EP3842252B1 - Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction - Google Patents

Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction Download PDF

Info

Publication number
EP3842252B1
EP3842252B1 EP19219414.0A EP19219414A EP3842252B1 EP 3842252 B1 EP3842252 B1 EP 3842252B1 EP 19219414 A EP19219414 A EP 19219414A EP 3842252 B1 EP3842252 B1 EP 3842252B1
Authority
EP
European Patent Office
Prior art keywords
hogel
image
multilevel
microoptical
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19219414.0A
Other languages
German (de)
English (en)
Other versions
EP3842252A1 (fr
Inventor
Anton Alexandrovich Goncharskiy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holography Systems International Ltd
Original Assignee
Holography Systems International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holography Systems International Ltd filed Critical Holography Systems International Ltd
Priority to EP19219414.0A priority Critical patent/EP3842252B1/fr
Publication of EP3842252A1 publication Critical patent/EP3842252A1/fr
Application granted granted Critical
Publication of EP3842252B1 publication Critical patent/EP3842252B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms

Definitions

  • the claimed microoptical system for forming 3D images belongs to the field of optical security technologies, mainly to the so-called security tags used to authenticate banknotes, documents, passports, IDs, plastic cards, securities, and brands.
  • Optical technologies allow both visual and instrumental control of the authenticity of optical security elements (Optical Document Security, Third Edition, Rudolf L. Van Renesse. Artech House, Boston, London, 2005).
  • Devices for automated control of security elements have been developed (Eurasian patent for the method and device EA018419 (B1)). Of greatest interest are visual security features. Synthesis technologies for 2D, 2D-3D and 3D security holograms have been developed (Optical Document Security, Third Edition, Rudolf L. Van Renesse. Artech House, Boston, London, 2005).
  • the claimed microoptical system for forming a 3D image in the zero diffraction order meets all of the above requirements.
  • the claimed invention uses multilevel kinoforms to form 3D images. Similar technical solutions are employed is patent EA018164(B1 ). In that patent, a flat optical element forms two 2D images when illuminated with white light. Images are controlled in the normal position of the optical element and when turned by 180°. Any optically recorded original produces identical images when observed at 0° and 180° turn angles.
  • the use of multilevel kinoforms in invention EA018164(B1 ) ensures that images at 0° and 180° appear different. Such a visual feature is easy to control.
  • the claimed invention uses multilevel kinoforms to form a 3D image in the zero diffraction order.
  • the closest technical solution to the claimed invention by the combination of features is the "Optical variable security device" microoptical system (patent application US20070268536A1 ).
  • This patent proposes a method of analog optical recording of optical security elements.
  • 3D object must be created that is illuminated by coherent diffuse light.
  • the interference pattern of the reference and scattered beam is recorded on a holographic photographic plate.
  • the prototype uses analog optical technology to record the original optical security element.
  • the technology of analog optical recording of holograms is widespread.
  • the hologram on a VISA card mentioned above is also recorded using optical technology.
  • Optical recording equipment is relatively inexpensive.
  • the main disadvantage of such holographic elements is their poor protection against counterfeit.
  • the 3D image is formed in the first diffraction order, whereas in the claimed microoptical system it is formed in the zero diffraction order.
  • Document EA 2017 00161 A1 discloses a method of synthesis of microoptical systems for forming images whereby the microoptical system is a single-layer reflective diffractive optical phase element whose synthesis involves the formation of a computer model and setting black and white frames and the viewing angles at which the observer sees the frames of the image, the diffractive optical element is partitioned into rectangular hogels with the sizes no greater than 100 microns and centered at points, each hogel used to accommodate kinoforms, radiation patterns are formed in the hogels represented by rays emerging from the hogel, the radiation pattern is used to compute the phase function of the multilevel kinoform and produce the multilevel kinoform in the hogels; when the optical element is illuminated with white light, the observer sees different frames at different angles.
  • the aim of the present invention is to enhance the protective function of the tools used to authenticate banknotes, documents, passports, IDs, plastic cards, securities, and brands, and to reduce the availability of manufacturing technologies used to produce these security features.
  • the task is solved by developing microoptical systems in the form of single-layer diffractive optical elements for the formation of 3D images in the zero diffraction order.
  • the claimed invention uses the technology of computer synthesis of optical security features.
  • Multilevel kinoforms are used to produce 3D images.
  • the optical security element is a flat phase element whose microrelief forms a 3D image when the optical element is illuminated with white light.
  • the accuracy of microrelief manufacture in terms of depth is 10 nm.
  • electron beam lithography is used, which is knowledge intensive and not widespread.
  • microoptical system is a single-layer reflective diffractive optical phase element.
  • Each hogel G ij is subdivided into two regions G (1) ij and G (2) ij . Regions G (1) ij are used to accommodate kinoforms forming a 3D image.
  • the radiation pattern is used to compute the phase function of the multilevel kinoform ⁇ ij ( x , y ), and multilevel kinoforms are produced in the regions G (1) ij .
  • the regions G (2) ij are partially or completely filled with diffraction gratings of different orientations with periods from 0.4 to 0.7 microns.
  • Claim 2 describes a microoptical system for generating 3D images in the zero diffraction order formed in accordance with the method described in claim 1.
  • Claim 3 describes a microoptical system for generating 3D images in the zero diffraction order formed in accordance with the method described in claim 1.
  • Claim 4 describes a microoptical system for generating 3D images in the zero diffraction order as described formed in accordance with the method described in claim 1.
  • microoptical system described in claims 2-4 of the claims produced in the form of hot stamping foil, holographic threads, stickers, laminates is designed to protect banknotes, documents, passports, IDs, plastic cards, securities, and brands.
  • the central point of the claimed invention is the use of flat optical phase elements - kinoforms.
  • Each relief flat optical phase element is characterized by its phase function, and vice versa, given the phase function, one can calculate the microrelief of a flat phase optical element.
  • the complex function T (x,y) is the transfer function of a flat optical element. If
  • T( x , y ) 1 1, then we call it a phase element.
  • T(x,y) exp( ik ⁇ (x,y)).
  • the real function ⁇ (x,y) is called the phase function of a flat optical element.
  • Computing the phase function ⁇ (x,y) of the optical element forming the given image F( x , y ) is a classical problem of flat optics.
  • Equation (2) is a nonlinear integral equation. Given function F(x,y), it is necessary to find the phase function ⁇ ( ⁇ , ⁇ ). Efficient iterative methods were developed for solving the nonlinear equation (3). One of the most efficient methods for solving this problem was proposed in ( L.B.Lesem, P.M.Hirsch, J.A.Jr. Jordan, The kinoform: a new wavefront reconstruction device, IBM J. Res. Dev., 13 (1969), 105-155 ). The iterative method proposed by Lesem is known ( Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ) to have the following property.
  • ⁇ n-1 ( ⁇ , ⁇ ) and ⁇ n ( ⁇ , ⁇ ) be the values of function ⁇ at the n-1 and n-th iterations, respectively. Then the inequality ⁇ A ⁇ n ⁇ F ⁇ 2 ⁇ ⁇ A ⁇ n ⁇ 1 ⁇ F ⁇ 2 holds.
  • 2 are the standard deviations of A ⁇ n and A ⁇ n-1 from F, respectively. This property of the iterative process is called relaxation.
  • the iterative Lesem's method described above allows one to compute the microrelief of an optical phase element given image F(x,y).
  • Multilevel kinoforms Such flat optical phase elements with microrelief depth not exceeding the wavelength are called multilevel kinoforms ( A. Goncharsky, A. Goncharsky, and S. Durlevich, "Diffractive optical element with asymmetric microrelief for creating visual security features," Opt. Express 23, 29184-29192 (2015 ).).
  • Multilevel kinoforms have high diffraction efficiency, but require sophisticated manufacturing techniques to produce.
  • precision electron-beam technology Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ) is used to form the multilevel microrelief.
  • the claimed microoptical system forms a new security feature for visual control - a 3D image that is visible to the observer in the zero diffraction order.
  • the invention is illustrated by images, where Fig. 1 shows the formation scheme of 3D images; Fig. 2 shows a diagram for observing a 3D image visible to an observer at small diffraction angles; Fig. 3 shows a diagram for observing a 2D color image visible to an observer at large diffraction angles; Fig. 4 presents a computer-generated 3D model of the object; Fig.
  • FIG. 5 shows a fragment of a sequence of 2D frames visible to the observer from different angles
  • Fig 6 shows a diagram of the partition of the region of a microoptical element into hogels G ij
  • Fig. 7 shows a variant of subdividing hogel G ij into two regions G (1) ij and G (2) ij
  • Fig. 8 shows the optical scheme for calculating the radiation pattern of the region G (1) ij of each hogel G ij
  • Fig. 9 shows an example of the radiation pattern of hogel region G (1) ij
  • Fig. 10 shows a scheme for computing the phase function in hogel region G (1) ij
  • Fig. 11 shows a fragment of the microrelief of a multilevel kinoform
  • in Fig. 12 shows a variant of the hogel structure
  • Fig. 13 shows an example of a 2D color image that is visible to an observer over the entire region of the microoptical element at large diffraction angles.
  • Fig. 1 shows the scheme of the formation of a 3D image by a flat reflective optical phase element.
  • Fig. 1 shows a fragment of observing points (three horizontal rows with five points in each row). The centers of the observing points are indicated by the letters R.
  • the radiation source S is located in the Oxz plane of the Cartesian coordinate system. The source is at an angle ⁇ 0 to the Oz axis. The direction toward the zero order is denoted as Lo.
  • the observer sees different 2D frames of a 3D image at different angles ⁇ , ⁇ .
  • ⁇ , ⁇ are the angles in a spherical coordinate system.
  • the angle ⁇ is measured from the axis Oz, and ⁇ is the azimuthal angle.
  • Fig. 2 shows the observing scheme in the Oxz plane for small diffraction angles.
  • a 3D image is observed at diffraction angles of less than 60° in the zero diffraction order.
  • Fig. 3 shows the observing scheme for a 2D image at large diffraction angles greater than 60°.
  • the normal to the optical element in this case does not coincide with the Oz axis and is indicated by the dotted line.
  • Fig. 4 shows a 3D computer model of the object, which consists of the edges of a regular quadrangular pyramid. The edges are painted black.
  • Fig. 5 shows a fragment of 2D frames of a 3D object.
  • Fig. 6 shows the scheme of the partition of an optical element into hogels - elementary regions G ij .
  • the size of the hogel does not exceed 100 microns, which is beyond the resolution of the human eye.
  • Fig. 7 shows a variant of the scheme for partitioning a hogel into regions G (1) ij and G (2) ij , which are colored in white and gray, respectively.
  • Fig. 8 shows the scheme of the formation of the radiation pattern of region G (1) ij located in hogel G ij . All rays emerging from the center of the hogel toward all observing points R participate in the formation of the radiation pattern. The number of rays coincides with the number of 2D frames of the 3D image and amounts to several hundreds.
  • Let us denote the frames as K n , n 1...N.
  • the brightness of the point ( x i , y j ) in frame K n is measured in grayscale.
  • the beam intensity L n corresponds to the brightness of the point ( x i , y j ) on each frame K n , that is, if the observer's eye is at a vantage point at angles ( ⁇ n , ⁇ n ), then the region G ij is visible as a point whose brightness corresponds to the brightness of the corresponding point ( x i , y j ) in frame K n .
  • the intersection point of the 1st, 2nd and 3rd planes is in the image in the frames, and the corresponding point in the intersection with the 4th plane is located in the background.
  • the size of the hogel is not more than 100 microns and the eye sees this hogel as a point.
  • the radiation pattern of region G (1) ij of each hogel is a set of N rays L n emerging from the center of region G (1) ij at the observing point of all 2D frames of the 3D image.
  • Each ray L n has a given intensity.
  • Fig. 9 shows three functions F(x,y) computed for regions G (1) ij of three different hogels.
  • the total number of hogels can amount to several hundred thousand.
  • the function F(x,y) is computed for region G (1) ij of each hogel G ij .
  • the inverse problem (3) - (4) is then solved and the phase function ⁇ ij ( x , y ), is determined for the region G (1) ij of each hogel.
  • the microrelief depth h ij (x,y) of the optical element is uniquely determined by setting its phase function ⁇ ij ( x , y ).
  • the claim 10 shows the scheme for computing the phase function in the hogel region G (1) ij .
  • the grayscale image F( x , y ) is located.
  • the claim proposes a method for computing the phase function F( x , y ) of microoptical systems that form 3D images around the zero diffraction order.
  • a multilevel optical element can be manufactured that implements the method according to claim 1 ( Computer Optics & Computer Holography by A.V. Goncharsky, A.A. Goncharsky, Moscow University Press, Moscow, 2004 ).
  • Fig. 11 shows a fragment of the microrelief of a multilevel kinoform in one of the hogels.
  • the hogel size is less than 100 microns and the microrelief depth does not exceed 0.5 ⁇ .
  • Fig. 12 shows a variant of the structure of the hogel.
  • the region of multilevel kinoform occupies the region G (1) ij of the hogel.
  • the depth of the microrelief of the kinoform is proportional to the degree of darkening in the region G (1) ij .
  • the remaining hogel area G (2) ij is partially or completely filled with fragments of diffraction gratings of various periods and orientations, forming another 2D color image visible to the observer at large diffraction angles greater than 60° when illuminated with white light.
  • Fig. 13 shows a variant of such a color image in false colors. Black and gray colors correspond to red and green, respectively, at a certain angle of inclination of the optical element.
  • the claimed microoptical system for forming 3D images uses multilevel kinoforms.
  • the main difference between the claimed microoptical system from that proposed in patent EA018164(B1 ) is that in the claimed invention a 3D rather than 2D image is formed.
  • the claimed microoptical system for forming 3D images in the zero diffraction order has the following differences from the prototype US20070268536A1 .
  • the original of a microoptical system for the formation of 3D images in the zero diffraction order was computed and manufactured.
  • a 3D image consists of the edges of a regular quadrangular pyramid.
  • the microoptical system is a 28 ⁇ 28 mm 2 flat reflective optical phase element.
  • the original of the flat reflective optical element was synthesized using electron beam technology.
  • Multilevel kinoforms were used for the formation of 3D images,.
  • the total number of hogels was 160000.
  • Regions G (1) ij containing kinoforms were 50 ⁇ 50 ⁇ m 2 squares in the centers of the hogels.
  • the rest area of the hogels (G (2) ij regions) was filled by gratings with grating frequencies 0.4 ⁇ m and 0.5 ⁇ m.
  • the number of frames N was 825 (55 frames in a row ⁇ 15 rows).
  • a 500 ⁇ 500 grid was used to solve inverse problem (2) - (3).
  • an electron beam lithography system with a resolution of 0.1 ⁇ m was used, which corresponds to a resolution of 254000 dpi.
  • a positive electron resist was used to record the microstructures of the microoptical system.
  • the original master shim of diffractive optical element was made using standard electroforming process.
  • the master shim was used to produce microoptical systems in the form of metallized and transparent stickers using standard equipment for the production of embossed holograms.
  • transparent stickers transparent material with a high reflection coefficient was used. At diffraction angles smaller than 60° the observer sees 3D image in the zero diffraction order.
  • microoptical system as per claims 2-4 made in the form of hot stamping foil, holographic threads or stickers, is meant to protect banknotes, documents, passports, IDs, plastic cards, securities, and brands.

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Claims (5)

  1. Le procédé de synthèse de systèmes microoptiques pour former des images 3D dans l'ordre de diffraction zéro se distingue en ce que le système microoptique est un élément de phase optique diffractif réfléchissant monocouche dont la synthèse passe par la constitution d'un modèle informatique 3D et la mise en place de trames 2D noir et blanc Kn, n=1...N et les angles de vision (ϕn, θn) par lesquels l'observateur voit les trames Kn de l'image 3D ; l'élément optique diffractif est partitionné en hogels rectangulaires Gij, i=1...L, j=l...M avec des tailles au maximum égales à 100 microns et centrées aux points (x i, yj), avec chaque hogel Gij divisé en deux régions G(1) ij et G(2) ij, les régions G(1) ij étant utilisées pour loger les kinoformes formant une image 3D ; les diagrammes de rayonnement sont formés dans
    les régions représentées par N rayons émergeant du hogel Gij aux angles (ϕn, θn), n=1...N,
    de sorte que l'intensité du faisceau sous un angle (ϕn, θn) soit égale à la luminosité du point de coordonnées (x i, yj) dans la n-ième trame, le diagramme de rayonnement est utilisé pour calculer la fonction de phase Φij(x,y) de la kinoforme multiniveau et produire la kinoforme multiniveau dans les régions G(1), tandis que la région G(2) ij est partiellement ou totalement remplie de réseaux de diffraction d'orientations diverses avec des périodes allant de 0,4 à 0,7 microns ; lorsque l'élément optique est éclairé avec de la lumière blanche à des angles de diffraction inférieurs à 60°, l'observateur voit différentes trames Kn, n=1...N de l'image 3D à différents angles (ϕn, θn), et à des angles de diffraction supérieurs à 60°, l'observateur voit une image de couleur différente sur toute la surface de l'élément optique.
  2. Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant métallisé en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij, i=1...L, j=l...M déterminée par la formule hij(x,y) = ½ Φij(x,y).
  3. Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant partiellement démétallisé en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij,Gij, i=1...L, j=1... déterminée par la formule hij(x,y) = ½ Φij(x,y).
  4. Le système microoptique formé par le procédé selon la revendication 1 pour générer des images 3D dans l'ordre de diffraction zéro, qui est un élément de phase optique diffractif réfléchissant transparent en relief monocouche sur une base polymère détachable ou non détachable, constituée de fragments de réseaux de diffraction de périodes allant de 0,4 à 0,7 µm et de fragments de kinoformes multiniveaux, avec la profondeur du microrelief kinoforme dans chaque hogel Gij, i=1...L, j=l...M déterminée par la formule hij(x,y) = ½ Φij (x,y).
  5. Le système microoptique selon les revendications 2 à 4 réalisé sous la forme d'une feuille d'estampage à chaud, de fils holographiques, d'autocollants et de stratifiés est conçu pour protéger les billets de banque, les documents, les passeports, les cartes d'identité, les cartes plastiques, les titres et les marques.
EP19219414.0A 2019-12-23 2019-12-23 Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction Active EP3842252B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19219414.0A EP3842252B1 (fr) 2019-12-23 2019-12-23 Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19219414.0A EP3842252B1 (fr) 2019-12-23 2019-12-23 Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction

Publications (2)

Publication Number Publication Date
EP3842252A1 EP3842252A1 (fr) 2021-06-30
EP3842252B1 true EP3842252B1 (fr) 2022-05-25

Family

ID=69061131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19219414.0A Active EP3842252B1 (fr) 2019-12-23 2019-12-23 Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction

Country Status (1)

Country Link
EP (1) EP3842252B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602796B (en) * 2021-01-11 2023-08-23 De La Rue Int Ltd Optical devices and methods of manufacture thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008193A1 (fr) 2002-07-10 2004-01-22 De La Rue International Limited Dispositif de securite a variabilite optique
EA018419B1 (ru) 2010-12-31 2013-07-30 Ооо "Центр Компьютерной Голографии" Способ защиты и идентификации оптических защитных меток (варианты) и устройство для его осуществления
EA018164B1 (ru) 2011-09-26 2013-05-30 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Микрооптическая система формирования изображений для визуального контроля подлинности изделий
EA031709B1 (ru) * 2016-10-24 2019-02-28 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Микрооптическая система для формирования 2d изображений с кинематическими эффектами движения
RU190048U1 (ru) * 2018-12-28 2019-06-17 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Микрооптическая система для формирования 2D изображений

Also Published As

Publication number Publication date
EP3842252A1 (fr) 2021-06-30

Similar Documents

Publication Publication Date Title
US11529822B2 (en) Micro-optic device with integrated focusing element and image element structure
US11338606B2 (en) Optical security device and method of manufacture
EP0064067B2 (fr) Procedè de gèneration de composition graphique diffractive
CN103229078B (zh) 带有光学可变表面图案的安全元件
DE102017120536B4 (de) Verfahren zur Herstellung eines Hologramms, sowie ein Sicherheitselement und ein Sicherheitsdokument
AU2016101590A4 (en) A 3d micromirror device
EP3842252B1 (fr) Système micro-optique pour la formation de l'image 3d dans l'ordre zéro de diffraction
RU127208U1 (ru) Микрооптическая система формирования визуальных изображений
RU190048U1 (ru) Микрооптическая система для формирования 2D изображений
RU149690U1 (ru) Микрооптическая система формирования визуальных изображений
WO2018169450A2 (fr) Système micro-optique pour former des images visuelles à effets de mouvement cinématiques
CN115230363B (zh) 光学防伪元件及其设计方法、防伪产品
EP3929001A1 (fr) Système micro-optique de génération d'images visuelles
EP3466712B1 (fr) Système micro-optique pour former des images visuelles à effets de mouvement cinématiques
RU140190U1 (ru) Микрооптическая система формирования изображений для визуального и инструментального контроля
EA030487B1 (ru) Микрооптическая система формирования изображений для инструментального и визуального контроля подлинности изделий
RU212103U1 (ru) Микрооптическое устройство формирования изображений для визуального контроля
RU152465U1 (ru) Микрооптическая система формирования изображений для визуального контроля подлинности изделий
EA031709B1 (ru) Микрооптическая система для формирования 2d изображений с кинематическими эффектами движения
RU140180U1 (ru) Микрооптическая система формирования изображений для визуального и инструментального контроля
WO2021177858A1 (fr) Procédé de synthèse d'éléments optiques de diffraction plans
RU196408U1 (ru) Микрооптическая система для формирования 2d изображений
Goncharsky et al. Synthesis of Nano-Optical Elements for Forming 3D Images at Zero Diffraction Order

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210930

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019015217

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1494115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1494115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019015217

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20221122

Year of fee payment: 4

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231207 AND 20231213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019015217

Country of ref document: DE

Owner name: GONCHARSKIY, ANTON ALEXANDROVICH, RU

Free format text: FORMER OWNER: HOLOGRAPHY SYSTEMS INTERNATIONAL LTD., NICOSIA, CY

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231004

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 5

Ref country code: DE

Payment date: 20230915

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525