EP3875854B1 - Burner for the combustion of a fuel / air mixture and heater with such a burner - Google Patents

Burner for the combustion of a fuel / air mixture and heater with such a burner Download PDF

Info

Publication number
EP3875854B1
EP3875854B1 EP21157691.3A EP21157691A EP3875854B1 EP 3875854 B1 EP3875854 B1 EP 3875854B1 EP 21157691 A EP21157691 A EP 21157691A EP 3875854 B1 EP3875854 B1 EP 3875854B1
Authority
EP
European Patent Office
Prior art keywords
fuel
mixture
burner
air
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21157691.3A
Other languages
German (de)
French (fr)
Other versions
EP3875854A1 (en
Inventor
Tom Collins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102020202950.4A external-priority patent/DE102020202950A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3875854A1 publication Critical patent/EP3875854A1/en
Application granted granted Critical
Publication of EP3875854B1 publication Critical patent/EP3875854B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements

Definitions

  • burners for burning a fuel-air mixture stream comprising a mixer for generating the fuel-air mixture stream, a burner surface for spatially stabilizing combustion of the fuel-air mixture stream, and a mixture channel for connecting the mixer and burner surface in a mixture-conducting manner, known.
  • CM Guirao R. Knystautas, JH Lee, W. Benedick, M. Berman, Hydrogen-Air Detonations, Ninetinth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, 583-590
  • This specific parameter describes an experimentally verifiable cell structure of a detonating fuel-air mixture.
  • the detonation cell size depends, among other things, on the type of fuel, the fuel-air ratio, the temperature and the pressure.
  • the KR 2007 0097930 A discloses a generic burner and a flame detection method therefor for improving the safety of the burner by enabling a flame detection unit to detect the ion current generated by combustion of a fuel additive and to assess the presence of a flame.
  • the EP 2 863 125 A1 discloses a heater and a fuel-air mixing device for a heater with a fan-assisted heater Burner of a fuel-air mixing device, which supplies gaseous fuel in particular through at least one opening via a line of air flowing in the area of a bottleneck. It is proposed that the opening represents the essential throttling of the fuel between the line and the admixture with the air.
  • the invention is based on a burner for burning a fuel-air mixture stream, comprising a mixer through which fluid can flow for generating the fuel-air mixture stream by combining a fuel stream with an air stream, the mixer having at least one fuel opening for introducing the fuel stream into the air stream ; a burner surface for spatially stabilizing combustion of the fuel-air mixture stream at at least one mixture opening in the burner surface; and a mixture channel for connecting the mixer and burner surface in a mixture-conducting manner.
  • the invention is characterized in that a length of a mixture flow path, measured between the fuel opening and the mixture opening, is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times, particularly preferably in the range of ten times, a detonation cell size for a stoichiometric fuel-air -Mixture is below burner operating conditions.
  • the burner is a hydrogen burner.
  • the burner is designed to generate and burn a hydrogen-air mixture stream, the fuel being at least essentially hydrogen, the detonation cell size on which the design of the burner is based being a detonation cell size for a stoichiometric hydrogen-air mixture under burner operating conditions.
  • stoichiometric fuel-air ratios as well as the prevailing burner operating conditions in the mixture flow path during active combustion are assumed. These burner operating conditions should in particular be temperatures between 0 °C and 40 °C, in particular 20 °C; Pressures between 800 mbar and 1200 mbar, especially 1013 mbar; and essentially dry fuel-air mixture apply.
  • a fluid here is understood to mean in particular a fuel, in particular a gaseous fuel, or an oxidizing agent for the fuel, in particular air, or a mixture of fuel and oxidizing agent.
  • the fuel stream and the air stream are introduced into the mixer, brought together and mixed therein, in particular in a mixing space inside the mixer, whereby the fuel-air mixture stream is created.
  • the mixer has an air inlet opening for the air flow to enter the mixer, a fuel opening for the fuel flow to enter the mixer, the mixing space and a mixture outlet opening for the fuel-air mixture flow to exit the mixer.
  • the at least one fuel opening can in particular be a circular opening or a gap-shaped opening in the mixing space, which are arranged on a circumference of the mixing space.
  • the fuel-air mixture stream flows from the mixture outlet opening of the mixer into the mixture channel and on to the burner surface.
  • the burner surface has one or more mixture openings through which the fuel-air mixture flow can exit. The distance between the fuel opening and the mixture opening is the mixture flow path.
  • the mixture stream is ignited and burned downstream of the mixture opening in the burner surface.
  • the mixer and the mixture channel ensure that the mixture is formed as homogeneously as possible, which is required for low-emission combustion.
  • the task of the burner surface and mixture opening is to spatially stabilize the combustion so that the flame burns in a stationary manner and does not lift off the burner surface or through the mixture opening into the mixture channel strikes back.
  • a flashback represents a potentially dangerous situation.
  • the combustion heat of the flashback flame can cause thermal overload and thermal component failure to an unsuitable location within the burner (e.g. the mixer).
  • Flame flashback through the mixture opening into the mixture channel filled with a combustible fuel-air mixture can also lead to a deflagration or explosion, in particular with a sudden volume expansion of the fluids involved and a sharp increase in pressure. This can result in the maximum permissible pressure stress being exceeded, which can result in mechanical component failure or a loss of mechanical cohesion of burner components.
  • a suitable solution for the burner design is to limit the length of the mixture flow path so that, on the one hand, the mixture formation is as homogeneous as possible and, on the other hand, possible damage caused by flashback, in particular by deflagration and/or explosion, is minimized.
  • the length of the mixture flow path can be described particularly advantageously universally by limiting it to a multiple of the detonation cell size, the multiple being in the range of nine to eleven times, preferably in the range of nine and a half to ten and a half times, and particularly preferably in about tenfold.
  • approximately ten times means exactly ten times; alternatively, it may vary by 1% to 3% from ten times.
  • the mixture flow path here is understood to mean the flow path of the fuel-air mixture flow, measured from the place of its generation, namely where the fuel flow enters the mixing chamber through the fuel opening and into the air flow flowing there, to the place where it emerges from the burner and subsequent combustion, namely where the fuel-air mixture flow exits through the mixture opening in the burner surface.
  • a hydrogen burner is understood to mean, in particular, a burner that is suitable for using hydrogen as fuel. This suitability arises in particular from, among other things, the selection of materials for burner components and/or seals; through the structural and thermal design, fluid provision, fluid flow rates and/or safety precautions.
  • Hydrogen is understood to mean, in particular, a mixture that essentially consists of molecular hydrogen (H2). Consisting essentially of molecular hydrogen here means a pure hydrogen gas; alternatively, the hydrogen can also contain small admixtures of, in particular, gaseous accompanying substances such as oxygen, nitrogen, water vapor, hydrocarbons, carbon dioxide and/or carbon monoxide.
  • the detonation cell size for a stoichiometric hydrogen-air mixture at burner operating conditions for temperature and pressure is approximately 15 millimeters. Data for other fuels can also be found in the literature.
  • the design of the burner in order to generate and burn a hydrogen-air mixture flow can in particular include the appropriate selection of materials for burner components and/or seals as well as the structural design of lengths and/or diameters of channels and openings through which hydrogen, air or mixture flows the air delivery unit, the air duct, the fuel line, the fuel valve unit, the mixer, the mixture duct and/or the burner surface; as well as the selection of a suitable ignition source.
  • An advantageous embodiment of the burner is characterized in that the mixer has at least two fuel openings and/or a plurality of fuel openings, the length of the mixture flow path being measured between the mixture opening and the fuel opening furthest away from the mixture opening.
  • a fuel opening furthest away from the mixture opening is in particular a fuel opening arranged furthest upstream of the mixture flow.
  • a further advantageous embodiment of the burner is characterized in that the burner surface has at least two mixture openings and/or a plurality or multiplicity of mixture openings, the length of the mixture flow path being measured between the fuel opening and the mixture opening furthest away from the fuel opening.
  • a mixture opening furthest away from the fuel opening is in particular a mixture opening arranged furthest downstream of the mixture flow.
  • a further advantageous embodiment of the burner is characterized in that the length of the mixture flow path between the fuel opening and the mixture opening is measured along a flow thread of the fuel-air mixture stream.
  • the flow thread represents the route actually flowed through of a mixture volume selected as an example. This term should also be used for a turbulent mixture flow. With this definition, the concept of the length of the mixture flow path can also be applied in particular to non-stretched, for example curved, mixture flow paths.
  • the length of the mixture flow path is measured in particular along the mixture channel.
  • a further advantageous embodiment of the burner is characterized in that the burner comprises an, in particular controllable and/or regulatable, air delivery unit and/or can be connected to an, in particular controllable and/or regulatable, air delivery unit, wherein an air duct for the air-conducting connection of the air delivery unit and Mixer is provided.
  • the air delivery unit promotes the air flow.
  • the air delivery unit includes in particular an air blower with a controllable and/or adjustable speed.
  • the air delivery unit is arranged upstream of the mixer.
  • a further advantageous embodiment of the burner is characterized in that the burner can be connected to a fuel source, in particular by means of a controllable and / or regulatable fuel valve unit, with a fuel line being provided for the fuel-conducting connection of the fuel source and mixer, the fuel line being connected to the fuel opening in the Mixer opens.
  • the fuel source provides the fuel stream.
  • the fuel source is formed in particular by a fuel supply line or a fuel tank.
  • the fuel valve unit in particular includes a metering valve for controlled and/or regulated metering of the fuel flow into the mixer.
  • the fuel line directs the fuel from the fuel source to the fuel valve assembly and the mixer.
  • a further advantageous embodiment of the burner is characterized in that the mixer is designed in the manner of a Venturi nozzle, the air flow being guided through a nozzle section which narrows conically in the air flow direction and a conically widening nozzle section following downstream, the fuel opening or fuel openings being in the Area of a cross-sectional constriction is (are) arranged between the two nozzle sections of the Venturi nozzle.
  • a conical nozzle section is here understood to mean, in particular, a nozzle section which, in a longitudinal section through the nozzle along a flow direction, has straight or stretched flanks as a nozzle wall.
  • a conical nozzle section is to be understood in particular as meaning a nozzle section which, in the longitudinal section through the nozzle, has curved, in particular convexly curved, flanks as the nozzle wall along a flow direction.
  • a further advantageous embodiment of the burner is characterized in that the burner surface is a cylindrical burner surface, with the at least one mixture opening being formed on the lateral surface of the cylinder.
  • the cylindrical lateral surface of the burner has a perforation in an end section through a plurality of regularly arranged, adjacent mixture openings.
  • the invention also relates to a heater for heating a heat transfer medium by means of a burner, comprising a combustion chamber for receiving combustion of a fuel-air mixture stream and a heat exchanger for heating the heat transfer medium by means of the hot combustion exhaust gases generated during the combustion of the fuel-air mixture stream, wherein the burner is designed according to at least one of the above illustrations.
  • a heater is understood to mean, in particular, a device for supplying heat and/or hot water in the domestic or commercial sector.
  • a heat transfer medium is to be understood in particular as a heating medium such as heating water or heating air and/or drinking water, which can flow and be heated on a secondary side of the heat exchanger.
  • the combustion chamber in particular accommodates the burner surface and/or the combustion, shields the combustion from the environment and directs the hot combustion exhaust gases into a primary side of the heat exchanger to release heat.
  • the invention creates a burner and a heater that can safely generate and burn a fuel-air mixture stream. Possible risks that could arise, in particular from a flashback, are minimized by an advantageous design of the burner so that the heater can be operated safely.
  • FIG 1 shows a longitudinal section through a first exemplary embodiment of a burner (100) according to the invention for burning a fuel-air mixture stream (200), the arrangement shown being essentially rotationally symmetrical to a longitudinal axis (A).
  • the burner (100) comprises a mixer (102) through which fluid can flow for generating the fuel-air mixture stream (200) by combining a fuel stream (204) with an air stream (202), the air stream (202) passing through an air inlet opening (118). enters the mixer (102).
  • the fuel stream (204) enters a fuel distribution channel (annular channel 114) formed on the mixer (102).
  • the mixer (102), in particular the fuel distribution channel (114), has five oval fuel openings (104) for introducing the fuel stream (204) into the mixing space (116) inside the mixer (102) and into the air stream (202) flowing there. (this initiation is shown by two small, exemplary arrows for the fuel flow (204) at two fuel openings (104)).
  • the burner (100) further comprises a mixture channel (110) for connecting the mixer (102) and the burner surface (106) in a mixture-conducting manner. The mixture is formed as homogeneously as possible in the mixer (102) and in the mixture channel (110).
  • the burner (100) further comprises a burner surface (106) for spatially stabilizing combustion (206) of the fuel-air mixture stream (200) at, in this case, three mixture openings (108) in the burner surface (106).
  • the burner (100) is designed such that a length (L) of a mixture flow path (112), measured between the fuel opening (104) and the mixture opening (108), is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times. particularly preferably in the range of ten times a detonation cell size for a stoichiometric fuel-air mixture (200) under burner operating conditions.
  • the mixer (102) after Figure 1 has five fuel openings (104) which are arranged in two levels.
  • the length (L) of the mixture flow path (112) is defined as the length measured between the three mixture openings (108), which are arranged in a common plane, and the fuel openings (104) furthest away from the mixture openings (108).
  • FIG 2 shows a longitudinal section through a second exemplary embodiment of a burner (100) according to the invention.
  • the fuel openings (104) arranged in a common plane;
  • the fuel openings (104) can, for example, be circular and arranged circumferentially one after the other on the fuel distribution channel (114) and open into the mixing space (116) (only two fuel openings (104) are shown in a common plane, further fuel openings (104) can be circumferentially of the cylindrical contact surface of mixer (102) and fuel distribution channel (114).
  • the fuel opening (104) can alternatively also be designed in the shape of a gap in the form of a circumferential gap opening into the mixing chamber (116).
  • the mixture openings (108), in particular circumferentially, are arranged on a cylindrical lateral surface of a cylindrical burner surface (106) in three levels (only two mixture openings (108) are shown per level), further mixture openings (108) can be circumferentially on the cylindrical burner surface (106). be arranged on the three levels).
  • the length (L) of the mixture flow path (112) is defined as the length measured between the fuel openings (104), which are arranged in a common plane, and the mixture openings (108) furthest away from the fuel openings (104).
  • FIG 3 shows a section through a first exemplary embodiment of a heating device (300) according to the invention for heating a heat transfer medium by means of a burner (100).
  • the heater (300) comprises a combustion chamber (302) for receiving combustion (206) of a fuel-air mixture stream (200) and a heat exchanger (304) for heating the heat transfer medium by means of the combustion (206) of the fuel-air mixture.
  • Mixture stream (200) generated hot combustion exhaust gases (210).
  • a displacement body (306) directs the hot combustion exhaust gases (210) from the combustion chamber (302) into the heat exchanger (304).
  • the burner (100) after Figure 3 comprises a mixer (102) through which fluid can flow for generating the fuel-air mixture stream (200) by combining a fuel stream (204) with an air stream (202), wherein the mixer (102) has an air inlet opening (118) for entering the air stream (202) into the mixer (102) and one or more fuel openings (104) for introducing the fuel stream (204) into the air stream (202).
  • a mixture channel (110) Downstream of the mixer (102) is a mixture channel (110), which directs the fuel-air mixture stream (200) to the burner surface (106).
  • the burner surface (106) serves to spatially stabilize combustion (flame 206) of the fuel-air mixture stream (200) at the plurality of mixture openings (108) in the burner surface (106).
  • the burner surface (106) is designed as a cylindrical burner surface (106), with the plurality of mixture openings (108) being formed on the lateral surface of the cylinder.
  • the length (L) of the mixture flow path (112), measured between the most upstream fuel opening (104, in Figure 3 all fuel openings 104 lie in one plane) and the most downstream mixture opening (108), is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times, particularly preferably in the range of ten times, a detonation cell size for a stoichiometric fuel-air -Mixture (200) under burner operating conditions.
  • the burner (100) is a hydrogen burner.
  • the length (L) of the mixture flow path (112) for the hydrogen burner is, for example, 150 millimeters, which corresponds to ten times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.
  • the length (L) of the mixture flow path (112) is, for example, 142.5 millimeters, which corresponds to nine and a half times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.
  • the air delivery unit (120) sucks air in particular from an installation environment of the heater (300) and promotes the air flow (202) through the air duct (122) into the mixer (102).
  • a fuel line (124) is arranged for the fuel-conducting connection of the mixer (102) to a fuel source (208), one, in particular controllable and / or controllable fuel valve unit (126) is provided in the fuel line (124) for metering the fuel flow (204).
  • the fuel line (124) opens into the mixer (102) at the fuel opening (104).
  • the mixer (102) is designed like a Venturi nozzle. In the air flow direction, the air inlet opening (118) is followed by a conically narrowing nozzle section and a conically widening nozzle section downstream. The fuel openings (104) are arranged between these nozzle sections, in the area of a cross-sectional narrowing.
  • Figure 4 shows a section through a second exemplary embodiment of a heater (300) according to the invention.
  • the heater (300) after Figure 4 differs from the heater (300).
  • Figure 3 essentially in that the mixture channel (110) is curved.
  • L the length of the mixture flow path (112) between the plane of the fuel openings (104) and the plane of the mixture openings (108) furthest away from the fuel openings (104) along a flow thread (212) of the fuel Air mixture flow (200) is to be measured.
  • the burner (100) is a hydrogen burner.
  • the length (L) of the mixture flow path (112) for the hydrogen burner is, for example, 145.5 millimeters, which corresponds to almost ten times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.
  • the length (L) of the mixture flow path (112) is, for example, 135 millimeters, which corresponds to nine times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

Stand der TechnikState of the art

Es sind bereits Brenner zum Verbrennen eines Brennstoff-Luft-Gemischstroms, umfassend einen Mischer zum Erzeugen des Brennstoff-Luft-Gemischstroms, eine Brenneroberfläche zum räumlichen Stabilisieren einer Verbrennung des Brennstoff-Luft-Gemischstroms, und einen Gemischkanal zum gemischleitenden Verbinden von Mischer und Brenneroberfläche, bekannt.There are already burners for burning a fuel-air mixture stream, comprising a mixer for generating the fuel-air mixture stream, a burner surface for spatially stabilizing combustion of the fuel-air mixture stream, and a mixture channel for connecting the mixer and burner surface in a mixture-conducting manner, known.

Ferner ist es bekannt (siehe beispielsweise C. M. Guirao, R. Knystautas, J. H. Lee, W. Benedick, M. Berman, Hydrogen-Air Detonations, Ninetinth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, 583-590 ), ein Brennstoff-Luft-Gemisch anhand seiner Detonationszellengröße zu beschreiben. Diese spezifische Kenngröße beschreibt eine experimentell nachweisbare Zellstruktur eines detonierenden Brennstoff-Luft-Gemischs. Die Detonationszellengröße hängt unter anderem ab von der Brennstoffart, dem Brennstoff-Luft-Mengenverhältnis, der Temperatur und dem Druck.Furthermore, it is known (see for example CM Guirao, R. Knystautas, JH Lee, W. Benedick, M. Berman, Hydrogen-Air Detonations, Ninetinth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, 583-590 ), to describe a fuel-air mixture based on its detonation cell size. This specific parameter describes an experimentally verifiable cell structure of a detonating fuel-air mixture. The detonation cell size depends, among other things, on the type of fuel, the fuel-air ratio, the temperature and the pressure.

Die KR 2007 0097930 A offenbart einen gattungsgemäßen Brenner und ein Flammenerfassungsverfahren dafür, um die Sicherheit des Brenners zu verbessern, indem es einer Flammenerfassungseinheit ermöglicht wird, den durch die Verbrennung eines Brennstoffzusatzes erzeugten lonenstrom zu erfassen und das Vorhandensein einer Flamme zu beurteilen.The KR 2007 0097930 A discloses a generic burner and a flame detection method therefor for improving the safety of the burner by enabling a flame detection unit to detect the ion current generated by combustion of a fuel additive and to assess the presence of a flame.

Die EP 2 863 125 A1 offenbart ein Heizgerät sowie eine Brennstoff-Luft-Mischeinrichtung für ein Heizgerät mit einem von einem Gebläse unterstützten Brenner einer Brennstoff-Luft-Mischeinrichtung, die über eine Leitung strömender Luft im Bereich einer Engstelle insbesondere gasförmigen Brennstoff über mindestens eine Öffnung zuführt. Es wird vorgeschlagen, dass die Öffnung die wesentliche Drosselung des Brennstoffes zwischen der Leitung und der Zumischung zur Luft darstellt.The EP 2 863 125 A1 discloses a heater and a fuel-air mixing device for a heater with a fan-assisted heater Burner of a fuel-air mixing device, which supplies gaseous fuel in particular through at least one opening via a line of air flowing in the area of a bottleneck. It is proposed that the opening represents the essential throttling of the fuel between the line and the admixture with the air.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung geht aus von einem Brenner zum Verbrennen eines Brennstoff-Luft-Gemischstroms, umfassend einen fluiddurchströmbaren Mischer zum Erzeugen des Brennstoff-Luft-Gemischstroms durch Zusammenführen eines Brennstoffstroms mit einem Luftstrom, wobei der Mischer zumindest eine Brennstofföffnung zum Einleiten des Brennstoffstroms in den Luftstrom aufweist; eine Brenneroberfläche zum räumlichen Stabilisieren einer Verbrennung des Brennstoff-Luft-Gemischstroms an zumindest einer Gemischöffnung in der Brenneroberfläche; und einen Gemischkanal zum gemischleitenden Verbinden von Mischer und Brenneroberfläche.The invention is based on a burner for burning a fuel-air mixture stream, comprising a mixer through which fluid can flow for generating the fuel-air mixture stream by combining a fuel stream with an air stream, the mixer having at least one fuel opening for introducing the fuel stream into the air stream ; a burner surface for spatially stabilizing combustion of the fuel-air mixture stream at at least one mixture opening in the burner surface; and a mixture channel for connecting the mixer and burner surface in a mixture-conducting manner.

Die Erfindung ist dadurch gekennzeichnet, dass eine Länge einer Gemischströmungsstrecke, gemessen zwischen der Brennstofföffnung und der Gemischöffnung, im Bereich eines Neunfachen bis Elffachen, bevorzugt im Bereich eines Neuneinhalbfachen bis Zehneinhalbfachen, besonders bevorzugt im Bereich eines Zehnfachen, einer Detonationszellengröße für ein stöchiometrisches Brennstoff-Luft-Gemisch unter Brennerbetriebsbedingungen liegt.The invention is characterized in that a length of a mixture flow path, measured between the fuel opening and the mixture opening, is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times, particularly preferably in the range of ten times, a detonation cell size for a stoichiometric fuel-air -Mixture is below burner operating conditions.

Der Brenner ist ein Wasserstoff-Brenner.The burner is a hydrogen burner.

Der Brenner ist ausgebildet, einen Wasserstoff-Luft-Gemischstrom zu erzeugen und zu verbrennen, wobei der Brennstoff zumindest im Wesentlichen Wasserstoff ist, wobei die der Auslegung des Brenners zugrundegelegte Detonationszellengröße eine Detonationszellengröße für ein stöchiometrisches Wasserstoff-Luft-Gemisch unter Brennerbetriebsbedingungen ist.The burner is designed to generate and burn a hydrogen-air mixture stream, the fuel being at least essentially hydrogen, the detonation cell size on which the design of the burner is based being a detonation cell size for a stoichiometric hydrogen-air mixture under burner operating conditions.

Bei der Bestimmung der Detonationszellengröße werden stöchiometrische Brennstoff-Luft-Verhältnisse sowie im weiteren die herrschenden Brennerbetriebsbedingungen in der Gemischströmungsstrecke bei aktiver Verbrennung angenommen. Als diese Brennerbetriebsbedingungen sollen hier insbesondere Temperaturen zwischen 0 °C und 40 °C, insbesondere 20 °C; Drücke zwischen 800 mbar und 1200 mbar, insbesondere 1013 mbar; sowie im Wesentlichen trockenes Brennstoff-Luft-Gemisch gelten.When determining the detonation cell size, stoichiometric fuel-air ratios as well as the prevailing burner operating conditions in the mixture flow path during active combustion are assumed. These burner operating conditions should in particular be temperatures between 0 °C and 40 °C, in particular 20 °C; Pressures between 800 mbar and 1200 mbar, especially 1013 mbar; and essentially dry fuel-air mixture apply.

Unter einem Fluid wird hier insbesondere ein Brennstoff, insbesondere ein gasförmiger Brennstoff, oder ein Oxidationsmittel für den Brennstoff, insbesondere Luft, oder ein Gemisch aus Brennstoff und Oxidationsmittel verstanden. Der Brennstoffstrom und der Luftstrom werden in den Mischer eingeleitet, darin, insbesondere in einem Mischraum im Inneren des Mischers, zusammengeführt und gemischt, wodurch der Brennstoff-Luft-Gemischstrom entsteht. Der Mischer weist eine Lufteintrittsöffnung zum Eintreten des Luftstroms in den Mischer, eine Brennstofföffnung zum Eintreten des Brennstoffstroms in den Mischer, den Mischraum und eine Gemischaustrittsöffnung zum Austreten des Brennstoff-Luft-Gemischstroms aus dem Mischer auf. Die mindestens eine Brennstofföffnung kann insbesondere eine kreisförmige Öffnung oder eine spaltförmige Öffnung in den Mischraum sein, die auf einem Umfang des Mischraums angeordnet sind.A fluid here is understood to mean in particular a fuel, in particular a gaseous fuel, or an oxidizing agent for the fuel, in particular air, or a mixture of fuel and oxidizing agent. The fuel stream and the air stream are introduced into the mixer, brought together and mixed therein, in particular in a mixing space inside the mixer, whereby the fuel-air mixture stream is created. The mixer has an air inlet opening for the air flow to enter the mixer, a fuel opening for the fuel flow to enter the mixer, the mixing space and a mixture outlet opening for the fuel-air mixture flow to exit the mixer. The at least one fuel opening can in particular be a circular opening or a gap-shaped opening in the mixing space, which are arranged on a circumference of the mixing space.

Der Brennstoff-Luft-Gemischstrom strömt aus der Gemischaustrittsöffnung des Mischers in den Gemischkanal und weiter zur Brenneroberfläche. Die Brenneroberfläche weist eine Gemischöffnung oder mehrere Gemischöffnungen auf, durch die der Brennstoff-Luft-Gemischstrom austreten kann. Die Strecke zwischen Brennstofföffnung und Gemischöffnung ist die Gemischströmungsstrecke. Stromabwärts der Gemischöffnung in der Brenneroberfläche wird der Gemischstrom gezündet und verbrannt. Der Mischer und der Gemischkanal bedingen die Güte einer möglichst homogenen Gemischbildung, die für eine schadstoffarme Verbrennung benötigt wird.The fuel-air mixture stream flows from the mixture outlet opening of the mixer into the mixture channel and on to the burner surface. The burner surface has one or more mixture openings through which the fuel-air mixture flow can exit. The distance between the fuel opening and the mixture opening is the mixture flow path. The mixture stream is ignited and burned downstream of the mixture opening in the burner surface. The mixer and the mixture channel ensure that the mixture is formed as homogeneously as possible, which is required for low-emission combustion.

Die Aufgabe von Brenneroberfläche und Gemischöffnung ist es, die Verbrennung räumlich zu stabilisieren, so dass die Flamme ortsfest brennt und weder von der Brenneroberfläche abhebt noch durch die Gemischöffnung in den Gemischkanal zurückschlägt. Ein Flammenrückschlag stellt eine potentiell gefährliche Situation dar. So kann die Verbrennungshitze der zurückgeschlagenen Flamme an einen hierfür nicht ausgelegten Ort innerhalb des Brenners (beispielsweise der Mischer) thermische Überlastung und thermisches Bauteilversagen hervorrufen. Flammenrückschlag durch die Gemischöffnung in den mit einem brennbaren Brennstoff-Luft-Gemisch gefüllten Gemischkanal kann auch zu einer Verpuffung oder Explosion, insbesondere mit plötzlicher Volumenausdehnung der beteiligten Fluide und starkem Druckanstieg, führen. Dabei kann es zur Überschreitung einer maximal zulässigen Druckbeanspruchung kommen, was ein mechanisches Bauteilversagen oder ein Aufheben des mechanischen Zusammenhalts von Brennerkomponenten zur Folge haben kann.The task of the burner surface and mixture opening is to spatially stabilize the combustion so that the flame burns in a stationary manner and does not lift off the burner surface or through the mixture opening into the mixture channel strikes back. A flashback represents a potentially dangerous situation. The combustion heat of the flashback flame can cause thermal overload and thermal component failure to an unsuitable location within the burner (e.g. the mixer). Flame flashback through the mixture opening into the mixture channel filled with a combustible fuel-air mixture can also lead to a deflagration or explosion, in particular with a sudden volume expansion of the fluids involved and a sharp increase in pressure. This can result in the maximum permissible pressure stress being exceeded, which can result in mechanical component failure or a loss of mechanical cohesion of burner components.

Es wurde herausgefunden, dass es eine geeignete Lösung für die Brennerauslegung ist, die Länge der Gemischströmungsstrecke einzuschränken, so dass einerseits eine möglichst homogene Gemischbildung erreicht wird, andererseits mögliche Schäden durch Flammenrückschlag, insbesondere durch Verpuffung und/oder Explosion, minimiert werden. Dabei wurde überraschend herausgefunden, dass die Länge der Gemischströmungsstrecke universell durch eine Einschränkung auf ein Vielfaches der Detonationszellengröße besonders vorteilhaft beschrieben werden kann, wobei das Vielfache im Bereich eines Neun- bis Elffachen, bevorzugt im Bereich eines Neuneinhalb- bis Zehneinhalbfachen, liegt und besonders bevorzugt in etwa ein Zehnfaches, ist. In etwa ein Zehnfaches bedeutet hier insbesondere genau ein Zehnfaches; alternativ kann es auch um 1 % bis 3 % vom Zehnfachen abweichen.It was found that a suitable solution for the burner design is to limit the length of the mixture flow path so that, on the one hand, the mixture formation is as homogeneous as possible and, on the other hand, possible damage caused by flashback, in particular by deflagration and/or explosion, is minimized. It was surprisingly found that the length of the mixture flow path can be described particularly advantageously universally by limiting it to a multiple of the detonation cell size, the multiple being in the range of nine to eleven times, preferably in the range of nine and a half to ten and a half times, and particularly preferably in about tenfold. In particular, approximately ten times means exactly ten times; alternatively, it may vary by 1% to 3% from ten times.

Unter der Gemischströmungsstrecke wird hier die Strömungsstrecke des Brennstoff-Luft-Gemischstroms verstanden, gemessen ab dem Ort seiner Erzeugung, nämlich dort wo der Brennstoffstrom durch die Brennstofföffnung in den Mischraum und in den dort strömenden Luftstrom eintritt, bis zum Ort seines Austretens aus dem Brenner und nachfolgenden Verbrennens, nämlich dort wo der Brennstoff-Luft-Gemischstroms durch die Gemischöffnung in der Brenneroberfläche austritt.The mixture flow path here is understood to mean the flow path of the fuel-air mixture flow, measured from the place of its generation, namely where the fuel flow enters the mixing chamber through the fuel opening and into the air flow flowing there, to the place where it emerges from the burner and subsequent combustion, namely where the fuel-air mixture flow exits through the mixture opening in the burner surface.

Unter einem Wasserstoff-Brenner ist insbesondere ein für die Verwendung von Wasserstoff als Brennstoff geeigneter Brenner zu verstehen. Diese Eignung ergibt sich insbesondere unter anderem durch die Materialauswahl bei Brennerkomponenten und/oder Dichtungen; durch die konstruktive und thermische Auslegung, Fluidbereitstellung, Fluiddurchsätze und/oder Sicherheitsvorkehrungen. Unter Wasserstoff ist insbesondere ein Gemisch zu verstehen, das im Wesentlichen aus molekularem Wasserstoff (H2) besteht. Im Wesentlichen aus molekularem Wasserstoff bestehen bedeutet hier ein reines Wasserstoffgas; alternativ kann der Wasserstoff auch geringe Beimischungen von insbesondere gasförmigen Begleitstoffen wie zum Beispiel Sauerstoff, Stickstoff, Wasserdampf, Kohlenwasserstoffen, Kohlendioxid und/oder Kohlenmonoxid enthalten.A hydrogen burner is understood to mean, in particular, a burner that is suitable for using hydrogen as fuel. This suitability arises in particular from, among other things, the selection of materials for burner components and/or seals; through the structural and thermal design, fluid provision, fluid flow rates and/or safety precautions. Hydrogen is understood to mean, in particular, a mixture that essentially consists of molecular hydrogen (H2). Consisting essentially of molecular hydrogen here means a pure hydrogen gas; alternatively, the hydrogen can also contain small admixtures of, in particular, gaseous accompanying substances such as oxygen, nitrogen, water vapor, hydrocarbons, carbon dioxide and/or carbon monoxide.

Die Detonationszellengröße für ein stöchiometrisches Wasserstoff-Luft-Gemisch bei Brennerbetriebsbedingungen für Temperatur und Druck beträgt laut Literatur in etwa 15 Millimeter. Daten für weitere Brennstoffe sind ebenfalls der Literatur zu entnehmen.According to the literature, the detonation cell size for a stoichiometric hydrogen-air mixture at burner operating conditions for temperature and pressure is approximately 15 millimeters. Data for other fuels can also be found in the literature.

Die Ausbildung des Brenners, um einen Wasserstoff-Luft-Gemischstrom zu erzeugen und zu verbrennen, kann insbesondere die geeignete Materialauswahl bei Brennerkomponenten und/oder Dichtungen sowie die konstruktive Auslegung von Längen und/oder Durchmessern von Wasserstoff-, Luft- oder Gemischdurchströmten Kanälen und Öffnungen der Luftfördereinheit, des Luftkanals, der Brennstoffleitung, der Brennstoffventileinheit, des Mischers, des Gemischkanals und/oder der Brenneroberfläche bedeuten; ebenso wie die Auswahl einer geeigneten Zündquelle.The design of the burner in order to generate and burn a hydrogen-air mixture flow can in particular include the appropriate selection of materials for burner components and/or seals as well as the structural design of lengths and/or diameters of channels and openings through which hydrogen, air or mixture flows the air delivery unit, the air duct, the fuel line, the fuel valve unit, the mixer, the mixture duct and/or the burner surface; as well as the selection of a suitable ignition source.

Eine vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass der Mischer zumindest zwei Brennstofföffnungen und/oder eine Mehrzahl an Brennstofföffnungen aufweist, wobei die Länge der Gemischströmungsstrecke zwischen der Gemischöffnung und der am weitesten von der Gemischöffnung entfernten Brennstofföffnung gemessen ist.An advantageous embodiment of the burner is characterized in that the mixer has at least two fuel openings and/or a plurality of fuel openings, the length of the mixture flow path being measured between the mixture opening and the fuel opening furthest away from the mixture opening.

Eine am weitesten von der Gemischöffnung entfernte Brennstofföffnung ist insbesondere eine am weitesten stromaufwärts der Gemischströmung angeordnete Brennstofföffnung. Bei dieser Brennerauslegung wird ein Brennerbetrieb insbesondere besonders sicher.A fuel opening furthest away from the mixture opening is in particular a fuel opening arranged furthest upstream of the mixture flow. With this burner design, burner operation becomes particularly safe.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass die Brenneroberfläche zumindest zwei Gemischöffnungen und/oder eine Mehrzahl oder Vielzahl an Gemischöffnungen aufweist, wobei die Länge der Gemischströmungsstrecke zwischen der Brennstofföffnung und der am weitesten von der Brennstofföffnung entfernten Gemischöffnung gemessen ist.A further advantageous embodiment of the burner is characterized in that the burner surface has at least two mixture openings and/or a plurality or multiplicity of mixture openings, the length of the mixture flow path being measured between the fuel opening and the mixture opening furthest away from the fuel opening.

Eine am weitesten von der Brennstofföffnung entfernte Gemischöffnung ist insbesondere eine am weitesten stromabwärts der Gemischströmung angeordnete Gemischöffnung. Bei dieser Brennerauslegung wird ein Brennerbetrieb insbesondere besonders sicher.A mixture opening furthest away from the fuel opening is in particular a mixture opening arranged furthest downstream of the mixture flow. With this burner design, burner operation becomes particularly safe.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass die Länge der Gemischströmungsstrecke zwischen der Brennstofföffnung und der Gemischöffnung längs eines Strömungsfadens des Brennstoff-Luft-Gemischstroms gemessen ist.A further advantageous embodiment of the burner is characterized in that the length of the mixture flow path between the fuel opening and the mixture opening is measured along a flow thread of the fuel-air mixture stream.

Unter der Annahme einer laminaren Gemischströmung gibt der Strömungsfaden die tatsächlich durchströmte Strecke eines beispielhaft herausgegriffenen Gemischvolumens wieder. Dieser Begriff soll so aber auch für eine turbulente Gemischströmung verwendet werden. Mit dieser Definition lässt sich der Begriff der Länge der Gemischströmungsstrecke insbesondere auch auf nicht gestreckte, beispielsweise gekrümmte, Gemischströmungsstrecken anwenden.Assuming a laminar mixture flow, the flow thread represents the route actually flowed through of a mixture volume selected as an example. This term should also be used for a turbulent mixture flow. With this definition, the concept of the length of the mixture flow path can also be applied in particular to non-stretched, for example curved, mixture flow paths.

Die Länge der Gemischströmungsstrecke ist insbesondere längs des Gemischkanals gemessen.The length of the mixture flow path is measured in particular along the mixture channel.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass der Brenner eine, insbesondere steuerbare und/oder regelbare, Luftfördereinheit umfasst und/oder mit einer, insbesondere steuerbaren und/oder regelbaren, Luftfördereinheit verbindbar ist, wobei ein Luftkanal zum luftleitenden Verbinden von Luftfördereinheit und Mischer vorgesehen ist.A further advantageous embodiment of the burner is characterized in that the burner comprises an, in particular controllable and/or regulatable, air delivery unit and/or can be connected to an, in particular controllable and/or regulatable, air delivery unit, wherein an air duct for the air-conducting connection of the air delivery unit and Mixer is provided.

Die Luftfördereinheit fördert den Luftstrom. Die Luftfördereinheit umfasst insbesondere ein Luftgebläse mit steuerbarer und/oder regelbarer Drehzahl. Insbesondere ist die Luftfördereinheit stromaufwärts des Mischers angeordnet.The air delivery unit promotes the air flow. The air delivery unit includes in particular an air blower with a controllable and/or adjustable speed. In particular, the air delivery unit is arranged upstream of the mixer.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass der Brenner mit einer Brennstoffquelle verbindbar ist, insbesondere mittels einer steuerbaren und/oder regelbaren Brennstoffventileinheit, wobei eine Brennstoffleitung zum brennstoffleitenden Verbinden von Brennstoffquelle und Mischer vorgesehen ist, wobei die Brennstoffleitung an der Brennstofföffnung in den Mischer mündet.A further advantageous embodiment of the burner is characterized in that the burner can be connected to a fuel source, in particular by means of a controllable and / or regulatable fuel valve unit, with a fuel line being provided for the fuel-conducting connection of the fuel source and mixer, the fuel line being connected to the fuel opening in the Mixer opens.

Die Brennstoffquelle stellt den Brennstoffstrom bereit. Die Brennstoffquelle wird insbesondere von einer Brennstoffversorgungsleitung oder einem Brennstofftank gebildet. Die Brennstoffventileinheit umfasst insbesondere ein Dosierventil zum gesteuerten und/oder geregelten Dosieren des Brennstoffstroms in den Mischer. Die Brennstoffleitung leitet den Brennstoff von der Brennstoffquelle zur Brennstoffventileinheit und zum Mischer.The fuel source provides the fuel stream. The fuel source is formed in particular by a fuel supply line or a fuel tank. The fuel valve unit in particular includes a metering valve for controlled and/or regulated metering of the fuel flow into the mixer. The fuel line directs the fuel from the fuel source to the fuel valve assembly and the mixer.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass der Mischer nach Art einer Venturidüse ausgebildet ist, wobei der Luftstrom durch einen in Luftströmungsrichtung konisch sich verengenden Düsenabschnitt und einen stromabwärts folgenden, konisch sich aufweitenden Düsenabschnitt geführt ist, wobei die Brennstofföffnung oder die Brennstofföffnungen im Bereich einer Querschnittsverengung zwischen den beiden Düsenabschnitten der Venturidüse angeordnet ist (sind).A further advantageous embodiment of the burner is characterized in that the mixer is designed in the manner of a Venturi nozzle, the air flow being guided through a nozzle section which narrows conically in the air flow direction and a conically widening nozzle section following downstream, the fuel opening or fuel openings being in the Area of a cross-sectional constriction is (are) arranged between the two nozzle sections of the Venturi nozzle.

Die Venturidüse beschleunigt den Luftstrom und erzeugt einen Unterdruck, mittels dessen der Brennstoffstrom in den Mischer gesaugt wird. Unter einem konischen Düsenabschnitt ist hier insbesondere ein Düsenabschnitt zu verstehen, der im Längsschnitt durch die Düse längs einer Strömungsrichtung gerade beziehungsweise gestreckte Flanken als Düsenwand aufweist. In einer anderen Ausführungsform ist unter einem konischen Düsenabschnitt insbesondere auch ein Düsenabschnitt zu verstehen, der im Längsschnitt durch die Düse längs einer Strömungsrichtung gekrümmte, insbesondere konvex gekrümmte, Flanken als Düsenwand aufweist.The Venturi nozzle accelerates the air flow and creates a negative pressure through which the fuel flow is sucked into the mixer. A conical nozzle section is here understood to mean, in particular, a nozzle section which, in a longitudinal section through the nozzle along a flow direction, has straight or stretched flanks as a nozzle wall. In another embodiment, a conical nozzle section is to be understood in particular as meaning a nozzle section which, in the longitudinal section through the nozzle, has curved, in particular convexly curved, flanks as the nozzle wall along a flow direction.

Eine weitere vorteilhafte Ausführungsform des Brenners ist dadurch gekennzeichnet, dass die Brenneroberfläche eine zylindrische Brenneroberfläche ist, wobei die zumindest eine Gemischöffnung auf der Mantelfläche des Zylinders ausgebildet ist.A further advantageous embodiment of the burner is characterized in that the burner surface is a cylindrical burner surface, with the at least one mixture opening being formed on the lateral surface of the cylinder.

Insbesondere weist die zylindrische Mantelfläche des Brenners in einem endseitigen Abschnitt eine Perforation durch eine Vielzahl von regelmäßig angeordneten, benachbarten Gemischöffnungen auf.In particular, the cylindrical lateral surface of the burner has a perforation in an end section through a plurality of regularly arranged, adjacent mixture openings.

Die Erfindung betrifft auch ein Heizgerät zum Erwärmen eines Wärmeträgermediums mittels eines Brenners, umfassend eine Brennkammer zum Aufnehmen einer Verbrennung eines Brennstoff-Luft-Gemischstroms und einen Wärmeübertrager zum Erwärmen des Wärmeträgermediums mittels der bei der Verbrennung des Brennstoff-Luft-Gemischstroms erzeugten heißen Verbrennungsabgase, wobei der Brenner nach zumindest einer der vorstehenden Darstellungen ausgebildet ist.The invention also relates to a heater for heating a heat transfer medium by means of a burner, comprising a combustion chamber for receiving combustion of a fuel-air mixture stream and a heat exchanger for heating the heat transfer medium by means of the hot combustion exhaust gases generated during the combustion of the fuel-air mixture stream, wherein the burner is designed according to at least one of the above illustrations.

Unter einem Heizgerät ist insbesondere eine Einrichtung zur Wärme- und/oder Warmwasserversorgung im häuslichen oder gewerblichen Bereich zu verstehen. Unter einem Wärmeträgermedium ist insbesondere ein Heizungsmedium wie Heizungswasser oder Heizluft und/oder ein Trinkwasser zu verstehen, das auf einer Sekundärseite des Wärmeübertragers strömen und erwärmt werden kann. Die Brennkammer nimmt insbesondere die Brenneroberfläche und/oder die Verbrennung auf, schirmt die Verbrennung gegenüber der Umgebung ab und leitet die heißen Verbrennungsabgase zur Wärmeabgabe in eine Primärseite des Wärmeübertragers.A heater is understood to mean, in particular, a device for supplying heat and/or hot water in the domestic or commercial sector. A heat transfer medium is to be understood in particular as a heating medium such as heating water or heating air and/or drinking water, which can flow and be heated on a secondary side of the heat exchanger. The combustion chamber in particular accommodates the burner surface and/or the combustion, shields the combustion from the environment and directs the hot combustion exhaust gases into a primary side of the heat exchanger to release heat.

Mit der Erfindung sind ein Brenner und ein Heizgerät geschaffen, die ein Brennstoff-Luft-Gemischstrom sicher erzeugen und verbrennen können. Mögliche Risiken, die sich insbesondere aus einem Flammenrückschlag ergeben könnten, werden durch eine vorteilhafte Auslegung des Brenners minimiert, so dass das Heizgerät sicher betrieben werden kann.The invention creates a burner and a heater that can safely generate and burn a fuel-air mixture stream. Possible risks that could arise, in particular from a flashback, are minimized by an advantageous design of the burner so that the heater can be operated safely.

Zeichnungdrawing

Weitere Ausgestaltungen und Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind vier Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen. Es zeigt:

Figur 1:
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brenners,
Figur 2:
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Brenners,
Figur 3:
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Heizgerätes,
Figur 4:
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Heizgerätes.
Further refinements and advantages result from the following description of the drawing. Four exemplary embodiments of the invention are shown in the drawing. The drawing, description and claims contain numerous features in combination. The person skilled in the art will also expediently consider the features individually and combine them into further sensible combinations. It shows:
Figure 1:
a first exemplary embodiment of a burner according to the invention,
Figure 2:
a second embodiment of a burner according to the invention,
Figure 3:
a first embodiment of a heater according to the invention,
Figure 4:
a second embodiment of a heater according to the invention.

Figur 1 zeigt einen Längsschnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brenners (100) zum Verbrennen eines Brennstoff-Luft-Gemischstroms (200), wobei die dargestellte Anordnung im Wesentlichen rotationssymmetrisch zu einer Längsachse (A) ist. Der Brenner (100) umfasst einen fluiddurchströmbaren Mischer (102) zum Erzeugen des Brennstoff-Luft-Gemischstroms (200) durch Zusammenführen eines Brennstoffstroms (204) mit einem Luftstrom (202), wobei der Luftstrom (202) durch eine Lufteintrittsöffnung (118) in den Mischer (102) eintritt. Der Brennstoffstrom (204) tritt in einen am Mischer (102) ausgebildeten Brennstoffverteilkanal (Ringkanal 114) ein. Der Mischer (102), insbesondere der Brennstoffverteilkanal (114), weist fünf oval dargestellte Brennstofföffnungen (104) zum Einleiten des Brennstoffstroms (204) in den Mischraum (116) im Inneren des Mischers (102) und in den dort strömenden Luftstrom (202) auf (dieses Einleiten ist mittels zwei kleiner, beispielhafter Pfeile für den Brennstoffstrom (204) an zwei Brennstofföffnungen (104) dargestellt). Weiter umfasst der Brenner (100) einen Gemischkanal (110) zum gemischleitenden Verbinden von Mischer (102) und Brenneroberfläche (106). Die möglichst homogene Gemischbildung findet im Mischer (102) und im Gemischkanal (110) statt. Weiter umfasst der Brenner (100) eine Brenneroberfläche (106) zum räumlichen Stabilisieren einer Verbrennung (206) des Brennstoff-Luft-Gemischstroms (200) an hier vorliegend drei Gemischöffnungen (108) in der Brenneroberfläche (106). Der Brenner (100) ist so ausgelegt, dass eine Länge (L) einer Gemischströmungsstrecke (112), gemessen zwischen der Brennstofföffnung (104) und der Gemischöffnung (108), im Bereich eines Neunfachen bis Elffachen, bevorzugt im Bereich eines Neuneinhalbfachen bis Zehneinhalbfachen, besonders bevorzugt im Bereich eines Zehnfachen, einer Detonationszellengröße für ein stöchiometrisches Brennstoff-Luft-Gemisch (200) unter Brennerbetriebsbedingungen liegt. Der Mischer (102) nach Figur 1 weist fünf Brennstofföffnungen (104) auf, die in zwei Ebenen angeordnet sind. Die Länge (L) der Gemischströmungsstrecke (112) ist als die zwischen den drei Gemischöffnungen (108), die in einer gemeinsamen Ebene angeordnet sind, und den am weitesten von den Gemischöffnungen (108) entfernten Brennstofföffnungen (104) gemessene Länge definiert. Figure 1 shows a longitudinal section through a first exemplary embodiment of a burner (100) according to the invention for burning a fuel-air mixture stream (200), the arrangement shown being essentially rotationally symmetrical to a longitudinal axis (A). The burner (100) comprises a mixer (102) through which fluid can flow for generating the fuel-air mixture stream (200) by combining a fuel stream (204) with an air stream (202), the air stream (202) passing through an air inlet opening (118). enters the mixer (102). The fuel stream (204) enters a fuel distribution channel (annular channel 114) formed on the mixer (102). The mixer (102), in particular the fuel distribution channel (114), has five oval fuel openings (104) for introducing the fuel stream (204) into the mixing space (116) inside the mixer (102) and into the air stream (202) flowing there. (this initiation is shown by two small, exemplary arrows for the fuel flow (204) at two fuel openings (104)). The burner (100) further comprises a mixture channel (110) for connecting the mixer (102) and the burner surface (106) in a mixture-conducting manner. The mixture is formed as homogeneously as possible in the mixer (102) and in the mixture channel (110). The burner (100) further comprises a burner surface (106) for spatially stabilizing combustion (206) of the fuel-air mixture stream (200) at, in this case, three mixture openings (108) in the burner surface (106). The burner (100) is designed such that a length (L) of a mixture flow path (112), measured between the fuel opening (104) and the mixture opening (108), is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times. particularly preferably in the range of ten times a detonation cell size for a stoichiometric fuel-air mixture (200) under burner operating conditions. The mixer (102) after Figure 1 has five fuel openings (104) which are arranged in two levels. The length (L) of the mixture flow path (112) is defined as the length measured between the three mixture openings (108), which are arranged in a common plane, and the fuel openings (104) furthest away from the mixture openings (108).

Figur 2 zeigt einen Längsschnitt durch ein zweites Ausführungsbeispiel eines erfindungsgemäßen Brenners (100). Abweichend von dem Brenner nach Figur 1 sind in Figur 2 die Brennstofföffnungen (104) in einer gemeinsamen Ebene angeordnet; die Brennstofföffnungen (104) können beispielsweise kreisförmig ausgebildet und umfänglich aufeinander folgend am Brennstoffverteilkanal (114) angeordnet in den Mischraum (116) münden (dargestellt sind nur zwei Brennstofföffnungen (104) in einer gemeinsamen Ebene, weitere Brennstofföffnungen (104) können umfänglich der zylindrischen Berührfläche von Mischer (102) und Brennstoffverteilkanal (114) angeordnet sein). Die Brennstofföffnung (104) kann alternativ auch spaltförmig in Form eines umfänglich umlaufenden, in den Mischraum (116) mündenden Spalts ausgebildet sein. Abweichend von Figur 1 sind die Gemischöffnungen (108), insbesondere umfänglich, auf einer zylindrischen Mantelfläche einer zylindrischen Brenneroberfläche (106) in drei Ebenen angeordnet (dargestellt sind je Ebene nur zwei Gemischöffnungen (108), weitere Gemischöffnungen (108) können umfänglich der zylindrischen Brenneroberfläche (106) in den drei Ebenen angeordnet sein). Die Länge (L) der Gemischströmungsstrecke (112) ist als die zwischen den Brennstofföffnungen (104), die in einer gemeinsamen Ebene angeordnet sind, und den am weitesten von den Brennstofföffnungen (104) entfernten Gemischöffnungen (108) gemessene Länge definiert. Figure 2 shows a longitudinal section through a second exemplary embodiment of a burner (100) according to the invention. Different from the burner after Figure 1 are in Figure 2 the fuel openings (104) arranged in a common plane; The fuel openings (104) can, for example, be circular and arranged circumferentially one after the other on the fuel distribution channel (114) and open into the mixing space (116) (only two fuel openings (104) are shown in a common plane, further fuel openings (104) can be circumferentially of the cylindrical contact surface of mixer (102) and fuel distribution channel (114). The fuel opening (104) can alternatively also be designed in the shape of a gap in the form of a circumferential gap opening into the mixing chamber (116). Deviating from Figure 1 the mixture openings (108), in particular circumferentially, are arranged on a cylindrical lateral surface of a cylindrical burner surface (106) in three levels (only two mixture openings (108) are shown per level), further mixture openings (108) can be circumferentially on the cylindrical burner surface (106). be arranged on the three levels). The length (L) of the mixture flow path (112) is defined as the length measured between the fuel openings (104), which are arranged in a common plane, and the mixture openings (108) furthest away from the fuel openings (104).

Figur 3 zeigt einen Schnitt durch ein erstes Ausführungsbeispiel eines erfindungsgemäßen Heizgerätes (300) zum Erwärmen eines Wärmeträgermediums mittels eines Brenners (100). Das Heizgerät (300) umfasst eine Brennkammer (302) zum Aufnehmen einer Verbrennung (206) eines Brennstoff-Luft-Gemischstroms (200) und einen Wärmeübertrager (304) zum Erwärmen des Wärmeträgermediums mittels der bei der Verbrennung (206) des Brennstoff-Luft-Gemischstroms (200) erzeugten heißen Verbrennungsabgase (210). Ein Verdrängungskörper (306) lenkt die heißen Verbrennungsabgase (210) aus der Brennkammer (302) in den Wärmeübertrager (304). Figure 3 shows a section through a first exemplary embodiment of a heating device (300) according to the invention for heating a heat transfer medium by means of a burner (100). The heater (300) comprises a combustion chamber (302) for receiving combustion (206) of a fuel-air mixture stream (200) and a heat exchanger (304) for heating the heat transfer medium by means of the combustion (206) of the fuel-air mixture. Mixture stream (200) generated hot combustion exhaust gases (210). A displacement body (306) directs the hot combustion exhaust gases (210) from the combustion chamber (302) into the heat exchanger (304).

Der Brenner (100) nach Figur 3 umfasst einen fluiddurchströmbaren Mischer (102) zum Erzeugen des Brennstoff-Luft-Gemischstroms (200) durch Zusammenführen eines Brennstoffstroms (204) mit einem Luftstrom (202), wobei der Mischer (102) eine Lufteintrittsöffnung (118) zum Eintreten des Luftstroms (202) in den Mischer (102) und eine oder mehrere Brennstofföffnungen (104) zum Einleiten des Brennstoffstroms (204) in den Luftstrom (202) aufweist.The burner (100) after Figure 3 comprises a mixer (102) through which fluid can flow for generating the fuel-air mixture stream (200) by combining a fuel stream (204) with an air stream (202), wherein the mixer (102) has an air inlet opening (118) for entering the air stream (202) into the mixer (102) and one or more fuel openings (104) for introducing the fuel stream (204) into the air stream (202).

Stromabwärts des Mischers (102) schließt sich ein Gemischkanal (110) an, der den Brennstoff-Luft-Gemischstrom (200) zur Brenneroberfläche (106) leitet. Die Brenneroberfläche (106) dient zur räumlichen Stabilisierung einer Verbrennung (Flamme 206) des Brennstoff-Luft-Gemischstroms (200) an den mehreren Gemischöffnungen (108) in der Brenneroberfläche (106). Die Brenneroberfläche (106) ist als eine zylindrische Brenneroberfläche (106) ausgebildet, wobei die mehreren Gemischöffnungen (108) auf der Mantelfläche des Zylinders ausgebildet sind.Downstream of the mixer (102) is a mixture channel (110), which directs the fuel-air mixture stream (200) to the burner surface (106). The burner surface (106) serves to spatially stabilize combustion (flame 206) of the fuel-air mixture stream (200) at the plurality of mixture openings (108) in the burner surface (106). The burner surface (106) is designed as a cylindrical burner surface (106), with the plurality of mixture openings (108) being formed on the lateral surface of the cylinder.

Die Länge (L) der Gemischströmungsstrecke (112), gemessen zwischen der am weitesten stromaufwärts angeordneten Brennstofföffnung (104, in Figur 3 liegen alle Brennstofföffnungen 104 in einer Ebene) und der am weitesten stromabwärts angeordneten Gemischöffnung (108), liegt im Bereich eines Neunfachen bis Elffachen, bevorzugt im Bereich eines Neuneinhalbfachen bis Zehneinhalbfachen, besonders bevorzugt im Bereich eines Zehnfachen, einer Detonationszellengröße für ein stöchiometrisches Brennstoff-Luft-Gemisch (200) unter Brennerbetriebsbedingungen.The length (L) of the mixture flow path (112), measured between the most upstream fuel opening (104, in Figure 3 all fuel openings 104 lie in one plane) and the most downstream mixture opening (108), is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times, particularly preferably in the range of ten times, a detonation cell size for a stoichiometric fuel-air -Mixture (200) under burner operating conditions.

In einer bevorzugten Ausführungsform ist der Brenner (100) ein Wasserstoff-Brenner. Die Länge (L) der Gemischströmungsstrecke (112) beträgt für den Wasserstoff-Brenner beispielsweise 150 Millimeter, das entspricht einem Zehnfachen der Detonationszellengröße von 15 Millimeter für ein stöchiometrisches Wasserstoff-Luft-Gemisch. Alternativ beträgt die Länge (L) der Gemischströmungsstrecke (112) beispielsweise 142,5 Millimeter, das entspricht einem Neuneinhalbfachen der Detonationszellengröße von 15 Millimeter für ein stöchiometrisches Wasserstoff-Luft-Gemisch.In a preferred embodiment, the burner (100) is a hydrogen burner. The length (L) of the mixture flow path (112) for the hydrogen burner is, for example, 150 millimeters, which corresponds to ten times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture. Alternatively, the length (L) of the mixture flow path (112) is, for example, 142.5 millimeters, which corresponds to nine and a half times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.

Stromaufwärts des Mischers (102) ist eine, insbesondere steuerbare und/oder regelbare, Luftfördereinheit (120), insbesondere ein Luftgebläse, angeordnet; ein Luftkanal (122) ist zum luftleitenden Verbinden von Luftfördereinheit (120) und Mischer (102) vorgesehen. Die Luftfördereinheit (120) saugt Luft insbesondere aus einer Aufstellumgebung des Heizgeräts (300) an und fördert den Luftstrom (202) durch den Luftkanal (122) in den Mischer (102). Ebenfalls stromaufwärts des Mischers (102), und hydraulisch parallel zu Luftfördereinheit (120) und Luftkanal (122), ist eine Brennstoffleitung (124) zur brennstoffleitenden Verbindung des Mischer (102) mit einer Brennstoffquelle (208) angeordnet, wobei eine, insbesondere steuerbare und/oder regelbare, Brennstoffventileinheit (126) in der Brennstoffleitung (124) zum Dosieren des Brennstoffstroms (204) vorgesehen ist. Die Brennstoffleitung (124) mündet an der Brennstofföffnung (104) in den Mischer (102). Der Mischer (102) ist nach Art einer Venturidüse ausgebildet. In Luftströmungsrichtung folgt nach der Lufteintrittsöffnung (118) ein konisch sich verengender Düsenabschnitt und ein stromabwärts folgender, konisch sich aufweitender Düsenabschnitt. Zwischen diesen Düsenabschnitten, im Bereich einer Querschnittsverengung, sind die Brennstofföffnungen (104) angeordnet.An air delivery unit (120), in particular an air blower, which can be controlled and/or regulated, is arranged upstream of the mixer (102); an air duct (122) is provided for the air-conducting connection of the air delivery unit (120) and mixer (102). The air delivery unit (120) sucks air in particular from an installation environment of the heater (300) and promotes the air flow (202) through the air duct (122) into the mixer (102). Also upstream of the mixer (102), and hydraulically parallel to the air delivery unit (120) and air duct (122), a fuel line (124) is arranged for the fuel-conducting connection of the mixer (102) to a fuel source (208), one, in particular controllable and / or controllable fuel valve unit (126) is provided in the fuel line (124) for metering the fuel flow (204). The fuel line (124) opens into the mixer (102) at the fuel opening (104). The mixer (102) is designed like a Venturi nozzle. In the air flow direction, the air inlet opening (118) is followed by a conically narrowing nozzle section and a conically widening nozzle section downstream. The fuel openings (104) are arranged between these nozzle sections, in the area of a cross-sectional narrowing.

Figur 4 zeigt einen Schnitt durch ein zweites Ausführungsbeispiel eines erfindungsgemäßen Heizgerätes (300). Das Heizgerät (300) nach Figur 4 unterscheidet sich von dem Heizgerät (300) nach Figur 3 im Wesentlichen dadurch, dass der Gemischkanal (110) gekrümmt ausgebildet ist. An Figur 4 lässt sich gut erkennen, wie die Länge (L) der Gemischströmungsstrecke (112) zwischen der Ebene der Brennstofföffnungen (104) und der Ebene der am weitesten von den Brennstofföffnungen (104) entfernten Gemischöffnungen (108) längs eines Strömungsfadens (212) des Brennstoff-Luft-Gemischstroms (200) zu messen ist. Figure 4 shows a section through a second exemplary embodiment of a heater (300) according to the invention. The heater (300) after Figure 4 differs from the heater (300). Figure 3 essentially in that the mixture channel (110) is curved. At Figure 4 can be clearly seen how the length (L) of the mixture flow path (112) between the plane of the fuel openings (104) and the plane of the mixture openings (108) furthest away from the fuel openings (104) along a flow thread (212) of the fuel Air mixture flow (200) is to be measured.

In einer bevorzugten Ausführungsform ist der Brenner (100) ein Wasserstoff-Brenner. Die Länge (L) der Gemischströmungsstrecke (112) beträgt für den Wasserstoff-Brenner beispielsweise 145,5 Millimeter, das entspricht knapp einem Zehnfachen der Detonationszellengröße von 15 Millimeter für ein stöchiometrisches Wasserstoff-Luft-Gemisch. Alternativ beträgt die Länge (L) der Gemischströmungsstrecke (112) beispielsweise 135 Millimeter, das entspricht einem Neunfachen der Detonationszellengröße von 15 Millimeter für ein stöchiometrisches Wasserstoff-Luft-Gemisch.In a preferred embodiment, the burner (100) is a hydrogen burner. The length (L) of the mixture flow path (112) for the hydrogen burner is, for example, 145.5 millimeters, which corresponds to almost ten times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture. Alternatively, the length (L) of the mixture flow path (112) is, for example, 135 millimeters, which corresponds to nine times the detonation cell size of 15 millimeters for a stoichiometric hydrogen-air mixture.

Es empfiehlt sich, die Länge (L) der Gemischströmungsstrecke (112) unter einem Zehnfachen der Detonationszellengröße zu halten. Längen (L) zwischen einem Neunfachen und einem Zehnfachen, bevorzugt zwischen einem Neuneinhalbfachen und einem Zehnfachen haben sich besonders bewährt. Für den Wasserstoff-Brenner entspricht das Längen (L) im Bereich zwischen 135 Millimeter und 150 Millimeter, bevorzugt im Bereich zwischen 142,5 Millimeter und 150 Millimeter. Damit ist ein Brenner geschaffen, bei dem einerseits eine möglichst homogene Gemischbildung erreicht wird, andererseits mögliche Schäden durch Flammenrückschlag, insbesondere durch Verpuffung und/oder Explosion, minimiert werden.It is recommended to keep the length (L) of the mixture flow path (112) less than ten times the detonation cell size. Lengths (L) between nine times and ten times, preferably between nine and a half times and ten times, have proven particularly useful. For the hydrogen burner, this corresponds to lengths (L) in the range between 135 millimeters and 150 millimeters, preferably in the range between 142.5 millimeters and 150 millimeters. This creates a burner in which, on the one hand, the mixture formation is as homogeneous as possible and, on the other hand, possible damage caused by flashback, in particular through deflagration and/or explosion, is minimized.

Claims (9)

  1. Hydrogen burner (100) for the combustion of a flow of fuel/air mixture (200), comprising
    • a mixer (102), through which fluid is able to pass, for generating the flow of fuel/air mixture (200) by converging a fuel flow (204) and an air flow (202), wherein the fuel is at least substantially hydrogen, wherein the mixer (102) has a least one fuel opening (104) for introducing the fuel flow (204) into the air flow (202);
    • a burner surface (106) for spatially stabilizing combustion (206) of the flow of fuel/air mixture (200) at at least one mixture opening (108) in the burner surface (106);
    • a mixture duct (110) for connecting the mixer (102) and the burner surface (106) in a mixture-conducting manner;
    characterized in that a length (L) of a mixture flow section (112), when measured between the fuel opening (104) and the mixture opening (108), is in the range of nine times to eleven times, preferably in the range of nine and a half times to ten and a half times, particularly preferably in the range of ten times, the size of a detonation cell for a stoichiometric hydrogen/air mixture (200) under burner operating conditions in the mixture flow section (112) during active combustion, wherein burner operating conditions are considered here to be in particular temperatures between 0 °C and 40 °C, particularly 20 °C; pressures between 800 mbar and 1200 mbar, particularly 1013 mbar; and a substantially dry fuel/air mixture.
  2. Burner (100) according to one of the preceding claims, characterized in that the mixer (102) has at least two fuel openings (104) and/or a plurality of fuel openings (104), wherein the length (L) of the mixture flow section (112) is measured between the mixture opening (108) and the fuel opening (104) that is the most remote from the mixture opening (108).
  3. Burner (100) according to one of the preceding claims, characterized in that the burner surface (106) has at least two mixture openings (108) and/or a plurality of mixture openings (108), wherein the length (L) of the mixture flow section (112) is measured between the fuel opening (104) and the mixture opening (108) that is the most remote from the fuel opening (104).
  4. Burner (100) according to one of the preceding claims, characterized in that the length (L) of the mixture flow section (112) is measured between the fuel opening (104) and the mixture opening (108), along a flow strand (212) of the flow of fuel/air mixture (200).
  5. Burner (100) according to one of the preceding claims, characterized in that the burner (100) comprises an in particular controllable and/or feedback-controllable air conveying unit (102), and/or is connectable to an in particular controllable and/or feedback-controllable air conveying unit (120), wherein an air duct (122) for connecting the air conveying unit (120) and the mixer (102) in an air-conducting manner is provided.
  6. Burner (100) according to one of the preceding claims, characterized in that the burner (100) is connectable to a fuel source (208), in particular by means of a controllable and/or feedback-controllable fuel valve unit (126), wherein a fuel line (124) for connecting the fuel source (208) and the mixer (102) in a fuel-conducting manner is provided, wherein the fuel line (124) opens into the mixer at the fuel opening (104).
  7. Burner (100) according to one of the preceding claims, characterized in that the mixer (102) is configured in the manner of a Venturi nozzle, wherein the air flow (202) is guided through a nozzle portion which is constricted conically in the direction of air flow, and through a downstream nozzle portion which widens conically, wherein the fuel opening (104) is disposed in the region of a cross-sectional constriction between the two nozzle portions of the Venturi nozzle.
  8. Burner (100) according to one of the preceding claims, characterized in that the burner surface (106) is a cylindrical burner surface (106), wherein the at least one mixture opening (108) is configured on the shell face of the cylindrical burner surface (106).
  9. Heating apparatus (300) for heating a heat carrier medium by means of a burner (100), comprising
    • a combustion chamber (302) for accommodating a combustion (206) of a flow of fuel/air mixture (200);
    • a heat exchanger (304) for heating the heat transfer medium by means of the hot combustion exhaust gases (210) generated in the combustion (206) of the flow of fuel/air mixture (200),
    characterized in that the burner (100) is configured according to at least one of Claims 1 to 8.
EP21157691.3A 2020-03-06 2021-02-17 Burner for the combustion of a fuel / air mixture and heater with such a burner Active EP3875854B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020202942 2020-03-06
DE102020202950.4A DE102020202950A1 (en) 2020-03-06 2020-03-09 Burner for burning a fuel-air mixture flow and heater with such a burner

Publications (2)

Publication Number Publication Date
EP3875854A1 EP3875854A1 (en) 2021-09-08
EP3875854B1 true EP3875854B1 (en) 2023-11-22

Family

ID=74666634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21157691.3A Active EP3875854B1 (en) 2020-03-06 2021-02-17 Burner for the combustion of a fuel / air mixture and heater with such a burner

Country Status (1)

Country Link
EP (1) EP3875854B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123442A1 (en) 2022-09-14 2024-03-14 Vaillant Gmbh Fan for a heater and heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9400280A (en) 1994-02-23 1995-10-02 Stichting Energie Process for the combustion of highly reactive gaseous air / fuel mixtures and burner equipment for carrying out this process.
KR100784948B1 (en) * 2006-03-30 2007-12-11 어코드 주식회사 combustion burner and flame detection method
DE102013220950A1 (en) * 2013-10-16 2015-04-16 Robert Bosch Gmbh Heater with a burner assisted by a fan

Also Published As

Publication number Publication date
EP3875854A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
DE60108711T2 (en) Premix burner with low NOx emissions and method therefor
EP1817526B1 (en) Method and device for burning hydrogen in a premix burner
DE3027587C2 (en)
DE60105913T2 (en) WALL RADIATION BURNER WITH LOW NOX EMISSION
CH697709B1 (en) Combustion chamber with cooled venturi.
DE2432144A1 (en) BURNERS FOR DIFFERENT FUELS
DE19717721A1 (en) Burner arrangement with separate inlet for fuel and combustion air into combustion chamber
EP1356236B1 (en) Premix burner and method for operating such a premix burner
EP3875854B1 (en) Burner for the combustion of a fuel / air mixture and heater with such a burner
DE102005038662B4 (en) Combustion head and method for burning fuel
DE9007627U1 (en) Burners with low NOx emissions
EP2171354B1 (en) Burner
EP1241334B1 (en) Ignition method for a turbomachine
DE4430267A1 (en) Burner for flameless combustion of a fuel gas-air mixture
DE2821932C2 (en)
WO2019224050A1 (en) Fuel nozzle system
DE102020202950A1 (en) Burner for burning a fuel-air mixture flow and heater with such a burner
DE1501970A1 (en) Burner for oven
DE4408256A1 (en) Method and device for flame stabilization of premix burners
DE19542644B4 (en) premixed
EP3748228A2 (en) Burner with reduced flame temperature and nitrogen oxide emission
DE102016208729A1 (en) A method of operating a rocket propulsion system and rocket propulsion system
DE2461222C2 (en) burner
DE3232648C2 (en) Device for burning exhaust air containing combustible substances with the admixture of a fuel gas
DE4428097A1 (en) Method for operating a heater and heater for performing the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220309

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20230831

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COLLINS, TOM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001991

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 4