EP3842252B1 - Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction - Google Patents
Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction Download PDFInfo
- Publication number
- EP3842252B1 EP3842252B1 EP19219414.0A EP19219414A EP3842252B1 EP 3842252 B1 EP3842252 B1 EP 3842252B1 EP 19219414 A EP19219414 A EP 19219414A EP 3842252 B1 EP3842252 B1 EP 3842252B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hogel
- image
- multilevel
- microoptical
- diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 20
- 230000003287 optical effect Effects 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 23
- 239000012634 fragment Substances 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 13
- 239000002356 single layer Substances 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000005094 computer simulation Methods 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 3
- 230000006870 function Effects 0.000 description 28
- 238000005516 engineering process Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000001093 holography Methods 0.000 description 4
- 238000000609 electron-beam lithography Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/328—Diffraction gratings; Holograms
Definitions
- the claimed microoptical system for forming 3D images belongs to the field of optical security technologies, mainly to the so-called security tags used to authenticate banknotes, documents, passports, IDs, plastic cards, securities, and brands.
- Optical technologies allow both visual and instrumental control of the authenticity of optical security elements (Optical Document Security, Third Edition, Rudolf L. Van Renesse. Artech House, Boston, London, 2005).
- Devices for automated control of security elements have been developed (Eurasian patent for the method and device EA018419 (B1)). Of greatest interest are visual security features. Synthesis technologies for 2D, 2D-3D and 3D security holograms have been developed (Optical Document Security, Third Edition, Rudolf L. Van Renesse. Artech House, Boston, London, 2005).
- the claimed microoptical system for forming a 3D image in the zero diffraction order meets all of the above requirements.
- the claimed invention uses multilevel kinoforms to form 3D images. Similar technical solutions are employed is patent EA018164(B1 ). In that patent, a flat optical element forms two 2D images when illuminated with white light. Images are controlled in the normal position of the optical element and when turned by 180°. Any optically recorded original produces identical images when observed at 0° and 180° turn angles.
- the use of multilevel kinoforms in invention EA018164(B1 ) ensures that images at 0° and 180° appear different. Such a visual feature is easy to control.
- the claimed invention uses multilevel kinoforms to form a 3D image in the zero diffraction order.
- the closest technical solution to the claimed invention by the combination of features is the "Optical variable security device" microoptical system (patent application US20070268536A1 ).
- This patent proposes a method of analog optical recording of optical security elements.
- 3D object must be created that is illuminated by coherent diffuse light.
- the interference pattern of the reference and scattered beam is recorded on a holographic photographic plate.
- the prototype uses analog optical technology to record the original optical security element.
- the technology of analog optical recording of holograms is widespread.
- the hologram on a VISA card mentioned above is also recorded using optical technology.
- Optical recording equipment is relatively inexpensive.
- the main disadvantage of such holographic elements is their poor protection against counterfeit.
- the 3D image is formed in the first diffraction order, whereas in the claimed microoptical system it is formed in the zero diffraction order.
- Document EA 2017 00161 A1 discloses a method of synthesis of microoptical systems for forming images whereby the microoptical system is a single-layer reflective diffractive optical phase element whose synthesis involves the formation of a computer model and setting black and white frames and the viewing angles at which the observer sees the frames of the image, the diffractive optical element is partitioned into rectangular hogels with the sizes no greater than 100 microns and centered at points, each hogel used to accommodate kinoforms, radiation patterns are formed in the hogels represented by rays emerging from the hogel, the radiation pattern is used to compute the phase function of the multilevel kinoform and produce the multilevel kinoform in the hogels; when the optical element is illuminated with white light, the observer sees different frames at different angles.
- the aim of the present invention is to enhance the protective function of the tools used to authenticate banknotes, documents, passports, IDs, plastic cards, securities, and brands, and to reduce the availability of manufacturing technologies used to produce these security features.
- the task is solved by developing microoptical systems in the form of single-layer diffractive optical elements for the formation of 3D images in the zero diffraction order.
- the claimed invention uses the technology of computer synthesis of optical security features.
- Multilevel kinoforms are used to produce 3D images.
- the optical security element is a flat phase element whose microrelief forms a 3D image when the optical element is illuminated with white light.
- the accuracy of microrelief manufacture in terms of depth is 10 nm.
- electron beam lithography is used, which is knowledge intensive and not widespread.
- microoptical system is a single-layer reflective diffractive optical phase element.
- Each hogel G ij is subdivided into two regions G (1) ij and G (2) ij . Regions G (1) ij are used to accommodate kinoforms forming a 3D image.
- the radiation pattern is used to compute the phase function of the multilevel kinoform ⁇ ij ( x , y ), and multilevel kinoforms are produced in the regions G (1) ij .
- the regions G (2) ij are partially or completely filled with diffraction gratings of different orientations with periods from 0.4 to 0.7 microns.
- Claim 2 describes a microoptical system for generating 3D images in the zero diffraction order formed in accordance with the method described in claim 1.
- Claim 3 describes a microoptical system for generating 3D images in the zero diffraction order formed in accordance with the method described in claim 1.
- Claim 4 describes a microoptical system for generating 3D images in the zero diffraction order as described formed in accordance with the method described in claim 1.
- microoptical system described in claims 2-4 of the claims produced in the form of hot stamping foil, holographic threads, stickers, laminates is designed to protect banknotes, documents, passports, IDs, plastic cards, securities, and brands.
- the central point of the claimed invention is the use of flat optical phase elements - kinoforms.
- Each relief flat optical phase element is characterized by its phase function, and vice versa, given the phase function, one can calculate the microrelief of a flat phase optical element.
- the complex function T (x,y) is the transfer function of a flat optical element. If
- T( x , y ) 1 1, then we call it a phase element.
- T(x,y) exp( ik ⁇ (x,y)).
- the real function ⁇ (x,y) is called the phase function of a flat optical element.
- Computing the phase function ⁇ (x,y) of the optical element forming the given image F( x , y ) is a classical problem of flat optics.
- Equation (2) is a nonlinear integral equation. Given function F(x,y), it is necessary to find the phase function ⁇ ( ⁇ , ⁇ ). Efficient iterative methods were developed for solving the nonlinear equation (3). One of the most efficient methods for solving this problem was proposed in ( L.B.Lesem, P.M.Hirsch, J.A.Jr. Jordan, The kinoform: a new wavefront reconstruction device, IBM J. Res. Dev., 13 (1969), 105-155 ). The iterative method proposed by Lesem is known ( Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ) to have the following property.
- ⁇ n-1 ( ⁇ , ⁇ ) and ⁇ n ( ⁇ , ⁇ ) be the values of function ⁇ at the n-1 and n-th iterations, respectively. Then the inequality ⁇ A ⁇ n ⁇ F ⁇ 2 ⁇ ⁇ A ⁇ n ⁇ 1 ⁇ F ⁇ 2 holds.
- 2 are the standard deviations of A ⁇ n and A ⁇ n-1 from F, respectively. This property of the iterative process is called relaxation.
- the iterative Lesem's method described above allows one to compute the microrelief of an optical phase element given image F(x,y).
- Multilevel kinoforms Such flat optical phase elements with microrelief depth not exceeding the wavelength are called multilevel kinoforms ( A. Goncharsky, A. Goncharsky, and S. Durlevich, "Diffractive optical element with asymmetric microrelief for creating visual security features," Opt. Express 23, 29184-29192 (2015 ).).
- Multilevel kinoforms have high diffraction efficiency, but require sophisticated manufacturing techniques to produce.
- precision electron-beam technology Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ) is used to form the multilevel microrelief.
- the claimed microoptical system forms a new security feature for visual control - a 3D image that is visible to the observer in the zero diffraction order.
- the invention is illustrated by images, where Fig. 1 shows the formation scheme of 3D images; Fig. 2 shows a diagram for observing a 3D image visible to an observer at small diffraction angles; Fig. 3 shows a diagram for observing a 2D color image visible to an observer at large diffraction angles; Fig. 4 presents a computer-generated 3D model of the object; Fig.
- FIG. 5 shows a fragment of a sequence of 2D frames visible to the observer from different angles
- Fig 6 shows a diagram of the partition of the region of a microoptical element into hogels G ij
- Fig. 7 shows a variant of subdividing hogel G ij into two regions G (1) ij and G (2) ij
- Fig. 8 shows the optical scheme for calculating the radiation pattern of the region G (1) ij of each hogel G ij
- Fig. 9 shows an example of the radiation pattern of hogel region G (1) ij
- Fig. 10 shows a scheme for computing the phase function in hogel region G (1) ij
- Fig. 11 shows a fragment of the microrelief of a multilevel kinoform
- in Fig. 12 shows a variant of the hogel structure
- Fig. 13 shows an example of a 2D color image that is visible to an observer over the entire region of the microoptical element at large diffraction angles.
- Fig. 1 shows the scheme of the formation of a 3D image by a flat reflective optical phase element.
- Fig. 1 shows a fragment of observing points (three horizontal rows with five points in each row). The centers of the observing points are indicated by the letters R.
- the radiation source S is located in the Oxz plane of the Cartesian coordinate system. The source is at an angle ⁇ 0 to the Oz axis. The direction toward the zero order is denoted as Lo.
- the observer sees different 2D frames of a 3D image at different angles ⁇ , ⁇ .
- ⁇ , ⁇ are the angles in a spherical coordinate system.
- the angle ⁇ is measured from the axis Oz, and ⁇ is the azimuthal angle.
- Fig. 2 shows the observing scheme in the Oxz plane for small diffraction angles.
- a 3D image is observed at diffraction angles of less than 60° in the zero diffraction order.
- Fig. 3 shows the observing scheme for a 2D image at large diffraction angles greater than 60°.
- the normal to the optical element in this case does not coincide with the Oz axis and is indicated by the dotted line.
- Fig. 4 shows a 3D computer model of the object, which consists of the edges of a regular quadrangular pyramid. The edges are painted black.
- Fig. 5 shows a fragment of 2D frames of a 3D object.
- Fig. 6 shows the scheme of the partition of an optical element into hogels - elementary regions G ij .
- the size of the hogel does not exceed 100 microns, which is beyond the resolution of the human eye.
- Fig. 7 shows a variant of the scheme for partitioning a hogel into regions G (1) ij and G (2) ij , which are colored in white and gray, respectively.
- Fig. 8 shows the scheme of the formation of the radiation pattern of region G (1) ij located in hogel G ij . All rays emerging from the center of the hogel toward all observing points R participate in the formation of the radiation pattern. The number of rays coincides with the number of 2D frames of the 3D image and amounts to several hundreds.
- Let us denote the frames as K n , n 1...N.
- the brightness of the point ( x i , y j ) in frame K n is measured in grayscale.
- the beam intensity L n corresponds to the brightness of the point ( x i , y j ) on each frame K n , that is, if the observer's eye is at a vantage point at angles ( ⁇ n , ⁇ n ), then the region G ij is visible as a point whose brightness corresponds to the brightness of the corresponding point ( x i , y j ) in frame K n .
- the intersection point of the 1st, 2nd and 3rd planes is in the image in the frames, and the corresponding point in the intersection with the 4th plane is located in the background.
- the size of the hogel is not more than 100 microns and the eye sees this hogel as a point.
- the radiation pattern of region G (1) ij of each hogel is a set of N rays L n emerging from the center of region G (1) ij at the observing point of all 2D frames of the 3D image.
- Each ray L n has a given intensity.
- Fig. 9 shows three functions F(x,y) computed for regions G (1) ij of three different hogels.
- the total number of hogels can amount to several hundred thousand.
- the function F(x,y) is computed for region G (1) ij of each hogel G ij .
- the inverse problem (3) - (4) is then solved and the phase function ⁇ ij ( x , y ), is determined for the region G (1) ij of each hogel.
- the microrelief depth h ij (x,y) of the optical element is uniquely determined by setting its phase function ⁇ ij ( x , y ).
- the claim 10 shows the scheme for computing the phase function in the hogel region G (1) ij .
- the grayscale image F( x , y ) is located.
- the claim proposes a method for computing the phase function F( x , y ) of microoptical systems that form 3D images around the zero diffraction order.
- a multilevel optical element can be manufactured that implements the method according to claim 1 ( Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ).
- Fig. 11 shows a fragment of the microrelief of a multilevel kinoform in one of the hogels.
- the hogel size is less than 100 microns and the microrelief depth does not exceed 0.5 ⁇ .
- Fig. 12 shows a variant of the structure of the hogel.
- the region of multilevel kinoform occupies the region G (1) ij of the hogel.
- the depth of the microrelief of the kinoform is proportional to the degree of darkening in the region G (1) ij .
- the remaining hogel area G (2) ij is partially or completely filled with fragments of diffraction gratings of various periods and orientations, forming another 2D color image visible to the observer at large diffraction angles greater than 60° when illuminated with white light.
- Fig. 13 shows a variant of such a color image in false colors. Black and gray colors correspond to red and green, respectively, at a certain angle of inclination of the optical element.
- the claimed microoptical system for forming 3D images uses multilevel kinoforms.
- the main difference between the claimed microoptical system from that proposed in patent EA018164(B1 ) is that in the claimed invention a 3D rather than 2D image is formed.
- the claimed microoptical system for forming 3D images in the zero diffraction order has the following differences from the prototype US20070268536A1 .
- the original of a microoptical system for the formation of 3D images in the zero diffraction order was computed and manufactured.
- a 3D image consists of the edges of a regular quadrangular pyramid.
- the microoptical system is a 28 ⁇ 28 mm 2 flat reflective optical phase element.
- the original of the flat reflective optical element was synthesized using electron beam technology.
- Multilevel kinoforms were used for the formation of 3D images,.
- the total number of hogels was 160000.
- Regions G (1) ij containing kinoforms were 50 ⁇ 50 ⁇ m 2 squares in the centers of the hogels.
- the rest area of the hogels (G (2) ij regions) was filled by gratings with grating frequencies 0.4 ⁇ m and 0.5 ⁇ m.
- the number of frames N was 825 (55 frames in a row ⁇ 15 rows).
- a 500 ⁇ 500 grid was used to solve inverse problem (2) - (3).
- an electron beam lithography system with a resolution of 0.1 ⁇ m was used, which corresponds to a resolution of 254000 dpi.
- a positive electron resist was used to record the microstructures of the microoptical system.
- the original master shim of diffractive optical element was made using standard electroforming process.
- the master shim was used to produce microoptical systems in the form of metallized and transparent stickers using standard equipment for the production of embossed holograms.
- transparent stickers transparent material with a high reflection coefficient was used. At diffraction angles smaller than 60° the observer sees 3D image in the zero diffraction order.
- microoptical system as per claims 2-4 made in the form of hot stamping foil, holographic threads or stickers, is meant to protect banknotes, documents, passports, IDs, plastic cards, securities, and brands.
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Holo Graphy (AREA)
Claims (5)
- Le procédé de synthèse de systèmes microoptiques pour former des images 3D dans l'ordre de diffraction zéro se distingue en ce que le système microoptique est un élément de phase optique diffractif réfléchissant monocouche dont la synthèse passe par la constitution d'un modèle informatique 3D et la mise en place de trames 2D noir et blanc Kn, n=1...N et les angles de vision (ϕn, θn) par lesquels l'observateur voit les trames Kn de l'image 3D ; l'élément optique diffractif est partitionné en hogels rectangulaires Gij, i=1...L, j=l...M avec des tailles au maximum égales à 100 microns et centrées aux points (x i, yj), avec chaque hogel Gij divisé en deux régions G(1) ij et G(2) ij, les régions G(1) ij étant utilisées pour loger les kinoformes formant une image 3D ; les diagrammes de rayonnement sont formés dansles régions représentées par N rayons émergeant du hogel Gij aux angles (ϕn, θn), n=1...N,de sorte que l'intensité du faisceau sous un angle (ϕn, θn) soit égale à la luminosité du point de coordonnées (x i, yj) dans la n-ième trame, le diagramme de rayonnement est utilisé pour calculer la fonction de phase Φij(x,y) de la kinoforme multiniveau et produire la kinoforme multiniveau dans les régions G(1), tandis que la région G(2) ij est partiellement ou totalement remplie de réseaux de diffraction d'orientations diverses avec des périodes allant de 0,4 à 0,7 microns ; lorsque l'élément optique est éclairé avec de la lumière blanche à des angles de diffraction inférieurs à 60°, l'observateur voit différentes trames Kn, n=1...N de l'image 3D à différents angles (ϕn, θn), et à des angles de diffraction supérieurs à 60°, l'observateur voit une image de couleur différente sur toute la surface de l'élément optique.
- Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant métallisé en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij, i=1...L, j=l...M déterminée par la formule hij(x,y) = ½ Φij(x,y).
- Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant partiellement démétallisé en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij,Gij, i=1...L, j=1... déterminée par la formule hij(x,y) = ½ Φij(x,y).
- Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant transparent en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij, i=1...L, j=l...M déterminée par la formule hij(x,y) = ½ Φij (x,y).
- Le système microoptique selon les revendications 2 à 4 réalisé sous la forme d'une feuille d'estampage à chaud, de fils holographiques, d'autocollants et de stratifiés est conçu pour protéger les billets de banque, les documents, les passeports, les cartes d'identité, les cartes plastiques, les titres et les marques.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19219414.0A EP3842252B1 (fr) | 2019-12-23 | 2019-12-23 | Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19219414.0A EP3842252B1 (fr) | 2019-12-23 | 2019-12-23 | Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3842252A1 EP3842252A1 (fr) | 2021-06-30 |
EP3842252B1 true EP3842252B1 (fr) | 2022-05-25 |
Family
ID=69061131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19219414.0A Active EP3842252B1 (fr) | 2019-12-23 | 2019-12-23 | Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3842252B1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2602796B (en) * | 2021-01-11 | 2023-08-23 | De La Rue Int Ltd | Optical devices and methods of manufacture thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004008193A1 (fr) | 2002-07-10 | 2004-01-22 | De La Rue International Limited | Dispositif de securite a variabilite optique |
EA018419B1 (ru) | 2010-12-31 | 2013-07-30 | Ооо "Центр Компьютерной Голографии" | Способ защиты и идентификации оптических защитных меток (варианты) и устройство для его осуществления |
EA018164B1 (ru) | 2011-09-26 | 2013-05-30 | Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" | Микрооптическая система формирования изображений для визуального контроля подлинности изделий |
EA031709B1 (ru) * | 2016-10-24 | 2019-02-28 | Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" | Микрооптическая система для формирования 2d изображений с кинематическими эффектами движения |
RU190048U1 (ru) * | 2018-12-28 | 2019-06-17 | Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" | Микрооптическая система для формирования 2D изображений |
-
2019
- 2019-12-23 EP EP19219414.0A patent/EP3842252B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3842252A1 (fr) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11529822B2 (en) | Micro-optic device with integrated focusing element and image element structure | |
US11338606B2 (en) | Optical security device and method of manufacture | |
EP0064067B2 (fr) | Procedè de gèneration de composition graphique diffractive | |
CN103229078B (zh) | 带有光学可变表面图案的安全元件 | |
DE102017120536B4 (de) | Verfahren zur Herstellung eines Hologramms, sowie ein Sicherheitselement und ein Sicherheitsdokument | |
AU2016101590A4 (en) | A 3d micromirror device | |
EP3842252B1 (fr) | Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction | |
RU127208U1 (ru) | Микрооптическая система формирования визуальных изображений | |
RU190048U1 (ru) | Микрооптическая система для формирования 2D изображений | |
RU149690U1 (ru) | Микрооптическая система формирования визуальных изображений | |
WO2018169450A2 (fr) | Système micro-optique pour former des images visuelles à effets de mouvement cinématiques | |
CN115230363B (zh) | 光学防伪元件及其设计方法、防伪产品 | |
EP3929001A1 (fr) | Système micro-optique de génération d'images visuelles | |
EP3466712B1 (fr) | Système micro-optique pour former des images visuelles à effets de mouvement cinématiques | |
RU140190U1 (ru) | Микрооптическая система формирования изображений для визуального и инструментального контроля | |
EA030487B1 (ru) | Микрооптическая система формирования изображений для инструментального и визуального контроля подлинности изделий | |
RU212103U1 (ru) | Микрооптическое устройство формирования изображений для визуального контроля | |
RU152465U1 (ru) | Микрооптическая система формирования изображений для визуального контроля подлинности изделий | |
EA031709B1 (ru) | Микрооптическая система для формирования 2d изображений с кинематическими эффектами движения | |
RU140180U1 (ru) | Микрооптическая система формирования изображений для визуального и инструментального контроля | |
WO2021177858A1 (fr) | Procédé de synthèse d'éléments optiques de diffraction plans | |
RU196408U1 (ru) | Микрооптическая система для формирования 2d изображений | |
Goncharsky et al. | Synthesis of Nano-Optical Elements for Forming 3D Images at Zero Diffraction Order |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210930 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220311 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019015217 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1494115 Country of ref document: AT Kind code of ref document: T Effective date: 20220615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220525 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1494115 Country of ref document: AT Kind code of ref document: T Effective date: 20220525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220926 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220825 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220826 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220825 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019015217 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20221122 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20231207 AND 20231213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602019015217 Country of ref document: DE Owner name: GONCHARSKIY, ANTON ALEXANDROVICH, RU Free format text: FORMER OWNER: HOLOGRAPHY SYSTEMS INTERNATIONAL LTD., NICOSIA, CY |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231004 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231222 Year of fee payment: 5 Ref country code: DE Payment date: 20230915 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220525 |