EP3852958A1 - Additive manufacturing device having a stabilised molten area - Google Patents

Additive manufacturing device having a stabilised molten area

Info

Publication number
EP3852958A1
EP3852958A1 EP19813629.3A EP19813629A EP3852958A1 EP 3852958 A1 EP3852958 A1 EP 3852958A1 EP 19813629 A EP19813629 A EP 19813629A EP 3852958 A1 EP3852958 A1 EP 3852958A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
additive manufacturing
generating
independent
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19813629.3A
Other languages
German (de)
French (fr)
Inventor
Jean-Paul Garandet
Jean-Daniel PENOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3852958A1 publication Critical patent/EP3852958A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0033Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an additive manufacturing device and to an additive manufacturing method having a stabilized molten zone.
  • the additive manufacturing processes include for example the powder bed fusion or PBF (Powder Bed Fusion in English terminology) and the deposition of material under concentrated energy or DED (Directed Energy Deposition in English terminology) processes
  • PBF processes consist in melting, for example by means of a laser beam, certain regions of a powder bed.
  • the DED methods consist in depositing a molten material, for example by means of a laser beam, the material being brought in solid form for example in the form of a wire or powder.
  • the step of passage through the liquid channel takes place at very high temperatures, of the order of several thousand Kelvin, which has the effect of reducing the viscosity and the surface tension. materials.
  • the temperature gradients are very intense and, as a result, the liquid phases can be the site of instability phenomena which can go as far as breaking the bath and ejecting droplets.
  • an object of the present invention to provide an additive manufacturing device and an additive manufacturing method in which the problems of hydrodynamic instabilities, and in particular those leading to undulations of the free surface of the bath and to its fragmentation and the ejection of droplets are reduced or even eliminated.
  • the object of the present invention is achieved by an additive manufacturing device for at least one part during manufacture, means for supplying the material on a support, at least one energy source for melting the material and means for generate a magnetic field independent of time at least at the melting zone of the material, the intensity of the magnetic field being such that the Hartmann number based on the maximum value of the magnetic field on the surface of the bath and the maximum depth of said fusion bath is greater than 5.
  • the time independent magnetic field can be obtained by a permanent magnet or an electromagnet powered by a permanent current.
  • the means for generating a magnetic field are such that the magnetic field has a symmetry of revolution with respect to an axis normal to the surface of the bath of molten material and which passes through the center of the supply zone. heat.
  • these means for generating a magnetic field are also such that the magnetic field is uniform at the level of the bath and is normal to the surface of the bath.
  • the means for generating a magnetic field are located on one side of the area where the part is formed, for example above directly facing the bath of molten material in order to allow the generation of a field. magnetic of sufficient intensity with limited power.
  • they can be located at the right below the part under construction, the part under construction being interposed between the magnetic field generation means and the molten zone.
  • the invention acts locally to stabilize the bath of molten material by limiting the energy consumption and the cost and size of the device.
  • the means for generating a magnetic field comprise for example at least one permanent magnet and / or one or more electromagnets.
  • the present invention therefore relates to an additive manufacturing device for at least one part comprising:
  • At least one energy source intended to generate at least one energy beam to melt the material and form at least one molten zone at at least one local location in the manufacturing zone
  • said means for generating a magnetic field independent of time being arranged on one side relative to the manufacturing zone where the part is intended to be manufactured.
  • the means for generating a magnetic field independent of time at least in the molten zone generate a magnetic field whose intensity is such that the Hartmann number is greater than 10, and advantageously greater than 20.
  • the means for generating a time-independent magnetic field advantageously generate a magnetic field having, in the molten zone, a symmetry of revolution with respect to an axis normal to a free surface of the molten zone.
  • the means for generating a magnetic field independent of time can generate a uniform magnetic field, at least in the molten zone, and advantageously throughout the manufacturing zone, oriented in a direction normal to a free surface of the melted area.
  • the means for generating a magnetic field independent of time can be arranged at least in line with the local location of the manufacturing area. In an exemplary embodiment, the means for generating a magnetic field independent of time are arranged above the local location.
  • the means for generating a magnetic field independent of time can be mobile and their movements are controlled by the movement of the energy source.
  • the supply means, the energy source and the means for generating a time-independent magnetic field are configured to move together.
  • the additive manufacturing device comprises a manufacturing plate on which the part is intended to be manufactured.
  • the means for generating a time-independent magnetic field can be arranged under the manufacturing plate.
  • the additive manufacturing device comprises a manufacturing plate on which the part is intended to be manufactured.
  • the means for generating a time-independent magnetic field may extend over part or under the entire surface of the construction plate capable of being a manufacturing area.
  • the means for generating a magnetic field independent of time comprise at least one electromagnet.
  • the device then advantageously comprises a control unit configured to control the supply of the electromagnet so as to maintain constant the intensity of the magnetic field in the molten zone.
  • the means for generating a permanent magnetic field comprise one or more electromagnets and the control unit is configured to control the supply of the electromagnet (s) situated only at the level of at least one local location in the zone where a molten zone is intended to be formed.
  • the material supply means may include a nozzle for supplying powdered material or a wire feed system and the supply means, the power source and the means for generating a magnetic field permanent are coaxial.
  • the supply means deliver powdered material in the form of a powder bed.
  • the present invention also relates to an additive manufacturing process for at least one part comprising:
  • the magnetic field generated independent of time can be such that the electric potential in the molten zone is substantially uniform, at least in line with the energy source.
  • the means for generating a magnetic field independent of time are arranged with respect to the molten zone so as to generate a magnetic field having, in the molten zone, a symmetry of revolution around a direction normal to the free surface of the melted area.
  • the means for generating a time-independent magnetic field can be such that they generate a uniform field oriented in a direction normal to the free surface of the molten zone throughout the manufacturing zone.
  • the time independent magnetic field is generated at the level of the molten zone at the local location of the manufacturing zone for substantially the entire duration of the production of the part.
  • the manufacturing process can be a powder bed fusion process or a material deposition process.
  • FIG. 1 is a general schematic representation of an additive manufacturing device showing the means of supplying the material for the part under construction, the means for supplying energy and the means for generating the magnetic field located above room,
  • FIG. 2A is a schematic representation of an example of an additive manufacturing device by adding material in powder form
  • FIG. 2B is a detailed view of FIG. 2A including the magnetic field lines
  • FIG. 3A is a schematic representation of an example of an additive manufacturing device by adding material in the form of a wire
  • FIG. 3B is a schematic representation of a variant of FIG. 3 A
  • FIG. 4 is a schematic representation of an example of an additive manufacturing device by fusion on a powder bed with devices for generating the magnetic field located below the two parts under construction,
  • FIG. 5 is a schematic representation of another example of additive manufacturing device by melting on a powder bed, showing a plurality of magnets under the construction plate
  • FIG. 6 is a schematic representation of an example of an additive manufacturing device by melting on a powder bed in which the magnetic field generation means are located above the powder bed,
  • FIG. 7 is a schematic representation of another example of an additive manufacturing device by melting on a powder bed in which the magnetic field generated is substantially uniform, DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
  • B denotes the magnetic field and I denotes the current flowing in the electromagnet when the field is created by an electromagnet.
  • the manufacturing device and the additive manufacturing method according to the invention use conductive materials, for example metallic, or even semiconductor materials.
  • conductive materials for example metallic, or even semiconductor materials.
  • the materials that can be used are, for example, iron, nickel, titanium, aluminum, chromium and cobalt, their mixtures and their alloys.
  • the part In the PBF configuration, the part is manufactured on a construction plate, which is generally removed at the end of manufacture, and in the DED configuration, the part is manufactured on a substrate which is sometimes part of the final part. This is particularly the case for repair processes or adding functionality to existing parts.
  • the manufacturing device comprises means for supplying the material 4 and an energy source 6 configured to melt the material.
  • a support 2 is provided on which the part is intended to be manufactured.
  • the energy source 6 is for example a laser whose beam is oriented towards the area where it is desired to manufacture the part P.
  • the power of the laser can for example vary between 100 W and 5 kW.
  • the heat source is an electron beam.
  • the means for generating a magnetic field 8 are advantageously arranged on one side of the molten bath. In the example shown in the Figure 1, they are arranged directly opposite the bath or the ZF molten area. They generate a local magnetic field.
  • the means for generating a magnetic field 8 are arranged on one side of the molten bath by considering a vertical direction, ie The means for generating a magnetic field 8 are arranged above or below the molten bath.
  • This arrangement of the means for generating a magnetic field on one side of the molten bath makes it possible to achieve the desired magnetic field intensity while limiting the power of the means for generating a magnetic field.
  • the drop zone varies over time, both in plan and in height. Indeed in general the parts are formed in several passes.
  • the part P during manufacture is movable relative to the frame of the device in the three directions of space.
  • the support 2 forming a production plate is placed on a support plate (not shown) generally mobile only in the vertical direction.
  • the movements of the part and / or of the construction plate are controlled for example by a computer or a digital control.
  • the Z direction corresponds to the direction of the layers during the manufacturing process.
  • the X and Y directions define the plane of each layer.
  • the means of supplying the material and the beam of the energy source are movable in the three directions of space with respect to the support and the part being manufactured.
  • the support is mobile in all or part of the directions of space and the means for supplying the material and the beam of the energy source are mobile in all or part of the directions of space.
  • the support is movable in the Z direction and the material supply means and the beam of the energy source are movable in the X and Y directions.
  • the energy source for example a laser source
  • the support and / or the means for supplying the material and the energy source are moved by actuators controlled by a control unit connected to a computer.
  • the scanning speed can vary between 50 mm / s and several m / s and the molten area can be relatively large, typically between 100 x 100 pm 2 and 5 x 5 mm 2 .
  • the inventors have determined that by applying a magnetic field of sufficient intensity to the level of the bath of molten material, it can be stabilized.
  • the manufacturing device then also comprises means 8 for generating a magnetic field independent of time at least at the level of the fusion bath.
  • the means 8 are configured to generate, in at least part of the bath, a magnetic field whose intensity is chosen so that the Hartmann number is greater than 5, preferably greater than 10 and even more preferably greater than 20. A these values of the Hartmann number, the critical speed of destabilization leading to the formation of instabilities is greater than the speed of convection in the molten zone, and the molten zone is therefore stabilized.
  • Hartmann's number is defined by:
  • H the maximum depth of the bath (in meters) of the bath, s the electrical conductivity of the material of the melt (in Siemens per meter)
  • the condition on the number of Ha defined above results in a magnetic field of intensity greater than 0.07 T, preferably greater than 0.14 T, even more preferably 0.28 T.
  • the conditions on the field to be applied become an intensity greater than 0.7 T, preferably 1.4 T, even more preferably 2.8 T.
  • the thickness of the molten zone is significantly less in the PBF configuration than in the DED configuration .
  • the molten zone is further stabilized.
  • the means for generating a time-independent magnetic field include, for example, one or more permanent magnets and / or one or more electromagnets.
  • the electromagnets are connected to a source of electric current, which is advantageously controlled so as to power the electromagnet (s) only during a manufacturing phase.
  • the use of permanent magnets simplifies the device, since no electrical connection is required, which is particularly advantageous in the case where the means for generating the magnetic field are mobile.
  • the permanent magnets are to be protected so that they are not subjected to a temperature higher than the Curie temperature.
  • the Curie temperatures of Fe, Ni and Co are 1043 K, 627 K and 1388 K respectively.
  • electromagnets offer greater freedom in terms of the intensity of the magnetic field independent of the time generated, they can for example allow the field produced to be modified as a function of their position relative to the molten zone.
  • the magnetic field has a particular orientation and / or distribution with respect to the free surface of the molten zone, making it possible to amplify the reduction in hydrodynamic speed and therefore the instabilities.
  • the magnetic field according to the invention is advantageously oriented so that the maximum angle of the field lines with the normal to the molten bath over the entire surface of said molten bath is less than 45 °, preferably 30 °, or even more preferably the field lines are substantially normal to the surface of said molten bath.
  • the molten zone may provide for generating a field whose orientation makes it possible to very effectively stabilize the molten zone and to reduce the intensity of the field to reduce the energy consumed in the case of an electromagnet, which makes it possible to offer a additive manufacturing device with reduced electrical consumption while providing a stable molten area.
  • the molten zone has a hemispherical shape. It has an axis of symmetry Xc normal to the free surface of the molten zone and passing through the center of the latter.
  • the inventors have determined that by applying a magnetic field whose field lines have a symmetry of revolution with respect to the axis Xc, the electrical potential in the molten zone was uniform, resulting in a very effective Lorentz force to stabilize the flow.
  • magnetic field generation means large enough and powerful enough to generate a uniform magnetic field in the molten area can be implemented, and by orienting the means so that the field is normal to the free surface of the molten zone, ie parallel to the axis Xc, a uniform electric potential is obtained in the molten zone and a very effective Lorentz force to stabilize the flow.
  • the Lorentz force can be proportional to the square of the Hartmann number, and consequently the reduction of the hydrodynamic speed in the molten zone can be proportional to the square of the number by Hartmann.
  • the molten zone does not have an axis of symmetry, in particular it elongates in the direction opposite to the movement of the hot source to allow the evacuation of the heat. It is however possible to apply the above reasoning considering that the area of application of heat by the energy source has a symmetrical shape, ie a substantially circular free surface, of axis Xc normal to the surface of the passing bath through the center of said heat application area. Under these conditions, even if the electric potential is not uniform far from the Xc axis, the application of a magnetic field of revolution around the Xc axis makes it possible to effectively limit the convection movements at the most critical locations. of the bath, namely those where the temperature is the highest.
  • the depth of the bath varies for example between 50 ⁇ m and 500 ⁇ m.
  • this depth varies for example between 500 pm and 5 mm.
  • FIG. 2A one can see an embodiment of a particularly advantageous additive manufacturing device representative of a DED configuration.
  • the supply means 4 comprise a nozzle 4.1 and the material to be melted is supplied in the form of powder.
  • the powder may consist of a single material or a mixture of materials.
  • the means for generating a magnetic field 8 are arranged opposite the molten zone ZF. This arrangement of the means for generating a magnetic field makes it possible to achieve the desired magnetic field intensity while limiting the power of means for generating a magnetic field.
  • the supply means 4, the energy source 6 and the means for generating a magnetic field 8 are coaxial along the axis Xc defined above and form an integral unit in movement.
  • the different means keep fixed relative positions.
  • the axis of the assembly B is advantageously orthogonal to the free surface of the fused zone ZF.
  • the generation means 8 have a size sufficient to generate a magnetic field of controlled orientation and of sufficient intensity throughout the molten zone ZF.
  • the coaxial arrangements of the generation means 8, of the energy source 6 and of the supply means 4 make it possible to generate a magnetic field having a symmetry of revolution around the axis Xc.
  • this orientation of the magnetic field makes it possible to obtain a magnetic field of symmetry of revolution about the axis Xc in the molten zone, and a very effective Lorentz force for reducing the hydrodynamic speed in the molten zone.
  • the generation means comprise an electromagnet arranged so that the magnetic field lines have the symmetry of revolution around the axis Xc.
  • the turn closest to the molten bath is located at a distance varying for example between 2 mm and 5 cm, preferably 5 mm to 2 cm from the surface of said bath.
  • the current flowing in the electromagnet is preferably greater than 100 A, or even greater than 1000 A if it is desired to reach fields exceeding the Tesla.
  • FIG. 2B one can see a detail view of the fused zone ZF and of the magnetic field lines B generated in the device of FIG. 2A.
  • FIG. 3A we can see another example of embodiment in DED mode in which the material is brought in the form of a wire F, the free end of the wire F being opposite the desired deposition zone.
  • the supply means 104 and the generation means 108 are coaxial, but not the energy source 106.
  • the supply means 104 and the energy source 106 are oriented so that the free end of the wire F either melted by the energy supplied by the energy source 106 in line with the desired deposition zone.
  • the generation means 108 are arranged substantially along the axis Xc above with respect to the molten zone so as to generate the magnetic field in the molten zone ZF without interfering with the energy source 106.
  • the supply means and the energy source are integral in displacement.
  • the energy source extends along a first axis A and the supply means 104 extend along a second axis B, the axes A and B being intersecting and arranged d 'one side and the other of a plane containing the axis Xc of the desired fused area.
  • the generation means 108 are arranged substantially at the point of intersection of the axes above with respect to the molten zone so as to generate the magnetic field in the molten zone ZF without interfering with the energy source 106 and the wire F of material.
  • the magnetic field thus generated advantageously also has a symmetry of revolution around the axis Xc.
  • the electrical potential in the molten zone is uniform, the Lorenz force is then very effective.
  • the melted area is then stabilized significantly.
  • the turn closest to the molten bath can be located at a distance varying between 2 mm and 5 cm, preferably 5 mm to 2 cm from the surface of said bath.
  • the current flowing in the electromagnet is preferably greater than 100 A, or even greater than 1000 A if it is desired to reach fields exceeding the Tesla.
  • the generation means and the energy source are integral in movement, thus the generation means follow the movement of the molten zone.
  • the production plate 202 is arranged on a support plate 210 able to move vertically along the axis Z.
  • the device comprises a jack 212, of which is fixed the support plate 210 along of the Z axis.
  • the supply means deliver powder in the form of layers of thickness varying between 40 ⁇ m and 200 ⁇ m over the entire extent of the LP powder bed.
  • These means roller, scraper Certainly are well known to those skilled in the art and will not be described in detail.
  • the energy source is for example a laser, the beam of which is configured to move on the upper surface of the powder bed in the XY plane so as to melt the powder in certain areas only of the powder bed.
  • the generation means 208 comprise two elements capable of generating a magnetic field in two distinct zones of the powder bed LP, allowing the manufacture of two parts simultaneously.
  • the elements 208.1 and 208.2 can be permanent magnets. They can advantageously be made in alloys of Samarium-Cobalt or Iron-Neodymium-Boron. These materials allow residual inductions to be reached on their surface exceeding the Tesla, with a Curie temperature between 700 ° C and 800 ° C for SmCo and a Curie temperature of the order of 310 ° C for FeNdB.
  • the permanent magnets are in the form of a solid of revolution, their field lines have a symmetry of revolution.
  • the two elements 208.1 and 208.2 are arranged under the support plate in line with the part manufacturing area and at a distance therefrom.
  • the elements 208.1 and 208.2 are fixed to the jack without direct mechanical or thermal contact with the support plate.
  • the elements 208.1 and 208.2 can advantageously be electromagnets.
  • This arrangement of the generation means under the support plate opposite the energy source makes it possible to limit the overheating of the generation means.
  • the space between the generation means and the plate forms a thermal screen.
  • an insulating material acting as a heat shield can be added between the generation means and the support plate.
  • Element 208.2 is even further from the heat source. In addition, it is not in contact with the support plate, the risks of heating by conduction are therefore reduced.
  • the two elements 208.1 and 208.2 can be directly in contact with the support plate.
  • a device with a single element for generating a magnetic field or more than two elements does not depart from the scope of the present invention.
  • all the elements can be arranged at the same distance from the support plate or not, or some can be in contact with the support plate and others not.
  • All the elements 208.1, 208.2 can generate a magnetic field of the same intensity or all or part of them can produce a magnetic field of different intensity.
  • the generation means move away from the molten zone each time a new layer of powder is deposited.
  • the generation means comprise one or more electromagnets whose supply intensity is adapted to the distance between the electromagnet (s) and the molten zone, so as to maintain the application of a magnetic field independent of the time of constant intensity in the zone or zones molten throughout the manufacturing.
  • a control unit controls the supply of the electromagnet (s) as a function of the number of layers deposited.
  • the generation means 308 comprise a plurality of permanent magnets made of ferromagnetic material arranged under the support plate 310 and covering the entire surface facing the production plate 302.
  • the generation means 308 comprise a plurality of permanent magnets made of ferromagnetic material arranged under the support plate 310 and covering the entire surface facing the production plate 302.
  • the magnets are replaced by electromagnets.
  • the electromagnets in line with the part production zone or zones are supplied, or even only the electromagnets in line with the molten zone or zones subjected to the laser beam during the manufacture of the current layer, which makes it possible to reduce the power consumption of the device.
  • the greater the number of electromagnets the easier it will be to generate a magnetic field only at the level of the part being manufactured.
  • the power supply of the electromagnets is controlled by the scanning path of the energy source.
  • the means for generating a permanent magnetic field arranged under the support plate are mobile and their movement is controlled by the movement of the beam of the energy source.
  • the construction plate comprises a workpiece support 314 to allow the manufacture of parts of complex shape, in the example shown the workpiece P2 is of ellipsoidal shape.
  • the support plate, the construction plate and the possible part supports are chosen from a material which is transparent to the magnetic field or which interacts little with it.
  • the magnetic field generation means comprise an electromagnet 48 situated above the powder bed.
  • the electromagnet is a coil and, advantageously, the energy beam crosses the coil to reach the surface of the powder bed.
  • the generated field can have a symmetry of revolution with respect to the axis Xc of the molten zone.
  • the electromagnet can be placed very close to the powder bed.
  • the energy source 406 is fixed and it is the energy beam emitted by the energy source 406 which is oriented towards the surface of the powder bed by a mirror 416. It scans the surface of the powder bed.
  • the electromagnet 408 moves in coordination with the path of the energy beam.
  • the electromagnet 408 is mounted on a mobile system in the XY plane controlled by the movement of the energy beam.
  • the energy beam moves at a speed of between 100 mm / s and 10 m / s, preferably 200 mm / s and 2 m / s.
  • the magnetic field generation means 508 are arranged under the support plate 410 and the powder bed around the jack 412.
  • the generation means are stationary. In addition, they are far from the energy source and are therefore relatively protected from the heat emitted at the molten zone.
  • the generation means are located above the powder bed.
  • the implementation of means for generating a magnetic field throughout the powder bed has the advantage of not having to control the movement of the means of generating a magnetic field according to the movement of the beam from the source of energy.
  • the generation means comprise an electromagnet whose axis is aligned with an axis of the powder bed.
  • the electromagnet is a coil and the powder bed has a shape of revolution so that the magnetic field generated crosses the entire cross section of the powder bed and is uniform throughout the powder bed.
  • the winding is such that it covers the entire scanning surface
  • the powder bed can be chosen to have a smaller section than the winding section.
  • the generation means of the device of FIG. 7 have a certain bulk and imply a high power to generate a field independent of time throughout the powder bed.
  • Means for generating a uniform magnetic field also apply to additive manufacturing devices by deposition of material, such as those of FIGS. 2A, 2B, 3A and 3B.
  • the generation means are arranged at a distance from the melting zone so that the temperature to which the generation means are subjected is lower in the case of a permanent magnet, at its Curie temperature, and in the case of an electromagnet at its operating temperature. It can nevertheless be envisaged in particular configurations to implement additional cooling means, for example with water or air, to control the temperature of the generation means.
  • the electromagnets could be replaced by one or more magnets.
  • the present invention applies to any additive manufacturing device using one or more materials which are sufficiently electrically conductive.

Abstract

Device for additively manufacturing at least one part (P), comprising: - a manufacturing plate comprising an area for manufacturing the part (P), - means for supplying (104) the material for manufacturing the part, - an energy source (106) which generates an energy beam to melt the material and form a molten area (ZF) at a given location in the manufacturing area of the manufacturing plate (102), - means for generating a time-independent magnetic field (108) in the molten area, the intensity of which is such that the Hartmann number, based on the maximum value of the magnetic field at the surface of the molten area and the maximum depth of the molten area, is greater than 5, the means for generating a time-independent magnetic field being arranged on one side relative to the part (P).

Description

DISPOSITIF DE FABRICATION ADDITIVE PRESENTANT UNE ZONE FONDUE STABILISÉE  ADDITIVE MANUFACTURING DEVICE HAVING A STABILIZED MOLTEN ZONE
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE ET ÉTAT DE LA TECHNIQUE ANTÉRIEURE TECHNICAL AREA AND PRIOR ART
La présente invention se rapporte à un dispositif de fabrication additive et à un procédé de fabrication additive présentant une zone fondue stabilisée. The present invention relates to an additive manufacturing device and to an additive manufacturing method having a stabilized molten zone.
Les procédés de fabrication additive comprennent par exemple les procédés par fusion de lit de poudre ou PBF (Powder Bed Fusion en terminologie anglo- saxonne) et les procédés de dépôt de matière sous énergie concentrée ou DED (Directed Energy Déposition en terminologie anglo-saxonne)  The additive manufacturing processes include for example the powder bed fusion or PBF (Powder Bed Fusion in English terminology) and the deposition of material under concentrated energy or DED (Directed Energy Deposition in English terminology) processes
Les procédés PBF consistent à fondre, par exemple au moyen d'un faisceau laser, certaines régions d'un lit de poudre.  PBF processes consist in melting, for example by means of a laser beam, certain regions of a powder bed.
Les procédés DED consistent à déposer un matériau fondu, par exemple au moyen d'un faisceau laser, le matériau étant amené sous forme solide par exemple sous la forme d'un fil ou de poudre.  The DED methods consist in depositing a molten material, for example by means of a laser beam, the material being brought in solid form for example in the form of a wire or powder.
L'étape de passage en voie liquide, généralement sous forme de bain de fusion, s'opère à des températures très élevées, de l'ordre de plusieurs milliers de Kelvin, ce qui a pour effet de réduire la viscosité et la tension de surface des matériaux. Par ailleurs les gradients de température sont très intenses et de ce fait, les phases liquides peuvent être le lieu de phénomènes d'instabilité pouvant aller jusqu' à la rupture du bain et à l'éjection de gouttelettes.  The step of passage through the liquid channel, generally in the form of a molten bath, takes place at very high temperatures, of the order of several thousand Kelvin, which has the effect of reducing the viscosity and the surface tension. materials. In addition, the temperature gradients are very intense and, as a result, the liquid phases can be the site of instability phenomena which can go as far as breaking the bath and ejecting droplets.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
C'est par conséquent un but de la présente invention d'offrir un dispositif de fabrication additive et une méthode de fabrication additive dans lesquels les problèmes d'instabilités hydrodynamiques, et en particulier ceux conduisant à des ondulations de la surface libre du bain et à sa fragmentation et à l'éjection de gouttelettes sont réduits, voire supprimés. Le but de la présente invention est atteint par un dispositif de fabrication additive d'au moins une pièce en cours de fabrication, des moyens pour fournir le matériau sur un support, au moins une source d'énergie pour fondre le matériau et des moyens pour générer un champ magnétique indépendant du temps au moins au niveau de la zone de fusion du matériau, l'intensité du champ magnétique étant telle que le nombre de Hartmann basé sur la valeur maximale du champ magnétique à la surface du bain et la profondeur maximale dudit bain de fusion est supérieur à 5. Le champ magnétique indépendant du temps peut être obtenu par un aimant permanent ou un électroaimant alimenté par un courant permanent. It is therefore an object of the present invention to provide an additive manufacturing device and an additive manufacturing method in which the problems of hydrodynamic instabilities, and in particular those leading to undulations of the free surface of the bath and to its fragmentation and the ejection of droplets are reduced or even eliminated. The object of the present invention is achieved by an additive manufacturing device for at least one part during manufacture, means for supplying the material on a support, at least one energy source for melting the material and means for generate a magnetic field independent of time at least at the melting zone of the material, the intensity of the magnetic field being such that the Hartmann number based on the maximum value of the magnetic field on the surface of the bath and the maximum depth of said fusion bath is greater than 5. The time independent magnetic field can be obtained by a permanent magnet or an electromagnet powered by a permanent current.
La génération d'un tel champ magnétique dans le bain de matériau en fusion a pour effet de stabiliser les mouvements convectifs dans le bain fondu et ainsi d'éviter la mise en place d'instabilités hydrodynamiques pouvant aller jusqu'à la projection de gouttelettes.  The generation of such a magnetic field in the bath of molten material has the effect of stabilizing the convective movements in the molten bath and thus avoiding the establishment of hydrodynamic instabilities which can go as far as the projection of droplets.
De manière avantageuse, les moyens de génération d'un champ magnétique sont tels que le champ magnétique présente une symétrie de révolution par rapport à un axe normal à la surface du bain de matériau fondu et qui passe par le centre de la zone d'amenée de la chaleur. Dans un cas particulier de mise en œuvre, ces moyens de génération d'un champ magnétique sont en outre tels que le champ magnétique est uniforme au niveau du bain et est normal à la surface du bain.  Advantageously, the means for generating a magnetic field are such that the magnetic field has a symmetry of revolution with respect to an axis normal to the surface of the bath of molten material and which passes through the center of the supply zone. heat. In a particular case of implementation, these means for generating a magnetic field are also such that the magnetic field is uniform at the level of the bath and is normal to the surface of the bath.
De manière préférée, les moyens de génération d'un champ magnétique sont situés d'un côté de la zone où est formée la pièce, par exemple au-dessus en regard direct du bain de matériau fondu afin de permettre la génération d'un champ magnétique d'intensité suffisante avec une puissance limitée.  Preferably, the means for generating a magnetic field are located on one side of the area where the part is formed, for example above directly facing the bath of molten material in order to allow the generation of a field. magnetic of sufficient intensity with limited power.
En variante, ils peuvent se situer au droit au-dessous de la pièce en cours de construction, la pièce en cours de construction étant interposée entre les moyens de génération de champ magnétique et la zone fondue.  As a variant, they can be located at the right below the part under construction, the part under construction being interposed between the magnetic field generation means and the molten zone.
Grâce à l'invention, on agit localement pour stabiliser le bain de matériau en fusion en limitant la consommation d'énergie et le coût et l'encombrement du dispositif. Les moyens de génération d'un champ magnétique comportent par exemple au moins un aimant permanent et/ou un ou des électroaimants. Thanks to the invention, it acts locally to stabilize the bath of molten material by limiting the energy consumption and the cost and size of the device. The means for generating a magnetic field comprise for example at least one permanent magnet and / or one or more electromagnets.
La présente invention a alors pour objet un dispositif de fabrication additive d'au moins une pièce comportant :  The present invention therefore relates to an additive manufacturing device for at least one part comprising:
- une zone de fabrication où la pièce est destinée à être fabriquée, - a manufacturing area where the part is intended to be manufactured,
- des moyens de fourniture du matériau pour fabriquer la pièce,means of supplying the material for manufacturing the part,
- au moins une source d'énergie destinée à générer au moins un faisceau d'énergie pour fondre le matériau et former au moins une zone fondue à au moins un emplacement local de la zone de fabrication, - at least one energy source intended to generate at least one energy beam to melt the material and form at least one molten zone at at least one local location in the manufacturing zone,
- des moyens de génération d'un champ magnétique indépendant du temps au moins dans la zone fondue, dont l'intensité est telle que le nombre de Hartmann basé sur la valeur maximale du champ magnétique à la surface de la zone fondue et la profondeur maximale de la zone fondue est supérieur à 5, lesdits moyens de génération d'un champ magnétique indépendant du temps étant disposés d'un seul côté par rapport à la zone de fabrication où la pièce est destinée à être fabriquée.  means for generating a magnetic field independent of time at least in the molten zone, the intensity of which is such that the Hartmann number based on the maximum value of the magnetic field at the surface of the molten zone and the maximum depth of the molten zone is greater than 5, said means for generating a magnetic field independent of time being arranged on one side relative to the manufacturing zone where the part is intended to be manufactured.
De préférence, les moyens de génération d'un champ magnétique indépendant du temps au moins dans la zone fondue génèrent un champ magnétique dont l'intensité est telle que le nombre de Hartmann est supérieur à 10, et avantageusement supérieur à 20.  Preferably, the means for generating a magnetic field independent of time at least in the molten zone generate a magnetic field whose intensity is such that the Hartmann number is greater than 10, and advantageously greater than 20.
Les moyens de génération d'un champ magnétique indépendant du temps génèrent avantageusement un champ magnétique présentant, dans la zone fondue, une symétrie de révolution par rapport à un axe normal à une surface libre de la zone fondue.  The means for generating a time-independent magnetic field advantageously generate a magnetic field having, in the molten zone, a symmetry of revolution with respect to an axis normal to a free surface of the molten zone.
Selon une caractéristique additionnelle, les moyens de génération d'un champ magnétique indépendant du temps peuvent générer un champ magnétique uniforme, au moins dans la zone fondue, et avantageusement dans toute la zone de fabrication, orienté selon une direction normale à une surface libre de la zone fondue.  According to an additional characteristic, the means for generating a magnetic field independent of time can generate a uniform magnetic field, at least in the molten zone, and advantageously throughout the manufacturing zone, oriented in a direction normal to a free surface of the melted area.
Les moyens de génération d'un champ magnétique indépendant du temps peuvent être disposés au moins au droit de l'emplacement local de la zone de fabrication. Dans un exemple de réalisation, les moyens de génération d'un champ magnétique indépendant du temps sont disposés au-dessus de l'emplacement local. The means for generating a magnetic field independent of time can be arranged at least in line with the local location of the manufacturing area. In an exemplary embodiment, the means for generating a magnetic field independent of time are arranged above the local location.
Selon une caractéristique additionnelle, les moyens de génération d'un champ magnétique indépendant du temps peuvent être mobiles et leurs déplacements sont asservis au déplacement de la source d'énergie. Par exemple, les moyens de fourniture, la source d'énergie et les moyens de génération d'un champ magnétique indépendant du temps sont configurés pour se déplacer ensemble.  According to an additional characteristic, the means for generating a magnetic field independent of time can be mobile and their movements are controlled by the movement of the energy source. For example, the supply means, the energy source and the means for generating a time-independent magnetic field are configured to move together.
Dans un autre exemple de réalisation, le dispositif de fabrication additive comporte un plateau de fabrication sur lequel est destinée à être fabriquée la pièce. Les moyens de génération d'un champ magnétique indépendant du temps peuvent être disposés sous le plateau de fabrication.  In another exemplary embodiment, the additive manufacturing device comprises a manufacturing plate on which the part is intended to be manufactured. The means for generating a time-independent magnetic field can be arranged under the manufacturing plate.
Dans un autre exemple de réalisation, le dispositif de fabrication additive comporte un plateau de fabrication sur lequel est destinée à être fabriquée la pièce. Les moyens de génération d'un champ magnétique indépendant du temps peuvent s'étendre sur une partie ou sous toute la surface du plateau de construction susceptible d'être une zone de fabrication.  In another exemplary embodiment, the additive manufacturing device comprises a manufacturing plate on which the part is intended to be manufactured. The means for generating a time-independent magnetic field may extend over part or under the entire surface of the construction plate capable of being a manufacturing area.
Dans un exemple, les moyens de génération d'un champ magnétique indépendant du temps comportent au moins un électroaimant. Le dispositif comporte alors avantageusement une unité de commande configurée pour piloter l'alimentation de l'électroaimant de sorte à maintenir constante l'intensité du champ magnétique dans la zone fondue.  In one example, the means for generating a magnetic field independent of time comprise at least one electromagnet. The device then advantageously comprises a control unit configured to control the supply of the electromagnet so as to maintain constant the intensity of the magnetic field in the molten zone.
Dans un autre exemple, les moyens de génération d'un champ magnétique permanent comportent un ou plusieurs électroaimants et l'unité de commande est configurée pour piloter l'alimentation du ou des électroaimants situés uniquement au droit du au moins un emplacement local de la zone de fabrication où une zone fondue est destinée à être formée.  In another example, the means for generating a permanent magnetic field comprise one or more electromagnets and the control unit is configured to control the supply of the electromagnet (s) situated only at the level of at least one local location in the zone where a molten zone is intended to be formed.
Les moyens de fourniture du matériau peuvent comporter une buse destinée à fournir du matériau en poudre ou un système d'amenée de fil et les moyens de fourniture, la source d'énergie et les moyens de génération d'un champ magnétique permanent sont coaxiaux. En variante, les moyens de fourniture délivrent du matériau en poudre sous forme d'un lit de poudre. The material supply means may include a nozzle for supplying powdered material or a wire feed system and the supply means, the power source and the means for generating a magnetic field permanent are coaxial. As a variant, the supply means deliver powdered material in the form of a powder bed.
La présente invention a également pour objet un procédé de fabrication additive d'au moins une pièce comportant :  The present invention also relates to an additive manufacturing process for at least one part comprising:
- la fourniture d'au moins un matériau conducteur électrique à au moins un emplacement local d'une zone de fabrication,  - the supply of at least one electrically conductive material to at least one local location in a manufacturing area,
- l'application d'une énergie à l'emplacement local pour fondre ledit matériau et former une zone fondue,  - the application of energy to the local location to melt said material and form a molten zone,
- la génération d'un champ magnétique indépendant du temps au moins dans la zone fondue dont l'intensité dans la zone fondue est telle que le nombre de Hartmann basé sur la valeur maximale du champ magnétique à la surface du bain et la profondeur maximale dudit bain de fusion est supérieur à 5, ledit champ magnétique indépendant du temps étant généré d'un seul côté de la zone de fabrication.  - The generation of a magnetic field independent of time at least in the molten zone whose intensity in the molten zone is such that the Hartmann number based on the maximum value of the magnetic field on the surface of the bath and the maximum depth of said the melt is greater than 5, said time independent magnetic field being generated on one side of the manufacturing area.
Selon une caractéristique additionnelle, le champ magnétique généré indépendant du temps peut être tel que le potentiel électrique dans la zone fondue est sensiblement uniforme, au moins au droit de la source d'énergie.  According to an additional characteristic, the magnetic field generated independent of time can be such that the electric potential in the molten zone is substantially uniform, at least in line with the energy source.
De manière avantageuse, les moyens de génération d'un champ magnétique indépendant du temps sont disposés par rapport à la zone fondue de sorte à générer un champ magnétique présentant, dans la zone fondue, une symétrie de révolution autour d'une direction normale à la surface libre de la zone fondue.  Advantageously, the means for generating a magnetic field independent of time are arranged with respect to the molten zone so as to generate a magnetic field having, in the molten zone, a symmetry of revolution around a direction normal to the free surface of the melted area.
Les moyens de génération d'un champ magnétique indépendant du temps peuvent être tels qu'ils génèrent un champ uniforme orienté selon une direction normale à la surface libre de la zone fondue dans toute la zone de fabrication.  The means for generating a time-independent magnetic field can be such that they generate a uniform field oriented in a direction normal to the free surface of the molten zone throughout the manufacturing zone.
De préférence, le champ magnétique indépendant du temps est généré au droit de la zone fondue à l'emplacement local de la zone de fabrication pendant sensiblement toute la durée de la fabrication de la pièce.  Preferably, the time independent magnetic field is generated at the level of the molten zone at the local location of the manufacturing zone for substantially the entire duration of the production of the part.
Le procédé de fabrication peut être un procédé par fusion sur lit de poudre ou un procédé par dépôt de matière. BRÈVE DESCRIPTION DES DESSINS The manufacturing process can be a powder bed fusion process or a material deposition process. BRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise sur la base de la description qui va suivre et des dessins en annexe sur lesquels: The present invention will be better understood on the basis of the description which follows and of the appended drawings in which:
- la figure 1 est une représentation schématique générale d'un dispositif de fabrication additive montrant les moyens de fourniture de la matière pour la pièce en cours de construction, les moyens d'amenée de l'énergie et les moyens de génération du champ magnétique situé au-dessus de pièce,  - Figure 1 is a general schematic representation of an additive manufacturing device showing the means of supplying the material for the part under construction, the means for supplying energy and the means for generating the magnetic field located above room,
- la figure 2A est une représentation schématique d'un exemple de dispositif de fabrication additive par apport de matériau sous forme de poudre,  FIG. 2A is a schematic representation of an example of an additive manufacturing device by adding material in powder form,
- la figure 2B est une vue de détail de la figure 2A incluant les lignes de champ magnétique,  FIG. 2B is a detailed view of FIG. 2A including the magnetic field lines,
- la figure 3A est une représentation schématique d'un exemple de dispositif de fabrication additive par apport de matériau sous forme de fil,  FIG. 3A is a schematic representation of an example of an additive manufacturing device by adding material in the form of a wire,
- la figure 3B est une représentation schématique d'une variante de la figure 3 A,  FIG. 3B is a schematic representation of a variant of FIG. 3 A,
- la figure 4 est une représentation schématique d'un exemple de dispositif de fabrication additive par fusion sur lit de poudre avec des dispositifs de génération du champ magnétique situés au-dessous des deux pièces en cours de construction,  FIG. 4 is a schematic representation of an example of an additive manufacturing device by fusion on a powder bed with devices for generating the magnetic field located below the two parts under construction,
- la figure 5 est une représentation schématique d'un autre exemple de dispositif de fabrication additive par fusion sur lit de poudre, montrant une pluralité d'aimants sous le plateau de construction  - Figure 5 is a schematic representation of another example of additive manufacturing device by melting on a powder bed, showing a plurality of magnets under the construction plate
- la figure 6 est une représentation schématique d'un exemple de dispositif de fabrication additive par fusion sur lit de poudre dans lequel les moyens de génération de champ magnétique sont situés au-dessus du lit de poudre,  FIG. 6 is a schematic representation of an example of an additive manufacturing device by melting on a powder bed in which the magnetic field generation means are located above the powder bed,
- la figure 7 est une représentation schématique d'un autre exemple de dispositif de fabrication additive par fusion sur lit de poudre dans lequel le champ magnétique généré est sensiblement uniforme, EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS FIG. 7 is a schematic representation of another example of an additive manufacturing device by melting on a powder bed in which the magnetic field generated is substantially uniform, DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Dans la suite de la description, les expressions « bain fondu » et « zone fondue » sont synonymes. In the following description, the expressions “melted bath” and “melted zone” are synonymous.
B désigne le champ magnétique et I désigne le courant circulant dans l'électroaimant quand le champ est créé par un électroaimant.  B denotes the magnetic field and I denotes the current flowing in the electromagnet when the field is created by an electromagnet.
Le dispositif de fabrication et le procédé de fabrication additive selon l'invention utilisent des matériaux conducteurs, par exemple métalliques, voire des matériaux semi-conducteurs. Par exemple, les matériaux utilisables sont par exemple le fer, le nickel, le titane, l'aluminium, le chrome et le cobalt, leurs mélanges et leurs alliages.  The manufacturing device and the additive manufacturing method according to the invention use conductive materials, for example metallic, or even semiconductor materials. For example, the materials that can be used are, for example, iron, nickel, titanium, aluminum, chromium and cobalt, their mixtures and their alloys.
Sur la figure 1, on peut voir une représentation schématique de principe d'un dispositif de fabrication de pièces par fabrication additive selon l'invention.  In Figure 1, we can see a schematic representation of the principle of a device for manufacturing parts by additive manufacturing according to the invention.
En configuration PBF, la pièce est fabriquée sur un plateau de construction, qui est généralement retiré en fin de fabrication, et en configuration DED la pièce est fabriquée sur un substrat qui fait parfois partie de la pièce définitive. C'est en particulier le cas pour les procédés de réparation ou d'ajout de fonctionnalités sur des pièces existantes.  In the PBF configuration, the part is manufactured on a construction plate, which is generally removed at the end of manufacture, and in the DED configuration, the part is manufactured on a substrate which is sometimes part of the final part. This is particularly the case for repair processes or adding functionality to existing parts.
Dans la description du dispositif de la figure 1 est décrit schématiquement le principe de l'invention le plateau en configuration PBF et le substrat en configuration DED seront désignés « support ».  In the description of the device in FIG. 1, the principle of the invention is described schematically, the plate in PBF configuration and the substrate in DED configuration will be designated “support”.
Le dispositif de fabrication comporte des moyens de fourniture du matériau 4 et une source d'énergie 6 configurée pour fondre le matériau. Un support 2 est prévu sur lequel la pièce est destinée à être fabriquée.  The manufacturing device comprises means for supplying the material 4 and an energy source 6 configured to melt the material. A support 2 is provided on which the part is intended to be manufactured.
La source d'énergie 6 est par exemple un laser dont le faisceau est orienté vers la zone où l'on souhaite fabriquer la pièce P. La puissance du laser peut par exemple varier entre 100 W et 5 kW. En variante, la source de chaleur est un faisceau d'électrons.  The energy source 6 is for example a laser whose beam is oriented towards the area where it is desired to manufacture the part P. The power of the laser can for example vary between 100 W and 5 kW. Alternatively, the heat source is an electron beam.
Les moyens de génération d'un champ magnétique 8 sont avantageusement disposés d'un côté du bain fondu. Dans l'exemple représenté sur la figure 1, ils sont disposés directement en regard du bain ou de la zone fondue ZF. Ils assurent une génération d'un champ magnétique local. Les moyens de génération d'un champ magnétique 8 sont disposés d'un côté du bain fondu en considérant une direction verticale, i.e. Les moyens de génération d'un champ magnétique 8 sont disposés au- dessus ou au-dessous du bain fondu. The means for generating a magnetic field 8 are advantageously arranged on one side of the molten bath. In the example shown in the Figure 1, they are arranged directly opposite the bath or the ZF molten area. They generate a local magnetic field. The means for generating a magnetic field 8 are arranged on one side of the molten bath by considering a vertical direction, ie The means for generating a magnetic field 8 are arranged above or below the molten bath.
Cette disposition des moyens de génération d'un champ magnétique d'un côté du bain fondu permet d'atteindre l'intensité de champ magnétique souhaitée tout en limitant la puissance des moyens de génération d'un champ magnétique.  This arrangement of the means for generating a magnetic field on one side of the molten bath makes it possible to achieve the desired magnetic field intensity while limiting the power of the means for generating a magnetic field.
La zone de dépôt varie au cours du temps, à la fois dans le plan et en hauteur. En effet en général les pièces sont formées en plusieurs passes. Dans un exemple de réalisation la pièce P en cours de fabrication est mobile par rapport au bâti du dispositif dans les trois directions de l'espace. En configuration PBF, le support 2 formant un plateau de fabrication est disposé sur un plateau support (non représenté) généralement mobile uniquement selon la direction verticale. Les déplacements de la pièce et/ou du plateau de construction sont commandés par exemple par un ordinateur ou une commande numérique.  The drop zone varies over time, both in plan and in height. Indeed in general the parts are formed in several passes. In an exemplary embodiment, the part P during manufacture is movable relative to the frame of the device in the three directions of space. In PBF configuration, the support 2 forming a production plate is placed on a support plate (not shown) generally mobile only in the vertical direction. The movements of the part and / or of the construction plate are controlled for example by a computer or a digital control.
La direction Z correspond à la direction des couches lors du procédé de fabrication. Les directions X et Y définissent le plan de chaque couche.  The Z direction corresponds to the direction of the layers during the manufacturing process. The X and Y directions define the plane of each layer.
Dans un autre exemple, les moyens de fourniture du matériau et le faisceau de la source d'énergie sont mobiles dans les trois directions de l'espace par rapport au support et de la pièce en cours de fabrication.  In another example, the means of supplying the material and the beam of the energy source are movable in the three directions of space with respect to the support and the part being manufactured.
Dans un autre exemple, le support est mobile dans tout ou partie des directions de l'espace et les moyens de fourniture du matériau et le faisceau de la source d'énergie sont mobiles dans tout ou partie des directions de l'espace. Par exemple, le support est mobile dans la direction Z et les moyens de fourniture du matériau et le faisceau de la source d'énergie sont mobiles dans les directions X et Y.  In another example, the support is mobile in all or part of the directions of space and the means for supplying the material and the beam of the energy source are mobile in all or part of the directions of space. For example, the support is movable in the Z direction and the material supply means and the beam of the energy source are movable in the X and Y directions.
La source d'énergie, par exemple une source laser, peut être mobile ou c'est le faisceau d'énergie, par exemple le faisceau laser, qui est orienté par exemple au moyen d'un ou plusieurs miroirs. Par exemple, le support et/ou les moyens de fourniture du matériau et la source d'énergie sont déplacés par des actionneurs commandés par une unité de commande reliée à un ordinateur. The energy source, for example a laser source, can be mobile or it is the energy beam, for example the laser beam, which is oriented for example by means of one or more mirrors. For example, the support and / or the means for supplying the material and the energy source are moved by actuators controlled by a control unit connected to a computer.
A titre d'exemple, la vitesse de balayage peut varier entre 50 mm/s et plusieurs m/s et la zone fondue peut être relativement étendue, typiquement entre 100 x 100 pm2 et 5 x 5 mm2. For example, the scanning speed can vary between 50 mm / s and several m / s and the molten area can be relatively large, typically between 100 x 100 pm 2 and 5 x 5 mm 2 .
Les inventeurs ont déterminé qu'en appliquant un champ magnétique d'intensité suffisante au niveau du bain de matériau en fusion, celui-ci pouvait être stabilisé.  The inventors have determined that by applying a magnetic field of sufficient intensity to the level of the bath of molten material, it can be stabilized.
Le dispositif de fabrication comporte alors également des moyens 8 pour générer un champ magnétique indépendant du temps au moins au niveau du bain de fusion.  The manufacturing device then also comprises means 8 for generating a magnetic field independent of time at least at the level of the fusion bath.
On entend par « des moyens pour générer un champ magnétique indépendant du temps » des moyens aptes à maintenir un champ magnétique au moins d'une valeur donnée au cours du temps. Il peut s'agir d'un ou plusieurs aimants permanents ou un ou plusieurs électroaimants.  The term "means for generating a magnetic field independent of time" means capable of maintaining a magnetic field at least of a given value over time. It can be one or more permanent magnets or one or more electromagnets.
Les moyens 8 sont configurés pour générer, dans au moins une partie du bain, un champ magnétique dont l'intensité est choisie de sorte que le nombre de Hartmann est supérieur à 5, préférentiellement supérieur à 10 et encore plus préférentiellement supérieur à 20. A ces valeurs du nombre de Hartmann, la vitesse critique de déstabilisation conduisant à la formation d'instabilités est supérieure à la vitesse de convection dans la zone fondue, et la zone fondue est donc stabilisée.  The means 8 are configured to generate, in at least part of the bath, a magnetic field whose intensity is chosen so that the Hartmann number is greater than 5, preferably greater than 10 and even more preferably greater than 20. A these values of the Hartmann number, the critical speed of destabilization leading to the formation of instabilities is greater than the speed of convection in the molten zone, and the molten zone is therefore stabilized.
Le nombre de Hartmann est défini par :  Hartmann's number is defined by:
Ha = BH(s/h)1/2. Ha = BH (s / h) 1/2 .
Avec B l'intensité maximale du champ (en Tesla) à la surface du bain,With B the maximum field strength (in Tesla) on the surface of the bath,
H la profondeur maximale du bain (en mètre) du bain, s la conductivité électrique du matériau du bain de fusion (en Siemens par mètre) H the maximum depth of the bath (in meters) of the bath, s the electrical conductivity of the material of the melt (in Siemens per meter)
h la viscosité dynamique (en Pascal. seconde) du bain. Pour les métaux liquides au voisinage de leur point de fusion des valeurs typiques peuvent être prises à s = 2 106 S/m et h = 1.5 10 3 Pa.s. h the dynamic viscosity (in Pascal. second) of the bath. For liquid metals near their melting point typical values can be taken at s = 2 10 6 S / m and h = 1.5 10 3 Pa.s.
A titre d'exemple, pour une configuration de dépôt de matière sous énergie concentrée (DED), avec une épaisseur de bain de fusion de 2 mm, la condition sur le nombre de Ha définie ci-dessus se traduit par un champ magnétique d'intensité supérieure à 0,07 T, préférentiellement supérieure à 0,14 T, encore plus préférentiellement 0,28 T. Pour une configuration fusion sur lit de poudre (PBF), avec une épaisseur de bain de 200 pm, les conditions sur le champ à appliquer deviennent une d'intensité supérieure à 0,7 T, préférentiellement 1,4 T, encore plus préférentiellement 2,8 T. En général, l'épaisseur de la zone fondue est significativement plus faible en configuration PBF qu'en configuration DED.  By way of example, for a concentrated energy deposition (DED) configuration, with a thickness of weld pool of 2 mm, the condition on the number of Ha defined above results in a magnetic field of intensity greater than 0.07 T, preferably greater than 0.14 T, even more preferably 0.28 T. For a powder bed fusion (PBF) configuration, with a bath thickness of 200 μm, the conditions on the field to be applied become an intensity greater than 0.7 T, preferably 1.4 T, even more preferably 2.8 T. In general, the thickness of the molten zone is significantly less in the PBF configuration than in the DED configuration .
En augmentant l'intensité du champ magnétique indépendant du temps appliqué à la zone fondue, on stabilise davantage la zone fondue.  By increasing the intensity of the magnetic field independent of the time applied to the molten zone, the molten zone is further stabilized.
L'application d'un tel champ magnétique lors du dépôt permet de réduire la vitesse hydrodynamique au sein du bain, et donc les instabilités dans le bain et les éjections de gouttelettes. La force de Lorentz et par voie de conséquence la réduction de la vitesse hydrodynamique sont d'un point de vue théorique attendues proportionnelles au moins au nombre de Hartmann.  The application of such a magnetic field during deposition makes it possible to reduce the hydrodynamic speed within the bath, and therefore the instabilities in the bath and the ejection of droplets. The Lorentz force and consequently the reduction of the hydrodynamic speed are theoretically expected to be proportional at least to the Hartmann number.
Les moyens de génération d'un champ magnétique indépendant du temps comportent par exemple un ou des aimants permanents et/ou un ou des électroaimants.  The means for generating a time-independent magnetic field include, for example, one or more permanent magnets and / or one or more electromagnets.
Les électroaimants sont reliés à une source de courant électrique, qui est avantageusement commandée de sorte à n'alimenter le ou les électroaimants que pendant une phase de fabrication.  The electromagnets are connected to a source of electric current, which is advantageously controlled so as to power the electromagnet (s) only during a manufacturing phase.
La mise en œuvre d'aimants permanents permet de simplifier le dispositif, car aucune connexion électrique n'est requise, ce qui est particulièrement intéressant dans le cas où les moyens de génération du champ magnétiques sont mobiles. Néanmoins du fait des températures très élevées au niveau de la zone fondue, les aimants permanents sont à protéger pour qu'ils ne soient pas soumis à une température supérieure à la température de Curie. A titre d'exemple les températures de Curie du Fe, Ni et Co sont respectivement de 1043 K, 627 K et 1388 K. The use of permanent magnets simplifies the device, since no electrical connection is required, which is particularly advantageous in the case where the means for generating the magnetic field are mobile. However due to the very high temperatures at the molten area, the permanent magnets are to be protected so that they are not subjected to a temperature higher than the Curie temperature. For example, the Curie temperatures of Fe, Ni and Co are 1043 K, 627 K and 1388 K respectively.
La mise en œuvre d'électroaimants offre une plus grande liberté au niveau de l'intensité du champ magnétique indépendant du temps généré, ils peuvent permettre par exemple de modifier le champ produit en fonction de leur position par rapport à la zone fondue.  The use of electromagnets offers greater freedom in terms of the intensity of the magnetic field independent of the time generated, they can for example allow the field produced to be modified as a function of their position relative to the molten zone.
Dans la suite de la description il sera fait mention des moyens de génération, et il sera précisé suivants les exemples s'il s'agit d'aimants permanents en matériaux ferromagnétiques ou d'électroaimants.  In the following description, mention will be made of the generation means, and the following examples will be specified if they are permanent magnets made of ferromagnetic materials or electromagnets.
De manière très avantageuse, le champ magnétique présente une orientation et/ou une distribution particulière par rapport à la surface libre de la zone fondue permettant d'amplifier la réduction de la vitesse hydrodynamiques et donc les instabilités.  Very advantageously, the magnetic field has a particular orientation and / or distribution with respect to the free surface of the molten zone, making it possible to amplify the reduction in hydrodynamic speed and therefore the instabilities.
En combinant un champ magnétique d'intensité élevée et d'orientation choisie pour son efficacité, on peut stabiliser de manière très efficace la zone fondue.  By combining a magnetic field of high intensity and orientation chosen for its efficiency, it is possible to very effectively stabilize the molten area.
Le champ magnétique selon l'invention est avantageusement orienté de sorte que l'angle maximum des lignes de champ avec la normale au bain fondu sur toute la surface dudit bain fondu est inférieur à 45°, préférentiellement 30°, ou qu'encore plus préférentiellement les lignes de champ soient sensiblement normales à la surface dudit bain fondu.  The magnetic field according to the invention is advantageously oriented so that the maximum angle of the field lines with the normal to the molten bath over the entire surface of said molten bath is less than 45 °, preferably 30 °, or even more preferably the field lines are substantially normal to the surface of said molten bath.
En variante, peut prévoir de générer un champ dont l'orientation permet de stabiliser très efficacement la zone fondue et de réduire l'intensité du champ pour réduire l'énergie consommée dans le cas d'un électroaimant, ce qui permet d'offrir un dispositif de fabrication additive présentant une consommation électrique réduite tout en offrant une zone fondue stable.  As a variant, may provide for generating a field whose orientation makes it possible to very effectively stabilize the molten zone and to reduce the intensity of the field to reduce the energy consumed in the case of an electromagnet, which makes it possible to offer a additive manufacturing device with reduced electrical consumption while providing a stable molten area.
Dans un premier temps, on fait l'hypothèse que la zone fondue a une forme hémisphérique. Elle possède un axe de symétrie Xc normal à la surface libre de la zone fondue et passant par le centre de celle-ci.  First, we assume that the molten zone has a hemispherical shape. It has an axis of symmetry Xc normal to the free surface of the molten zone and passing through the center of the latter.
Les inventeurs ont déterminé qu'en appliquant un champ magnétique dont les lignes de champ présentent une symétrie de révolution par rapport à l'axe Xc, le potentiel électrique dans la zone fondue était uniforme, il en résultait alors une force de Lorentz très efficace pour stabiliser l'écoulement. Dans un mode particulier où des moyens de génération de champ magnétique suffisamment grands et suffisamment puissants pour générer un champ magnétique uniforme dans la zone fondue peuvent être mis en œuvre, et en orientant les moyens de sorte que le champ soit normal à la surface libre de la zone fondue, i.e. parallèle à l'axe Xc, on obtient un potentiel électrique uniforme dans la zone fondue et une force de Lorentz très efficace pour stabiliser l'écoulement. The inventors have determined that by applying a magnetic field whose field lines have a symmetry of revolution with respect to the axis Xc, the electrical potential in the molten zone was uniform, resulting in a very effective Lorentz force to stabilize the flow. In a particular mode where magnetic field generation means large enough and powerful enough to generate a uniform magnetic field in the molten area can be implemented, and by orienting the means so that the field is normal to the free surface of the molten zone, ie parallel to the axis Xc, a uniform electric potential is obtained in the molten zone and a very effective Lorentz force to stabilize the flow.
Lorsqu'un potentiel électrique uniforme dans la zone fondue peut être obtenu, la force de Lorentz peut être proportionnelle au carré du nombre de Hartmann, et par voie de conséquence la réduction de la vitesse hydrodynamique dans la zone fondue peut être proportionnelle au carré du nombre de Hartmann.  When a uniform electric potential in the molten zone can be obtained, the Lorentz force can be proportional to the square of the Hartmann number, and consequently the reduction of the hydrodynamic speed in the molten zone can be proportional to the square of the number by Hartmann.
Dans les cas habituellement rencontrés en pratique, la zone fondue ne présente pas d'axe de symétrie, en particulier elle s'allonge dans la direction opposée au mouvement de la source chaude pour permettre l'évacuation de la chaleur. Il est cependant possible d'appliquer le raisonnement précédent en considérant que la zone d'application de la chaleur par la source d'énergie présente une forme symétrique, i.e. une surface libre sensiblement circulaire, d'axe Xc normal à la surface du bain passant par le centre de ladite zone d'application de la chaleur. Dans ces conditions, même si le potentiel électrique n'est pas uniforme loin de l'axe Xc, l'application d'un champ magnétique de révolution autour de l'axe Xc permet de limiter efficacement les mouvements de convection aux endroits les plus critiques du bain, à savoir ceux où la température est la plus élevée.  In the cases usually encountered in practice, the molten zone does not have an axis of symmetry, in particular it elongates in the direction opposite to the movement of the hot source to allow the evacuation of the heat. It is however possible to apply the above reasoning considering that the area of application of heat by the energy source has a symmetrical shape, ie a substantially circular free surface, of axis Xc normal to the surface of the passing bath through the center of said heat application area. Under these conditions, even if the electric potential is not uniform far from the Xc axis, the application of a magnetic field of revolution around the Xc axis makes it possible to effectively limit the convection movements at the most critical locations. of the bath, namely those where the temperature is the highest.
Nous allons maintenant décrire différents exemples non limitatifs de réalisation du dispositif de fabrication additive.  We will now describe various nonlimiting examples of embodiment of the additive manufacturing device.
En configuration PBF, la profondeur du bain varie par exemple entre 50 pm et 500 pm. En configuration DED, cette profondeur varie par exemple entre 500 pm et 5 mm. Sur la figure 2A, on peut voir un exemple de réalisation d'un dispositif de fabrication additive particulièrement avantageux représentatif d'une configuration DED. In the PBF configuration, the depth of the bath varies for example between 50 μm and 500 μm. In DED configuration, this depth varies for example between 500 pm and 5 mm. In FIG. 2A, one can see an embodiment of a particularly advantageous additive manufacturing device representative of a DED configuration.
Dans cet exemple, les moyens de fourniture 4 comportent une buse 4.1 et le matériau à fondre est amené sous forme de poudre. La poudre peut comporter un seul matériau ou un mélange de matériaux.  In this example, the supply means 4 comprise a nozzle 4.1 and the material to be melted is supplied in the form of powder. The powder may consist of a single material or a mixture of materials.
En outre, les moyens de génération d'un champ magnétique 8 sont disposés en regard de la zone fondue ZF. Cette disposition des moyens de génération d'un champ magnétique permet d'atteindre l'intensité de champ magnétique souhaitée tout en limitant la puissance de moyens de génération d'un champ magnétique.  In addition, the means for generating a magnetic field 8 are arranged opposite the molten zone ZF. This arrangement of the means for generating a magnetic field makes it possible to achieve the desired magnetic field intensity while limiting the power of means for generating a magnetic field.
Les moyens de fourniture 4, la source d'énergie 6 et les moyens de génération d'un champ magnétique 8 sont coaxiaux selon l'axe Xc défini précédemment et forment un ensemble solidaire en mouvement. Ainsi, les différents moyens gardent des positions relatives fixes. L'axe de l'ensemble B est avantageusement orthogonal à la surface libre de la zone fondue ZF.  The supply means 4, the energy source 6 and the means for generating a magnetic field 8 are coaxial along the axis Xc defined above and form an integral unit in movement. Thus, the different means keep fixed relative positions. The axis of the assembly B is advantageously orthogonal to the free surface of the fused zone ZF.
Les moyens de génération 8 présentent une taille suffisante pour générer un champ magnétique d'orientation contrôlée et d'intensité suffisante dans toute la zone fondue ZF. Les dispositions coaxiales des moyens de génération 8, de la source d'énergie 6 et des moyens de fourniture 4 permettent de générer un champ magnétique présentant une symétrie de révolution autour de l'axe Xc. Comme expliqué ci-dessus, cette orientation du champ magnétique permet d'obtenir un champ magnétique de symétrie de révolution autour de l'axe Xc dans la zone fondue, et une force de Lorentz très efficace pour réduire la vitesse hydrodynamique dans la zone fondue. Dans cet exemple, les moyens de génération comportent un électroaimant disposé de sorte que les lignes de champ magnétique présentent la symétrie de révolution autour de l'axe Xc. La spire la plus proche du bain fondu est située à une distance variant par exemple entre 2 mm et 5 cm, préférentiellement 5 mm à 2 cm de la surface dudit bain. Le courant circulant dans l'électroaimant est de préférence supérieur à 100 A, voire supérieur à 1000 A si l'on souhaite atteindre des champs dépassant le Tesla. Sur la figure 2B, on peut voir une vue de détail de la zone fondue ZF et des lignes de champ magnétique B générées dans le dispositif de la figure 2A. The generation means 8 have a size sufficient to generate a magnetic field of controlled orientation and of sufficient intensity throughout the molten zone ZF. The coaxial arrangements of the generation means 8, of the energy source 6 and of the supply means 4 make it possible to generate a magnetic field having a symmetry of revolution around the axis Xc. As explained above, this orientation of the magnetic field makes it possible to obtain a magnetic field of symmetry of revolution about the axis Xc in the molten zone, and a very effective Lorentz force for reducing the hydrodynamic speed in the molten zone. In this example, the generation means comprise an electromagnet arranged so that the magnetic field lines have the symmetry of revolution around the axis Xc. The turn closest to the molten bath is located at a distance varying for example between 2 mm and 5 cm, preferably 5 mm to 2 cm from the surface of said bath. The current flowing in the electromagnet is preferably greater than 100 A, or even greater than 1000 A if it is desired to reach fields exceeding the Tesla. In FIG. 2B, one can see a detail view of the fused zone ZF and of the magnetic field lines B generated in the device of FIG. 2A.
Sur la figure 3A, on peut voir un autre exemple de réalisation en mode DED dans lequel le matériau est amené sous forme d'un fil F, l'extrémité libre du fil F étant en regard de la zone de dépôt souhaitée. Dans cet exemple les moyens de fourniture 104 et les moyens de génération 108 sont coaxiaux, mais pas la source d'énergie 106. Les moyens de fourniture 104 et la source d'énergie 106 sont orientés de sorte que l'extrémité libre du fil F soit fondue par l'énergie fournie par la source d'énergie 106 au droit de la zone de dépôt souhaitée. Les moyens de génération 108 sont disposés sensiblement le long de l'axe Xc au-dessus par rapport à la zone fondue de sorte à générer le champ magnétique dans la zone fondue ZF sans interférer avec la source d'énergie 106.  In FIG. 3A, we can see another example of embodiment in DED mode in which the material is brought in the form of a wire F, the free end of the wire F being opposite the desired deposition zone. In this example, the supply means 104 and the generation means 108 are coaxial, but not the energy source 106. The supply means 104 and the energy source 106 are oriented so that the free end of the wire F either melted by the energy supplied by the energy source 106 in line with the desired deposition zone. The generation means 108 are arranged substantially along the axis Xc above with respect to the molten zone so as to generate the magnetic field in the molten zone ZF without interfering with the energy source 106.
De manière avantageuse, les moyens de fourniture et la source d'énergie sont solidaires en déplacement.  Advantageously, the supply means and the energy source are integral in displacement.
Selon une variante représentée sur la figure 3B, la source d'énergie s'étend selon un premier axe A et les moyens de fourniture 104 s'étendent le long d'un deuxième axe B, les axes A et B étant sécants et disposés d'un côté et de l'autre d'un plan contenant l'axe Xc de la zone fondue souhaitée. Les moyens de génération 108 sont disposés sensiblement au droit du point d'intersection des axes au-dessus par rapport à la zone fondue de sorte à générer le champ magnétique dans la zone fondue ZF sans interférer avec la source d'énergie 106 et le fil F de matériau.  According to a variant shown in FIG. 3B, the energy source extends along a first axis A and the supply means 104 extend along a second axis B, the axes A and B being intersecting and arranged d 'one side and the other of a plane containing the axis Xc of the desired fused area. The generation means 108 are arranged substantially at the point of intersection of the axes above with respect to the molten zone so as to generate the magnetic field in the molten zone ZF without interfering with the energy source 106 and the wire F of material.
Le champ magnétique ainsi généré présente avantageusement également une symétrie de révolution autour de l'axe Xc. Ainsi, le potentiel électrique dans la zone fondue est uniforme, la force de Lorenz est alors très efficace. La zone fondue est alors stabilisée de manière importante. Comme dans l'exemple précédent, la spire la plus proche du bain fondu peut être située à une distance variant entre 2 mm et 5 cm, préférentiellement 5 mm à 2 cm de la surface dudit bain. Le courant circulant dans l'électroaimant est de préférence supérieur à 100 A, voire supérieur à 1000 A si l'on souhaite atteindre des champs dépassant le Tesla. De manière avantageuse, les moyens de génération et la source d'énergie sont solidaires en mouvement, ainsi les moyens de génération suivent le déplacement de la zone fondue. The magnetic field thus generated advantageously also has a symmetry of revolution around the axis Xc. Thus, the electrical potential in the molten zone is uniform, the Lorenz force is then very effective. The melted area is then stabilized significantly. As in the previous example, the turn closest to the molten bath can be located at a distance varying between 2 mm and 5 cm, preferably 5 mm to 2 cm from the surface of said bath. The current flowing in the electromagnet is preferably greater than 100 A, or even greater than 1000 A if it is desired to reach fields exceeding the Tesla. Advantageously, the generation means and the energy source are integral in movement, thus the generation means follow the movement of the molten zone.
Sur la figure 4, on peut voir un autre exemple de réalisation d'un dispositif de fabrication additive mettant en œuvre un procédé de fusion sur lit de poudre.  In Figure 4, we can see another embodiment of an additive manufacturing device implementing a powder bed melting process.
On peut voir un lit de poudre LP dans lequel se trouvent les pièces PI et P2 en cours de fabrication. Les pièces PI et P2 sont disposées sur un plateau de fabrication 202.  We can see an LP powder bed in which the PI and P2 parts are located during manufacture. The pieces PI and P2 are arranged on a manufacturing plate 202.
Dans l'exemple représenté, le plateau de fabrication 202 est disposé sur un plateau support 210 apte à se déplacer verticalement le long de l'axe Z. Par exemple, le dispositif comporte un vérin 212, duquel est solidaire le plateau support 210 le long de l'axe Z.  In the example shown, the production plate 202 is arranged on a support plate 210 able to move vertically along the axis Z. For example, the device comprises a jack 212, of which is fixed the support plate 210 along of the Z axis.
Les moyens de fourniture délivrent de la poudre sous forme de couches d'épaisseur variant entre 40 pm et 200 pm sur toute l'étendue du lit de poudre LP. Ces moyens (rouleau, racleur...) sont bien connus de l'homme du métier et ne seront pas décrits en détail.  The supply means deliver powder in the form of layers of thickness varying between 40 μm and 200 μm over the entire extent of the LP powder bed. These means (roller, scraper ...) are well known to those skilled in the art and will not be described in detail.
La source d'énergie est par exemple un laser, dont le faisceau est configuré pour se déplacer sur la surface supérieure du lit de poudre dans le plan XY de sorte à fondre la poudre dans certaines zones uniquement du lit de poudre.  The energy source is for example a laser, the beam of which is configured to move on the upper surface of the powder bed in the XY plane so as to melt the powder in certain areas only of the powder bed.
Dans cet exemple, les moyens de génération 208 comportent deux éléments aptes à générer un champ magnétique dans deux zones distinctes du lit de poudre LP, permettant la fabrication de deux pièces simultanément. Dans cet exemple, les éléments 208.1 et 208.2 peuvent être des aimants permanents. Ils peuvent être avantageusement réalisés dans des alliages de Samarium-Cobalt ou Fer-Neodyme-Bore. Ces matériaux permettent d'atteindre des inductions rémanentes à leur surface dépassant le Tesla, avec une température de Curie comprise entre 700°C et 800°C pour SmCo et une température de Curie de l'ordre de 310°C pour FeNdB.  In this example, the generation means 208 comprise two elements capable of generating a magnetic field in two distinct zones of the powder bed LP, allowing the manufacture of two parts simultaneously. In this example, the elements 208.1 and 208.2 can be permanent magnets. They can advantageously be made in alloys of Samarium-Cobalt or Iron-Neodymium-Boron. These materials allow residual inductions to be reached on their surface exceeding the Tesla, with a Curie temperature between 700 ° C and 800 ° C for SmCo and a Curie temperature of the order of 310 ° C for FeNdB.
Si les aimants permanents se présentent sous la forme de solide de révolution, leurs lignes de champ présentant une symétrie de révolution. Les deux éléments 208.1 et 208.2 sont disposés sous le plateau support au droit de la zone de fabrication de la pièce et à distance de celui-ci. If the permanent magnets are in the form of a solid of revolution, their field lines have a symmetry of revolution. The two elements 208.1 and 208.2 are arranged under the support plate in line with the part manufacturing area and at a distance therefrom.
Par exemple, les éléments 208.1 et 208.2 sont fixés au vérin sans contact mécanique ou thermique direct avec le plateau support. Les éléments 208.1 et 208.2 peuvent avantageusement être des électroaimants.  For example, the elements 208.1 and 208.2 are fixed to the jack without direct mechanical or thermal contact with the support plate. The elements 208.1 and 208.2 can advantageously be electromagnets.
Cette disposition des moyens de génération sous le plateau support à l'opposé de la source d'énergie permet de limiter la surchauffe des moyens de génération. De plus l'espace entre les moyens de génération et le plateau forme écran thermique.  This arrangement of the generation means under the support plate opposite the energy source makes it possible to limit the overheating of the generation means. In addition, the space between the generation means and the plate forms a thermal screen.
Avantageusement, un matériau isolant faisant office d'écran thermique peut être rajouté entre les moyens de génération et le plateau support.  Advantageously, an insulating material acting as a heat shield can be added between the generation means and the support plate.
L'élément 208.2 est encore plus éloigné de la source de chaleur. En outre, il n'est pas en contact avec le plateau support, les risques d'échauffement par conduction sont donc réduits.  Element 208.2 is even further from the heat source. In addition, it is not in contact with the support plate, the risks of heating by conduction are therefore reduced.
Dans un autre mode de réalisation, si les contraintes thermiques sont acceptables pour les éléments 208.1 et 208.2, et la barrière offerte par le plateau support est suffisante, les deux éléments 208.1 et 208.2 peuvent être directement en contact avec le plateau support.  In another embodiment, if the thermal stresses are acceptable for the elements 208.1 and 208.2, and the barrier offered by the support plate is sufficient, the two elements 208.1 and 208.2 can be directly in contact with the support plate.
Il sera compris qu'un dispositif avec un seul élément de génération d'un champ magnétique ou plus de deux éléments ne sort pas du cadre de la présente invention. En outre, tous les éléments peuvent être disposés à la même distance du plateau support ou non, ou certains peuvent être en contact avec le plateau support et d'autres non.  It will be understood that a device with a single element for generating a magnetic field or more than two elements does not depart from the scope of the present invention. In addition, all the elements can be arranged at the same distance from the support plate or not, or some can be in contact with the support plate and others not.
Tous les éléments 208.1, 208.2 peuvent générer un champ magnétique de même intensité ou tout ou partie d'entre eux peut produire un champ magnétique d'intensité différente.  All the elements 208.1, 208.2 can generate a magnetic field of the same intensity or all or part of them can produce a magnetic field of different intensity.
Dans cet exemple de réalisation, les moyens de génération s'éloignent de la zone fondue à chaque dépôt d'une nouvelle couche de poudre. De manière très avantageuse, les moyens de génération comportent un ou plusieurs électroaimants dont l'intensité d'alimentation est adaptée à la distance entre le ou les électroaimants et la zone fondue, de sorte à maintenir l'application d'un champ magnétique indépendant du temps d'intensité constante dans la zone ou les zones fondues tout au long de la fabrication. In this exemplary embodiment, the generation means move away from the molten zone each time a new layer of powder is deposited. Very advantageously, the generation means comprise one or more electromagnets whose supply intensity is adapted to the distance between the electromagnet (s) and the molten zone, so as to maintain the application of a magnetic field independent of the time of constant intensity in the zone or zones molten throughout the manufacturing.
Par exemple une unité de commande pilote l'alimentation du ou des électroaimants en fonction de nombre de couches déposées.  For example, a control unit controls the supply of the electromagnet (s) as a function of the number of layers deposited.
Sur la figure 5, on peut voir un autre exemple de dispositif de fabrication additive par fusion sur lit de poudre qui se distingue du dispositif de la figure 4, en ce que les moyens de génération 308 comportent une pluralité d'aimants permanents en matériau ferromagnétique disposés sous le plateau support 310 et couvrant tout la surface en regard du plateau de fabrication 302. Ainsi quel que soit l'emplacement et/ou la forme de la pièce fabriquée, elle se situe au droit d'une zone où est généré un champ magnétique. Dans cet exemple plusieurs aimants sont mis en œuvre pour générer un champ magnétique dans une seule pièce.  In Figure 5, we can see another example of additive manufacturing device by melting on a powder bed which differs from the device of Figure 4, in that the generation means 308 comprise a plurality of permanent magnets made of ferromagnetic material arranged under the support plate 310 and covering the entire surface facing the production plate 302. Thus whatever the location and / or the shape of the manufactured part, it is located in the region of a field where a field is generated magnetic. In this example, several magnets are used to generate a magnetic field in a single piece.
En variante, les aimants sont remplacés par des électroaimants. De manière avantageuse, seuls les électroaimants au droit de la ou des zones de fabrication des pièces sont alimentés, voire seuls les électroaimants au droit de la zone fondue ou des zones soumises au faisceau laser pendant la fabrication de la couche courante, ce qui permet de réduire la consommation électrique du dispositif. Plus le nombre d'électroaimants est important, plus il sera aisé de ne générer un champ magnétique qu'au droit de la pièce en cours de fabrication. Par exemple, l'alimentation des électroaimants est asservie à la trajectoire de balayage de la source d'énergie.  Alternatively, the magnets are replaced by electromagnets. Advantageously, only the electromagnets in line with the part production zone or zones are supplied, or even only the electromagnets in line with the molten zone or zones subjected to the laser beam during the manufacture of the current layer, which makes it possible to reduce the power consumption of the device. The greater the number of electromagnets, the easier it will be to generate a magnetic field only at the level of the part being manufactured. For example, the power supply of the electromagnets is controlled by the scanning path of the energy source.
En variante, les moyens de génération d'un champ magnétique permanent disposés sous le plateau support sont mobiles et leur déplacement est asservi au déplacement du faisceau de la source d'énergie.  As a variant, the means for generating a permanent magnetic field arranged under the support plate are mobile and their movement is controlled by the movement of the beam of the energy source.
Sur la figure 5, le plateau de construction comporte un support de pièce 314 pour permettre la fabrication de pièces de forme complexe, dans l'exemple représenté la pièce P2 est de forme ellipsoïdale.  In FIG. 5, the construction plate comprises a workpiece support 314 to allow the manufacture of parts of complex shape, in the example shown the workpiece P2 is of ellipsoidal shape.
Il sera noté que le plateau support, le plateau de construction et les supports de pièce éventuels sont choisis en un matériau transparent au champ magnétique ou interagissant peu avec celui-ci. Sur la figure 6, on peut voir un autre exemple de dispositif de fabrication additive par fusion sur lit de poudre, dans lequel les moyens de génération de champ magnétique comportent un électroaimant 48 situé au-dessus du lit de poudre. Dans cet exemple, l'électroaimant est un bobinage et, de manière avantageuse, le faisceau d'énergie traverse le bobinage pour atteindre la surface du lit de poudre. Ainsi, le champ généré peut présenter une symétrie de révolution par rapport à l'axe Xc de la zone fondue. En outre, l'électroaimant peut être disposé très proche du lit de poudre. It will be noted that the support plate, the construction plate and the possible part supports are chosen from a material which is transparent to the magnetic field or which interacts little with it. In FIG. 6, we can see another example of an additive manufacturing device by fusion on a powder bed, in which the magnetic field generation means comprise an electromagnet 48 situated above the powder bed. In this example, the electromagnet is a coil and, advantageously, the energy beam crosses the coil to reach the surface of the powder bed. Thus, the generated field can have a symmetry of revolution with respect to the axis Xc of the molten zone. In addition, the electromagnet can be placed very close to the powder bed.
La source d'énergie 406 est fixe et c'est le faisceau d'énergie émis par la source d'énergie 406 qui est orienté vers la surface du lit de poudre par un miroir 416. Il balaye la surface du lit de poudre.  The energy source 406 is fixed and it is the energy beam emitted by the energy source 406 which is oriented towards the surface of the powder bed by a mirror 416. It scans the surface of the powder bed.
L'électroaimant 408 se déplace de manière coordonnée avec la trajectoire du faisceau d'énergie. Par exemple l'électroaimant 408 est monté sur un système mobile dans le plan XY asservi au déplacement du faisceau d'énergie.  The electromagnet 408 moves in coordination with the path of the energy beam. For example the electromagnet 408 is mounted on a mobile system in the XY plane controlled by the movement of the energy beam.
Par exemple, le faisceau d'énergie se déplace à une vitesse comprise entre 100 mm/s et 10 m/s, préférentiellement 200 mm/s et 2 m/s.  For example, the energy beam moves at a speed of between 100 mm / s and 10 m / s, preferably 200 mm / s and 2 m / s.
Sur la figure 7, on peut voir un autre exemple de réalisation d'un dispositif de fabrication additive par fusion sur lit de poudre dans lequel les moyens de génération sont tels qu'ils génèrent un champ magnétique dans tout le lit de poudre.  In Figure 7, we can see another embodiment of an additive manufacturing device by melting on a powder bed in which the generation means are such that they generate a magnetic field throughout the powder bed.
Dans cet exemple, les moyens de génération de champ magnétique 508 sont disposés sous le plateau support 410 et le lit de poudre autour du vérin 412. Les moyens de génération sont immobiles. En outre, ils sont éloignés de la source d'énergie et sont donc relativement protégés de la chaleur émise au niveau de la zone fondue.  In this example, the magnetic field generation means 508 are arranged under the support plate 410 and the powder bed around the jack 412. The generation means are stationary. In addition, they are far from the energy source and are therefore relatively protected from the heat emitted at the molten zone.
En variante, les moyens de génération sont situés au-dessus du lit de poudre.  As a variant, the generation means are located above the powder bed.
La mise en œuvre de moyens de génération d'un champ magnétique dans tout le lit de poudre présente l'avantage de ne pas avoir à piloter le déplacement des moyens de génération d'un champ magnétique selon le déplacement du faisceau de la source d'énergie.  The implementation of means for generating a magnetic field throughout the powder bed has the advantage of not having to control the movement of the means of generating a magnetic field according to the movement of the beam from the source of energy.
Dans l'exemple représenté, les moyens de génération comportent un électroaimant dont l'axe est aligné avec un axe du lit de poudre. Dans cet exemple l'électroaimant est un bobinage et le lit de poudre présente une forme de révolution de sorte que le champ magnétique généré traverse toute la section transversale du lit de poudre et soit uniforme dans tout le lit de poudre. Le bobinage est tel qu'il couvre la totalité de la surface de balayage In the example shown, the generation means comprise an electromagnet whose axis is aligned with an axis of the powder bed. In this example the electromagnet is a coil and the powder bed has a shape of revolution so that the magnetic field generated crosses the entire cross section of the powder bed and is uniform throughout the powder bed. The winding is such that it covers the entire scanning surface
En variante, le lit de poudre peut être choisi de section inférieure à la section du bobinage.  As a variant, the powder bed can be chosen to have a smaller section than the winding section.
Dans cet exemple trois pièces PI, P2 et P3 sont en cours de fabrication, un champ uniforme est appliqué à chaque zone fondue. En outre, le champ magnétique est normal aux surfaces des zones fondues, le potentiel électrique est donc uniforme. La force de Lorentz est alors particulièrement efficace pour réduire la vitesse hydrodynamique dans les différentes zones fondues.  In this example, three pieces PI, P2 and P3 are being manufactured, a uniform field is applied to each molten area. In addition, the magnetic field is normal to the surfaces of the molten areas, the electrical potential is therefore uniform. The Lorentz force is therefore particularly effective in reducing the hydrodynamic speed in the various molten zones.
Les moyens de génération du dispositif de la figure 7 présentent un certain encombrement et impliquent une puissance élevée pour générer un champ indépendant du temps dans tout le lit de poudre.  The generation means of the device of FIG. 7 have a certain bulk and imply a high power to generate a field independent of time throughout the powder bed.
Des moyens de génération d'un champ magnétique uniforme s'appliquent également aux dispositifs de fabrication additive par dépôt de matière, tels que ceux des figures 2A, 2B, 3A et 3B.  Means for generating a uniform magnetic field also apply to additive manufacturing devices by deposition of material, such as those of FIGS. 2A, 2B, 3A and 3B.
Les moyens de génération sont disposés à une distance de la zone de fusion de sorte que la température à laquelle sont soumis les moyens de génération est inférieure dans le cas d'un aimant permanent, à sa température de Curie, et dans le cas d'un électroaimant à sa température de fonctionnement. Il peut néanmoins être envisagé dans des configurations particulières de mettre en œuvre des moyens de refroidissement additionnels, par exemple à eau ou à air, pour maîtriser la température des moyens de génération.  The generation means are arranged at a distance from the melting zone so that the temperature to which the generation means are subjected is lower in the case of a permanent magnet, at its Curie temperature, and in the case of an electromagnet at its operating temperature. It can nevertheless be envisaged in particular configurations to implement additional cooling means, for example with water or air, to control the temperature of the generation means.
En effet, dans le cas d'un aimant permanent, sa température est maintenue en dessous de sa température de Curie.  In fact, in the case of a permanent magnet, its temperature is kept below its Curie temperature.
Dans le cas d'un électroaimant, sa température est maintenue en dessous de sa température de fonctionnement  In the case of an electromagnet, its temperature is kept below its operating temperature
Dans les exemples des figures 2A, 2B, 3A, 3B et 4, les électroaimants pourraient être remplacés par un ou plusieurs aimants. La présente invention s'applique à tout dispositif de fabrication additive utilisant un ou des matériaux suffisamment conducteurs de l'électricité. In the examples of FIGS. 2A, 2B, 3A, 3B and 4, the electromagnets could be replaced by one or more magnets. The present invention applies to any additive manufacturing device using one or more materials which are sufficiently electrically conductive.

Claims

REVENDICATIONS
1. Dispositif de fabrication additive d'au moins une pièce (P, PI, P2, P3) en un matériau conducteur électrique donné comportant : 1. Device for additive manufacturing of at least one part (P, PI, P2, P3) of a given electrically conductive material comprising:
- une zone de fabrication où la pièce est destinée à être fabriquée, - a manufacturing area where the part is intended to be manufactured,
- des moyens de fourniture (4, 104) du matériau conducteur électrique donné pour fabriquer la pièce, - supply means (4, 104) of the given electrically conductive material for manufacturing the part,
- au moins une source d'énergie (6, 106, 406) destinée à générer au moins un faisceau d'énergie pour fondre le matériau conducteur électrique donné et former au moins une zone fondue (ZF) à au moins un emplacement local de la zone de fabrication,  - at least one energy source (6, 106, 406) intended to generate at least one energy beam to melt the given electrical conductive material and form at least one molten zone (ZF) at at least one local location of the manufacturing area,
- des moyens de génération d'un champ magnétique indépendant du temps (8, 108, 208, 308, 408, 508) au moins dans la zone fondue, lesdits moyens de génération d'un champ magnétique indépendant du temps étant disposés d'un seul côté par rapport à la zone de fabrication où la pièce est destinée à être fabriquée.  - means for generating a magnetic field independent of time (8, 108, 208, 308, 408, 508) at least in the molten zone, said means for generating a magnetic field independent of time being arranged with a only side with respect to the manufacturing area where the part is intended to be manufactured.
- une unité de commande configurée pour commander les moyens de génération d'un champ magnétique de sorte qu'il génère un champ magnétique dont l'intensité est telle que le nombre de Hartmann basé sur la valeur maximale du champ magnétique à la surface de la zone fondue (ZF) et la profondeur maximale de la zone fondue (ZF) est supérieur à 5.  a control unit configured to control the means for generating a magnetic field so that it generates a magnetic field whose intensity is such that the Hartmann number based on the maximum value of the magnetic field on the surface of the melted zone (ZF) and the maximum depth of the melted zone (ZF) is greater than 5.
2. Dispositif de fabrication additive selon la revendication 1, dans lequel les moyens de génération d'un champ magnétique indépendant du temps (8, 108, 208, 308, 408) au moins dans la zone fondue génèrent un champ magnétique dont l'intensité est telle que le nombre de Hartmann est supérieur à 10, et avantageusement supérieur à 20. 2. Additive manufacturing device according to claim 1, in which the means for generating a magnetic field independent of time (8, 108, 208, 308, 408) at least in the molten zone generate a magnetic field whose intensity is such that the Hartmann number is greater than 10, and advantageously greater than 20.
3. Dispositif de fabrication additive selon la revendication 1 ou 2, dans lequel les moyens de génération d'un champ magnétique indépendant du temps (8, 108, 408) génèrent un champ magnétique présentant, dans la zone fondue, une symétrie de révolution par rapport à un axe (Xc) normal à une surface libre de la zone fondue (ZF). 3. Additive manufacturing device according to claim 1 or 2, in which the means for generating a time-independent magnetic field (8, 108, 408) generate a magnetic field having, in the molten zone, a symmetry of revolution with respect to an axis (Xc) normal to a free surface of the molten zone (ZF).
4. Dispositif de fabrication additive , selon la revendication 1, 2 ou 3, dans lequel les moyens de génération d'un champ magnétique indépendant du temps (508) génèrent un champ magnétique uniforme, au moins dans la zone fondue, et avantageusement dans toute la zone de fabrication, orienté selon une direction normale à une surface libre de la zone fondue (Z). 4. Additive manufacturing device according to claim 1, 2 or 3, wherein the means for generating a time independent magnetic field (508) generate a uniform magnetic field, at least in the molten zone, and advantageously in any the manufacturing area, oriented in a direction normal to a free surface of the melted area (Z).
5. Dispositif de fabrication additive selon l'une des revendications 1 à 4, dans lequel le champ magnétique est orienté de sorte que l'angle maximum des lignes de champ avec la normale du bain fondu sur toute la surface dudit bain fondu est inférieur à 45°. 5. Additive manufacturing device according to one of claims 1 to 4, in which the magnetic field is oriented so that the maximum angle of the field lines with the normal of the molten bath over the entire surface of said molten bath is less than 45 °.
6. Dispositif de fabrication additive selon l'une des revendications 1 à 5, dans lequel les moyens de génération d'un champ magnétique indépendant du temps (8, 108, 208, 308, 408) sont disposés au moins au droit de l'emplacement local de la zone de fabrication. 6. Additive manufacturing device according to one of claims 1 to 5, wherein the means for generating a magnetic field independent of time (8, 108, 208, 308, 408) are arranged at least in line with the local location of the manufacturing area.
7. Dispositif de fabrication additive selon la revendication 6, dans lequel les moyens de génération d'un champ magnétique (8, 108, 408) indépendant du temps sont disposés au-dessus de l'emplacement local. 7. Additive manufacturing device according to claim 6, in which the means for generating a time-independent magnetic field (8, 108, 408) are arranged above the local location.
8. Dispositif de fabrication additive selon la revendication 6 ou 7, dans lequel les moyens de génération d'un champ magnétique indépendant du temps (8, 108, 408) sont mobiles et leurs déplacements sont asservis au déplacement de la source d'énergie. 8. Additive manufacturing device according to claim 6 or 7, wherein the means for generating a time independent magnetic field (8, 108, 408) are mobile and their movements are controlled by the movement of the energy source.
9. Dispositif de fabrication additive selon la revendication 8, dans lequel les moyens de fourniture (4), la source d'énergie (6) et les moyens de génération d'un champ magnétique indépendant du temps (8) sont configurés pour se déplacer ensemble. 9. Additive manufacturing device according to claim 8, in which the supply means (4), the energy source (6) and the generation means. of a time independent magnetic field (8) are configured to move together.
10. Dispositif de fabrication additive selon la revendication 6, comportant un plateau de fabrication sur lequel est destinée à être fabriquée la pièce et dans lequel les moyens de génération d'un champ magnétique indépendant du temps (208, 308) sont disposés sous le plateau de fabrication. 10. Additive manufacturing device according to claim 6, comprising a manufacturing plate on which is intended to be manufactured the part and in which the means for generating a magnetic field independent of time (208, 308) are arranged under the plate Manufacturing.
11. Dispositif de fabrication additive selon la revendication 6, comportant un plateau de fabrication sur lequel est destinée à être fabriquée la pièce, et dans lequel les moyens de génération d'un champ magnétique indépendant du temps (308) s'étendent sur une partie ou sous toute la surface du plateau de construction susceptible d'être une zone de fabrication. 11. Additive manufacturing device according to claim 6, comprising a manufacturing plate on which is intended to be manufactured the part, and in which the means for generating a magnetic field independent of time (308) extend over a part or under the entire surface of the construction platform likely to be a manufacturing area.
12. Dispositif de fabrication additive selon l'une des revendications précédentes, dans lequel les moyens de génération d'un champ magnétique indépendant du temps comportent au moins un électroaimant. 12. Additive manufacturing device according to one of the preceding claims, in which the means for generating a time-independent magnetic field comprise at least one electromagnet.
13. Dispositif de fabrication additive selon la revendication 12, comportant une unité de commande configurée pour piloter l'alimentation de l'électroaimant de sorte à maintenir constante l'intensité du champ magnétique dans la zone fondue. 13. Additive manufacturing device according to claim 12, comprising a control unit configured to control the supply of the electromagnet so as to maintain constant the intensity of the magnetic field in the molten zone.
14. Dispositif de fabrication additive selon la revendication 12 ou 13 en combinaison avec la revendication 11, dans lequel les moyens de génération d'un champ magnétique permanent comportent un ou plusieurs électroaimants, et dans lequel l'unité de commande est configurée pour piloter l'alimentation du ou des électroaimants situés uniquement au droit du au moins un emplacement local de la zone de fabrication où une zone fondue est destinée à être formée. 14. Additive manufacturing device according to claim 12 or 13 in combination with claim 11, in which the means for generating a permanent magnetic field comprise one or more electromagnets, and in which the control unit is configured to control the supply of the electromagnet (s) situated only in line with the at least one local location in the manufacturing zone where a molten zone is intended to be formed.
15. Dispositif de fabrication additive selon l'une des revendications 1 à 9, dans lequel les moyens de fourniture du matériau (4) comportent une buse destinée à fournir du matériau en poudre ou un système d'amenée de fil et dans lequel les moyens de fourniture (4), la source d'énergie (6) et les moyens de génération d'un champ magnétique permanent (8) sont coaxiaux. 15. Additive manufacturing device according to one of claims 1 to 9, in which the material supply means (4) comprise a nozzle intended to supplying powdered material or a wire feeding system and in which the supply means (4), the energy source (6) and the means for generating a permanent magnetic field (8) are coaxial.
16. Dispositif de fabrication additive selon l'une revendication 1 à 14, dans lequel les moyens de fourniture délivrent du matériau en poudre sous forme d'un lit de poudre.  16. Additive manufacturing device according to claim 1, in which the supply means deliver powdered material in the form of a powder bed.
17. Procédé de fabrication additive d'au moins une pièce comportant :17. Additive manufacturing process for at least one part comprising:
- la fourniture d'au moins un matériau conducteur électrique donné à au moins un emplacement local d'une zone de fabrication, - the supply of at least one given electrical conductive material to at least one local location of a manufacturing area,
- l'application d'une énergie à l'emplacement local pour fondre ledit matériau conducteur électrique donné et former une zone fondue,  - the application of energy to the local location to melt said given electrically conductive material and form a molten zone,
- la génération d'un champ magnétique indépendant du temps au moins dans la zone fondue dont l'intensité dans la zone fondue est telle que le nombre de Hartmann basé sur la valeur maximale du champ magnétique à la surface du bain et la profondeur maximale dudit bain de fusion est supérieur à 5, ledit champ magnétique indépendant du temps étant généré d'un seul côté de la zone de fabrication, le nombre de Hartmann étant défini par  the generation of a magnetic field independent of time at least in the molten zone, the intensity of which in the molten zone is such that the Hartmann number based on the maximum value of the magnetic field on the surface of the bath and the maximum depth of said melt is greater than 5, said time independent magnetic field being generated on one side of the manufacturing area, the Hartmann number being defined by
Ha = BH(s/h)1/2. Ha = BH (s / h) 1/2 .
Avec B l'intensité maximale du champ (en Tesla) à la surface du bain, With B the maximum field strength (in Tesla) on the surface of the bath,
H la profondeur maximale du bain (en mètre) du bain, s la conductivité électrique du matériau conducteur électrique donné du bain de fusion (en Siemens par mètre) H the maximum depth of the bath (in meters) of the bath, s the electrical conductivity of the given electrical conductive material of the melt (in Siemens per meter)
h la viscosité dynamique (en Pascal. seconde) du bain.  h the dynamic viscosity (in Pascal. second) of the bath.
18. Procédé de fabrication additive selon la revendication 17, dans lequel le champ magnétique généré indépendant du temps est tel que le potentiel électrique dans la zone fondue est sensiblement uniforme, au moins au droit de la source d'énergie. 18. The additive manufacturing method according to claim 17, in which the magnetic field generated independent of time is such that the electric potential in the molten zone is substantially uniform, at least in line with the energy source.
19. Procédé de fabrication additive selon la revendication 17 ou 18, dans lequel les moyens de génération d'un champ magnétique indépendant du temps sont disposés par rapport à la zone fondue de sorte à générer un champ magnétique présentant, dans la zone fondue, une symétrie de révolution autour d'une direction normale à la surface libre de la zone fondue. 19. The additive manufacturing method according to claim 17 or 18, wherein the means for generating a time-independent magnetic field are arranged relative to the molten zone so as to generate a magnetic field having, in the molten zone, a symmetry of revolution around a direction normal to the free surface of the melted area.
20. Procédé de fabrication additive selon la revendication 17, 18 ou20. Additive manufacturing method according to claim 17, 18 or
19, dans lequel les moyens de génération d'un champ magnétique indépendant du temps génèrent un champ uniforme orienté selon une direction normale à la surface libre de la zone fondue dans toute la zone de fabrication. 19, in which the means for generating a time-independent magnetic field generate a uniform field oriented in a direction normal to the free surface of the molten zone throughout the manufacturing zone.
21. Procédé de fabrication additive selon l'une des revendications 17 à21. Additive manufacturing method according to one of claims 17 to
20, dans lequel le champ magnétique indépendant du temps est généré au droit de la zone fondue à l'emplacement local de la zone de fabrication pendant sensiblement toute la durée de la fabrication de la pièce. 20, in which the time-independent magnetic field is generated at the level of the molten zone at the local location of the manufacturing zone for substantially the entire duration of the production of the part.
22. Procédé de fabrication additive selon l'une des revendications 17 à22. Additive manufacturing method according to one of claims 17 to
21, dans lequel le procédé est un procédé par fusion sur lit de poudre. 21, wherein the method is a powder bed fusion method.
23. Procédé de fabrication additive selon l'une des revendications 17 à23. Additive manufacturing method according to one of claims 17 to
21, dans lequel le procédé est un procédé par dépôt de matière. 21, wherein the method is a material deposition method.
EP19813629.3A 2018-10-29 2019-10-24 Additive manufacturing device having a stabilised molten area Pending EP3852958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860016A FR3087682B1 (en) 2018-10-29 2018-10-29 ADDITIVE MANUFACTURING DEVICE PRESENTING A STABILIZED MELT ZONE
PCT/FR2019/052543 WO2020089548A1 (en) 2018-10-29 2019-10-24 Additive manufacturing device having a stabilised molten area

Publications (1)

Publication Number Publication Date
EP3852958A1 true EP3852958A1 (en) 2021-07-28

Family

ID=65685638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19813629.3A Pending EP3852958A1 (en) 2018-10-29 2019-10-24 Additive manufacturing device having a stabilised molten area

Country Status (3)

Country Link
EP (1) EP3852958A1 (en)
FR (1) FR3087682B1 (en)
WO (1) WO2020089548A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220168814A1 (en) * 2020-11-30 2022-06-02 Lawrence Livermore National Security, Llc System and method for multimaterial powder bed patterning for use in additive manufacturing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511823B (en) * 2013-12-20 2015-12-11 財團法人工業技術研究院 Apparatus and method for controlling the additive manufacturing
US20170106477A1 (en) * 2015-10-19 2017-04-20 Delavan Inc. Additive manufacturing systems and methods

Also Published As

Publication number Publication date
FR3087682B1 (en) 2020-12-04
WO2020089548A1 (en) 2020-05-07
FR3087682A1 (en) 2020-05-01

Similar Documents

Publication Publication Date Title
CA2757900C (en) Target based on molybdenum and production method with thermal projection of a target
FR2998819A1 (en) PROCESS FOR POWDER FUSION WITH HEATING OF THE AREA ADJACENT TO THE BATH
WO2013092994A1 (en) Method and apparatus for producing three-dimensional objects
FR2908677A1 (en) LASER BEAM WELDING METHOD WITH ENHANCED PENETRATION
BE1014736A5 (en) Manufacturing method and charging for target sputtering.
EP3852958A1 (en) Additive manufacturing device having a stabilised molten area
FR2985446A1 (en) MIG-TIG OR MAG-TIG HYBRID WELDING DEVICE
FR3064509A1 (en) DEVICE FOR ADDITIVE MANUFACTURING OF TURBOMACHINE PIECE BY DIRECT DEPOSITION OF METAL ON A SUBSTRATE
CA2745984C (en) Method of monitoring the wear of at least one of the electrodes of a plasma torch
FR2583663A1 (en) APPARATUS FOR PRODUCING FINE GRAINS
WO2013030470A1 (en) System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
FR3109324A1 (en) ADDITIVE MANUFACTURING DEVICE PRESENTING A STABILIZED MELTED ZONE IMPLEMENTING A HIGH FREQUENCY MAGNETIC FIELD
FR2790689A1 (en) Welding procedure for assembling overlapping zones of two components, e.g. of thin sheet metal, involves applying sufficient heat to vaporize coatings on components
EP0706308A1 (en) Plasma arc torch stabilized by gas sheath
FR3010339A1 (en) LASER BEAM WELDING METHOD ON SANDWICH WITH CONTROL OF CAPILLARY OPENING
EP2111477B1 (en) Method for coating a substrate, equipment for implementing said method and metal supply device for such equipment
WO2020260785A1 (en) Additive manufacturing device and implementation thereof
EP3574719B1 (en) System for generating a plasma jet of metal ions
FR3120203A1 (en) ADDITIVE MANUFACTURING DEVICE BY POWDER BED FUSION
EP4022107B1 (en) Method for emitting atoms, molecules or ions
EP3065908B1 (en) Method of electric arc surfacing with gas protection consisting of an argon/helium gas mixture
WO2023194490A1 (en) Method for the additive manufacturing of a magnetic object
EP3720626A1 (en) Methods for shaping/welding parts by means of magnetic pulse
FR3075673A1 (en) APPARATUS FOR SELECTIVE ADDITIVE PRODUCTION WITH INDIRECT HEATING CATHODE ELECTRON SOURCE
FR2970089A1 (en) OPTICAL FOCUSING SYSTEM FOR CUTTING INSTALLATION WITH SOLID LASER

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)