EP3845462A1 - Système et procédé d'inertage de réservoir de carburant - Google Patents

Système et procédé d'inertage de réservoir de carburant Download PDF

Info

Publication number
EP3845462A1
EP3845462A1 EP20217780.4A EP20217780A EP3845462A1 EP 3845462 A1 EP3845462 A1 EP 3845462A1 EP 20217780 A EP20217780 A EP 20217780A EP 3845462 A1 EP3845462 A1 EP 3845462A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
air
gas
membrane
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20217780.4A
Other languages
German (de)
English (en)
Inventor
Zissis A. Dardas
Sean C. Emerson
Ying She
Rajiv Ranjan
Haralambos Cordatos
Matthew Robert Pearson
Eric Surawski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of EP3845462A1 publication Critical patent/EP3845462A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/02Tanks
    • B64D37/14Filling or emptying
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/08Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in aircraft
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/32Safety measures not otherwise provided for, e.g. preventing explosive conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03236Fuel tanks characterised by special filters, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03348Arrangements or special measures related to fuel tanks or fuel handling for supplying additives to fuel

Definitions

  • the subject matter disclosed herein generally relates to systems for generating and providing inert gas, oxygen, and/or power on aircraft, and more specifically to fluid flow operation of such systems.
  • An inerting system decreases the probability of combustion or explosion of flammable materials in a fuel tank by maintaining a chemically non-reactive or inert gas, such as nitrogen-enriched air, in the fuel tank vapor space, also known as ullage.
  • a chemically non-reactive or inert gas such as nitrogen-enriched air
  • ullage a chemically non-reactive or inert gas
  • Three elements are required to initiate combustion or an explosion: an ignition source (e.g., heat), fuel, and oxygen.
  • the oxidation of fuel may be prevented by reducing any one of these three elements.
  • the tank may be made inert by: 1) reducing the oxygen concentration, 2) reducing the fuel concentration of the ullage to below the lower explosive limit (LEL), or 3) increasing the fuel concentration to above the upper explosive limit (UEL).
  • an inert gas such as nitrogen-enriched air (NEA) (i.e., oxygen-depleted air or ODA) to the ullage, thereby displacing oxygen with a nitrogen or other inert gases at target thresholds for avoiding explosion or combustion.
  • NAA nitrogen-enriched air
  • ODA oxygen-depleted air
  • a system for inerting a fuel tank.
  • the system includes a fuel tank and an air separator including a membrane with a permeability differential between oxygen and nitrogen, an air inlet and an inert gas outlet in fluid communication with a first side of the membrane, and a sweep gas inlet and an oxygen-enriched gas outlet in fluid communication with a second side of the membrane.
  • An inert gas flow path is arranged to receive inert gas from the air separation module oxygen-depleted air outlet, and to direct inert gas to the fuel tank.
  • a catalytic reactor is arranged to receive a fuel and air, and configured to catalytically react the fuel and oxygen in the air to form an oxygen-depleted gas, and to discharge the oxygen-depleted gas from a reactor outlet.
  • a sweep gas flow path from the reactor outlet to the air separator sweep gas inlet.
  • system can further include a cooler arranged to cool inert gas generated by the catalytic reactor.
  • system can further include an air flow path from a compressed air source to an inlet of the air separator.
  • the air flow path can be between an aircraft engine compressor section and the inlet of the air separator.
  • the catalytic reactor, or an air source for the catalytic reactor, or an oxygen-depleted gas flow path from the catalytic reactor to the sweep gas inlet can be configured to provide a pressure at the sweep gas inlet that is above a pressure at the oxygen-enriched gas outlet and below a pressure on the first side of the air separator membrane.
  • the sweep gas inlet and the oxygen-enriched gas outlet can be arranged to provide co-flow with air flow on the first side of the air separator membrane.
  • the sweep gas inlet and the oxygen-enriched gas outlet can be arranged to provide counter-flow with air flow on the first side of the air separator membrane.
  • the sweep gas inlet and the oxygen-enriched gas outlet can be arranged to provide cross-flow with air flow on the first side of the air separator membrane.
  • air is directed to the air separator air inlet, and oxygen is transported air on the first side of the air separator membrane to the second side of the air separator membrane to form an inert gas on the first side of the air separator membrane and an oxygen-enriched gas on the second side of the membrane.
  • the oxygen-enriched gas is outputted from the air separator oxygen-enriched gas outlet, and the inert gas is directed from the air separator inert gas outlet to the fuel tank.
  • Fuel is reacted with oxygen in air in the catalytic reactor to produce an oxygen-depleted gas, and the oxygen-depleted gas is directed from the catalytic reactor to the air separator sweep gas inlet.
  • the method can include reacting the fuel with oxygen in the catalytic reactor to produce oxygen-depleted gas continuously throughout operation of the membrane separator.
  • fuel can be reacted with oxygen in the catalytic reactor to produce oxygen-depleted gas in response to a demand for inert gas.
  • air is separated through a membrane with a permeability differential between oxygen and nitrogen to produce the inert gas on a first side of the membrane and oxygen-enriched air on a second side of the membrane.
  • Fuel is catalytically reacting with oxygen to produce an oxygen-depleted gas, and the oxygen-depleted gas is directed as a sweep gas to the second side of the membrane.
  • a method of inerting a fuel tank can include separating air through a membrane with a permeability differential between oxygen and nitrogen to produce an inert gas on a first side of the membrane and oxygen-enriched air on a second side of the membrane, reacting fuel with oxygen to produce an oxygen-depleted gas, and directing the oxygen-depleted gas as a sweep gas to the second side of the membrane, and directing the inert gas to the fuel tank.
  • fuel is reacted with oxygen to produce oxygen-depleted gas continuously throughout separation of air through the membrane.
  • the method of inerting a fuel tank can include reaction of fuel with oxygen to produce oxygen-depleted gas in response to a demand for inert gas.
  • FIGS. 1A-1B are schematic illustrations of an aircraft 101 that can employ one or more embodiments of the present disclosure.
  • the aircraft 101 includes bays 103 beneath a center wing box.
  • the bays 103 can contain and/or support one or more components of the aircraft 101.
  • the aircraft 101 can include environmental control systems and/or fuel inerting systems within the bay 103.
  • the bay 103 includes bay doors 105 that enable installation and access to one or more components (e.g., environmental control systems, fuel tank inerting systems, etc.).
  • air that is external to the aircraft 101 can flow into one or more environmental control systems within the bay doors 105 through one or more ram air inlets 107.
  • the air may then flow through the environmental control systems to be processed and supplied to various components or locations within the aircraft 101 (e.g., passenger cabin, fuel inerting systems, etc.).
  • Some air may be exhausted through one or more ram air exhaust outlets 109.
  • the aircraft 101 includes one or more engines 111.
  • the engines 111 are typically mounted on wings of the aircraft 101, but may be located at other locations depending on the specific aircraft configuration. In some aircraft configurations, air can be bled from the engines 111 and supplied to environmental control systems and/or fuel tank inerting systems, as will be appreciated by those of skill in the art.
  • FIG. 2 depicts a tubular membrane, but other configurations such as planar membranes can also be used.
  • a tubular membrane 20 comprises a tubular shell 22.
  • the membrane 20 can be fabricated from a material that has selective permeability to oxygen compared to nitrogen such that a pressure differential across the membrane provided by a gas comprising nitrogen and oxygen on the high-pressure side of the membrane will preferentially diffuse oxygen molecules across the membrane.
  • the membrane 20 is depicted as a monolithic hollow shell, and membranes fabricated solely out of the selective oxygen-permeable membrane material are included within the scope of this invention.
  • the membrane is a composite of a substrate or layer that is permeable to both oxygen and nitrogen and a substrate or layer that is selectively permeable to oxygen.
  • the shell 22 defines a hollow core 26 that is open at both ends.
  • pressurized gas comprising nitrogen and oxygen (e.g., air which is known to also contain trace amounts of noble/inert gases) is delivered into the hollow core 26 at an inlet end 27 of the membrane 20.
  • the pressure of the air is greater than air outside the core 26 such that a pressure differential between the hollow core 26 and air at the exterior 24 of the membrane 20 exists.
  • Oxygen molecules preferentially diffuse through the tubular membrane 20 compared to nitrogen molecules, resulting in a flow of oxygen-enriched air (OEA) from the outer surface of the tubular membrane 20 as shown in FIG. 3 , and a flow of nitrogen-enriched air (NEA) from the hollow core 26 at the outlet end 28 of the membrane 20 as shown in FIG. 2 .
  • OOA oxygen-enriched air
  • NAA nitrogen-enriched air
  • An alternative mode of operation for the membrane is to maintain equal or nearly equal pressure on each side, but utilize a carrier gas (sweep gas) on the back side of the membrane such that the partial pressure of the gas to be removed is always higher on the top side of the membrane, thereby providing the driving force for separation.
  • a carrier gas weep gas
  • the membrane 20 can be formed from different materials, including but not limited to polymers (e.g., polyimides, polysulfones, polyketones (e.g., PEEK), polycarbonates) including polymers of intrinsic microporosity (“PIM”) (e.g., polybenzodioxanes) and thermally-rearranged (“TR”) polymers (e.g., thermally-rearranged polybenzoxazoles), or refractory ceramics (e.g., zeolite).
  • polymers e.g., polyimides, polysulfones, polyketones (e.g., PEEK), polycarbonates
  • PIM intrinsic microporosity
  • TR thermally-rearranged polymers
  • refractory ceramics e.g., zeolite
  • a catalytic reactor can be utilized to produce an oxygen-depleted gas as a sweep gas for a membrane air separator.
  • a reactor performs catalytic reaction of a fuel (e.g., a "first reactant") with a source of gas containing oxygen such as air (e.g., a "second reactant").
  • the product of the reaction is carbon dioxide and water vapor.
  • the source of the second reactant e.g., air
  • a catalyst material such as a noble metal catalyst is used to catalyze the chemical reaction. The conversion of oxygen in the air feed to carbon dioxide and water via the catalytic reaction produces an oxygen-depleted gas.
  • the catalytic chemical reaction between fuel and air also generates water. Water in the fuel tank can be undesirable.
  • the water from a product gas stream e.g., exiting the catalyst
  • the product gas stream can be directed to enter a heat exchanger downstream from the catalyst that is used to cool the product gas stream such that the water vapor condenses out of the product gas stream.
  • the liquid water can then be drained overboard.
  • an optional water separator can be used to augment or provide water separation from the product stream.
  • Aircraft fuel tanks are typically vented to ambient pressure. At altitude, pressure inside the fuel tank is very low and is roughly equal to ambient pressure. However, during descent, the pressure inside the fuel tank needs to rise to equal ambient pressure at sea level (or at whatever altitude the aircraft is landing). This change in pressure requires gas entering the tank from outside to equalize with the pressure in the tank. Outside air entering the fuel tank can provide oxygen for combustion of the fuel, and the systems disclosed herein can provide an inert gas to the fuel tank to help reduce the risk of combustion.
  • FIG. 3 is a schematic illustration of a flammability reduction or inerting system portion 200 utilizing a catalytic reaction between first and second reactants to produce inert gas in accordance with an embodiment of the present disclosure.
  • the inerting system portion 200 includes a fuel tank 202 having fuel 204 therein. As the fuel 204 is consumed during operation of one or more engines, an ullage space 206 forms within the fuel tank 202. To reduce flammability risks associated with vaporized fuel that may form within the ullage space 206, an inert gas can be generated and fed into the ullage space 206.
  • the inerting system portion 200 utilizes the catalytic reactor 222 to catalyze a chemical reaction between oxygen (second reactant 218) and fuel (first reactant 216) to produce carbon dioxide-containing for the inert gas (inert gas 234) and water in vapor phase (byproduct 236).
  • the source of the second reactant 218 e.g., oxygen
  • the source of the second reactant 218 can come from any source on the aircraft that is at a pressure greater than ambient, including but not limited to bleed air from an engine, cabin air, high pressure air extracted or bled from an engine, etc. (i.e., any second reactant source 220 can take any number of configurations and/or arrangements), and as disclosed in more detail hereinbelow includes a membrane air separator.
  • the fuel (first reactant 216) is provided by pressurizing fuel 204 from the fuel tank 202 with a pump 210 and atomizing it in an injector 214.
  • the atomized fuel (first reactant 216) from the injector 214 can be mixed with second reactant 218 in a mixing zone 224 and delivered to the catalytic reactor 222 as shown in FIG. 3 , or the reactants 216, 218 can each be directly delivered to the reactor.
  • the mixed reactant stream 225 (e.g., fuel and oxygen or air) is then introduced to the catalytic reactor 222, catalyzing a chemical reaction that transforms the mixed reactant stream 225 (e.g., fuel and air) into the inert gas 234 and the byproduct 236 (e.g., water vapor).
  • the catalytic reactor 222 can be include heat exchange components for rejection of heat from the catalytic reactor 222 to a heat sink.
  • the catalytic reactor 222 can be temperature controlled to ensure a desired chemical reaction efficiency such that an inert gas can be efficiently produced by the inerting system portion 200 from the mixed reactant stream 225. Accordingly, cooling air 226 can be provided to extract heat from the catalytic reactor 222 to achieve a desired thermal condition for the chemical reaction within the catalytic reactor 222.
  • the cooling air 226 can be sourced from a cool air source 228.
  • a catalyzed mixture 230 leaves the catalytic reactor 222 and is passed through a heat exchanger 232.
  • the heat exchanger 232 operates as a condenser on the catalyzed mixture 230 to separate out an inert gas 234 and a byproduct 236 (e.g., water).
  • a cooling air is supplied into the heat exchanger 232 to achieve the condensing functionality.
  • a cooling air 226 can be sourced from the same cool air source 228 as that provided to the catalytic reactor 222, although in other embodiments the cool air sources for the two components may be different.
  • the byproduct 236 may be water vapor, and thus in the present configuration shown in FIG. 3 , an optional water separator 238 is provided downstream of the heat exchanger 232 to extract the water from the catalyzed mixture 230, thus leaving only the inert gas 234 to be provided to the ullage space 206 of the fuel tank 202.
  • the inerting system portion 200 can supply inert gas to multiple fuel tanks on an aircraft. After the inert gas 234 is generated, the inert gas 234 will flow through a fuel tank supply line 256 to supply the inert gas 234 to the fuel tank 202 and, optionally, additional fuel tanks 258.
  • a flow control valve 248 located downstream of the heat exchanger 232 and optional water separator 238 can meter the flow of the inert gas 234 to a desired flow rate.
  • An optional boost fan 240 can be used to boost the gas stream pressure of the inert gas 234 to overcome a pressure drop associated with ducting between the outlet of the heat exchanger 232 and the discharge of the inert gas 234 into the fuel tank 202.
  • the flame arrestor 242 at an inlet to the fuel tank 202 is arranged to prevent any potential flames from propagating into the fuel tank 202.
  • aircraft fuel tanks e.g., fuel tank 202
  • the fuel tank 202 includes a vent 250.
  • pressure inside the fuel tank 202 is very low and is roughly equal to ambient pressure.
  • the pressure inside the fuel tank 202 needs to rise to equal ambient pressure at sea level (or whatever altitude the aircraft is landing at). This requires gas entering the fuel tank 202 from outside to equalize with the pressure in the tank.
  • water vapor can be carried by the ambient air into the fuel tank 202.
  • the inerting system portion 200 can repressurize the fuel tank 202 with the inert gas 234 generated by the inerting system portion 200. This can be accomplished by using the valves 248.
  • one of the valves 248 may be a flow control valve 252 that is arranged fluidly downstream from the catalytic reactor 222.
  • the flow control valve 252 can be used to control the flow of inert gas 234 into the fuel tank 202 such that a slightly positive pressure is always maintained in the fuel tank 202. Such positive pressure can prevent ambient air from entering the fuel tank 202 from outside during descent and therefore prevent water from entering the fuel tank 202.
  • a controller 244 can be operably connected to the various components of the inerting system portion 200, including, but not limited to, the valves 248 and the sensors 246.
  • the controller 244 can be configured to receive input from the sensors 246 to control the valves 248 and thus maintain appropriate levels of inert gas 234 within the ullage space 206. Further, the controller 244 can be arranged to ensure an appropriate amount of pressure within the fuel tank 202 such that, during a descent of an aircraft, ambient air does not enter the ullage space 206 of the fuel tank 202.
  • the catalytic reactor 222 can be temperature controlled to ensure a desired chemical reaction efficiency such that an inert gas can be efficiently produced by the inerting system portion 200 from the mixed reactant stream 225. Accordingly, cooling air 226 can be provided to extract heat from the catalytic reactor 222 to achieve a desired thermal condition for the chemical reaction within the catalytic reactor 222.
  • the cooling air 226 can be sourced from a cool air source 228.
  • a catalyzed mixture 230 leaves the catalytic reactor 222 and is passed through a heat exchanger 232.
  • the heat exchanger 232 operates as a condenser on the catalyzed mixture 230 to separate out an inert gas 234 and a byproduct 236 (e.g., water).
  • a cooling air is supplied into the heat exchanger 232 to achieve the condensing functionality.
  • a cooling air 226 can be sourced from the same cool air source 228 as that provided to the catalytic reactor 222, although in other embodiments the cool air sources for the two components may be different.
  • the byproduct 236 may be water vapor, and thus in the present configuration shown in FIG. 3 , an optional water separator 238 is provided downstream of the heat exchanger 232 to extract the water from the catalyzed mixture 230, thus leaving only the oxygen-depleted gas 234 to be provided as a sweep gas to a membrane separator module 404 through flow path 256.
  • a flow control valve 248 located downstream of the heat exchanger 232 and optional water separator 238 can meter the flow of the inert gas 234 to a desired flow rate.
  • An optional boost fan 240 can be used to boost the gas stream pressure of the inert gas 234 to overcome a pressure drop associated with ducting between the outlet of the heat exchanger 232 and the discharge of the inert gas 234 into the fuel tank 202.
  • the flame arrestor 242 at an inlet to the fuel tank 202 is arranged to prevent any potential flames from propagating into the fuel tank 202.
  • aircraft fuel tanks e.g., fuel tank 202
  • the fuel tank 202 includes a vent 250.
  • pressure inside the fuel tank 202 is very low and is roughly equal to ambient pressure.
  • the pressure inside the fuel tank 202 needs to rise to equal ambient pressure at sea level (or whatever altitude the aircraft is landing at). This requires gas entering the fuel tank 202 from outside to equalize with the pressure in the tank.
  • water vapor can be carried by the ambient air into the fuel tank 202.
  • the inerting system portion 200 can repressurize the fuel tank 202 with the inert gas 234 generated by the inerting system portion 200. This is accomplished by using the valves 248.
  • one of the valves 248 may be a flow control valve 252 that is arranged fluidly downstream from the catalytic reactor 222.
  • the flow control valve 252 can be used to control the flow of inert gas 234 into the fuel tank 202 such that a slightly positive pressure is always maintained in the fuel tank 202. Such positive pressure can prevent ambient air from entering the fuel tank 202 from outside during descent and therefore prevent water from entering the fuel tank 202.
  • a controller 244 can be operably connected to the various components of the inerting system portion 200, including, but not limited to, the valves 248 and the sensors 246.
  • the controller 244 can be configured to receive input from the sensors 246 to control the valves 248 and thus maintain appropriate levels of inert gas 234 within the ullage space 206. Further, the controller 244 can be arranged to ensure an appropriate amount of pressure within the fuel tank 202 such that, during a descent of an aircraft, ambient air does not enter the ullage space 206 of the fuel tank 202.
  • FIG. 4 An example embodiment of an inert gas generating system 400 including a membrane separator and a catalytic reactor is schematically shown in FIG. 4 . Fluid flows between the components in FIG. 4 through the arrowed lines that are described contextually below unless explicitly identified and numbered.
  • air from an air source 402 (which can be the same as or different from an air source use as a second reactant source 220) is directed first to an inlet 403 of the membrane separator module 404 with membrane 20' that can be formed from bundles of tubular membranes such as shown in FIG. 3 .
  • the air source 402 can include any source on the aircraft that is at a pressure greater than ambient, including but not limited to bleed air from an engine, cabin air, high pressure air extracted or bled from an engine, etc.
  • Other components can be disposed along the air flow path 403 between the air source 402 and the membrane separator module inlet 403.
  • the hot compressed air can be directed to a heat rejection side of a heat exchanger to be cooled to a temperature suitable for the membrane.
  • Other components can also be included upstream of the membrane separator module 404, including but not limited to one or more filter components, including but not limited to a particulate filter (e.g., a HEPA filter) for removal of particulates, or a coalescing filter for removal of liquid entrained in the air flow.
  • filter components including but not limited to a particulate filter (e.g., a HEPA filter) for removal of particulates, or a coalescing filter for removal of liquid entrained in the air flow.
  • a particulate filter e.g., a HEPA filter
  • coalescing filter for removal of liquid entrained in the air flow.
  • Other air treatment modules can be included upstream of the membrane separator module 404, including but not limited to catalytic treatment modules such as for ozone removal.
  • air from the air source 402 is transported from a first side of the membrane 20' across the membrane to produce an oxygen-enriched gas on a second side of the membrane 20', which is discharged from oxygen-enriched gas outlet 406, from where it can be exhausted off-board or can be directed to an on-board system for further utilization.
  • a sweep gas in the form of oxygen-depleted gas from an outlet 223 of the catalytic reactor 222 is directed along a sweep gas flow path 401, and introduced to the second side of the membrane 20' through a sweep gas inlet 405.
  • Oxygen-depleted air discharged from is directed from an outlet 407 of the membrane separator module 404 along an inert gas flow path 408 to the ullage space 206 of fuel tank 202.
  • the sweep gas inlet 405 and the outlet 406 can be arranged to provide co-flow of the sweep gas (left to right in FIG. 4 ) with respect to a direction of flow of gas on the first side of the membrane 20'. In some aspects, the sweep gas inlet 405 and the outlet 406 can be arranged to provide counter-flow of the sweep gas (right to left in FIG. 4 ) with respect to a direction of flow on the first side of the membrane 20'. In some aspects, the sweep gas inlet 405 and the outlet 406 can be arranged to provide cross-flow of the sweep gas (bottom to top in FIG. 4 ) with respect to a direction of flow on the first side of the membrane 20'.
  • aircraft fuel tanks are typically vented to ambient pressure. At altitude, pressure inside the fuel tank is very low and is roughly equal to ambient pressure. However, during descent, the pressure inside the fuel tank needs to rise to equal ambient pressure at sea level (or at whatever altitude the aircraft is landing). This change in pressure requires gas entering the tank from outside to equalize with the pressure in the tank. Outside air entering the fuel tank can provide oxygen for combustion of the fuel, and the systems disclosed herein can provide an inert gas to the fuel tank to help reduce the risk of combustion.
  • the system 400 or variants on the system 400 can be operated in different modes of operation.
  • the flow of sweep gas from the catalytic reactor 222 can be adjusted by the controller 244 in response to a demand for inert gas, with higher flow rates of or lower oxygen levels of the sweep gas provided in response to higher levels of demand for inert gas.
  • the system demand for inert gas can be relatively high because increasing outside atmospheric pressure tends to force outside air into the fuel tank through the vent system, and a greater volume of inert gas is needed in order to displace outside air or prevent inflow of outside air.
  • the system demand for inert gas can be relatively low since only the volume from fuel consumption must be replaced as there is no pressure-driven inflow of outside air.
  • the above-described system configuration and modes of operation can provide a technical effect of promoting more effective separation of oxygen from nitrogen by a membrane due to the effect of lower partial pressure of oxygen in the sweep gas providing a greater differential in oxygen pressure across the membrane.
  • This can reduce or eliminate the need for pressurized air such as bleed air from the engine as an air source for the membrane separator 404.
  • cabin air exhaust which is in plentiful supply
  • an electrically driven blower thereby reducing fuel burn consumption.
  • Additional benefits can also be achieved, such as reduction in membrane size (e.g., shorter length tubular membranes) and design capacity reductions of the air separator 404 compared to prior systems that use only membrane separators.
  • the catalytic reactor 222 and its associated components can also be sized smaller compared to prior proposed systems that use only catalytic reaction of fuel to produce inert gas, and can achieve significantly reduced fuel consumption compared to systems that catalytic reactor systems that would operate throughout flight operations.
  • the systems disclosed herein can include a controller 244.
  • the controller 244 can be in operative communication with the air separator 404, the catalytic reactor 222, and any associated valves, pumps, compressors, conduits, ejectors, pressure regulators, or other fluid flow components, and with switches, sensors, and other electrical system components, and any other system components to operate the inert gas system. These control connections can be through wired electrical signal connections (not shown) or through wireless connections.
  • the controller 244 can be configured to operate the system according to specified parameters, as discussed in greater detail further above.
  • the controller can be an independent controller dedicated to controlling the inert gas generating system, or can interact with other onboard system controllers or with a master controller. In some embodiments, data provided by or to the controller 244 can come directly from a master controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
EP20217780.4A 2020-01-03 2020-12-30 Système et procédé d'inertage de réservoir de carburant Withdrawn EP3845462A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/734,006 US20210206503A1 (en) 2020-01-03 2020-01-03 Fuel tank inerting system and method

Publications (1)

Publication Number Publication Date
EP3845462A1 true EP3845462A1 (fr) 2021-07-07

Family

ID=74004025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20217780.4A Withdrawn EP3845462A1 (fr) 2020-01-03 2020-12-30 Système et procédé d'inertage de réservoir de carburant

Country Status (2)

Country Link
US (1) US20210206503A1 (fr)
EP (1) EP3845462A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864733B (zh) * 2023-05-05 2024-02-27 武汉雄韬氢雄燃料电池科技有限公司 一种用于大功率燃料电池的富氧装置及大功率燃料电池系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378920A (en) * 1980-07-15 1983-04-05 The Boeing Company Combustibly inert air supply system and method
US20080099618A1 (en) * 2006-10-17 2008-05-01 Honeywell International Inc. Oxygen removal system
US20090302163A1 (en) * 2008-06-06 2009-12-10 Sanford William C Oxygen exchange manifold, systems and methods for inerting a volatile environment
US20120304856A1 (en) * 2010-11-04 2012-12-06 Ube Industries, Ltd. Gas separation membrane module and gas separation method
CN108639359A (zh) * 2018-06-06 2018-10-12 南京航空航天大学 一种带离子迁移膜的耗氧型燃油箱惰化系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175692B2 (en) * 2004-06-21 2007-02-13 Hamilton Sundstrand Ejector to reduce permeate backpressure of air separation module
US9932234B2 (en) * 2015-07-13 2018-04-03 Hamilton Sundstrand Corporation Membrane-based air separation module
CN108568193B (zh) * 2017-06-22 2021-03-26 北京航空航天大学 基于膜分离法的飞机环境控制和油箱惰化耦合系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378920A (en) * 1980-07-15 1983-04-05 The Boeing Company Combustibly inert air supply system and method
US20080099618A1 (en) * 2006-10-17 2008-05-01 Honeywell International Inc. Oxygen removal system
US20090302163A1 (en) * 2008-06-06 2009-12-10 Sanford William C Oxygen exchange manifold, systems and methods for inerting a volatile environment
US20120304856A1 (en) * 2010-11-04 2012-12-06 Ube Industries, Ltd. Gas separation membrane module and gas separation method
CN108639359A (zh) * 2018-06-06 2018-10-12 南京航空航天大学 一种带离子迁移膜的耗氧型燃油箱惰化系统

Also Published As

Publication number Publication date
US20210206503A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US20180037334A1 (en) Catalytic fuel tank inerting apparatus for aircraft
EP3320954A1 (fr) Système de génération de gaz inerte desséché embarqué sur un aéronef
US10745145B2 (en) Contaminant removal for catalytic fuel tank inerting system
US20180148188A1 (en) Catalytic fuel tank inerting apparatus for aircraft
EP3360786A1 (fr) Appareil catalytique d'inertage de réservoir de carburant
US20180148190A1 (en) Catalytic fuel tank inerting apparatus for aircraft
EP3441128A1 (fr) Système de production de gaz inerte comprenant unité de séparation de carburant
EP3587276B1 (fr) Système d'inertage de réservoir de carburant catalytique
EP3845462A1 (fr) Système et procédé d'inertage de réservoir de carburant
US11472566B2 (en) Catalyst decay monitoring of catalytic inerting system
EP3360794B1 (fr) Dispositif avec un catalysateur pour d'inertage de reservoirs d'aéronef
EP3501992B1 (fr) Système d'inertage pour réservoir de carburant
US10994860B2 (en) Catalytic fuel tank inerting system
EP3845463B1 (fr) Système et procédé d'inertage de réservoir de carburant
US10569896B2 (en) Catalytic fuel tank inerting system
EP3882156B1 (fr) Système d'inertage de réservoir de carburant catalytique
EP3904218A1 (fr) Système d'inertage de réservoir de carburant catalytique
EP3828085B1 (fr) Commande de température de sortie d'air de cabine d'aéronef pour des opérations en aval
EP3868668B1 (fr) Système d'inertage de réservoir de carburant catalytique
CN110092002B (zh) 飞机的油箱催化惰化设备
CN110065641B (zh) 飞机的油箱催化惰化设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221014

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20230223