EP3861645A1 - Methode de transmission sans-fil et dispositif associe - Google Patents

Methode de transmission sans-fil et dispositif associe

Info

Publication number
EP3861645A1
EP3861645A1 EP19789596.4A EP19789596A EP3861645A1 EP 3861645 A1 EP3861645 A1 EP 3861645A1 EP 19789596 A EP19789596 A EP 19789596A EP 3861645 A1 EP3861645 A1 EP 3861645A1
Authority
EP
European Patent Office
Prior art keywords
transmission
usri
channels
receivers
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19789596.4A
Other languages
German (de)
English (en)
Inventor
Maryline Helard
Ali MOKH
Moussa Diallo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National des Sciences Appliquees de Rennes
Universite Cheikh Anta Diop De Dakar
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National des Sciences Appliquees de Rennes
Universite Cheikh Anta Diop De Dakar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National des Sciences Appliquees de Rennes, Universite Cheikh Anta Diop De Dakar filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3861645A1 publication Critical patent/EP3861645A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the invention relates to a digital communication technique using radio transmissions.
  • the invention relates more particularly to increasing the spectral transmission efficiency in a multi-antenna data transmission system.
  • modulation techniques exist for the implementation of transmission systems by transmission and reception of radioelectric signals.
  • spatial modulation techniques have appeared recently where the activation of one or more antennas on transmission, transmitting respectively to one or more antennas of one or more receivers, over a predetermined time interval, code information, in addition to the data that can be carried by the simultaneous use of another type of modulation (transmission of a symbol).
  • spatial modulation techniques use the index of transmit and / or receive antennas to transmit information additional to that transmitted by conventional multi-antenna systems.
  • Spatial modulations exist for the upward or downward path. They are called respectively spatial modulation at transmission and reception.
  • a group of binary information is mapped to a subset of transmission antennas. This subset of antennas will be activated for the duration of the spatial symbol, and the receiver must therefore estimate which transmitting antennas have been activated.
  • the same concept is applied to the reception antennas, but in this case the transmitter must target the subset of reception antennas to which the binary information has been mapped.
  • a preprocessing technique is used at the transmitter level to target the receiving antennas, such as the Zero forcing technique or the formation of digital or analog channels ("conjugate beanforming" ).
  • spatial modulation for up and down spatial transmission is performed between a base station and a connected object device.
  • the base station must estimate the channel between each antenna to configure a preprocessing block for the downlink and to also use it in the uplink as an equalizer.
  • data transmissions use various protocols including systematic transmission of information useful for identifying the sender of the transmitted data, as well as information useful for identifying the recipient (s) of the data.
  • MAC layers are independent of the first layer, called the PHY layer.
  • the MAC address (from the acronym meaning "Media Control Access”), sometimes called "physical address" is a unique identifier stored on a hardware device intended to be connected to a data transmission network. Unless it has been modified by a user, a MAC address is deemed to be an identifier unique in the world.
  • the so-called “hardware dependent” MAC layer thus constitutes the lower part of the link layer of the OSI model. This layer inserts and processes these MAC addresses within the frames transmitted according to the prior art. These data exchanges reduce spectral efficiency on the one hand, and on the other hand pose security problems because of the possible interception of the exchanged MAC addresses. 3. Statement of the invention.
  • the invention makes it possible to improve at least some of the drawbacks of the prior art by proposing a method simple to implement, which exploits the specificity of the physical layer of the spatial modulation to carry out an identification of the links without requiring an exchange.
  • MAC addresses in the transmission phases thus, this method proposes to jointly realize the MAC layer and the PHY layer.
  • the invention provides a method of transmitting data between at least one transmitter and a plurality of receivers, the method comprising a step of estimating the set of channels available between the transmitter and each of the receivers, and further comprising:
  • the invention also relates to a system for wireless transmission of data between at least one transmitter and a plurality of receivers comprising a module suitable for estimating the set of transmission channels available between the transmitter and each of the receivers, the system further comprising:
  • the transmission module being adapted to a data transmission devoid of a transmission of any receiver identifier.
  • FIG. 1 is a schematic representation of a wireless data transmission system according to a particular and non-limiting embodiment of the invention.
  • FIG. 2 is a diagram illustrating the main steps of a wireless transmission method in the system described in Figure 1, and according to a particular and non-limiting embodiment of the invention.
  • the modules represented are functional units, which may or may not correspond to physically distinguishable units. For example, these modules or some of them are grouped into a single component. Conversely, according to other embodiments, certain modules are composed of separate physical entities.
  • FIG. 1 is a schematic representation of a system SYST for wireless data transmission, by electromagnetic means, according to a particular and nonlimiting embodiment of the invention.
  • the electromagnetic communication system SYST comprises a BASE transceiver preferentially operating as a "base station” as well as USR1, USR2 and USR3 transceivers preferentially operating as "connected objects" capable of operating in the system among a plurality of other USRi objects connected to the same station base (such additional objects are not represented in FIG. 1 insofar as they are similar to those already represented.
  • the base station can be a modem-router device acting as a gateway for a local area network, in an area, a defined geographical space or even a dwelling, for example, and each of the connected objects USR1, USR2 and USR3 can be a portable device of the computer type, a tablet, a smart watch, a smartphone, a audiovisual receiver or any evolution of these products well known to the general public and widely used by them, these examples are obviously not limiting.
  • base station a base (node) of a mesh of a data transmission network comprising a plurality of mobile devices configured to communicate with each other and to communicate with other mobile devices USRi, similar or not, possibly connected to other “base stations” connected to this same mesh base, and more broadly to this same network mesh, directly or indirectly.
  • base station as defined here implements the electromagnetic part of a wireless communication system, the mesh being possibly wired. Obviously, such a mesh could also consist of wireless links.
  • connected object a mobile device as mentioned above and possibly adapted to communicate with peer devices in the same communication network to which it is connected via a “base station "
  • the BASE base station comprises a digital core DS which constitutes the “intelligent” part of this equipment.
  • the BASE base station further comprises, connected to the digital core DS, a CTR communication controller (interface) configured to implement modulation / demodulation operations according to the invention.
  • a PF pre-filtering system is also included in the BASE base station, in particular for the purpose of carrying out a pre-filtering useful for spatial modulation, for example, during electromagnetic transmissions in downlink mode. It will be noted that in upstream mode this prefiltering would be a Bi channel detector used. It is this pre-filtering (also called pre-coding or digital beamforming) that allows focusing the signals to one or more antennas simultaneously via one or more of the identified channels.
  • This pre-filtering is carried out digitally. It is this which allows to realize multi-user systems in MIMO, or even spatial modulations by targeting one or more antennas of a connected object to transport what can be called spatial symbols, alone or in addition to the symbols classic modulation.
  • the PF prefilter focuses on one or more antennas of a connected object device (receiver) according to a symbol to be transmitted.
  • a digital communication bus DL ensures exchanges between the digital core DS and the controller-interface CTR.
  • a second communication bus DE connects the controller to the prefilter PF.
  • the base station comprises transmit-receive antennas BSA1, BSA2 and BSA3 useful for transmitting data to or from the connected objects (devices) USR1, USR2 and USR3.
  • the connected objects USR1, USR2 and USR3 appear in short here and each only as equipment comprising a transceiver device having n UAn transmit / receive antennas usable both in transmission and in reception according to combinations for which each antenna among the n antennas UAn transmits / receives or does not transmit / receive electromagnetic signals.
  • the DS, CTR and PF modules each include a set of devices useful for their own operations, including one or more microcontrollers, non-volatile memory, volatile fast access working memory, clock circuits, a or several power reset and supervision circuits, extension and control ports, etc. All of these circuits, today common to any conventionally integrated and / or on-board electronic device, are not described further here since they do not contribute to the understanding of the invention which consists of an improved transmission method.
  • Each of the links between the transmit / receive antenna (s), for example BSA1, BSA2 and BSA3 of the BASE base station and one of the antennas transmission / reception UA1, UA2, UAn of a connected object defines a transmission channel B among the set of available transmission channels Bj of the complete system SYS.
  • available transmission channel should be interpreted as a transmission channel configured to be usable at a given time in the complete SYST transmission system described.
  • the invention here also includes a step of determining an available transmission channel, this transmission channel is configured to be usable at a given time in the SYST system.
  • the transmission method includes a step making it possible to perform the pre-filtering and to construct the correspondence table from this channel information.
  • the transmit / receive antennas BSA1, BSA2, BSA3, BSAn operate simultaneously or sequentially.
  • the connected object USR1 comprises three transmit / receive antennas UA1, UA2 and UA3 useful for digital transmissions with the BASE base station
  • the device USR2 comprises two antennas UA4 and UA5
  • the USR3 device includes only one UA6 antenna.
  • this embodiment is only an example intended to illustrate a variety of possible configurations for the USRi connected objects present in the SYST communication system.
  • the electromagnetic communications between the BASE base station and the connected objects USR1, USR2 and USR3 are therefore operated according to communication channels B1, B2, B3, B4, ... Bj respectively defined by the paths BSA1 -UA1, BSA1 -UA2 and BSA1 -UA3, by way of example, between the transmit / receive antennas.
  • the channels Bj are not all shown in Figure FIG.1.
  • FIG. 2 is a diagram illustrating the main steps of a wireless transmission method in the SYST system described in FIG. 1, and according to a particular and nonlimiting embodiment of the invention.
  • the transmission system of FIG. 1 comprising the BASE base station transceiver equipment and the connected object transceiver equipment USR1, USR2 and USR3 are initialized to be in particular operational in terms of capacity. transmission, reception and detection. That is to say that the set of devices internal to each of the BASE and USR1, USR2 and USR3 equipment is initialized and that the BASE and USR1, USR2, USR3 devices are ready for carrying out the essential steps of the method according to the invention.
  • control units of the BASE and USR1, USR2 and USR3 equipment are functional and if necessary execute all the software routines useful for their respective operations.
  • the same is true for each of the other possible connected objects USRi capable of being connected to the network thus constituted.
  • a determination of a weight of each of the antennas (also commonly called weight or binary weight) assigned to each of the UAn transmit / receive antennas in one of the binary sequences to be transmitted (in transmission or reception) in the case of a object connected to several antennas, and,
  • step S1 These operations corresponding to step S1, are carried out during a global phase of estimation and identification of all the channels Bj available between the base station BASE and all of the connected objects USRi accessible in the system. More precisely, during this step S1, the BASE base station broadcasts, during a step of transmitting to all of the devices present, pilot signals interpreted as such by the USRi connected objects and known by them. Each of the connected objects USRi uses the received pilot signal and the pilot signals sent by the BASE base station to estimate its own data transmission channels Bj between the base station and itself. In turn, each of the antennas UA1, UA2, UAn of each connected object then in turn broadcasts pilot signals known from the BASE base station.
  • the BASE base station uses the signal received and the pilots sent by the connected object to estimate in turn the different so-called "Uplink" channels between the antennas UA1, UA2, UAn and it.
  • the method implements a channel estimation technique called "Backoff". Indeed, following the estimation of the uplink channel, the channel is used in downlink to focus using a pre-filter.
  • the BASE base station estimates the different channels and associates them with the corresponding connected object USRi, as well as with a unique hardware identifier corresponding to this connected object, such as its MAC address MACi, for example or an equivalent identifier.
  • This phase can be used to estimate all the channels Bj between the BASE base station and the various connected objects USRi.
  • An orthogonality between the different connected objects is however necessary to avoid collisions or interference during the phase of transmission of the pilot signals.
  • each connected object estimates this by the channels between the base station and itself and defines a random value (by drawing lots). This value will then be used to initialize a time counter specific to the connected object, to then define a time interval to be used to transmit to the BASE base station.
  • Each of the connected objects USRi thus broadcasts to the base station at a different instant, which instant follows from the time counter value “drawn” in correspondence.
  • the various USRi connected objects each transmit a unique MACi hardware identifier to the BASE base station, such as a MAC address, for example.
  • the unique hardware identifier specific to each connected object USRi is not a MAC address in the commonly accepted sense, but any other unique hardware identifier, such as a simple number or a simple alphanumeric string for example, if indeed it really appears uniquely in the SYS network and ideally in the absolute.
  • the BASE base station then proceeds, during a S2 calibration step, to the construction and recording of a correspondence table TAB between at least two MACi identifiers or unique equivalent of connected objects USRi (transmitters or receivers ) among the plurality of USRi devices and at least two Bj channels available.
  • this also makes it possible to improve the security of the exchanges between the BASE base station and the connected objects USRi. Indeed, in the case of an interception of a signal normally transmitted in the SYST communication system by an external device (such as a spy device, for example), it will not be possible for the latter to identify the recipients of the intercepted signal because the MAC address will not be transmitted as such as given.
  • an external device such as a spy device, for example
  • This addressing principle without having to transmit a unique identifier (recipient address) in the data, can also be used in the opposite direction, namely from a connected device USRi to the BASE base station, that is to say ie uphill.
  • the transmission principle according to the invention can also relate to exchanges between two connected objects USRi or even between two base stations such as the BASE station and a similar device operating in the SYST system.
  • the method according to the invention is used in the two directions of transmission of the system seen globally, it can be considered that it is possible to communicate within the system by dispensing with having to transmit unique transmitter identifiers ( s) as well as receiver (s) since each of the devices of the system is capable of containing a correspondence table similar to the correspondence table TAB of the BASE base station and establishing correspondences between unique identifiers (MAC addresses, for example example) and transmission channels Bj, configured after the channel identification and estimation phase.
  • the channels Bj each corresponding to directivity parameters of one or more beams, according to a configuration specific to each.
  • the implementation of the invention makes it possible to improve the security of the transmissions since a spy device which would be configured to intercept all or part of these could not determine to which device (s) (object connected or base station) they are addressed.
  • the pre-filtering aiming to direct the radioelectric emissions in correspondence of the different channels Bj to an antenna receiving UAn, is carried out by usual signal processing operations, well known to those skilled in the art. profession of digital transmissions.
  • connected objects can implement and / or use spatial modulation or not.
  • the connected object USR3 in FIG. 1 has only one UA6 antenna and therefore does not use spatial modulation.
  • the means of electrical supply is carried out by usual signal processing operations, well known to those skilled in the art. profession of digital transmissions.
  • connected objects can implement and / or use spatial modulation or not.
  • the connected object USR3 in FIG. 1 has only one UA6 antenna and therefore does not use spatial modulation.
  • the invention is not limited to the embodiments described but to any method of data transmission between at least one transmitter and a plurality of receivers comprising a step of detecting and estimating the set of channels available between a transmitter and each of the receivers, followed by a step of constructing a correspondence table between at least two unique identifiers of receivers among a plurality of receivers and at least two channels among the available channels, as well as a subsequent step of transmitting data between the transmitter and at least one of the receivers, via at least one of the available channels, the data transmission then being devoid of transmission of any unique receiver identifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne une méthode de transmission sans-fil de données entre au moins un émetteur (BASE) et une pluralité de récepteurs (USRi) comprenant une étape d'estimation de l'ensemble des canaux disponibles entre l'émetteur et chacun des récepteurs (USRi) comprenant : - une étape de construction d'une table de correspondance entre au moins deux identifiants uniques (MACi) de récepteurs parmi la pluralité de récepteurs (USRi) et au moins deux canaux (B1, B3) parmi les canaux (Bj) disponibles, et, - une étape de transmission de données entre l'émetteur (BASE) et au moins un des récepteurs (USRi), via au moins un des canaux (Bj) disponibles, la transmission de données étant dépourvue de transmission d'un quelconque identifiant unique de récepteur d'émetteur.

Description

Description
Titre : METHODE DE TRANSMISSION SANS-FIL ET DISPOSITIF ASSOCIE.
1. Domaine technique de l’invention.
L’invention concerne une technique de communication numérique par transmissions radioélectriques. L’invention concerne plus particulièrement l’augmentation de l’efficacité spectrale de transmission dans un système de transmission de données multi-antennes.
2. Etat de la technique antérieure.
De nombreuses techniques de modulation existent pour la mise en œuvre de systèmes de transmissions par émission et réception de signaux radioélectriques. Parmi les différentes modulations existantes sont apparues récemment des techniques de modulations spatiales où l’activation d’une ou plusieurs antennes à l’émission, émettant respectivement vers une ou plusieurs antennes d’un ou plusieurs récepteurs, sur un intervalle de temps prédéterminé, code de l’information, outre les données pouvant être portées par l’utilisation simultanée d’un autre type de modulation (transmission d’un symbole).
Plus précisément, les techniques de modulation spatiale exploitent l’indice des antennes d’émission et/ou de réception pour transmettre une information additionnelle à celle transmise par les systèmes multi-antennaires classiques. Les modulations spatiales existent pour la voie montante ou descendante. On les appelle respectivement modulation spatiale à émission et à réception.
Pour la modulation spatiale à l’émission, un groupe d’informations binaires est mis en correspondance avec un sous-ensemble d’antennes à émission. Ce sous- ensemble d’antennes sera activé pendant la durée symbole spatiale, et le récepteur doit donc estimer quelles antennes d’émission ont été activées. Pour la modulation spatiale à réception, le même concept est appliqué aux antennes de réception, mais dans ce cas le transmetteur doit cibler le sous-ensemble d’antennes de réception auquel l’information binaire a été mise en correspondance. Une technique de prétraitement est utilisée au niveau de l’émetteur afin de cibler les antennes de réception, tel que la technique de forçage à Zéro ou la formation de voies numérique ou analogique (« conjugate beanforming »...).
Dans un système de communication, la modulation spatiale pour la transmission spatiale montante et descendante est réalisée entre une station de base et un périphérique objet connecté. Ainsi la station de base doit estimer le canal entre chaque antenne pour configurer un bloc de prétraitement pour la liaison descendante et pour l’utiliser également dans la liaison montante comme égaliseur.
De façon générale, les transmissions de données utilisent des protocoles variés comprenant une transmission systématique d’informations utiles à une identification de l’émetteur des données transmises, ainsi que des informations utiles à une identification du ou des récepteurs destinataires de ces données.
En effet, pour la plupart des systèmes de transmission sans fil existants, différents protocoles d’échange sont organisés en 7 couches (selon le modèle Open System Interconnexion), avec notamment la présence d’adresses MAC de la source et du destinataire dans la trame des paquets au niveau de la couche 2 ou dite couche MAC. Dans les systèmes actuels (normes de transmission comme WIFI, LTE...), les couches MAC sont indépendantes de la première couche dite couche PHY. L’adresse MAC (de l’acronyme anglais signifiant « Media Control Access »), parfois nommée « adresse physique » est un identifiant unique stocké sur un dispositif matériel prévu pour être connecté à un réseau de transmission de données. A moins qu’elle n’ait été modifiée par un utilisateur, une adresse MAC est réputée être un identifiant unique au monde. La couche dite « couche MAC » dépendante du matériel, constitue ainsi la partie inférieure de la couche de liaison du modèle OSI. Cette couche insère et traite ces adresses MAC au sein des trames transmises selon l’art antérieur. Ces échanges de donnés réduisent d’une part l’efficacité spectrale, et d’autre part posent des problèmes au niveau de la sécurité à cause de l’interception possible des adresses MAC échangés. 3. Exposé de l’invention.
L’invention permet d’améliorer au moins certains des inconvénients de l’art antérieur en proposant une méthode simple à mettre en oeuvre, qui exploite la spécificité de la couche physique de la modulation spatiale pour effectuer une identification des liens sans nécessiter d’échange d’adresses MAC dans les phases de transmission. Ainsi, cette méthode propose de réaliser conjointement la couche MAC et la couche PHY.
L’invention propose une méthode de transmission de données entre au moins un émetteur et une pluralité de récepteurs, la méthode comprenant une étape d'estimation de l'ensemble des canaux disponibles entre l’émetteur et chacun des récepteurs, et comprenant en outre :
- une étape de construction d'une table de correspondance entre au moins deux identifiants de récepteurs parmi la pluralité de récepteurs et au moins deux canaux parmi l’ensemble des canaux disponibles entre l’émetteur et les récepteurs, et,
- une étape de transmission de données entre l’émetteur et au moins un des récepteurs, via au moins un des canaux de transmission disponibles, la transmission de données étant dépourvue de transmission d'un quelconque identifiant unique du ou des récepteurs.
L’invention concerne également un système de transmission sans-fil de données entre au moins un émetteur et une pluralité de récepteurs comprenant un module adapté à une estimation de l’ensemble des canaux de transmission disponibles entre l’émetteur et chacun des récepteurs, le système comprenant en outre:
- une table de correspondance entre au moins deux identifiants de récepteurs parmi la pluralité de récepteurs et au moins deux canaux parmi les canaux de transmission disponibles entre l’émetteur et les récepteurs, et,
- un module de transmission sans fil de données entre l’émetteur et au moins un des récepteurs, via au moins un des canaux de transmission disponibles, le module de transmission étant adapté à une transmission de données dépourvue d'une transmission d'un quelconque identifiant de récepteur.
4. Liste des figures.
L’invention sera mieux comprise, et d’autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
- la figure 1 est une représentation schématique d’un système de transmission sans-fil de données selon un mode de réalisation particulier et non limitatif de l’invention.
- la figure 2 est un diagramme illustrant des étapes principales d’une méthode de transmission sans-fil dans le système décrit par la figure 1 , et selon un mode de réalisation particulier et non limitatif de l’invention.
5. Description détaillée de modes de réalisation de l’invention.
Sur la figure 1 , les modules représentés sont des unités fonctionnelles, qui correspondent ou non à des unités physiquement distinguables. Par exemple, ces modules ou certains d’entre eux sont regroupés dans un unique composant. A contrario, selon d’autres modes de réalisation, certains modules sont composés d’entités physiques séparées.
La figure 1 est une représentation schématique d’un système SYST de transmission sans-fil de données, par voie électromagnétique, selon un mode de réalisation particulier et non limitatif de l’invention.
Le système SYST de communication par voie électromagnétique comprend un émetteur-récepteur BASE opérant préférentiellement comme une « station de base » ainsi que des émetteurs-récepteurs USR1 , USR2 et USR3 opérant préférentiellement comme des « objets connectés » susceptibles de fonctionner dans le système parmi une pluralité d’autres objets USRi connectés à une même station de base (de tels objets supplémentaires ne sont pas représentés sur la figure 1 dans la mesure où ils sont similaires à ceux déjà représentés. A titre d’exemple non limitatif, la station de base peut être un dispositif modem-routeur agissant comme une passerelle pour un réseau local, dans une zone, un espace géographique délimité ou encore un logement, par exemple, et chacun des objets connectés USR1 , USR2 et USR3 peuvent être un dispositif portable de type ordinateur, une tablette, une montre intelligente, un smartphone, un récepteur audiovisuel ou une quelconque évolution de ces produits bien connus du grand-public et largement utilisés par celui-ci. Ces exemples ne sont évidemment pas limitatifs.
Il est entendu ici par « station de base » une base (nœud) d’un maillage d’un réseau de transmission de données comprenant une pluralité de dispositifs mobiles configurés pour communiquer entre eux et pour communiquer avec d’autres dispositifs mobiles USRi, similaires ou non, éventuellement connectés à d’autres « stations de base » reliées à cette même base de maillage, et plus largement à ce même maillage réseau, directement ou indirectement. Traditionnellement, la « station de base » telle que définie ici met en œuvre la partie électromagnétique d’un système de communication sans-fil, le maillage pouvant être filaire. Evidemment, un tel maillage pourrait aussi être constitué de liaisons sans fil.
Il est en outre entendu ici par « objet connecté » un dispositif mobile tel que précité ci-avant et éventuellement adapté à communiquer avec des dispositifs pairs dans un même réseau de communication auquel il est connecté par l’intermédiaire d’une « station de base ».
Selon le mode de réalisation préféré de l’invention, la station de base BASE comprend un cœur numérique DS qui constitue la partie « intelligente » de cet équipement. La station de base BASE comprend en outre, connectée au cœur numérique DS, un contrôleur (interface) de communication CTR configuré pour mettre en œuvre des opérations de modulation / démodulation selon l’invention. Un système de préfiltrage PF est également compris dans la station de base BASE, notamment aux fins d’effectuer un préfiltrage utile à une modulation spatiale, par exemple, lors de transmissions électromagnétiques en mode descendant. On notera qu’en mode montant ce préfiltrage serait un détecteur des canaux Bi utilisé. C’est ce préfiltrage (appelé également précodage ou beamforming numérique) qui permet de focaliser les signaux vers une ou plusieurs antennes simultanément via un ou plusieurs des canaux identifiés. Ce préfiltrage est effectué numériquement. C’est lui qui permet de réaliser des systèmes multi-utilisateurs en MIMO, ou encore des modulations spatiales en visant une ou plusieurs antennes d’un objet connecté pour transporter ce qu’on peut appeler des symboles spatiaux, seuls ou en plus des symboles de modulation classique. (Ref) A. Mokh, M. Hélard, and M. Crussière, ‘Space Shift Keying modulations for low complexity internet-of-things devices’, in 2017 IEEE Globecom
Le préfiltre PF opère une focalisation vers une ou plusieurs antennes d’un dispositif objet connecté (récepteur) en fonction d’un symbole à transmettre. Un bus de communication numérique DL assure les échanges entre le cœur numérique DS et le contrôleur-interface CTR. Un second bus de communication DE relie le contrôleur au préfiltre PF. Selon le mode de réalisation préféré, la station de base comprend des antennes d’émission-réception BSA1 , BSA2 et BSA3 utiles aux transmissions de données vers ou à partir des objets (dispositifs) connectés USR1 , USR2 et USR3. Les objets connectés USR1 , USR2 et USR3 n’apparaissent en somme ici et chacun que comme un équipement comprenant un dispositif émetteur-récepteur disposant de n antennes d’émission / réception UAn utilisables aussi bien en émission et en réception selon des combinaisons pour lesquelles chaque antenne parmi les n antennes UAn émet / reçoit ou n’émet pas / ne reçoit pas de signaux électromagnétiques. Les modules DS, CTR et PF comprennent chacun un ensemble de dispositifs utiles à leur fonctionnements propres, parmi lesquels un ou plusieurs microcontrôleurs, de la mémoire non-volatile, de la mémoire de travail volatile à accès rapide, des circuits d’horloges, un ou plusieurs circuits de remise à zéro et de supervision d’alimentation, des ports d’extension et de contrôle, etc. L’ensemble de ces circuits, aujourd’hui communs à tout dispositif électronique classiquement intégré et/ou embarqué, n’est pas décrit plus encore ici puisque ne participant pas à la compréhension de l’invention qui consiste en une méthode de transmission améliorée.
Il en va de même pour ce qui concerne l’ensemble des modules internes de l’objet connecté qui n’est pas détaillé ici, puisque son détail est inutile à la compréhension de l’invention.
Chacun des liens entre la ou les antennes d’émission / réception, par exemple BSA1 , BSA2 et BSA3 de la station de base BASE et l’une des antennes d’émission / réception UA1 , UA2, UAn d’un objet connecté définit un canal de transmission B parmi l’ensemble des canaux Bj de transmissions disponibles du système complet SYS.
Il convient d’interpréter le terme « canal de transmission disponible » un canal de transmission configuré pour être utilisable à un instant donné dans le système complet SYST de transmission décrit. L’invention comprend ici en outre une étape de détermination d’un canal de transmission disponible, ce canal de transmission est configuré pour être utilisable à un instant donné dans le système SYST. En outre, la méthode de transmission comprend une étape permettant de réaliser le pré filtrage et de construire la table de correspondance à partir de cette information de canal.
Avantageusement et selon des variantes, les antennes d’émission / réception BSA1 , BSA2, BSA3, BSAn opèrent simultanément ou séquentiellement.
Selon l’exemple de mode de réalisation de l’invention représenté, l’objet connecté USR1 comprend trois antennes d’émission / réception UA1 , UA2 et UA3 utiles aux transmissions numériques avec la station de base BASE, le dispositif USR2 comprend deux antennes UA4 et UA5 et le dispositif USR3 ne comprend qu’une seule antenne UA6. Evidemment, d’autres configurations peuvent exister et ce mode de réalisation n’est qu’un exemple visant à illustrer une diversité de configurations possibles pour les objets connectés USRi présents dans le système de communication SYST.
Les communications électromagnétiques entre la station de base BASE et les objets connectés USR1 , USR2 et USR3 sont donc opérées selon des canaux de communication B1 , B2, B3, B4, ... Bj respectivement définis par les trajets BSA1 -UA1 , BSA1 -UA2 et BSA1 -UA3, à titre d’exemples, entre les antennes d’émission / réception. Pour des raisons de clarté du dessin, les canaux Bj ne sont pas tous représentés sur la figure FIG.1.
La figure 2 est un diagramme illustrant des étapes principales d’une méthode de transmission sans fil dans le système SYST décrit par la figure 1 , et selon un mode de réalisation particulier et non limitatif de l’invention. A l’étape SO, le système de transmission de la figure 1 comprenant l’équipement émetteur-récepteur station de base BASE et les équipements émetteurs- récepteurs objets connectés USR1 , USR2 et USR3 sont initialisés pour être notamment opérationnels en termes de capacité d’émission, de réception et de détection. C’est-à-dire que l’ensemble des dispositifs internes à chacun des équipements BASE et USR1 , USR2 et USR3 est initialisé et que les dispositifs BASE et USR1 , USR2, USR3 sont prêts à la réalisation des étapes essentielles de la méthode selon l’invention. De la même façon, les unités de contrôles des équipements BASE et USR1 , USR2 et USR3 sont fonctionnelles et exécutent le cas échéant l’ensemble des routines logicielles utiles à leurs fonctionnements respectifs. Il en est de même pour chacun des éventuels autres objets connectés USRi susceptibles d’être connectés au réseau ainsi constitué.
Afin d’accroître l’efficacité spectrale de la transmission de données utiles entre la station de base et chacun des objets connectés USRi, la méthode selon l’invention met astucieusement en oeuvre, au cours des étapes S1 et S2 :
- une détermination, par la station de base BASE du nombre d’antennes d’émission / réception UAn de chacun des objets connectés USRi,
- une détermination d’un poids de chacune des antennes (encore appelé communément poids ou poids binaire) affecté à chacune des antennes d’émission / réceptions UAn dans une des séquences binaires à transmettre (en émission ou réception) dans le cas d’un objet connecté à plusieurs antennes, et,
- une détermination, par la station de base BASE, et pour chacune des antennes d’émission / réception UAn, d’une information représentative d’un identifiant unique MACi de matériel associé au objet connecté, telle qu’une adresse MAC du dispositif USRi, à titre d’exemple.
Ces opérations correspondantes à l’étape S1 , sont réalisées à l’occasion d’une phase globale d’estimation et d’identification de tous les canaux Bj disponibles entre la station de base BASE et l’ensemble des objets connectés USRi accessibles dans le système. Plus précisément, lors de cette étape S1 , la station de base BASE diffuse, lors d’une étape d’émission vers l’ensemble des dispositifs en présence, des signaux pilotes interprétés comme tels par les objets connectés USRi et connus par ces derniers. Chacun des objets connectés USRi exploite le signal pilote reçu et les signaux pilotes envoyés par la station de base BASE pour estimer ses propres canaux de transmissions de données Bj entre la station de base et lui-même. A leur tour, chacune des antennes UA1 , UA2, UAn de chaque objet connecté diffuse alors à son tour des signaux pilotes connus de la station de base BASE. La station de base BASE exploite le signal reçu et les pilotes envoyés par l’objet connecté pour estimer à son tour alors les différents canaux dits « Uplink » entre les antennes UA1 , UA2, UAn et elle. En d’autres termes, la méthode met en oeuvre une technique d’estimation de canal appelée « Backoff ». En effet, à la suite de l’estimation du canal en uplink, le canal est utilisé en downlink pour faire la focalisation à l’aide d’un préfiltrage. La station de base BASE estime alors les différents canaux et les associe à l’objet connecté USRi correspondant, ainsi qu’à un identifiant unique de matériel correspondant à cet objet connecté, tel que son adresse MAC MACi, par exemple ou un identifiant équivalent.
Cette phase peut être utilisée pour estimer tous les canaux Bj entre la station de base BASE et les différents objets connectés USRi. Une orthogonalité entre les différents objets connectés est cependant nécessaire pour éviter des collisions ou interférences lors de la phase de transmission des signaux pilotes. Lorsque la station de base BASE diffuse des signaux pilotes, chaque objet connecté estime pour ce faire les canaux entre la station de base et lui-même et définit une valeur aléatoire (par tirage au sort). Cette valeur sera alors utilisée pour initialiser un compteur de temps propre à l’objet connecté, pour définir alors un intervalle de temps à utiliser pour transmettre vers la station de base BASE. Chacun des objets connectés USRi diffuse ainsi vers la station de base à un instant différent, lequel instant découle de la valeur de compteur de temps « tirée au sort » en correspondance.
Lors de ces échanges, les différents objets connectés USRi transmettent chacun un identifiant unique de matériel MACi à la station de base BASE, tel qu’une adresse MAC, par exemple.
Selon une variante, l’identifiant unique de matériel propre à chaque objet connecté USRi n’est pas une adresse MAC au sens communément admis, mais n’importe quel autre identifiant unique de matériel, tel qu’un simple numéro ou une simple chaîne alphanumérique par exemple, si tant est qu’elle apparaisse vraiment de façon unique dans le réseau SYS et idéalement dans l’absolu. La station de base BASE procède alors, lors d’une étape de calibration S2, à la construction et à l’enregistrement d'une table de correspondance TAB entre au moins deux identifiants MACi ou équivalent uniques d’objets connectés USRi (émetteurs ou récepteurs) parmi la pluralité de dispositifs USRi et au moins deux canaux Bj disponibles. En effet, il est possible de contrôler la directivité des faisceaux d’émission pour cibler une ou plusieurs des antennes UAi des objets connectés USRi, grâce à la connaissance de chacun des canaux de transmission Bj disponibles. Ainsi, quand l’émetteur BASE souhaite adresser à un récepteur en particulier, il lui suffit d’utiliser le ou les canaux Bj pour que les faisceaux d’émission soient dirigés vers la ou les antennes UAn en réception du dispositif en réception USRi.
Il est ainsi possible de s’affranchir d’avoir à transmettre, à l’étape de transmission S3, une information unique (adresse) pour chacun du ou des destinataires puisque la directivité des faisceaux d’ondes électromagnétiques de transmission propres aux canaux Bj est configurée après la phase d’identification et d’estimation permet de les adresser en les ciblant précisément, grâce aux techniques de focalisation mises en œuvre par le module de préfiltrage PF générant un tableau de correspondance utilisé pour l’identification.
Avantageusement, cela permet en outre d’améliorer la sécurité des échanges entre la station de base BASE et les objets connectés USRi. En effet, dans le cas d’une interception d’un signal normalement transmis dans le système de communication SYST par un dispositif extérieur (soit un dispositif espion, par exemple), il ne sera pas possible pour ce dernier d’identifier le ou les destinataires du signal intercepté car l’adresse MAC ne sera pas transmise en tant que telle comme donnée.
Ce principe d’adressage, sans avoir à transmettre un identifiant unique (adresse de destinataire) dans les données, peut être également utilisé dans le sens inverse, à savoir d’un dispositif connecté USRi vers la station de base BASE, c’est-à- dire en voie montante.
Le principe de transmission selon l’invention peut en outre concerner des échanges entre deux objets connectés USRi ou encore entre deux stations de base telles que la station BASE et un dispositif similaire opérant dans le système SYST. Quand la méthode selon l’invention est utilisée dans les deux sens de transmission du système vu globalement, on peut considérer qu’il est possible de communiquer au sein du système en s’affranchissant d’avoir à transmettre des identifiants uniques d’émetteur(s) aussi bien que de récepteur(s) puisque chacun des dispositifs du système est susceptible de contenir une table de correspondance similaire à la table de correspondance TAB de la station de base BASE et établissant des correspondances entre des identifiants uniques (adresses MAC, par exemple) et des canaux Bj de transmissions, configurés après la phase d’identification et d’estimation de canal. Les canaux Bj correspondant chacun à des paramètres de directivité d’un ou plusieurs faisceaux, selon une configuration propre à chacun.
Ces différentes étapes constituent ensemble une phase dite de calibration préalable à la transmission de données utiles.
Avantageusement, et grâce à la création d’une table de correspondance TAB selon la procédure précédemment décrite, il est possible de transmettre, à l’étape de transmission S3, des données utiles entre la station de base BASE et l’un quelconque des objets connectés USRi, prévu comme destinataire de ces données, sans avoir à transmettre d’identifiant unique MACi de l’objet connecté destinataire des données. Cette aptitude à transmettre des données utiles sans « adresse » du destinataire, autre que celle définie par le canal ou les canaux mis en œuvre pour cibler un ou plusieurs objets connectés lors de la transmission d’une donnée utile, permet d’accroître le volume des données sur chacun des canaux de transmission Bj du système de transmission de données.
Avantageusement encore, la mise en œuvre de l’invention permet d’améliorer la sécurité des transmissions puisqu’un dispositif espion qui serait configuré pour intercepter tout ou partie de celles-ci ne pourraient déterminer à quel(s) dispositif(s) (objet connecté ou station de base) elles sont adressées.
Selon un mode de réalisation de l'invention, le préfiltrage, visant à diriger les émissions radioélectriques en correspondances des différents canaux Bj vers une antenne en réception UAn, est réalisé par des opérations usuelles de traitement du signal, bien connues de l'homme du métier des transmissions numériques. Bien évidemment les objets connectés peuvent mettre en œuvre et / ou utiliser une modulation spatiale ou non. Par exemple, l’objet connecté USR3 de la figure FIG.1 ne dispose que d’une seule antenne UA6 et n’utilise donc pas de modulation spatiale. II est à noter que selon l’invention, les moyens d’alimentation électrique
(depuis le secteur ou par batterie) pourront être considérés comme classiques ou usuels à la date de l’invention.
L’invention ne se limite pas aux seuls modes de réalisation décrit mais à toute méthode de transmission de données entre au moins un émetteur et une pluralité de récepteurs comprenant une étape de détection et d'estimation de l'ensemble des canaux disponibles entre un émetteur et chacun des récepteurs, suivie d’une étape de construction d'une table de correspondances entre au moins deux identifiants unique de récepteurs parmi une pluralité de récepteurs et au moins deux canaux parmi les canaux disponibles, ainsi qu’une étape subséquente de transmission de données entre l’émetteur et au moins un des récepteurs, via au moins un des canaux disponibles, la transmission de données étant alors dépourvue de transmission d'un quelconque identifiant unique de récepteur.

Claims

Revendications
1 . Méthode de transmission de données entre au moins un émetteur (BASE) et une pluralité de récepteurs (USRi) comprenant une étape d'estimation de l'ensemble des canaux (Bj) disponibles entre ledit émetteur (BASE) et chacun desdits récepteurs (USRi), ladite méthode étant caractérisée en ce qu'elle comprend en outre:
- une étape de construction d'une table de correspondance entre au moins deux identifiants uniques de récepteurs (MACi) parmi ladite pluralité de récepteurs (USRi) et au moins deux canaux parmi lesdits canaux (Bj) disponibles, et,
- une étape de transmission de données entre ledit émetteur (BASE) et au moins un desdits récepteurs (USRi), via au moins un desdits canaux (Bj) disponibles, ladite transmission de données étant dépourvue de transmission d'un quelconque identifiant unique (MACi) de récepteur.
2. Système de transmission de données entre au moins un émetteur (BASE) et une pluralité de récepteurs (USRi) comprenant un module adapté à une estimation de l'ensemble des canaux (Bj) disponibles entre ledit émetteur (BASE) et chacun desdits récepteurs (USRi), ledit système étant caractérisé en ce qu'il comprend en outre:
- une table de correspondance entre au moins deux identifiants (MACi) de récepteurs (USRi) parmi ladite pluralité de récepteurs (USRi) et au moins deux canaux parmi lesdits canaux (Bj) disponibles, et,
- un module de transmission de données entre ledit émetteur (BASE) et au moins un desdits récepteurs (USRi), via au moins un desdits canaux (Bj) disponibles, ledit module de transmission étant adapté une transmission de données dépourvue d'une transmission d'un quelconque identifiant unique (MACi) de récepteur (USRi).
EP19789596.4A 2018-10-01 2019-09-30 Methode de transmission sans-fil et dispositif associe Pending EP3861645A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1801026A FR3086828A1 (fr) 2018-10-01 2018-10-01 Methode de transmission sans-fil et dispositif associe
PCT/EP2019/076473 WO2020070075A1 (fr) 2018-10-01 2019-09-30 Methode de transmission sans-fil et dispositif associe

Publications (1)

Publication Number Publication Date
EP3861645A1 true EP3861645A1 (fr) 2021-08-11

Family

ID=65951604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19789596.4A Pending EP3861645A1 (fr) 2018-10-01 2019-09-30 Methode de transmission sans-fil et dispositif associe

Country Status (3)

Country Link
EP (1) EP3861645A1 (fr)
FR (1) FR3086828A1 (fr)
WO (1) WO2020070075A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109955A1 (en) * 2007-10-31 2009-04-30 Qualcomm Incorporated Method and apparatus for improved frame synchronization in a wireless communication network
KR102258575B1 (ko) * 2015-03-17 2021-05-31 삼성전자 주식회사 전자 장치 및 이의 빔포밍을 이용한 무선 통신 방법

Also Published As

Publication number Publication date
FR3086828A1 (fr) 2020-04-03
WO2020070075A1 (fr) 2020-04-09

Similar Documents

Publication Publication Date Title
EP3432487B1 (fr) Méthode d'ordonnancement pour voies montante et descendante d'un système de transmission optique
EP0854600A1 (fr) Procédé auto-adaptatif de transmission de données et dispositif de mise en oeuvre
FR2943485A1 (fr) Composant terrestre dans un systeme satellite multifaisceau base sur un multiplexage ofdm et procede de communication correspondant
WO2010089277A1 (fr) Procede d'emission dans un reseau sans fil et procede de reception correspondant
EP3504932B1 (fr) Procédé de contrôle de la charge d'une passerelle de concentration de données pour un réseau de communication sans fil
EP3861645A1 (fr) Methode de transmission sans-fil et dispositif associe
FR3039740B1 (fr) Procede de decouverte d'un noeud d'un reseau ad hoc, procede d'echange de donnees, systeme associe
FR2988970A1 (fr) Routage de donnees dans un reseau de capteurs
FR2983668A1 (fr) Procede de communication dans un reseau ad hoc, station emettrice/receptrice et programme d'ordinateur associes
FR3053861B1 (fr) Procede et systeme de communication pour des modules interconnectes par courants porteurs en ligne
EP3675542B1 (fr) Dispositif et procédé de gestion de l'authentification mutuelle pour la communication directe entre des structures mobiles d'un système de radiocommunication mobile
FR3056047A1 (fr) Technique de modulation spatiale amelioree, dispositifs emetteur et recepteur associes
EP3675562A1 (fr) Procédés de traitement de données, dans un réseau ad hoc de radiocommunication, stations mobiles de radiocommunication et programmes d'ordinateur associés
FR3099679A1 (fr) Procédé, dispositif et système de communication pour véhicule utilisant des radars
EP2636254A1 (fr) Système et procédé de découverte de voisinage pour objets communicants
WO2017134403A1 (fr) Technique de modulation spatiale et dispositif recepteur associe
WO2017187026A1 (fr) Systeme de detection et communication pour dispositifs mobiles.
FR3091437A1 (fr) Scanner radio embarqué dans une structure mobile d’un système de radiocommunications
EP3675546A1 (fr) Scanner radio embarqué dans une structure mobile d'un système de radiocommunications, et procédé d'utilisation du scanner radio
EP4207889A1 (fr) Procede de validation d'un positionnement d'un terminal utilisateur dans un reseau de cellules 5 g
FR2902195A1 (fr) Procede de determination de l'instant d'arrivee d'un signal radioelectrique non impulsionnel et systeme de localisation geographique d'emetteurs de signaux radioelectriques non impulsionnels
FR3076421A1 (fr) Procede d’etablissement d’une cle cryptographique partagee entre un premier et un second terminaux
EP0588396B1 (fr) Système de communication radio mobile TDMA comportant un amplificateur d'émission nécessitant un temps de mise en condition
EP0827303B1 (fr) Synchronisation dans un récepteur AMRF
FR3118367A1 (fr) Décodage collaboratif d’une trame corrompue détectée par plusieurs stations de base avec optimisation de la charge du réseau d’accès

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS