EP3841270B1 - Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine - Google Patents

Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine Download PDF

Info

Publication number
EP3841270B1
EP3841270B1 EP19749338.0A EP19749338A EP3841270B1 EP 3841270 B1 EP3841270 B1 EP 3841270B1 EP 19749338 A EP19749338 A EP 19749338A EP 3841270 B1 EP3841270 B1 EP 3841270B1
Authority
EP
European Patent Office
Prior art keywords
storage container
location
subsea
injection fluid
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19749338.0A
Other languages
German (de)
English (en)
Other versions
EP3841270A1 (fr
Inventor
Julie LUND
Marius BJØRN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOV Process and Flow Technologies AS
Original Assignee
NOV Process and Flow Technologies AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOV Process and Flow Technologies AS filed Critical NOV Process and Flow Technologies AS
Publication of EP3841270A1 publication Critical patent/EP3841270A1/fr
Application granted granted Critical
Publication of EP3841270B1 publication Critical patent/EP3841270B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B27/00Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
    • E21B27/02Dump bailers, i.e. containers for depositing substances, e.g. cement or acids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0007Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling

Definitions

  • injection fluids such as mud or chemicals at or near the seabed.
  • injection fluids such as mud or chemicals at or near the seabed.
  • hoses, tubes or pipes bundled into "umbilicals" to supply the injection fluid from nearby surface facilities e.g. from a vessel to the respective points of injection.
  • Longer offsets, remote locations and deep-water subsea facilities contribute to make this umbilical solution undesirable, difficult and expensive.
  • Subsea installed storage containers offer great potential benefits both for continuous and intermittent injection.
  • US2014/00332269 discloses a method for delivery of drilling fluid to a seafloor drilling assembly.
  • the method comprising the steps of filling at least one container located adjacent the surface with drilling fluid; lowering the container through a body of water to adjacent a seafloor drilling assembly; connecting the container to the seafloor drilling assembly to deliver drilling fluid to the seafloor drilling assembly.
  • the invention at least partially alleviates at least one of the above-discussed problems.
  • the invention mitigates the problems related to large dead volumes in the hose.
  • the invention provides a method of supplying an injection fluid to a subsea facility, where the filling and/or refilling of the storage container(s) is relatively simple with low risk of damaging equipment even where the storage container is relatively large.
  • the invention relates to subsea filing and/or refilling of a storage container with injection fluid. Due to the subsea use of the storage container it is designed as a closed container to which the admission to the interior parts is operated by valves and the like.
  • bed is generally used to denote the subsea floor.
  • the splash is a zone between the sea surface to a distance below the sea surface where waves, tidal movements and other movements in the sea causes a relatively uneasily environment.
  • the splash zone is defined in the British Standard and European Norm BS EN 61400-3 2009, terms and definitions 3.43.
  • the first subsea location is a subsea location below the splash zone, such as at least about 2.5 m below the splash zone, such as at least about 5 m below the splash zone, such as at least about 20 m below the splash zone, such as at least about 50 m below the splash zone.
  • the first subsea location is a subsea location from about 10 m to about 100 m below the water surface, such as from about 20 m to about 75 m below the water surface.
  • the distance between the first subsea location and the second subsea location may vary significant.
  • the distance between first subsea location and the second subsea location in substantially vertical direction may in fact vary in a rather large span: in an embodiment the second subsea location is at least about 100 m below the first subsea location, such as at least about 500 m below the first subsea location, such as at least about 1000 m below the first subsea location, such as at least about 2000 m below the first subsea location, such as at least about 2500 m below the first subsea location.
  • the storage container is adapted for the injection fluid, which is stored in the container.
  • the storage container comprises an inlet and an outlet for injection fluid allowing the container to receive and deliver injection fluid.
  • the inlet and outlet are controlled by valves and may be combined as one unit, i.e. the same pipe and coupling serves as inlet and outlet for the injection fluid.
  • the container is a flexible container where the storage container in the second subsea location is encased in a mechanical protection structure, wherein the storage container in the first subsea location is not enclosed in the mechanical protection structure.
  • the storage container can be filled with injection fluid in the first subsea location and then moved to the second subsea location where it can be stored in the mechanical protective structure.
  • the mechanical protection structure can e.g. be a frame, such as a metal frame or it can be a more box-like structure. Both a frame and a box are capable of serving as a mechanical protective structure.
  • the method according to the invention includes moving the flexible storage container from the first location to the second location, comprising encasing the flexible storage container in the mechanical protection structure at the second subsea location.
  • the mechanical protection structure should be able to protect the storage container from any impact, which may appear in the second subsea location, and in an embodiment, the mechanical protection structure is a rigid mechanical protection structure, such as a rigid external container.
  • the rigid external container can e.g. be made from metal or polymer material.
  • the method also provides an embodiment where the storage container, encased in the mechanical protection structure, in the second position is arranged directly on the seabed.
  • the method also includes an embodiment where the storage container is arranged at a foundation structure, such as a foundation and rack structure, preferably the foundation and rack structure is adapted for holding two or more storage containers.
  • the foundation and rack structure are preferably made from metal, such as stainless steel.
  • the foundation and rack structure may comprise one or more locking mechanisms, which can lock and secure the storage containers to the foundation and rack structure.
  • the entire rack structure comprising several storage containers is adapted to be moved between the first subsea location and the second subsea location and visa versa.
  • the entire rack structure comprising several storage containers is adapted to be moved between the first subsea location and the second subsea location and visa versa.
  • the storage container may have desired size and storage capacity, such as a storage capacity from 1 or 2 m 3 , such as about 35 m 3 or about 40 m 3 , and up to several cubic meters.
  • the method according to the invention is also suitable for filling containers with large capacity and in an embodiment of the method the storage container has a storage capacity of at least about 500 m 3 , such as at least about 1000 m 3 , such as at least about 2000 m 3 , such as at least about 4000 m 3 , such as at least about 6000 m 3 , such as at least about 8000 m 3 .
  • the storage container has a capacity to contain injection fluid for about half a year's consumption of injection fluid.
  • the storage container can be replenished every six months.
  • the storage container When the storage container is in the first subsea location, the storage container can be held in the location by lines connected to a surface facility, such as a platform or ship. One or more cranes on the surface facility may serve to keep the storage container in the first subsea location.
  • a tube or hose for filling injection fluid into the storage container can be led from the surface facility to the storage container where it can be coupled to the inlet of the container e.g. by a use of a ROV (remote operated vehicle).
  • ROV remote operated vehicle
  • the surface facility comprises a floating unit such as a platform or a vessel.
  • the surface facility may be a floating production storage and offloading (FPSO) or a floating production vessel.
  • FPSO floating production storage and offloading
  • the method comprises launching the storage container from the surface facility prior to arranging the storage container at the first subsea location, wherein the storage container is preferably substantially empty at the launching, preferably the storage container is passing through a splash zone to reach the first location, the storage container preferably being substantially empty during the passage through the splash zone.
  • the storage container is transported to the place of operation by a vessel or ship. This vessel or ship may also be the surface facility from which the storage container is launched.
  • the storage container can be transferred from the vessel or ship to e.g. a production platform or FPSO, which then serves as the surface facility.
  • the method comprises coupling an injection pipe to the storage container for supplying the injection fluid from the storage container to the subsea facility after having located the storage container at the second location.
  • This operation may also be accomplished by using a ROV.
  • this coupling can also be performed as a fully automated process controlled from e.g. the surface facility.
  • the coupling and decoupling of pipes can also be achieved by mounting coupling devices (such as inlets and outlets) on the underside, i.e. the side facing the seabed, of the storage container.
  • coupling devices such as inlets and outlets
  • Such a solution may enable automated coupling of the reservoir to the injection pipes in the second seabed location.
  • the injection fluid may be any fluid suitable for use in extracting carbonouos fluid, such as oil and gas from a well and for drilling in a well and an embodiment the injection fluid is selected from inhibitors, dispensing agents, descalers, biocides, demulsifiers, buoyant and non-buoyant chemicals, MEG, methanol or any combinations comprising one or more of these.
  • the installation of the rack 1 comprises two vessels 4, 5 floating on the sea surface 6. Each vessel is connected to the rack 1 via lines. By means of the lines shown as 7a and 7b (there may several more lines connecting the rack and the vessels), the rack 1 is lowered from the sea surface 6 to the seabed 3. At the seabed 3 the storage containers 2 are coupled with injection pipes which can deliver injection fluid to the subsea facility.
  • the opposite procedure may take place in a similar manner.
  • the storage containers are decoupled from the injection pipes, e.g. by means of a ROV, and the rack 1 is connected to lines illustrated by 7a and 7b, which connect the rack 1 with the vessels 4, 5.
  • the rack 1 and the vessels are safely connected the rack 1 can be lifted upwards towards the sea surface 6 from the seabed 3 by means of the lines 7a, 7b co-acting with a crane or other lifting means.
  • the rack 1 When the rack 1 has reached the sea surface 6 it can loaded aboard one of the vessels 4, 5 for replenishing the storage containers 2 with injection fluid.
  • the rack may be replaced with another rack with filled storage containers and the rack retrieved from the seabed can be brought ashore for replenishment of the storage containers.
  • FIG. 3 shows the rack 11 in more details.
  • the rack comprise a frame 21 which divide the rack 11 into five compartments 22a, 22b, 22c, 22d, and 22e.
  • the first compartment 22a is mounted four storage containers 12a.
  • the three following compartments 22b, 22c and 22d houses a storage container 12b each.
  • the fifth compartment 22e houses two storage containers 12a.
  • the storage containers 12a and 12b have different capacities and contains different volumes of injection fluid.
  • the storage containers 12a and 12b are selected depending on the consumption of the specific injection fluid.
  • the storage containers 12a are selected for injection fluids, which are consumed in less amounts and the storage containers 12b are selected for injection fluid, which are consumed in larger amounts.
  • the buoyant injection fluid 31 is stored inside the flexible container 41 and in fluid communication with the tube 39 and the perforated tube 40.
  • the coupling device 38 can be coupled to an injection pipe or a refilling hose respectively. When the coupling device is coupled to a refilling hose injection fluid can enter the flexible container 41 via the tube 39 and fill the flexible container 41 so it substantially fill out the interior of the rigid shell.
  • the buoyant injection fluid 31 When the buoyant injection fluid 31 is to be retrieved for use for e.g. injection into a well an injection pipe is coupled to the coupling device 38 and the injection fluid can be retrieved via the tube 39.
  • the flexible container 41 As the flexible container 41 is emptied it will be compressed by sea water entering via the opening 36. Due to the fact, that the injection fluid is buoyant it will seek towards the top part 35 of the storage container 12 and the flexible container 41 will be compressed around the pipe 39 towards the top part 35.
  • the perforated tube 40 surrounding the tube 39 will ensure that there always is fluid communication between the injection fluid 31 in the flexible container 41 and the lower inlet 42 of the tube 39.
  • the external pressure serves to facilitate emptying the flexible container 41.
  • FIG. 5 illustrates the situation when a storage container 12 is storing non-buoyant injection fluid 32.
  • the storage container 12 also comprises an outer rigid shell comprising sidewalls 33, a bottom part 34 and a top part 35.
  • the bottom part 34 comprises an opening 36, which allows the interior of the rigid shell to be in fluid communication with the environment, i.e. the seawater.
  • the top part 35 comprises and opening 37 in which a coupling device 38 is mounted.
  • a tube 39 is mounted to the coupling device and extends into the storage container 12 towards the bottom part 34.
  • a perforated tube 40 is mounted to the coupling device 38 and extends down in the storage container 12 towards the bottom part 34 outside the tube 39.
  • a flexible container 41 is also attached to the coupling device 38 and enclosing the tube 39 and the perforated tube 40.
  • the flexible container 41 may or may not be attached to the bottom part 34 of the rigid shell.
  • the non-buoyant injection fluid 32 is stored inside the flexible container 41 and in fluid communication with the tube 39 and the perforated tube 40.
  • the coupling device 38 can be coupled to an injection pipe or a refilling hose respectively. When the coupling device is coupled to a refilling hose non-buoyant injection fluid can enter the flexible container 41 via the tube 39 and fill the flexible container 41 so it substantially fill out the interior of the rigid shell.
  • the storage container 12 is brought in the first subsea position when the storage container needs to be replenished.
  • the injection fluid is retrieved from the storage container 12 for use in e.g. a well the storage container is in the second subsea position.
  • the storage containers for storing buoyant and non-buoyant injection fluid shown in figure 4 and 5 are only examples and other configurations may be used.
  • the tube 39 need not be mounted in the central part of the container.
  • the tube may be mounted closer to the sidewalls. In other embodiments the tube may be mounted in the sidewall or in the bottom part of the storage container.
  • the perforated tube 40 may be omitted.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Earth Drilling (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Claims (16)

  1. Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine, le procédé comprenant
    • la disposition d'un conteneur de stockage flexible à un premier emplacement sous-marin,
    • l'alimentation du conteneur de stockage en fluide d'injection depuis une installation de surface marine,
    • le déplacement du conteneur de stockage vers un second emplacement sous-marin comprenant l'enfermement dudit conteneur de stockage flexible dans une structure de protection mécanique audit second emplacement sous-marin et
    • la fourniture du fluide d'injection depuis le conteneur de stockage audit second emplacement sous-marin à l'installation sous-marine,
    dans lequel le second emplacement sous-marin est plus proche du fond marin que le premier emplacement sous-marin, de préférence le conteneur de stockage au second emplacement sous-marin est supporté par le fond marin.
  2. Procédé selon la revendication 1, dans lequel le premier emplacement sous-marin est un emplacement sous-marin au-dessous de la zone d'action des vagues, tel qu'au moins environ 2,5 m en dessous de la zone d'action des vagues, tel qu'au moins environ 5 m en dessous de la zone d'action des vagues, tel qu'au moins environ 20 m en dessous de la zone d'action des vagues, tel qu'au moins environ 50 m en dessous de la zone d'action des vagues, dans lequel la zone d'action des vagues est telle que définie dans la norme britannique et la norme européenne BS EN 61400-3 2009, termes et définitions 3.43.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le premier emplacement sous-marin est un emplacement sous-marin d'environ 10 m à environ 100 m sous la surface de l'eau, tel que d'environ 20 m à environ 75 m sous la surface de l'eau.
    et dans lequel le second emplacement sous-marin est au moins environ 100 m en dessous du premier emplacement sous-marin, tel qu'au moins environ 500 m en dessous du premier emplacement sous-marin, tel qu'au moins environ 1 000 m en dessous du premier emplacement sous-marin, tel qu'au moins environ 2 000 m en dessous du premier emplacement sous-marin, tel qu'au moins environ 2 500 m en dessous du premier emplacement sous-marin.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la structure de protection mécanique est une structure de protection mécanique rigide, telle qu'un conteneur externe rigide.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le conteneur de stockage enfermé dans la structure de protection mécanique dans la seconde position est disposé directement au niveau du fond marin.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le conteneur de stockage est disposé au niveau d'une structure de fondation, telle qu'une structure de fondation et de râteliers, de préférence la structure de fondation et de râteliers est adaptée pour contenir deux conteneurs de stockage ou plus.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le conteneur de stockage a une capacité de stockage d'au moins environ 500 m3, telle qu'au moins environ 1 000 m3, telle qu'au moins environ 2 000 m3, telle qu'au moins environ 4 000 m3, telle qu'au moins environ 6 000 m3, telle qu'au moins environ 8 000 m3.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le conteneur de stockage est maintenu sensiblement au premier emplacement pendant l'alimentation du conteneur de stockage en fluide d'injection depuis l'installation de surface marine, le conteneur de stockage est de préférence maintenu au premier emplacement en utilisant une ou plusieurs lignes, telles qu'une ou plusieurs lignes de levage ; un ou plusieurs agencements de flottaison et/ou un ou plusieurs agencements de ballast.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'installation sous-marine comprend une installation sous-marine sélectionnée parmi une installation de forage ou une installation de production, de préférence le fluide d'injection est fourni depuis le conteneur de stockage audit second emplacement sous-marin à un point d'injection de l'installation sous-marine, tel qu'un point d'injection comprenant un fond de trou avec point d'injection, un collecteur avec point d'injection, une conduite d'écoulement avec point d'injection ou un arbre de Noël avec point d'injection, le point d'injection étant de préférence proche du fond marin, tel qu'à partir du fond marin jusqu'à environ 50 m au-dessus ou au-dessous du fond marin dans le sens vertical.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'installation de surface marine comprend une unité flottante, telle qu'une plateforme ou un navire.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé comprend le lancement du conteneur de stockage depuis l'installation de surface avant de disposer le conteneur de stockage au premier emplacement sous-marin, dans lequel le conteneur de stockage est de préférence sensiblement vide au lancement, de préférence le conteneur de stockage traverse une zone d'action des vagues pour atteindre le premier emplacement, le conteneur de stockage étant de préférence sensiblement vide lors du passage à travers la zone d'action des vagues.
  12. Procédé selon l'une quelconque des revendications précédentes 1 à 10, dans lequel le procédé comprend le levage du conteneur de stockage depuis son second emplacement avant de disposer le conteneur de stockage au premier emplacement sous-marin, dans lequel le conteneur de stockage est de préférence sensiblement vide avant de le soulever du second emplacement et dans lequel la fourniture du fluide d'injection au conteneur de stockage au premier emplacement est un réapprovisionnement en fluide d'injection, dans lequel le procédé comprend l'étape supplémentaire consistant à laver et/ou à rincer le conteneur de stockage avant le réapprovisionnement en fluide d'injection.
  13. Procédé selon la revendication 12, dans lequel le procédé comprend le découplage d'un tuyau d'injection du conteneur de stockage avant de soulever le conteneur de stockage du second emplacement.
  14. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé comprend le couplage d'un tuyau d'injection au conteneur de stockage pour fournir le fluide d'injection depuis le conteneur de stockage à l'installation sous-marine après avoir positionné le conteneur de stockage au second emplacement.
  15. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé comprend le couplage d'un tuyau d'alimentation au conteneur de stockage pour alimenter le conteneur de stockage en fluide d'injection depuis l'installation de surface et le découplage du tuyau d'alimentation du conteneur de stockage avant de déplacer le conteneur de stockage du premier emplacement au second emplacement, dans lequel le couplage du tuyau d'alimentation au conteneur de stockage est de préférence effectué au premier emplacement.
  16. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fluide d'injection est choisi parmi les inhibiteurs, les agents de distribution, les détartrants, les biocides, les désémulsifiants, les produits chimiques flottants et non flottants, le MEG, le méthanol ou toute combinaison comprenant l'un ou plusieurs d'entre eux.
EP19749338.0A 2018-08-20 2019-08-02 Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine Active EP3841270B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201870534 2018-08-20
PCT/EP2019/070864 WO2020038703A1 (fr) 2018-08-20 2019-08-02 Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine

Publications (2)

Publication Number Publication Date
EP3841270A1 EP3841270A1 (fr) 2021-06-30
EP3841270B1 true EP3841270B1 (fr) 2023-12-13

Family

ID=67539514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19749338.0A Active EP3841270B1 (fr) 2018-08-20 2019-08-02 Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine

Country Status (6)

Country Link
US (1) US20210310324A1 (fr)
EP (1) EP3841270B1 (fr)
AU (1) AU2019324447A1 (fr)
BR (1) BR112021003148A8 (fr)
CA (1) CA3107074A1 (fr)
WO (1) WO2020038703A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117396649A (zh) * 2021-03-12 2024-01-12 玛凯海洋工程公司 海底锚具安装系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852917B1 (fr) * 2003-03-26 2005-06-24 Saipem Sa Receptacle a compartiments etanches et procede de mise en place pour recuperer des effluents polluants d'une epave
JP2015500409A (ja) * 2011-12-19 2015-01-05 ノーチラス・ミネラルズ・パシフイツク・プロプライエタリー・リミテツド 送出方法及び送出システム
US9156609B2 (en) 2013-04-06 2015-10-13 Safe Marine Transfer, LLC Large subsea package deployment methods and devices
ES2822949T3 (es) * 2015-05-05 2021-05-05 Safe Marine Transfer Llc Sistema de almacenamiento y de suministro submarinos, procedimiento para proporcionar productos químicos a una instalación submarina, procedimiento para reacondicionar un tanque de almacenamiento y procedimiento para rellenar un sistema de almacenamiento y de suministro submarinos
US9470365B1 (en) * 2015-07-13 2016-10-18 Chevron U.S.A. Inc. Apparatus, methods, and systems for storing and managing liquids in an offshore environment

Also Published As

Publication number Publication date
BR112021003148A8 (pt) 2022-11-08
BR112021003148A2 (pt) 2021-05-11
EP3841270A1 (fr) 2021-06-30
AU2019324447A1 (en) 2021-02-18
CA3107074A1 (fr) 2020-02-27
US20210310324A1 (en) 2021-10-07
WO2020038703A1 (fr) 2020-02-27

Similar Documents

Publication Publication Date Title
EP2981485B1 (fr) Stockage de produits chimiques sous-marin de grand volume et système de mesure
RU2341433C2 (ru) Хранилище, расположенное на морском дне
US5899637A (en) Offshore production and storage facility and method of installing the same
US6230809B1 (en) Method and apparatus for producing and shipping hydrocarbons offshore
EP2981455B1 (fr) Procédés et dispositifs de déploiement de grands ensembles sous-marins
US6817809B2 (en) Seabed oil storage and tanker offtake system
GB2499804A (en) Collapsible fluid receptacle weighted to overcome buoyancy of contents
EP0170698B1 (fr) Installation de stockage et de transfert de petrole
EP3841270B1 (fr) Procédé d'approvisionnement de fluide d'injection vers une installation sous-marine
US3408971A (en) Submerged oil storage vessel and oil loading facility for offshore wells
WO2021235941A1 (fr) Système de chargement de navette
US3568737A (en) Offshore liquid storage facility
KR102659721B1 (ko) 문풀을 이용한 해수활용시스템
CA1238198A (fr) Structure marine pour production en eau profonde
KR20170024958A (ko) 해저 유체 저장 장치
KR102246842B1 (ko) 해저 저장 유닛, 시스템 및 방법
WO2014032107A2 (fr) Réservoir
KR200492481Y1 (ko) 저장탱크 및 이를 구비하는 선박
NO347726B1 (en) Offshore petroleum production
GB2296686A (en) Storage of production fluids from undersea oil deposits or reservoirs
GB2529311A (en) Submersible fluid storage
KR20010033309A (ko) 해양 생산저장시설 및 그 설치방법
GB2356183A (en) Method and apparatus for producing and storing hydrocarbons offshore
KR20160050834A (ko) 잠수제어식 원유생산 플랫폼 및 이를 이용한 한계유전의 원유생산 운용방법
AU5732098A (en) Method and apparatus for producing and shipping hydrocarbons offshore

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOV PROCESS & FLOW TECHNOLOGIES AS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019043242

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1640577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213