’air est séparé pour produire du liquide enrichi en oxygène en cuve de la colonne et de l’azote gazeux 7 en tête de colonne. A un niveau intermédiaire de la colonne en dessous de l’arrivée d’air, un débit 47 enrichi en argon est prélevé et envoyé à une colonne argon 2. De l’argon liquide ou gazeux 51 est produit en tête de la colonne 2 et le liquide de cuve 49 est envoyé à la colonne 1 au niveau du soutirage de la colonne 1. Ni le liquide 49 ni le gaz 47 ne sont pressurisés ou détendus entre les deux colonnes (au-delà des pertes de charges et des hauteurs hydrostatiques).
L’appareil est tenu en froid et réalise la distillation grâce à un cycle d’azote. L’azote pris en tête de la colonne 1 sert à refroidir un échangeur de chaleur 11 puis est divisé en deux, une partie 9 étant réchauffée dans l’échangeur de chaleur 5 et une partie 13 étant utilisée pour produire du froid et apporter l’énergie pour la distillation. L’azote 13 est réchauffé dans un échangeur de chaleur 15, comprimé dans un compresseur 19, refroidi dans le refroidisseur 21 pour former le débit 23 et puis renvoyé à l’échangeur 15. Dans l’échanger 15 le débit 23 est divisé en deux. Une partie 29 est refroidie jusqu’au bout froid de l’échangeur 15 et puis sert à chauffer le rebouilleur de cuve 31 de la colonne 1. Le reste de l’azote 25 à une température intermédiaire de l’échangeur 15 est détendu dans une turbine 27 et rejoint l’azote 13 pour repartir dans l’échangeur 15.
Après avoir servi à réchauffer le rebouilleur 31 , l’azote 29 qui se trouve condensé est refroidi dans le sous-refroidisseur 11 et puis divisé en deux. L’azote 29 peut être divisé en deux avant le sous-refroidisseur, permettant de sous-refroidir différemment les deux parties
Une partie 33 est détendue dans une vanne puis envoyée comme liquide de reflux en tête de la colonne 1. L’autre partie 35 est envoyée, à une pression supérieure à celle de la colonne 1 , au condenseur de tête 37 de la colonne 2 où elle se vaporise au moins partiellement. L’azote 39 ainsi formé se détend dans la turbine 41 et le débit détendu 43 alimente la tête de la colonne 1 , éventuellement en passant par un pot séparateur et en envoyant le liquide, lui-même éventuellement pompé et le gaz dans deux conduits distincts.
La partie 35 de l’azote provenant du sous-refroidisseur, qui est envoyée vers le condenseur 37 de la colonne argon 2, est très froide, ce qui génère un risque de cristallisation. Pour prévenir ce problème, on peut :
• Limiter le sous-refroidissement de la partie 35 dans le sous-refroidisseur 11 par rapport à la partie 33.
• Mélanger la partie 35 directement dans le bain du condenseur 37 qui est relativement plus chaud vis-à-vis du risque de cristallisation.
• Ajouter un condenser intermédiaire dans la colonne argon 2 (dans sa partie basse, qui reste relativement chaude vis-à-vis du risque de cristallisation) pour réchauffer le liquide sous-refroidi 35.
L’azote 43 détendu dans la turbine 41 se liquéfie partiellement en sortie de la roue de la turbine, voire dans la roue, les conditions de pressions et de température régnant en sortie de roue étant telles que l’on a, par exemple, effectué la moitié de la détente isentropique. Le taux de liquide dans la roue ou à la sortie de celle-ci est alors compris entre 0,5% et 10%, préférentiellement entre 2% et 5%. Si on veut limiter ce taux de liquide pour éviter des dommages mécaniques sur la turbine, on peut prévoir de réchauffer l’azote 39 avant détente, par exemple dans le sous-refroidisseur 11. Le reste de la détente est effectué dans la volute de la turbine où on continue à refroidir et à liquéfier au moins une partie du reste du gaz. La partie liquide ainsi formée contribue ainsi au reflux de la colonne BP 1.
Il y a aussi possibilité de prévoir une conduite d’argon liquide vers l’azote liquide qui va en tête de colonne 1 , dans le cas où la production d’argon est inférieure à la production au rendement argon optimum, pour bénéficier d’un reflux liquide supplémentaire en tête de colonne BP et donc gagner en efficacité énergétique. Cette conduite peut être directe vers la tête de colonne BP ou être reliée à un pot séparateur en sortie de turbine.
L’architecture de cet appareil peut être celle d’un appareil classique, à savoir utilisant des colonnes à section circulaire en une seule pièce, équipées de garnissages structurés ou de plateaux.
Or il est également possible d’utiliser la nouvelle architecture de FR3052242,
FR3052243, FR3052244 ou FR3059087. Selon cette architecture, la colonne est remplacée par un empilement de modules à section carrée ou rectangulaire, chaque module étant isolé et contenant un élément permettant l’échange de matière et de chaleur, tel que des garnissages. La séparation s’effectue à basse température par distillation, les liquides en cours en distillation descendant d’un module à un autre et les gaz montant d’un module à un autre. De cette façon le fluide à séparer est introduit dans un module et un fluide enrichi en un composant du fluide sort d’un autre module du même empilement.
On peut définir une option argon consiste à venir intercaler un module à une position intermédiaire de la colonne BP, au niveau du ventre argon, et de la boite froide, sans avoir à modifier le reste des équipements. On profite du rallongement possible de la colonne BP pour ajouter des plateaux théoriques au-dessus du soutirage de la mixture argon pour réduire fortement la teneur azote au ventre argon et donc supprimer la colonne de déazotation, ce qui simplifie la mise en œuvre de l’option Argon.
Dans la version de base, l’azote liquide condensé dans le vaporiseur, puis sous-refroidi est détendu dans une vanne puis est envoyé dans un tuyau sous forme diphasique en tête de colonne BP. Dans la version avec option argon, il est partiellement détendu dans la même vanne et envoyé dans le même tuyau vers le module intercalé où une partie est partiellement détendue, puis envoyée vers le condenseur de la colonne Argon et l’autre partie est totalement détendue et envoyée vers la tête de la colonne BP à travers le même tuyau que la version de base.
La partie partiellement détendue est vaporisée, puis turbinée :
• la partie gazeuse est renvoyée à travers le module intercalé vers le même tuyau/gaine de l’azote gazeux issu de la tête de colonne BP du cas de base, pour aller vers le sous-refroidisseur unique
· La partie liquide est :
o soit pompée pour être remélangée avec le liquide totalement détendu et envoyé en tête de colonne BP (la pompe sert essentiellement à vaincre la hauteur hydrostatique),
o soit vaporisée en ajoutant un condenser intermédiaire dans la colonne Argon (dans sa partie basse) ou en soutirant un gaz de la partie basse de la colonne argon pour aller le condenser.
Le module intercalé comprend aussi des extensions de tuyauteries/gaines pour rabouter les tuyauteries/gaines qui sont placé le long de la colonne BP au niveau du ventre argon.
Dans cette configuration de l’invention, le cycle azote reste inchangé entre l’option sans argon et l’option avec argon, avec un surdimensionnement des équipements (notamment compresseur de cycle azote) limité à 10%, voire 5%, voire sans surdimensionnement. Il est donc aisé de le standardiser et/ou modulariser pour satisfaire les deux options.
L’ajout de la turbine ad hoc sur le condenseur argon permet de fournir la puissance frigorifique nécessaire pour la liquéfaction de l’argon, sans impacter le reste du bilan frigorifique de l’appareil.
En terme d’énergie, l’invention se place particulièrement bien par rapport à l’état de l’art, notamment à haut rendement d’argon comme illustré à la Figure 2 qui compare l’énergie de séparation de l’oxygène avec le rendement en argon.
Le gain est amplifié par la non-nécessité de prendre des marges vis-à-à de l’opération de l’appareil de séparation. Eventuellement, un cycle d’azote externe sert à réchauffer en partie le rebouilleur de cuve de la colonne basse pression, le reste du chauffage étant assuré par le gaz en tête de colonne MP.

Claims

Revendications
1. Procédé de séparation d’air par distillation cryogénique dans un système de colonne comprenant une première colonne (1 ) opérant à une première pression et une deuxième colonne (2) opérant à une deuxième pression, la première pression étant sensiblement égale à la deuxième pression dans lequel :
i) On envoie de l’air comprimé, épuré et refroidi à un point intermédiaire de la première colonne, on soutire un liquide enrichi en oxygène en cuve de la première colonne et/ou on soutire un gaz (45) enrichi en oxygène de la première colonne et on soutire un débit (7) enrichi en azote en tête de la première colonne,
ii) On envoie un débit enrichi en argon (47) d’un point intermédiaire de la première colonne vers la cuve de la deuxième colonne et on soutire un débit riche en argon (51 ) en tête de la deuxième colonne,
iii) On comprime le débit enrichi en azote (7, 13, 17) dans un compresseur (19) et on utilise le débit comprimé pour chauffer un rebouilleur de cuve (31 ) de la première colonne produisant un débit au moins partiellement condensé enrichi en azote,
iv) On divise le débit au moins partiellement condensé enrichi en azote en une première et une deuxième parties (33, 35), on envoie la première partie en tête de la première colonne après une étape de détente et on envoie la deuxième partie à un condenseur de tête (37) de la deuxième colonne après une étape de détente où la deuxième partie se vaporise au moins partiellement pour former un débit auxiliaire (39) caractérisé en ce que
v) L’on détend le débit auxiliaire dans une turbine (41 ) où il se liquéfie au moins partiellement et on envoie le débit au moins partiellement liquéfié (43) en tête de la première colonne.
2. Procédé selon la revendication 1 dans lequel le débit auxiliaire (43) est partiellement liquéfié à la sortie d’une roue de la turbine (41 ), voire dans la roue de la turbine, par exemple pour obtenir à la sortie de la roue ou dans celle-ci un débit auxiliaire détendu contenant entre 0,5% et 10%, préférentiellement entre 2% et 5% de liquide.
3. Procédé selon la revendication 1 ou 2 dans lequel le débit auxiliaire (43) est directement détendu dans la turbine (41 ), sans réchauffement préalable.
4. Procédé selon l’une des revendication 1 , 2 ou 3 dans lequel le débit enrichi en azote (17) est réchauffé dans un échangeur de chaleur (15) en amont du compresseur (19), le débit comprimé enrichi en azote se refroidit dans l’échangeur de chaleur et est ensuite envoyé au moins en partie au rebouilleur de cuve (31 ).
5. Procédé selon la revendication 4 dans lequel une partie (25) du débit comprimé enrichi en azote est détendue dans une deuxième turbine (27) et renvoyée à l’échangeur de chaleur.
6. Procédé selon l’une des revendications précédentes dans lequel la température d’entrée (41 ) de la turbine et/ou de la deuxième turbine (27) et/ou du compresseur (19) est une température cryogénique.
7. Procédé selon l’une des revendications précédentes dans lequel on envoie un débit liquide riche en argon de la tête de la deuxième colonne (2) vers la tête de la première colonne (1 ).
8. Procédé selon l’une des revendications précédentes dans lequel en opération on ne soutire aucun débit de purge du condenseur (37) de la deuxième colonne (2).
9. Procédé selon l’une des revendications précédentes dans lequel après les étapes de détente, les première et deuxième parties (33, 35) du débit au moins partiellement condensé enrichi en azote ont des pressions et/ou des températures différentes, la deuxième partie se trouvant de préférence à une pression supérieure à celle de la première partie.
10. Appareil de séparation d’air par distillation cryogénique dans un système de colonne comprenant une première colonne (1 ) opérant à une première pression et ayant un rebouilleur de cuve (31 ) et une deuxième colonne (2) opérant à une deuxième pression ayant un condenseur de tête (37), la première pression étant sensiblement égale à la deuxième pression, un compresseur (19), une turbine (41 ), une conduite pour envoyer de l’air comprimé, épuré et refroidi (3) à un point intermédiaire de la première colonne, une conduite pour soutirer un liquide enrichi en oxygène en cuve de la première colonne et/ou un gaz enrichi en oxygène (45) de la première colonne et une conduite pour soutirer un débit enrichi en azote (7) en tête de la première colonne et pour l’envoyer vers le compresseur, une conduite pour envoyer un débit enrichi en argon (47) d’un point intermédiaire de la première colonne vers la cuve de la deuxième colonne, une conduite pour soutirer un débit riche en argon (51 ) en tête de la deuxième colonne, une conduite pour envoyer le débit enrichi en azote comprimé dans le compresseur vers le rebouilleur de cuve (31 ) de la première colonne afin de produire un débit au moins partiellement condensé enrichi en azote, des moyens pour diviser le débit au moins partiellement condensé enrichi en azote en une première et une deuxième parties (33,35), des moyens pour envoyer la première partie en tête de la première colonne après une étape de détente, des moyens pour envoyer la deuxième partie au condenseur de tête (37) de la deuxième colonne après une étape de détente où la deuxième partie se vaporise au moins partiellement pour former un débit auxiliaire, des moyens pour envoyer le débit auxiliaire (39) dans la turbine où il se liquéfie au moins partiellement et des moyens pour envoyer le débit au moins partiellement liquéfié (43) en tête de la première colonne, ces moyens comprenant éventuellement un séparateur de phases pour séparer le liquide et le gaz formés pour les envoyer ensuite séparément à la première colonne.
11. Appareil selon l’une des revendication 10 comprenant un échangeur de chaleur (15) en amont du compresseur (19) et des moyens pour y envoyer le débit enrichi en azote (17) s’y réchauffé et le débit comprimé enrichi en azote s’y refroidir.
12. Appareil selon la revendication 10 ou 11 comprenant une deuxième turbine (27) et des moyens pour y envoyer une partie (25) du débit comprimé enrichi en azote est détendue dans une deuxième turbine (27).
13. Appareil selon l’une des revendications 10 à 12 comprenant des moyens pour envoyer un débit liquide riche en argon de la tête de la deuxième colonne vers la tête de la première colonne.
14. Appareil selon l’une des revendications 10 à 13 ne comprenant aucune turbine d’air.
EP18867318.0A 2017-11-29 2018-11-08 Procédé et appareil de séparation d'air par distillation cryogénique Withdrawn EP3877713A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761346A FR3074274B1 (fr) 2017-11-29 2017-11-29 Procede et appareil de separation d'air par distillation cryogenique
PCT/FR2018/052776 WO2019106250A1 (fr) 2017-11-29 2018-11-08 Procédé et appareil de séparation d'air par distillation cryogénique

Publications (1)

Publication Number Publication Date
EP3877713A1 true EP3877713A1 (fr) 2021-09-15

Family

ID=61132654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18867318.0A Withdrawn EP3877713A1 (fr) 2017-11-29 2018-11-08 Procédé et appareil de séparation d'air par distillation cryogénique

Country Status (5)

Country Link
US (1) US11435139B2 (fr)
EP (1) EP3877713A1 (fr)
CN (1) CN111542724A (fr)
FR (1) FR3074274B1 (fr)
WO (1) WO2019106250A1 (fr)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2934907A (en) * 1954-08-17 1960-05-03 Union Carbide Corp High argon recovery using kettle top feed-top pinch principle
GB1258568A (fr) * 1968-08-21 1971-12-30
FR2060184B1 (fr) * 1969-09-10 1973-11-16 Air Liquide
IT1034545B (it) * 1975-03-26 1979-10-10 Siad Processo ed impianto per l otte nimento dell argon a partire da un processo di frazionamento dell aria
FR2584803B1 (fr) * 1985-07-15 1991-10-18 Air Liquide Procede et installation de distillation d'air
US4756731A (en) * 1986-02-20 1988-07-12 Erickson Donald C Oxygen and argon by back-pressured distillation
DE3770773D1 (de) * 1986-11-24 1991-07-18 Boc Group Plc Luftverfluessigung.
DE3871220D1 (de) * 1987-04-07 1992-06-25 Boc Group Plc Lufttrennung.
FR2705141B1 (fr) * 1993-05-11 1995-07-28 Air Liquide Procede et installation cryogenique de production d'argon.
FR2807150B1 (fr) * 2000-04-04 2002-10-18 Air Liquide Procede et appareil de production d'un fluide enrichi en oxygene par distillation cryogenique
FR2854579B1 (fr) * 2003-05-09 2005-06-17 Air Liquide Installation de distillation comprenant des colonnes a garnissages structures ondules-croises et procede d'augmentation de capacite d'une installation de distillation
US8484992B2 (en) * 2009-12-02 2013-07-16 Praxair Technology, Inc. Krypton xenon recovery from pipeline oxygen
FR2953915B1 (fr) * 2009-12-11 2011-12-02 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US8528363B2 (en) * 2009-12-17 2013-09-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US9279613B2 (en) * 2010-03-19 2016-03-08 Praxair Technology, Inc. Air separation method and apparatus
FR2973486B1 (fr) * 2011-03-31 2013-05-03 Air Liquide Procede de separation d'air par distillation cryogenique
JP5684058B2 (ja) * 2011-06-23 2015-03-11 エア・ウォーター株式会社 空気分離方法および空気分離装置
CN202328999U (zh) * 2011-12-01 2012-07-11 液化空气(杭州)有限公司 带快速启动的空气分离设备
CN102589250A (zh) * 2012-02-14 2012-07-18 开封黄河空分集团有限公司 一种由空气分离制取氮气的工艺
EP2634517B1 (fr) * 2012-02-29 2018-04-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et appareil pour la séparation d'air par distillation cryogénique
CN105910388A (zh) * 2016-06-03 2016-08-31 开封黄河空分集团有限公司 空气分离设备以及空气分离方法
FR3052243B1 (fr) 2016-06-06 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Assemblage d'elements modulaires de construction d'un appareil d'echange de masse et/ou de chaleur et procede d'echange utilisant un assemblage
FR3059087A3 (fr) 2016-11-18 2018-05-25 Air Liquide Appareil de separation a temperature subambiante
CN106949708B (zh) * 2016-11-25 2020-02-11 乔治洛德方法研究和开发液化空气有限公司 一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法

Also Published As

Publication number Publication date
US11435139B2 (en) 2022-09-06
FR3074274A1 (fr) 2019-05-31
WO2019106250A9 (fr) 2019-10-31
CN111542724A (zh) 2020-08-14
FR3074274B1 (fr) 2020-01-31
WO2019106250A1 (fr) 2019-06-06
US20200370825A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP4733124B2 (ja) 加圧気体生成物を生成するための低温空気分離方法
EP2122282B1 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique
EP3631327B1 (fr) Procédé et appareil pour la séparation de l'air par distillation cryogénique
FR2895068A1 (fr) Procede de separation d'air par distillation cryogenique
EP2847060B1 (fr) Procédé de séparation d'air par distillation cryogénique
EP1711765B1 (fr) Procédé et installationde de séparation d'air par distillation cryogénique
WO2011070257A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP0606027A1 (fr) Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air
EP2694898B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
AU2013288574A1 (en) Process for storing liquid rich in carbon dioxide in solid form
EP3058297B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
AU2013289279B2 (en) Process for the separation of a gas rich in carbon dioxide
EP3877713A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP2938414B1 (fr) Procédé et appareil de séparation d'un gaz riche en dioxyde de carbone
WO2022162041A1 (fr) Procédé et appareil de séparation d'un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
EP1132700A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
FR2761762A1 (fr) Procede et installation de separation d'air par distillation cryogenique
FR3135134A1 (fr) Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air
WO2015055938A2 (fr) Procede de deazotation du gaz naturel avec ou sans recuperation d'helium
FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR3014181A1 (fr) Procede et appareil de separation d’air par distillation cryogenique
FR2987755A1 (fr) Procede et appareil de separation par distillation d'un gaz contenant du dioxyde de carbone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220712