EP3841563B1 - Elektronische schaltungsanordnung und verfahren zur kontinuierlichen überprüfung der elektrischen kontinuität eines leiterdrahtes, insbesondere eines drahtes, der eine ein digitales elektrisches signal aussendende vorrichtung und eine entfernte verarbeitungseinheit dieses signals verbindet - Google Patents

Elektronische schaltungsanordnung und verfahren zur kontinuierlichen überprüfung der elektrischen kontinuität eines leiterdrahtes, insbesondere eines drahtes, der eine ein digitales elektrisches signal aussendende vorrichtung und eine entfernte verarbeitungseinheit dieses signals verbindet Download PDF

Info

Publication number
EP3841563B1
EP3841563B1 EP19773546.7A EP19773546A EP3841563B1 EP 3841563 B1 EP3841563 B1 EP 3841563B1 EP 19773546 A EP19773546 A EP 19773546A EP 3841563 B1 EP3841563 B1 EP 3841563B1
Authority
EP
European Patent Office
Prior art keywords
signal
signaling
digital signal
composite
composite signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19773546.7A
Other languages
English (en)
French (fr)
Other versions
EP3841563A1 (de
EP3841563C0 (de
Inventor
Pasquale PELLICCIA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lp Electronics Srl
Original Assignee
Lp Electronics Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lp Electronics Srl filed Critical Lp Electronics Srl
Publication of EP3841563A1 publication Critical patent/EP3841563A1/de
Application granted granted Critical
Publication of EP3841563C0 publication Critical patent/EP3841563C0/de
Publication of EP3841563B1 publication Critical patent/EP3841563B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C25/00Arrangements for preventing or correcting errors; Monitoring arrangements
    • G08C25/02Arrangements for preventing or correcting errors; Monitoring arrangements by signalling back receiving station to transmitting station

Definitions

  • the present invention concerns electronic applications in general, and more specifically wired signal connections, for example, the connections between emitting devices of electrical state signals of a plant and a remote-control unit associated thereto.
  • the present invention concerns the persistent verification of the electrical continuity of a conductor wire, in particular a connection wire for transmitting a state signal of a plant.
  • the present invention concerns an electronic circuit arrangement and a method for the remote transmission via wire of a digital signal emitted by an emitting device of an electrical state signal, associated with a plant in the field, to a remote processing unit of said digital signal.
  • the logic control circuits of a plant are obtained by programming control circuit equipment (PLC) to which sensors, actuators, buttons, selectors and other signal-providing devices used in the field, i.e. in the plant, refer.
  • PLC programming control circuit equipment
  • these sensors are physically quite far from the control equipment, and the electrical connection cables may be quite long.
  • connection cables between the sensors and the control equipment, intervening promptly in the event of their degradation before the related sensor sends a relevant state signal to the control equipment, but needlessly if the connection cables are damaged or interrupted.
  • control portion including one or more electrical panels where the smart components that perform the programs reside and the application software is executed, and an actuation portion - separate from the control portion - residing in the field where the automated process or production for which a plant or a machine has been made takes place.
  • Such controllers all work with similar criteria; they have a variable number of inputs and a variable number of outputs to be arranged according to the desired application.
  • the inputs and outputs of a controller are normally used according to two distinct types of signals, digital or analog.
  • Digital inputs and outputs are defined when the information is simplified in only two conditions, for example called “high signal” and “low signal”: when, at a relative terminal, there is a predetermined reference voltage or a voltage higher than a first reference threshold, a “high signal” condition is defined; when this voltage is not present or is lower than a second reference threshold, a “low signal” condition is defined.
  • Analog inputs and outputs are defined when a variable number of intermediate values may be managed between a voltage of zero value and a maximum predetermined reference voltage.
  • a digital signal normally has a reference voltage of 24V DC, so if a voltage of 24V is present at a terminal, a "high signal” state is recognized, otherwise a "low signal” state is recognized.
  • the most common reference voltage is 10V DC, thus an analog input or analog output is sensitive to any intermediate value between 0V and 10V and may handle even hundreds of different states.
  • the present invention applies to digital inputs.
  • the sensors and actuators required to automatically perform a predetermined task are installed in the production area of an industrial process.
  • Process control sensors are necessary to give a control circuit the information concerning the conditions and states of all the variables that are indispensable to the governance of an application. For example, there exist:
  • the process control actuators are instead indispensable for carrying out the commands given by the control circuit in the various production stages. They comprise, for example:
  • the controller of a plant gathers control devices protected in one or more electrical panels sheltered and accessible in a separate place from the place where the production or automated process takes place. Sensors and actuators are instead installed in the place where the production or automated process takes place.
  • the distance between the electrical control panels from the environment where the sensors and actuators are installed may be as much as a few hundred meters and the electrical connections between the sensors and the controller are generally achieved by means of cables and terminal blocks, sometimes using intermediate electrical panels for connecting and collecting the signals.
  • an electrical fault, an anomaly or a problem may occur, e.g. due to a cable breakage or an accidental short circuit between signal cables, which results in the modification or interruption of the same signals, resulting in a general plant problem.
  • the controller or any other component associated thereto is able to generate an alarm and the malfunction becomes clear.
  • the problem is not serious, and the anomaly does not appear until it is necessary to use the specific information that should be transported by the defective cable. At that time, however, it is too late to remedy the problem and the information obtained from the controller is clearly false or misleading.
  • the operator in effect may verify that the machine has stopped due to the failure of the cable carrying the stop signal instead of voluntarily.
  • the opposite situation would be much more dangerous.
  • pressing the button results in signaling by means of a "high signal”
  • pressing the stop button would result in a signal that can no longer reach the controller and consequently the machine could not be stopped.
  • a PLC may activate an output for moving a conveyor belt that transfers a workpiece from one station to the next.
  • a sensor informs the PLC when the workpiece has reached its destination and the PLC consequently stops the conveyor belt. If the cable that transmits the signal from the sensor to the PLC is interrupted for any reason, the PLC will continue to move the belt with the result of transporting the workpiece in a wrong or dangerous position until there is a manual intervention by an operator or the intervention of a subsequent automated control by the PLC, which in any case will arrive too late. The workpiece will have already surpassed the programmed position.
  • WO 98/53382 discloses an apparatus and method for testing the integrity of an electrical connection to a device using an onboard controllable signal source that provides a test signal output via an electrical signal path without having to directly probe the signal path or the electrical connection.
  • a capacitive sensor positioned over the device and the connector detects the energy of the test signal coupled through the electrical connection and compares the detected amplitude of the test signal to a threshold value. The outcome of the comparison is indicative of the integrity of the electrical connection.
  • the object of the present invention is thus to provide a satisfactory solution to the problems described above, avoiding the drawbacks of the prior art.
  • the object of the present invention is to provide a solution that allows the verification of the electrical continuity of a conductor wire, and in particular a solution that allows the persistent verification of the electrical continuity of a conductor wire.
  • this object is achieved by an electronic circuit arrangement for the remote transmission via wire of a digital signal emitted by an emitting device of an electrical state signal, associated in the field with a plant, to a remote processing unit of said digital signal, having the characteristics mentioned in claim 1.
  • a further subject-matter of the invention is a method for the remote transmission via wire of a digital signal emitted by an emitting device of an electrical state signal associated in the field with a plant to a remote processing unit of said digital signal, having the characteristics referred to in claim 9.
  • the present invention is based on the principle of embedding in a digital state signal, transmitted by a sensor or similar signal-providing or emitting device to a controller or similar remote receiver processing unit of said signal, by its nature having a binary value the evolution of which is unpredictable over time, periodic information that does not disrupt said digital state signal, but at the same time allows a continuous monitoring of the vitality of the wired connection between said emitting device and said remote processing unit.
  • the main idea achieved by the invention is to continuously vary, in a constant and preferably rapid way, the state of the signal transmitted via the input wire to a control circuit (for example, a PLC of a control equipment) with a succession of high and low levels, which the control circuit will interpret as a correct connection of the sensor connected thereto, as a defect in the connection would have the effect of bringing the input always to a reference value, such as a low signal, due to the interruption of the cable, or a high signal because of the short circuit with a power supply voltage.
  • a control circuit for example, a PLC of a control equipment
  • an electronic circuit associated with a sensor is arranged to detect the signal emitted by such a sensor, representative of the state of the sensor, i.e. indicative of the state of the component of the plant monitored by said sensor, and to generate a continuously variable composite signal to signal the state of the sensor and the state of the connection. This is done by using the connection cables of the sensor to the control circuit, and the continuous variability of the composite signal allows the control circuit to correctly interpret the state of the sensor and the integrity of the electrical connection that concerns it.
  • the circuit arrangement covered by the invention is installed as close as possible to the sensors or transducers and is arranged to modify the signal emitted by the sensors or transducers and directed to the control circuit, providing additional information relative only to the state of the sensor or transducer.
  • the composite signal generated by the circuit arrangement according to the invention is a repetitive wave over time, i.e. a periodic waveform signal with a variable frequency or duty cycle, for example a square-wave signal that varies between a state identifiable as high (high signal) and a state identifiable as low (low signal), wherein the ratio between the duration of the high signal and the duration of the low signal is variable according to the state of the sensor.
  • the composite signal sent to the control circuit is preferably a square-wave signal with a variable frequency or a variable duty cycle.
  • the useful information on the state of the sensor is a high signal
  • the information on the state of the connection is a low signal.
  • the useful information on the state of the sensor is a low signal
  • the information on the state of the connection is a high signal.
  • the signal duration indicative of the information on the state of the connection is a fraction of the signal duration indicative of the information on the state of the sensor, or alternatively, the signal duration indicative of the information on the state of the connection is a fraction of the total signal duration including the signal duration indicative of the information on the state of the connection and the signal duration indicative of the information on the state of the sensor.
  • the control circuit has therein logic circuits capable of deciphering the composite signal, acquiring information on the state of the sensor, but also extracting information added on the state of the wired connection between the sensor and the control circuit.
  • the solution according to the invention resolves the drawbacks of the prior art by allowing a processing unit or control circuit to constantly check the state of the wired connection that puts it in communication with one or more sensors in the field, through a particular signal produced by such sensors.
  • Figure 1 shows a circuit arrangement for controlling a plant, comprising a section F in the field and a control remote electrical panel Q.
  • the section F in the field includes a plurality of sensors S1, S2, S3 associated in the field with a plant and joined, through respective wired connections S C1 , S C2 and S C3 , to a transmission unit on the bus B.
  • a bus signal wire emerges from the transmission unit on the bus B and runs from the section F in the field to the control remote cabinet Q, which comprises a circuit PLC or controller C.
  • the sensors S1, S2, S3 of the example embodiment described above are emitting devices of a digital electrical signal indicating the state of a part or a device of the plant.
  • state refers to a physical condition of a part or device of the plant, such as its position with respect to a reference position (this is the case of limit sensors associated with a movable component of the plant) or the configuration thereof (this is the case of automatic circuit breakers).
  • Figure 2 better describes the circuit arrangement covered by the invention at a sensor or signal provider S.
  • the sensor or signal provider S has three outputs, respectively a first normally open output NA, a second normally closed output NC and a common output C.
  • the sensor S in figure 2 is coupled to an electronic circuit for the generation of a digital composite signal for the transmission via wire to a remote processing unit.
  • the circuit PLC or controller C represents said remote processing unit with which a signal recognition electronic circuit is associated.
  • the electronic circuit for generating a composite digital signal, or signal composer circuit includes a detection circuit D, adapted to be connected to a signal output of the emitting device S and arranged to detect the value of said digital signal at predetermined detection time instants according to an assigned detection frequency, and a formation circuit G of said composite digital signal, adapted to generate a periodic digital signal, in the example a square-wave signal, at a predetermined signaling frequency, having a predetermined duty cycle in a signaling period, which is a function of the value of the detected digital signal.
  • a detection circuit D adapted to be connected to a signal output of the emitting device S and arranged to detect the value of said digital signal at predetermined detection time instants according to an assigned detection frequency
  • a formation circuit G of said composite digital signal adapted to generate a periodic digital signal, in the example a square-wave signal, at a predetermined signaling frequency, having a predetermined duty cycle in a signaling period, which is a function of the value of the detected digital signal.
  • the switching of the normally open output being critical for communicating an anomalous state to the PLC C through a wired connection Sc, the detection circuit D and the formation circuit G of said composite digital signal are represented downstream of the path between the normally open output NA and the common connection C.
  • the signal recognition electronic circuit at the circuit PLC or controller C is arranged to receive the composite digital signal and to verify the existence of at least one change in the logical state of said composite digital signal within a time interval corresponding to a signaling period.
  • the existence of at least one change in the logical state of the composite digital signal within a time interval corresponding to a signaling period is indicative of the integrity of the wired connection.
  • a composite digital signal is shown by way of example in Figures 3a and 3b . It comprises a signal portion representative of the logical state of the digital signal emitted by the emitting device and a signal portion for determining the electrical continuity of the transmission link.
  • Figure 3a shows a composite signal of which the signal portion representative of the logical state of the digital signal emitted by the emitting device is representative of a "high signal”.
  • Figure 3b shows a composite signal of which the portion of the signal representative of the logical state of the digital signal emitted by the emitting device is representative of a "low signal”.
  • the composite digital signal is - in the example shown - a square-wave signal having a predetermined duty cycle in a signaling period, which is a function of the value of the digital signal detected.
  • Each square wave period of the composite digital signal includes a first value corresponding to the logical state of said detected digital signal, which is maintained for at least a first time interval including a predetermined reading instant by the signal recognition circuit, and a second value complementary to said first value for a second interval of time.
  • the first diagram reproduces the trend of a state signal S S , normally low, emitted by the sensor S (or rather, by the normally open output NA of the sensor S), which, due to an anomalous event detected by the sensor S, switches at the time t c to the high level.
  • t D6 is indicated a periodic succession of time instants when the state signal S S is detected by the detection circuit D.
  • the second diagram reproduces the trend of the composite digital signal present on the wired connection Sc between said emitting device and said remote processing unit.
  • the composite digital signal is a square-wave signal in a signaling period corresponding to the period between each detection instant of the state signal Ss and is a function of the value of the digital signal detected at the instants t D1 , ..., t D6 .
  • the composite digital signal has a switching edge.
  • the signaling frequency corresponds to the detection frequency
  • the signaling frequency may also be a multiple or sub-multiple of the detection frequency.
  • each square-wave period of the composite digital signal includes a first sub-period, wherein the composite digital signal has a high level, and a second sub-period, wherein the composite signal has a low level.
  • the duration of the first sub-period is a function of the logical state of the detected digital signal, and specifically is greater at the time interval between the signaling time instant t Si and a subsequent reading time instant t Ri by the signal recognition circuit at the controller circuit C if the input digital signal has a high logical state, and less at the time interval between said signaling time instant t Si and a subsequent reading time instant t Ri by said signal recognition circuit if the input digital signal has a low logical state.
  • the third diagram of Figure 4a shows a recognition signal S PLC of the state signal Ss and of the integrity of the wired connection at the control circuit C of the remote unit.
  • t R5 is indicated successive recognition time instants of the state signal that may be triggered as a result of the leading edges at the time instants t S1 , ..., t S6 with a predetermined delay.
  • the signal recognition circuit detects a low signal logical state
  • the signal recognition circuit detects a high signal logical state. Consequently, the recognition circuit emits respectively a low logical signal S PLC until the instant t R4 , after which it emits a high logical signal.
  • Figure 4b shows a succession of signals wherein - due to an anomaly in the wired connection - the composite signal on the connection Sc is no longer transmitted after the signaling time instant t S3 (the composite signal generated but never received by the PLC is indicated as a dashed line).
  • the signal recognition circuit no longer detects a leading edge for a time greater than a predetermined time interval, for example at the signaling time interval Ts, it emits an anomaly signal S A (i.e. the signal S A switches from a low to a high level).
  • the remote processing unit is arranged to signal an anomaly if the associated signal recognition electronic circuit does not ascertain the existence of at least one change in the logical state of the composite digital signal within a time interval corresponding to a signaling period.
  • Figure 4c shows a series of diagrams in an embodiment wherein, for each signaling period, triads of successive state signal recognition time instants are indicated at t R1 , t R1 ', t R1 ",..., t R5 , t R5 ', t R5 ", independently reconstructed by the control circuit C synchronously with the signal composer circuit, i.e., the control circuit C knowing the duration of the square-wave period of the composite digital signal.
  • the corresponding recognition time instants t Ri and t Ri ' of each triad are triggered so as to fall at a first and second sub-period of the square wave of the composite signal, wherein said signal has a high and a low value respectively, or vice versa, independently of the value of the state signal S S
  • the recognition time instants t Ri " are triggered so as to fall at a first and a second sub-period of the square wave of the composite signal, wherein said signal has respectively a high value and a low value depending on the value of the state signal Ss.
  • the recognition circuit of the signal does not detect in a pair of corresponding recognition time instants t Ri and t Ri ' a high level and a low level, because, due to an anomaly on the wired connection, the composite signal on the connection Sc is no longer transmitted, it emits an anomaly signal S A .
  • this is represented at the recognition time instants t R5 and t R5 ', where, due to an anomaly, the signal on the connection Sc is always at the low value (the composite signal generated but never received by the PLC is indicated with a dashed line).
  • the electronic signal recognition circuit is arranged to detect the time interval between a leading edge and the subsequent trailing edge of the composite digital signal and the time interval between the trailing edge and the subsequent leading edge.
  • the remote processing unit is arranged to signal an anomaly if the associated signal recognition electronic circuit does not ascertain the existence of at least one change in the logical state of the composite digital signal within a time interval corresponding to a signaling period.
  • the control circuit checks, after a predetermined time, for example 20ms, the value assumed by the signal. This value represents the state of the sensor.
  • the PLC is able to verify that, on the input relative to the signaling by a certain sensor, the signal varies continuously, and this is indicative of the correct functioning of the connection cable. Conversely, if the signal remains constantly at the high or low value for a predetermined time, for example greater than a few verification cycles, for example 100ms, this condition is interpreted as an alarm condition due to a cable integrity problem.
  • this technique is easily achievable on any state signal emitting device and on any control device and allows one to check the reliability of the connection for any signal-providing device that is considered important to monitor.
  • the circuit for the generation of the composite signal according to the invention must be used in the vicinity of the signal-providing device to be monitored, and even better if it is integrated therein, so as to limit as much as possible the presence of electrical wires upstream of the connection cable that could also cause anomalies due to interruption of continuity or short circuit.
  • this circuit may be miniaturized enough to be inserted directly into a container body of a sensor such as a limit sensor, making it an integral part thereof.
  • the signal-providing or -emitting device could in effect transmit, by way of non-limiting example, with a sinusoidal waveform with variable frequency in the signaling period, a trapezoidal waveform with variable duty cycle, a sawtooth waveform of variable frequency, the latter shown by way of example in Figures 5a and 5b .
  • the sawtooth composite signal is indicated at Sc, the digital signal (square wave) at S R interpreted at the receiver of the signal composed by comparison of the signal Sc with a high signal threshold V H and a low signal threshold V L .
  • the information is acquired by the controller or the remote processing unit receiving the composite signal as a digital signal, and processed as if it were a square wave, freeing itself from the actual periodic waveform transmitted by the signal-providing or -emitting device.
  • This allows the waveform of the composite signal to be adapted to different applications that may require adaptations to respect the electromagnetic compatibility in electrically "noisy" environments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Programmable Controllers (AREA)
  • Selective Calling Equipment (AREA)

Claims (13)

  1. Elektronische Schaltungsanordnung zur drahtgebundenen Fernübertragung eines digitalen Signals, das von einer Sendevorrichtung eines elektrischen Zustandssignals ausgesendet wird, die einer Anlage vor Ort zugeordnet ist, zu einer von der Anlage entfernten Verarbeitungseinheit des digitalen Signals,
    dadurch gekennzeichnet, dass die Schaltungsanordnung Folgendes umfasst:
    an einem Übertragungsende einer drahtgebundenen Verbindung zwischen der Sendevorrichtung und der entfernten Verarbeitungseinheit eine elektronische Schaltung zur Erzeugung eines zusammengesetzten Signals für drahtgebundene Übertragung, wobei das zusammengesetzte Signal einen Abschnitt eines Signals, das den logischen Zustand des von der Sendevorrichtung gesendeten digitalen Signals darstellt, und einen Signalabschnitt zur Bestimmung der elektrischen Kontinuität der Übertragungsverbindung umfasst, und
    an einem Empfangsende der drahtgebundenen Verbindung eine elektronische Schaltung zur Signalerkennung, die der entfernten Verarbeitungseinheit zugeordnet sein kann,
    dadurch, dass die elektronische Schaltung zur Erzeugung eines zusammengesetzten Signals umfasst:
    - Erkennungsschaltungsmittel, die dafür geeignet sind, mit einem Signalausgang der Sendevorrichtung verbunden zu werden, und dafür eingerichtet sind, den Wert des digitalen Signals zu vorgegebenen Erkennungszeitpunkten in Übereinstimmung mit einer zugewiesenen Erkennungsfrequenz zu erkennen, und
    - Schaltungsmittel zur Bildung des zusammengesetzten Signals, die geeignet sind, ein Signal mit einer sich über die Zeit wiederholenden Wellenform zu erzeugen, das eine Signalisierungsfrequenz oder ein Tastverhältnis in einer vorbestimmten Signalisierungsperiode, die eine Funktion des Wertes des erkannten digitalen Signals ist, aufweist,
    und dadurch, dass die elektronische Schaltung zur Signalerkennung dafür eingerichtet ist, das zusammengesetzte Signal zu empfangen und das Vorhandensein von mindestens einer Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, zu verifizieren,
    wodurch das Vorhandensein von mindestens einer Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, die Integrität der drahtgebundenen Verbindung anzeigt.
  2. Elektronische Schaltungsanordnung nach Anspruch 1, wobei das zusammengesetzte Signal mit einer sich über die Zeit wiederholenden Wellenform ein digitales Rechtecksignal mit einer vorbestimmten Signalisierungsfrequenz ist.
  3. Elektronische Schaltungsanordnung nach Anspruch 2, wobei jede Rechteckwellenperiode des zusammengesetzten digitalen Signals einen ersten Wert, der dem logischen Zustand des erkannten digitalen Signals entspricht, der für mindestens ein erstes Zeitintervall aufrechterhalten wird, das einen vorbestimmten Lesezeitpunkt durch die Signalerkennungsschaltung umfasst, und einen zweiten, zu dem ersten Wert komplementären Wert für ein zweites Zeitintervall umfasst.
  4. Elektronische Schaltungsanordnung nach Anspruch 2 oder 3, wobei jede Periode der Rechteckwelle Folgendes umfasst:
    eine erste Teilperiode, in der das zusammengesetzte digitale Signal einen hohen Pegel hat, beginnend mit einem Signalisierungszeitpunkt, der auf einen jeweiligen Erkennungszeitpunkt des eingegebenen digitalen Signals folgt, dessen Dauer eine Funktion des logischen Zustands des erkannten digitalen Signals ist und insbesondere größer ist als das Zeitintervall zwischen dem Signalisierungszeitpunkt und einem nachfolgenden Lesezeitpunkt durch die Signalerkennungsschaltung, wenn das eingegebene digitale Signal einen logischen Zustand hoch hat, und kleiner als das Zeitintervall zwischen dem Signalisierungszeitpunkt und einem nachfolgenden Lesezeitpunkt durch die Signalerkennungsschaltung, wenn das eingegebene digitale Signal einen logischen Zustand niedrig hat, und
    eine zweite Teilperiode, in der das zusammengesetzte Signal einen niedrigen Pegel hat.
  5. Elektronische Schaltungsanordnung nach einem der vorhergehenden Ansprüche, wobei die elektronische Schaltung zur Signalerkennung dafür eingerichtet ist, das Zeitintervall zwischen einer Vorderflanke und der nachfolgenden Hinterflanke des zusammengesetzten Signals und das Zeitintervall zwischen der Hinterflanke und der nächsten Vorderflanke zu erkennen.
  6. Elektronische Schaltungsanordnung nach einem der vorhergehenden Ansprüche, wobei die Schaltungsmittel zur Bildung des zusammengesetzten Signals dafür eingerichtet sind, ein digitales Rechtecksignal mit einer Signalisierungsfrequenz, die der Erkennungsfrequenz entspricht, oder mit einer Signalisierungsfrequenz, die ein Vielfaches der Erkennungsfrequenz ist, oder mit einer Signalisierungsfrequenz, die einem Bruchteil der Erkennungsfrequenz entspricht, zu erzeugen.
  7. Elektronische Schaltungsanordnung nach einem der vorhergehenden Ansprüche, wobei die entfernte Verarbeitungseinheit dafür eingerichtet ist, eine Anomalie zu signalisieren, wenn die zugehörige elektronische Schaltung zur Signalerkennung das Vorhandensein von mindestens einer Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, nicht feststellt.
  8. Verfahren zur drahtgebundenen Fernübertragung eines digitalen Signals, das von einer Sendevorrichtung eines elektrisches Zustandssignals ausgesendet wird, die einer Anlage vor Ort zugeordnet ist, zu einer von der Anlage entfernten Verarbeitungseinheit des digitalen Signals.
    wobei das Verfahren dadurch gekennzeichnet ist, dass es umfasst,
    die Erzeugung eines zusammengesetzten Signals an einem Übertragungsende einer drahtgebundenen Verbindung zwischen der Sendevorrichtung und der entfernten Verarbeitungseinheit, wobei das zusammengesetzte Signal einen Signalabschnitt, der den logischen Zustand des von der Sendevorrichtung gesendeten digitalen Signals darstellt, und einen Signalabschnitt zur Bestimmung der elektrischen Kontinuität der Übertragungsverbindung umfasst;
    die Übertragung des zusammengesetzten Signals entlang des Leiterdrahtes; und
    die Erkennung des zusammengesetzten Signals an einem Empfangsende der drahtgebundenen Verbindung,
    dadurch, dass die Erzeugung des zusammengesetzten Signals Folgendes umfasst:
    - die Erkennung des Wertes des digitalen Signals am Ausgang der Sendevorrichtung zu vorbestimmten Erkennungszeitpunkten in Übereinstimmung mit einer zugewiesenen Erkennungsfrequenz, und
    - die Bildung des zusammengesetzten Signals als ein Signal mit einer sich über die Zeit wiederholenden Wellenform, das eine Signalisierungsfrequenz oder ein Tastverhältnis in einer vorbestimmten Signalisierungsperiode, die eine Funktion des Wertes des erkannten digitalen Signals ist, aufweist,
    und dadurch, dass die Erkennung des zusammengesetzten Signals umfasst, das zusammengesetzte Signal zu empfangen und das Vorhandensein von mindestens einer Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, zu verifizieren,
    wodurch das Vorhandensein von mindestens einer Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, die Integrität der drahtgebundenen Verbindung anzeigt.
  9. Verfahren nach Anspruch 8, bei dem das zusammengesetzte Signal als digitales Rechtecksignal gebildet wird, in dessen jeder Periode ein erster Wert, der dem logischen Zustand des erkannten digitalen Signals entspricht, für mindestens ein erstes Zeitintervall aufrechterhalten wird, das einen vorbestimmten Lesezeitpunkt für die Erkennung des zusammengesetzten Signals umfasst, und ein zweiter, zu dem ersten Wert komplementärer Wert für ein zweites Zeitintervall aufrechterhalten wird.
  10. Verfahren nach Anspruch 9, wobei das zusammengesetzte Signal wie folgt gebildet wird:
    auf einem hohen Pegel in einer ersten Teilperiode jeder Periode der Rechteckwelle, beginnend mit einem Signalisierungszeitpunkt, der auf einen jeweiligen Erkennungszeitpunkt des eingegebenen digitalen Signals folgt, dessen Dauer eine Funktion des logischen Zustands des erkannten digitalen Signals ist und insbesondere größer ist als das Zeitintervall zwischen dem Signalisierungszeitpunkt und einem nachfolgenden Lesezeitpunkt, wenn das eingegebene digitale Signal einen logischen Zustand hoch hat, und kleiner als das Zeitintervall zwischen dem Signalisierungszeitpunkt und einem nachfolgenden Lesezeitpunkt, wenn das eingegebene digitale Signal einen logischen Zustand niedrig hat,
    und auf einem niedrigen Pegel in einer zweiten Teilperiode jeder Periode der Rechteckwelle.
  11. Verfahren nach einem der Ansprüche 8 bis 10, wobei die Erkennung des zusammengesetzten Signals die Erkennung des Zeitintervalls zwischen einer Vorderflanke und der nachfolgenden Hinterflanke des zusammengesetzten Signals und des Zeitintervalls zwischen der Hinterflanke und der nächsten Vorderflanke umfasst.
  12. Verfahren nach einem der Ansprüche 8 bis 11, wobei das zusammengesetzte Signal als digitales Rechtecksignal mit einer Signalisierungsfrequenz, die der Erkennungsfrequenz entspricht, oder mit einer Signalisierungsfrequenz, die ein Vielfaches der Erkennungsfrequenz ist, oder mit einer Signalisierungsfrequenz, die einem Bruchteil der Erkennungsfrequenz entspricht, gebildet wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12, das umfasst, eine Anomalie zu signalisieren, wenn nicht mindestens eine Änderung des logischen Zustands des zusammengesetzten Signals innerhalb eines Zeitintervalls, das einer Signalisierungsperiode entspricht, hergestellt wird.
EP19773546.7A 2018-08-23 2019-08-23 Elektronische schaltungsanordnung und verfahren zur kontinuierlichen überprüfung der elektrischen kontinuität eines leiterdrahtes, insbesondere eines drahtes, der eine ein digitales elektrisches signal aussendende vorrichtung und eine entfernte verarbeitungseinheit dieses signals verbindet Active EP3841563B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102018000008166A IT201800008166A1 (it) 2018-08-23 2018-08-23 Disposizione circuitale elettronica e procedimento per la verifica persistente della continuità elettrica di un filo conduttore, in particolare un filo di collegamento tra un dispositivo emettitore di un segnale elettrico digitale ed una unità di elaborazione remota di detto segnale.
PCT/IB2019/057108 WO2020039395A1 (en) 2018-08-23 2019-08-23 Electronic circuit arrangement and method for continuously checking the electrical continuity of a conductor wire, in particular a wire connecting a device emitting a digital electrical signal and a remote processing unit of said signal

Publications (3)

Publication Number Publication Date
EP3841563A1 EP3841563A1 (de) 2021-06-30
EP3841563C0 EP3841563C0 (de) 2023-09-27
EP3841563B1 true EP3841563B1 (de) 2023-09-27

Family

ID=64316730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773546.7A Active EP3841563B1 (de) 2018-08-23 2019-08-23 Elektronische schaltungsanordnung und verfahren zur kontinuierlichen überprüfung der elektrischen kontinuität eines leiterdrahtes, insbesondere eines drahtes, der eine ein digitales elektrisches signal aussendende vorrichtung und eine entfernte verarbeitungseinheit dieses signals verbindet

Country Status (4)

Country Link
EP (1) EP3841563B1 (de)
IT (1) IT201800008166A1 (de)
MA (1) MA53441A (de)
WO (1) WO2020039395A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104198A (en) * 1997-05-20 2000-08-15 Zen Licensing Group Llp Testing the integrity of an electrical connection to a device using an onboard controllable signal source
US6130795A (en) * 1998-05-05 2000-10-10 International Business Machines Corporation Method and apparatus to sense and report connection integrity of a differential ECL transmission line having proper parallel termination
US7782017B2 (en) * 2006-02-28 2010-08-24 Linear Technology Corporation Apparatus and method for producing signal conveying circuit status information
EP2344897B1 (de) * 2008-11-14 2015-06-17 Teradyne, Inc. Verfahren und vorrichtung zur überprüfung elektrischer anschlüsse auf einer bestückten leiterplatte

Also Published As

Publication number Publication date
EP3841563A1 (de) 2021-06-30
MA53441A (fr) 2021-06-30
EP3841563C0 (de) 2023-09-27
IT201800008166A1 (it) 2020-02-23
WO2020039395A1 (en) 2020-02-27
WO2020039395A8 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP3918950B2 (ja) セーフティデバイス
JP5838168B2 (ja) 安全計装システムのソレノイドを検査するための方法、装置、および製品
KR101178186B1 (ko) Pc 기반 시스템에서 피엘씨 신호 패턴을 이용하여 다수의 설비로 구성된 자동화 라인의 비정상 상태 알람 방법.
US7933676B2 (en) Automation system with integrated safe and standard control functionality
CA2693033A1 (en) Fault diagnosis apparatus and fault diagnosis method of multi-channel analog input/output circuit
EP4254088A2 (de) System und verfahren zum testen von filtern in redundanten signalwegen
WO2009068879A1 (en) Electrical circuit with physical layer diagnostics system
EP3841563B1 (de) Elektronische schaltungsanordnung und verfahren zur kontinuierlichen überprüfung der elektrischen kontinuität eines leiterdrahtes, insbesondere eines drahtes, der eine ein digitales elektrisches signal aussendende vorrichtung und eine entfernte verarbeitungseinheit dieses signals verbindet
US10310484B2 (en) Device and method for failsafe monitoring of a moving machine part
CN104237671A (zh) 具有至少一个带有至少一个显示装置的现场设备的测量系统以及用于操作该系统的方法
CN107102597B (zh) 安全相关的控制设备和运行安全相关的控制设备的方法
CN109565250A (zh) 软启动器、运行方法和开关系统
CN102540910B (zh) 自动化机台的控制方法、装置及系统
US8805593B2 (en) Fault tolerant analog outputs for turbo compressors
CN110927623A (zh) 一种电力设备漏电检测系统
CN108061195B (zh) 一种vpsa工艺的高频快切阀门开关速度精准检测的方法
KR102222980B1 (ko) 안전 센서를 모니터링하기 위한 모니터링 장치 및 안전 센서를 모니터링하기 위한 방법
EP3196913B1 (de) Relaisschaltung und verfahren zur selbsttestdurchführung einer relaisschaltung
JP2007107318A (ja) ゲート制御機側操作盤診断装置
CN106153103B (zh) 用于确定测量参量的现场设备和用于传递的方法
US10333515B2 (en) Control device, automation system and method for operating a control device
CN108369879A (zh) 用于监视冗余互连触点的功能的方法和装置
US10804058B2 (en) Modular safety relay circuit for the safe control of at least one machine
CN111103842B (zh) 自参数化的外围组件
CN107834501B (zh) 用于监视电动跳闸单元中的处理单元的活动的设备和方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019038268

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G08C0019000000

Ipc: G08C0025020000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: G08C0019000000

Ipc: G08C0025020000

RIC1 Information provided on ipc code assigned before grant

Ipc: G08C 19/00 20060101ALI20221124BHEP

Ipc: G08C 25/02 20060101AFI20221124BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PELLICCIA, PASQUALE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019038268

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20230927

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927