EP3841147B1 - Aromatic polyethers containing a biosourced furan diol - Google Patents

Aromatic polyethers containing a biosourced furan diol Download PDF

Info

Publication number
EP3841147B1
EP3841147B1 EP19780287.9A EP19780287A EP3841147B1 EP 3841147 B1 EP3841147 B1 EP 3841147B1 EP 19780287 A EP19780287 A EP 19780287A EP 3841147 B1 EP3841147 B1 EP 3841147B1
Authority
EP
European Patent Office
Prior art keywords
polymer
fluorine
integer
formula
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19780287.9A
Other languages
German (de)
French (fr)
Other versions
EP3841147A1 (en
Inventor
Nicolas JACQUEL
Sarah Degras
Régis Mercier
Thierry Delaunay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Original Assignee
Roquette Freres SA
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA, Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL filed Critical Roquette Freres SA
Publication of EP3841147A1 publication Critical patent/EP3841147A1/en
Application granted granted Critical
Publication of EP3841147B1 publication Critical patent/EP3841147B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers

Definitions

  • the present invention relates to an aromatic polyether type polymer based on a biosourced furan diol, a process for preparing said polymer, as well as the use of said polymer for the manufacture of membranes for manufactured parts and coatings.
  • Aromatic polyethers such as polyethersulfones, polyetherketones and polyetherbenzonitriles, are recognized as high-performance polymers due to their excellent thermal stabilities and mechanical properties.
  • the main application of these polymers is liquid and gas phase separation membranes.
  • the polyethersulfones available on the market are notably synthesized from aromatic diols such as bisphenol A or 4,4'-dihydroxyphenyl with dichlorodiphenyl sulfone. Industrialists have thus been interested in partially replacing aromatic diols with a diol coming from biomass such as isosorbide.
  • Kricheldorf et al. first described the preparation and characterization of isosorbide-containing polyethersulfones from silylated isosorbide and difluorodiphenylsulfone ( H. Kricheldorf et al., J. Polymer Sci., Part A: Polym. Chem., 1995, 33, 2667-2671 ). Since silylated isosorbide is expensive, Kricheldorf and Chatti have modified their polymerization conditions and described the synthesis of isosorbide-containing polyethersulfones from non-functionalized isosorbide and difluorodiphenylsulfone ( S. Chatti et al., High Perform. Polym., 2009, 21, 105-118 ).
  • Belgacem et al. then described the synthesis of polyethersulfones containing a 1,4:3,6-dianhydrohexitol and bisphenol A, from difluorodiphenylsulfone, a 1,4:3,6-dianhydrohexitol and bisphenol A as monomers react together in the same reaction medium ( Belgacem et al., Des. Monomers Polym., 2016, 19, 248-255 ). Under these conditions, the polymer obtained is a random copolymer in which the sequence of units containing 1,4:3,6-dianhydrohexitol and bisphenol A is random.
  • Kanetaka et al. described the synthesis of polyether ketones from a 2,5-furanedicarboxylic acid derivative ( Kanetaka et al., J. Pol. Sci., 2016, 54, 3094-3101 ).
  • polymers of this type having characteristics suitable for use in the manufacture of membranes. These characteristics are, for example, high number average molecular weights (Mn) which are necessary to obtain film-forming properties.
  • Mn number average molecular weights
  • These polymers can also advantageously have significant hydrophilicity: in the case of a membrane, it will humidify quickly, which leads to rapid filtration with high flow rates and yields.
  • these polymers can also have permeability properties, and in particular selectivity with respect to certain gases and/or liquids, which can prove particularly interesting, in membrane filtration processes.
  • the invention also relates to a process for preparing the aromatic polyether type polymer comprising the repeat unit(s) of formula I, comprising a reaction step between tetrahydrofuran dimethanol, optionally in the presence of a co-diol, with a compound dihalogenated aromatic in the presence of a base in an organic solvent.
  • Another object of the present invention relates to the use of the polymer according to the invention for the manufacture of membranes.
  • the polymer of formula I can be in the form of a random copolymer or in the form of a homopolymer.
  • the polymer according to the invention is in the form of a random copolymer.
  • random copolymer is meant for the purposes of the present invention a polymer resulting from the copolymerization of at least two types of monomer, chemically different, called co-monomers.
  • a statistical copolymer is therefore formed of at least two repeating units linked together randomly.
  • the polymer according to the invention is in the form of a homopolymer.
  • the term “homopolymer” means a polymer derived from a single species of monomer. All the repeating units of a homopolymer are therefore of the same chemical nature.
  • the average molecular mass of the polymer of formula (I) is between 1,000 and 150,000 g/mol.
  • a particular class of polymers which are the subject of this Application are the polymers of formula (I) as defined above, the average molecular mass of which is between 40,000 and 150,000 g/mol, preferably between 70,000 and 150,000. g/mol.
  • the pattern Ar is as follows:
  • pattern D is as follows:
  • the invention also relates to a process for preparing the aromatic polyether type polymer comprising the repeating unit(s) of formula ( I ).
  • the process for preparing the polymer comprising the repeating unit(s) of formula ( I ) comprises a reaction step between tetrahydrofuran dimethanol, optionally in the presence of a co-diol HO- D -OH, with a dihalogenated aromatic compound - Ar -X in the presence of a base in an organic solvent.
  • the co-diols and dihalogenated aromatic compounds which can be used are those described above.
  • the process of the invention makes it possible to control the molar ratio between the tetrahydrofuran dimethanol and the dihalogenated aromatic compound so as to obtain polymers having high hydrophilicity and/or good permeability properties.
  • the average molecular mass of the polymer of formula (I) is between 1,000 and 150,000 g/mol.
  • a particular class of polymers which are the subject of this Application are the polymers of formula (I) mentioned above, the average molecular mass of which is between 40,000 and 150,000 g/mol, preferably between 70,000 and 150,000 g/mol.
  • Variants of the process according to the invention are the variants which lead to the polymers of formulas ( II ), ( III ), ( IV ) and ( V ), by making the choices relating to the compounds X- Ar -X and HO- D -OH, at the ratio m/n and at the integer p, which have been explained previously, with regard to said polymers of formulas ( II ), ( III ), ( IV ) and ( V ). These choices therefore apply mutatis mutandis to the different variants of the process according to the invention.
  • reaction between tetrahydrofuran dimethanol, and optionally a co-diol, with the dihalogenated aromatic compound is carried out in the presence of a base in an organic solvent and makes it possible to form the polymer of the invention.
  • the base is advantageously chosen from alkali metal salts.
  • the base is chosen from potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), cesium carbonate (CsCO 3 ), lithium carbonate (LiCO 3 ), methanolate potassium, sodium methanolate, potassium ethanolate, potassium tert- butoxide, potassium tert -pentylate, potassium bis(trimethyl)silanolate, potassium bis(trimethylsilyl)amide, potassium hydroxide potassium, sodium hydroxide, and sodium hydride.
  • the base is chosen from potassium carbonate and sodium carbonate. Even more preferably, the base is potassium carbonate and sodium carbonate.
  • the proportion of base is between 1 and 3 mole equivalents relative to the total quantity of tetrahydrofuran dimethanol and co-diol.
  • the proportion of base is approximately 2 mole equivalents relative to the total quantity of tetrahydrofuran dimethanol and co-diol.
  • the organic solvent is advantageously chosen from polar aprotic solvents.
  • aprotic polar solvent is meant for the purposes of the present invention a solvent having a dipole moment without an acidic hydrogen atom, that is to say linked to a heteroatom.
  • the solvent is chosen from polar aprotic solvents comprising a sulfur atom or a nitrogen atom.
  • the solvent is chosen from dimethylsulfoxide, diethylsulfoxide, sulfolane, dimethylsulfone, diethylsulfone, diphenylsulfone, diisopropylsulfone, tetrahydrothiophene-1-monoxide, dimethylacetamide, dimethylformamide, N-methyl-2- pyrrolidone, and N-cyclohexyl-2-pyrrolidone, alone or in mixture. More preferably, the solvent is chosen from N-methyl-2-pyrrolidone and dimethyl sulfoxide, alone or as a mixture. Even more preferably, the solvent is dimethyl sulfoxide or N-methyl-2-pyrrolidone.
  • a co-solvent may be added to the organic solvent.
  • the co-solvent is advantageously chosen from toluene, benzene, chlorobenzene, tetrahydrofuran, alone or as a mixture.
  • the co-solvent is toluene.
  • the polymer is formed by reaction between tetrahydrofuran dimethanol, optionally a co-diol, and the dihalogenated aromatic compound as monomers.
  • the total proportion of monomers that is to say the sum of the quantity of tetrahydrofuran dimethanol, co-diol and dihalogenated aromatic compound, is between 10% and 50%, preferably between 20% and 40%. % by mass relative to the sum of the mass of the solvent and the mass of the monomers. More preferably, the proportion of monomers is approximately 30% by weight relative to the sum of the mass of the solvent and the mass of the monomers.
  • the reaction medium comprising tetrahydrofuran dimethanol, optionally a co-diol and the dihalogenated aromatic compound to form the polymer
  • the reaction medium comprising tetrahydrofuran dimethanol, optionally a co-diol, and the compound dihalogenated aromatic is heated.
  • the preparation of the polymer is carried out at a temperature between 160°C and 240°C, preferably between 190°C and 230°C, more preferably between 200°C and 220°C, for a period of between 30 minutes and 12 hours, preferably between 30 minutes and 6 hours, more preferably between 1 hour and 3 hours. Even more preferably, the polymer is produced at a temperature of approximately 210° C., for a period of approximately 2 hours.
  • the polymer obtained can be precipitated by techniques known to those skilled in the art, such as for example the precipitation of the reaction medium in a large volume of water, approximately 10 times the volume of the reaction medium.
  • the polymer can then be dried according to techniques known to those skilled in the art, for example in an oven at 80°C for 12 hours.
  • the resulting polymer can finally, optionally, undergo post-treatment steps, in particular with a view to increasing its purity or improving certain of its properties.
  • Another object of the present invention relates to the use of the polymer according to the invention for the manufacture of membranes, manufactured parts and coatings.
  • Membranes can be manufactured from the polymer according to the invention according to techniques known to those skilled in the art.
  • the membranes obtained with the polymer according to the invention have interesting hydrophilic and gas permeability properties.
  • the membranes can be in the form of porous or non-porous films.
  • the membranes can be manufactured in the form of monofilament or hollow fibers.
  • the polymer according to the invention can be used in aqueous media, including body fluids.
  • the polymer according to the invention is biocompatible and can therefore be used in the form of a membrane in the medical environment such as for hemodialysis or in the consumer environment (food and drinks), in the wastewater treatment environment.
  • Porous membranes in the form of tubes or hollow fibers can have different pore sizes known to those skilled in the art depending on their applications (microfiltration, ultrafiltration, nanofiltration, reverse osmosis).
  • the performance of the aqueous membranes obtained with the polymer according to the invention can be improved by techniques known to those skilled in the art, in particular the use of monomers sulfonated or post-treatment of membranes by sulfonation or surface treatment to prevent clogging.
  • Gas phase membranes can be used for the production of nitrogen from the separation of the mixture of nitrogen and oxygen from the air, and the production of methane from the separation of methane and CO 2 .
  • Membranes in the form of films or plates can be used for optics or packaging.
  • Molded parts can be manufactured from the polymer of the invention according to techniques known to those skilled in the art. Injection molding of the polymer according to the invention can lead to the production of parts used in the health sector, with dental applications to replace metals, glass and other disposable or reusable utensils, but also in the sector aeronautics, electronics and automobiles.
  • Another object of this invention is the use of the polymer of the invention as a metal coating resin to prevent corrosion.
  • the coating obtained from the polymer according to the invention can be applied to steel, aluminum, copper, metals used in the consumer sector (food and beverage), the marine sector with the hulls of boats , the aerospace, automotive, electrical with cables and electronics with circuits sectors.
  • the resin obtained from the polymer according to the invention can also be applied to other substrates such as glass or carbon fiber to form a composite after evaporation of the resin solvent.
  • the composites formed from the polymer resin according to the invention can be used in the aerospace and automotive fields to replace metal parts.
  • Example 1 General procedure for preparing a copolymer according to the invention
  • the tetrahydrofuran dimethanol and optionally a co-diol (5 mmol in total), the dihalogenated aromatic compound (5 mmol) and the potassium carbonate (1.3961 g, 10 mmol) are introduced into a 100 mL three-necked flask equipped with a stirring blade, a nitrogen inlet and outlet to avoid oxidation.
  • the whole is dissolved in DMSO (5 mL) and is brought to 210°C with stirring at 50 rpm. After 2 h to 9 h of heating at 210°C, the medium is diluted with 10 mL of DMSO. When the medium has returned to room temperature, the polymer is precipitated in 100 mL of distilled water in a beaker with magnetic stirring. After 1 hour of stirring, the polymer is recovered by Büchner filtration and then dried in an oven for 12 hours at 80°C. The polymer is analyzed by SEC, 1 H NMR and DSC.
  • the 100MHz 13 C spectra were carried out on a Brüker Ascend TM 400 in a 5mm glass tube in DMSO- d 6 .
  • the differential scanning calorimetry analysis was carried out on a DSC-Q5000 SA, TA Instruments, USA with a flow rate of 50ml/min with nitrogen at 10°C/min or 20°C/min from 20°C to 300°C and in a pierced aluminum crucible.
  • Polymer 1 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.
  • Polymer 2 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and dichlorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.
  • Polymer 3 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorobenzonitrile (5 mmol) as a dihalogenated aromatic compound.
  • Polymer 4 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorobenzophenone (5 mmol) as a dihalogenated aromatic compound.
  • Polymer 5 is prepared according to the general procedure above from tetrahydrofuran dimethanol (1 mmol), Bisphenol A (4 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .
  • Polymer 6 is prepared according to the general procedure above from tetrahydrofuran dimethanol (1.25 mmol), Bisphenol A (3.75 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.
  • Polymer 7 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2 mmol), Bisphenol A (3 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .
  • Polymer 8 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), Bisphenol A (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.
  • Polymer 9 is prepared according to the general procedure above from tetrahydrofuran dimethanol (3 mmol), Bisphenol A (2 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .
  • Polymer 10 is prepared according to the general procedure above from tetrahydrofuran dimethanol (4 mmol), Bisphenol A (1 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .
  • Polymer 11 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), 4,4'-dihydroxydiphenyl (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.
  • Polymer 12 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), Bisphenol S (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.
  • Polymer 13 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), isosorbide (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.
  • Polymer 14 a polyethersulfone purchased from ACROS ORGANICS 178910050 in the form of transparent granules. This product is a polyethersulfone based on bisphenol A and a diphenyl sulfone derivative.
  • Example 2 General procedure for preparing membranes from polymers according to the invention and comparison with a membrane obtained from a commercial polymer
  • a membrane is prepared from a solution of the polymer at 20% m in NMP cast on a glass plate. The solvent is then evaporated using the following thermal cycle: 50°C for 12 h, 80°C for 1 h, 120°C for 1 h, 150°C for 1 h and 200°C for 2 h. After cooking a membrane is obtained.
  • Membranes were prepared according to the general procedure above from polymers 1, 6 and 8 according to the invention in comparison with a membrane prepared from a commercial polymer.
  • the contact angle of the membranes prepared from polymers 1 and 8 according to the invention was measured with water and diiodomethane according to the model of Owens, Wendt, Rabel and Kaelble.
  • the water recovery measurement was carried out with a Dynamic Vapor Sorption device (DVS Q-5000 SA, TA Instruments) at atmospheric pressure and at the isotherm of 21°C with a sorption/desorption cycle from 0 to 90 % humidity.
  • a Dynamic Vapor Sorption device (DVS Q-5000 SA, TA Instruments) at atmospheric pressure and at the isotherm of 21°C with a sorption/desorption cycle from 0 to 90 % humidity.
  • the hydrophilicity of the polymers according to the invention increases as a function of the rate of incorporation of tetrahydrofuran dimethanol.
  • measuring the contact angle of the membranes prepared from polymers 1 and 8 makes it possible to attest to the wettability of the films containing THFDM compared to the PES reference.
  • Increasing the surface energy as a function of the tetrahydrofuran dimethanol incorporation rate allows the creation of stronger interactions of the polymer film with the water drop. This thus leads to a reduction in the contact angle of the water as a function of the rate of incorporation of tetrahydrofuran dimethanol.
  • the polymers according to the invention have a water adsorption capacity much greater than the reference: this much more marked hydrophilicity is particularly advantageous for a membrane, whose capacity to hydrate quickly goes condition its performance and effectiveness.
  • the experiments are carried out at room temperature.
  • the manipulation consists of inserting the film to be studied into the permeation cell.
  • the permeation experiment consists of imposing a pressure (3 bar) of a chosen gas in the upstream compartment of the cell and measuring the rise in pressure in the downstream compartment of the cell. Permeability is calculated from the slope of the pressure versus time line in the steady state, corrected for static vacuum if necessary.
  • the gas permeation properties of the membranes prepared from polymer 6 according to the invention were measured. The results are presented in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

La présente invention concerne un polymère de type polyéther aromatique à base d'un diol biosourcé furanique, un procédé de préparation dudit polymère, ainsi que l'utilisation dudit polymère pour la fabrication de membranes de pièces manufacturées et de revêtements.The present invention relates to an aromatic polyether type polymer based on a biosourced furan diol, a process for preparing said polymer, as well as the use of said polymer for the manufacture of membranes for manufactured parts and coatings.

ÉTAT DE LA TECHNIQUESTATE OF THE TECHNIQUE

L'industrie chimique, qui reste largement basée sur les ressources fossiles, entre dans une phase de transition vers l'utilisation de matières premières biosourcées plus durables. L'augmentation des prix des matières premières fossiles et les préoccupations environnementales croissantes, telles que les émissions de gaz à effet de serre, poussent la recherche académique et industrielle à explorer l'utilisation de la biomasse pour la production durable de carburants et de produits chimiques. Le développement de polymères biosourcés et d'autres matériaux suit la même tendance et constitue un domaine émergent et important.The chemical industry, which remains largely based on fossil resources, is entering a transition phase towards the use of more sustainable bio-sourced raw materials. Rising prices of fossil raw materials and growing environmental concerns, such as greenhouse gas emissions, are driving academic and industrial research to explore the use of biomass for sustainable production of fuels and chemicals . The development of bio-based polymers and other materials follows the same trend and is an emerging and important area.

Les polyéthers aromatiques, tels que les polyéthersulfones, les polyéthercétones et les polyétherbenzonitriles, sont reconnus comme étant des polymères de haute performance du fait de leurs excellentes stabilités thermiques et propriétés mécaniques. Ces polymères ont pour principale application les membranes de séparation en phase liquide et gazeuse. Les polyéthersulfones disponibles sur le marché sont notamment synthétisés à partir de diols aromatiques tels que le bisphénol A ou le 4,4'-dihydroxyphényle avec la dichlorodiphényle sulfone. Les industriels se sont ainsi intéressés à substituer partiellement les diols aromatiques par un diol provenant de la biomasse tels que l'isosorbideAromatic polyethers, such as polyethersulfones, polyetherketones and polyetherbenzonitriles, are recognized as high-performance polymers due to their excellent thermal stabilities and mechanical properties. The main application of these polymers is liquid and gas phase separation membranes. The polyethersulfones available on the market are notably synthesized from aromatic diols such as bisphenol A or 4,4'-dihydroxyphenyl with dichlorodiphenyl sulfone. Industrialists have thus been interested in partially replacing aromatic diols with a diol coming from biomass such as isosorbide.

Ainsi, Kricheldorf et al. ont d'abord décrit la préparation et la caractérisation de polyéthersulfones contenant de l'isosorbide à partir d'isosorbide silylé et de difluorodiphénylsulfone ( H. Kricheldorf et al., J. Polymer Sci., Part A: Polym. Chem., 1995, 33, 2667-2671 ). L'isosorbide silylé ayant un coût élevé, Kricheldorf et Chatti ont modifié leurs conditions de polymérisation et ont décrit la synthèse de polyéthersulfones contenant de l'isosorbide à partir d'isosorbide non fonctionnalisé et de difluorodiphénylsulfone ( S. Chatti et al., High Perform. Polym., 2009, 21, 105-118 ).Thus, Kricheldorf et al. first described the preparation and characterization of isosorbide-containing polyethersulfones from silylated isosorbide and difluorodiphenylsulfone ( H. Kricheldorf et al., J. Polymer Sci., Part A: Polym. Chem., 1995, 33, 2667-2671 ). Since silylated isosorbide is expensive, Kricheldorf and Chatti have modified their polymerization conditions and described the synthesis of isosorbide-containing polyethersulfones from non-functionalized isosorbide and difluorodiphenylsulfone ( S. Chatti et al., High Perform. Polym., 2009, 21, 105-118 ).

Belgacem et al. ont ensuite décrit la synthèse de polyéthersulfones contenant un 1,4:3,6-dianhydrohexitol et du bisphénol A, à partir de difluorodiphénylsulfone, d'un 1,4:3,6-dianhydrohexitol et de bisphénol A en tant que monomères mis à réagir ensemble dans le même milieu réactionnel ( Belgacem et al., Des. Monomers Polym., 2016, 19, 248-255 ). Dans ces conditions, le polymère obtenu est un copolymère statistique dans lequel l'enchaînement des unités contenant le 1,4:3,6-dianhydrohexitol et le bisphénol A est aléatoire.Belgacem et al. then described the synthesis of polyethersulfones containing a 1,4:3,6-dianhydrohexitol and bisphenol A, from difluorodiphenylsulfone, a 1,4:3,6-dianhydrohexitol and bisphenol A as monomers react together in the same reaction medium ( Belgacem et al., Des. Monomers Polym., 2016, 19, 248-255 ). Under these conditions, the polymer obtained is a random copolymer in which the sequence of units containing 1,4:3,6-dianhydrohexitol and bisphenol A is random.

La demande US 2017/0240708 décrit également la synthèse de polyéthersulfones contenant un 1,4:3,6-dianhydrohexitol et du bisphénol A par un procédé similaire. Le polyéthersulfone obtenu est un copolymère statistique à base de bisphénol A et d'isosorbide. Cette même demande décrit également la synthèse d'un polyéthersulfone à partir de cyclohexanediméthanol et d'isosorbide.Requirement US 2017/0240708 also describes the synthesis of polyethersulfones containing 1,4:3,6-dianhydrohexitol and bisphenol A by a similar method. The polyethersulfone obtained is a random copolymer based on bisphenol A and isosorbide. This same application also describes the synthesis of a polyethersulfone from cyclohexanedimethanol and isosorbide.

Par ailleurs, Kanetaka et al. ont décrit la synthèse de polyéthercétones à partir d'un dérivé d'acide 2,5-furanedicarboxylique ( Kanetaka et al., J. Pol. Sci., 2016, 54, 3094-3101 ).Furthermore, Kanetaka et al. described the synthesis of polyether ketones from a 2,5-furanedicarboxylic acid derivative ( Kanetaka et al., J. Pol. Sci., 2016, 54, 3094-3101 ).

Demeure toutefois et de manière générale, la volonté de l'homme du métier d'enrichir la bibliothèque de polymères de type polyéthers aromatiques obtenus à partir d'un diol biosourcé et ce, dans une démarche d'économie des matériaux fossiles, au profit de matières premières biosourcées.However, in general, there remains the desire of those skilled in the art to enrich the library of polymers of the aromatic polyethers type obtained from a biosourced diol, in an approach to saving fossil materials, for the benefit of biosourced raw materials.

De manière particulière, il existe aussi un besoin de fournir des polymères de ce type, présentant des caractéristiques aptes à les utiliser dans la fabrication de membranes. Ces caractéristiques sont, par exemple, des masses moléculaires moyennes en nombre (Mn) élevées qui sont nécessaires à l'obtention de propriétés filmogènes. Ces polymères peuvent aussi présenter de manière avantageuse une hydrophilie importante : dans le cas d'une membrane, celle-ci va s'humidifier rapidement, ce qui conduit à une filtration rapide avec des débits et des rendements élevés. Enfin, ces polymères peuvent aussi présenter des propriétés de perméabilité, et notamment de sélectivité vis-à-vis de certains gaz et/ou liquides, qui peuvent s'avérer particulièrement intéressantes, dans des procédés de filtration membranaires.In particular, there is also a need to provide polymers of this type, having characteristics suitable for use in the manufacture of membranes. These characteristics are, for example, high number average molecular weights (Mn) which are necessary to obtain film-forming properties. These polymers can also advantageously have significant hydrophilicity: in the case of a membrane, it will humidify quickly, which leads to rapid filtration with high flow rates and yields. Finally, these polymers can also have permeability properties, and in particular selectivity with respect to certain gases and/or liquids, which can prove particularly interesting, in membrane filtration processes.

RÉSUMÉ DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention concerne un polymère de type polyéther aromatique de formule (I) comprenant un motif de répétition formé à partir d'un diol biosourcé furanique et d'un composé aromatique dihalogéné X-Ar-X, et un second motif de répétition formé à partir d'un co-diol HO-D-OH et d'un composé aromatique dihalogéné X-Ar-X :

Figure imgb0001

  • m est un nombre entier supérieur à 1
  • n est 0 ou un nombre entier supérieur à 1
  • le ratio m/n est compris entre 100/0 et 1/99
  • p est un nombre entier supérieur à 1
  • Ar provient du composé aromatique dihalogéné et est sélectionné dans le groupe constitué de :
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • D provient du co-diol et est sélectionné dans le groupe constitué de :
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
The invention relates to an aromatic polyether type polymer of formula ( I ) comprising a repeating unit formed from a biosourced furanic diol and a dihalogenated aromatic compound X- Ar -X, and a second repeating unit formed from from a co-diol HO- D -OH and a dihalogenated aromatic compound X- Ar -X:
Figure imgb0001
Or
  • m is an integer greater than 1
  • n is 0 or an integer greater than 1
  • the m/n ratio is between 100/0 and 1/99
  • p is an integer greater than 1
  • Ar comes from the dihalogenated aromatic compound and is selected from the group consisting of:
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • D comes from the co-diol and is selected from the group consisting of:
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

L'invention concerne également un procédé de préparation du polymère de type polyéther aromatique comprenant le ou les motifs de répétition de la formule I, comprenant une étape de réaction entre le tetrahydrofurane diméthanol, optionnellement en présence d'un co-diol, avec un composé aromatique dihalogéné en présence d'une base dans un solvant organique.The invention also relates to a process for preparing the aromatic polyether type polymer comprising the repeat unit(s) of formula I, comprising a reaction step between tetrahydrofuran dimethanol, optionally in the presence of a co-diol, with a compound dihalogenated aromatic in the presence of a base in an organic solvent.

Un autre objet de la présente invention concerne l'utilisation du polymère selon l'invention pour la fabrication de membranes.Another object of the present invention relates to the use of the polymer according to the invention for the manufacture of membranes.

DESCRIPTION DÉTAILLÉEDETAILED DESCRIPTION

L'invention concerne un polymère de type polyéther aromatique de formule (I) comprenant un motif de répétition formé à partir d'un diol biosourcé furanique et d'un composé aromatique dihalogénéX-Ar-X, et optionnellement un second motif de répétition formé à partir d'un co-diol HO-D-OH et d'un composé aromatique dihalogéné X-Ar-X :

Figure imgb0024

  • m est un nombre entier supérieur à 1
  • n est 0 ou un nombre entier supérieur à 1
  • le ratio m/n est compris entre 100/0 et 1/99
  • p est un nombre entier supérieur à 1
  • Ar est sélectionné dans le groupe constitué de :
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
  • D est sélectionné dans le groupe constitué de :
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
The invention relates to an aromatic polyether type polymer of formula ( I ) comprising a repeating unit formed from a biosourced furanic diol and a dihalogenated aromatic compound from a co-diol HO- D -OH and a dihalogenated aromatic compound X- Ar -X:
Figure imgb0024
Or
  • m is an integer greater than 1
  • n is 0 or an integer greater than 1
  • the m/n ratio is between 100/0 and 1/99
  • p is an integer greater than 1
  • Ar is selected from the group consisting of:
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
  • D is selected from the group consisting of:
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

Il est du mérite des inventeurs d'avoir mis en évidence que l'incorporation de tetrahydrofurane diméthanol dans la chaîne de polymère permet d'améliorer le caractère hydrophile du polymère de l'invention. Cette hydrophilie importante est une propriété particulièrement intéressante pour la fabrication de membranes de filtration : ladite membrane va s'humidifier rapidement, ce qui conduit à une filtration rapide avec des débits et des rendements élevés. La présence de tetrahydrofurane diméthanol dans le polymère de l'invention permet également d'obtenir de bonnes propriétés de perméabilité.It is to the merit of the inventors to have demonstrated that the incorporation of tetrahydrofuran dimethanol in the polymer chain makes it possible to improve the hydrophilic character of the polymer of the invention. This significant hydrophilicity is a particularly interesting property for the manufacture of filtration membranes: said membrane will humidify quickly, which leads to rapid filtration with high flow rates and yields. The presence of tetrahydrofuran dimethanol in the polymer of the invention also makes it possible to obtain good permeability properties.

Le polymère de la formule I peut se présenter sous la forme d'un copolymère statistique ou sous la forme d'un homopolymère.The polymer of formula I can be in the form of a random copolymer or in the form of a homopolymer.

Lorsque le ratio m/n est compris entre 99/1 et 1/99, le polymère selon l'invention se présente sous la forme d'un copolymère statistique. Par « copolymère statistique » on entend au sens de la présente invention un polymère issu de la copolymérisation d'au moins deux types de monomère, chimiquement différents, appelés co-monomères. Un copolymère statistique est donc formé d'au moins deux motifs de répétition enchaînés de manière aléatoire.When the m/n ratio is between 99/1 and 1/99, the polymer according to the invention is in the form of a random copolymer. By “random copolymer” is meant for the purposes of the present invention a polymer resulting from the copolymerization of at least two types of monomer, chemically different, called co-monomers. A statistical copolymer is therefore formed of at least two repeating units linked together randomly.

Lorsque le ratio m/n est de 100/0, le polymère selon l'invention se présente sous la forme d'un homopolymère. Par « homopolymère » on entend au sens de la présente invention un polymère issu d'une seule espèce de monomère. Tous les motifs de répétition d'un homopolymère sont donc de même nature chimique.When the m/n ratio is 100/0, the polymer according to the invention is in the form of a homopolymer. For the purposes of the present invention, the term “homopolymer” means a polymer derived from a single species of monomer. All the repeating units of a homopolymer are therefore of the same chemical nature.

De manière générale, la masse moléculaire moyenne du polymère de la formule (I) est comprise entre 1 000 et 150 000 g/mol,.Generally speaking, the average molecular mass of the polymer of formula (I) is between 1,000 and 150,000 g/mol.

Une classe particulière de polymères objets de la présente Demande sont les polymères de formule (I) telle que définie ci-dessus, dont la masse moléculaire moyenne est comprise entre 40 000 et 150 000 g/mol, de préférence entre 70 000 et 150 000 g/mol.A particular class of polymers which are the subject of this Application are the polymers of formula (I) as defined above, the average molecular mass of which is between 40,000 and 150,000 g/mol, preferably between 70,000 and 150,000. g/mol.

Des polymères préférés selon l'invention sont des polymères de formule (I) suivante

Figure imgb0047
dans laquelle

  • m est un nombre entier supérieur à 1
  • n est 0 ou un nombre entier supérieur à 1
  • le ratio m/n est compris entre 100/0 et 1/99, de préférence entre 100/0 et 10/90
  • p est un nombre entier supérieur à 1
  • Ar est sélectionné dans le groupe constitué de :
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
  • D est sélectionné dans le groupe constitué de :
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
Preferred polymers according to the invention are polymers of formula (I) following
Figure imgb0047
in which
  • m is an integer greater than 1
  • n is 0 or an integer greater than 1
  • the m/n ratio is between 100/0 and 1/99, preferably between 100/0 and 10/90
  • p is an integer greater than 1
  • Ar is selected from the group consisting of:
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
  • D is selected from the group consisting of:
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

Dans un mode de réalisation plus préféré, le motif Ar est le suivant :

Figure imgb0055
In a more preferred embodiment, the pattern Ar is as follows:
Figure imgb0055

Selon ce mode de réalisation, le polymère de l'invention est celui comprenant les motifs de répétition de la formule (II) suivante :

Figure imgb0056
dans laquelle

  • m est un nombre entier supérieur à 1
  • n est 0 ou un nombre entier supérieur à 1
  • le ratio m/n est compris entre 100/0 et 1/99, de préférence entre 100/0 et 10/90
  • p est un nombre entier supérieur à 1
  • D est sélectionné dans le groupe constitué de :
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
According to this embodiment, the polymer of the invention is that comprising the repeating units of the following formula ( II ):
Figure imgb0056
in which
  • m is an integer greater than 1
  • n is 0 or an integer greater than 1
  • the m/n ratio is between 100/0 and 1/99, preferably between 100/0 and 10/90
  • p is an integer greater than 1
  • D is selected from the group consisting of:
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

Dans un autre mode de réalisation plus préféré, le motif D est le suivant :

Figure imgb0061
In another more preferred embodiment, pattern D is as follows:
Figure imgb0061

Selon ce mode de réalisation, le polymère selon l'invention est celui comprenant les motifs de répétition de la formule (III) suivante :

Figure imgb0062
dans laquelle

  • m est un nombre entier supérieur à 1
  • n est 0 ou un nombre entier supérieur à 1
  • le ratio m/n est compris entre 100/0 et 1/99, de préférence entre 100/0 et 10/90
  • p est un nombre entier supérieur à 1
  • Ar est sélectionné dans le groupe constitué de :
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor ;
According to this embodiment, the polymer according to the invention is that comprising the repeating units of the following formula (III):
Figure imgb0062
in which
  • m is an integer greater than 1
  • n is 0 or an integer greater than 1
  • the m/n ratio is between 100/0 and 1/99, preferably between 100/0 and 10/90
  • p is an integer greater than 1
  • Ar is selected from the group consisting of:
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine;

Dans un mode de réalisation particulier, le ratio m/n du polymère de formule (I) est de 100/0. Le polymère de l'invention se présente alors sous la forme d'un homopolymère comprenant le motif de répétition de formule (IV) suivante :

Figure imgb0066
Figure imgb0067
dans laquelle

  • p est un nombre entier supérieur à 1
  • Ar est sélectionné dans le groupe constitué de :
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
In a particular embodiment, the m/n ratio of the polymer of formula ( I ) is 100/0. The polymer of the invention is then in the form of a homopolymer comprising the following repeating unit of formula ( IV ):
Figure imgb0066
Figure imgb0067
in which
  • p is an integer greater than 1
  • Ar is selected from the group consisting of:
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

Selon ce dernier mode de réalisation où le ratio m/n est égal à 100/0, un polymère particulièrement préféré est celui de formule (V) suivante :

Figure imgb0071
dans laquelle

  • p est un nombre entier supérieur à 1
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor.
According to this last embodiment where the m/n ratio is equal to 100/0, a particularly preferred polymer is that of formula (V) below:
Figure imgb0071
in which
  • p is an integer greater than 1
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine.

L'invention concerne également un procédé de préparation du polymère de type polyéther aromatique comprenant le ou les motifs de répétition de la formule (I).The invention also relates to a process for preparing the aromatic polyether type polymer comprising the repeating unit(s) of formula ( I ).

Le procédé de préparation du polymère comprenant le ou les motifs de répétition de la formule (I) comprend une étape de réaction entre le tetrahydrofurane diméthanol, optionnellement en présence d'un co-diol HO-D-OH, avec un composé aromatique dihalogéné X-Ar-X en présence d'une base dans un solvant organique. Les co-diols et les composés aromatiques dihalogénés pouvant être utilisés sont ceux décrits ci-dessus..The process for preparing the polymer comprising the repeating unit(s) of formula ( I ) comprises a reaction step between tetrahydrofuran dimethanol, optionally in the presence of a co-diol HO- D -OH, with a dihalogenated aromatic compound - Ar -X in the presence of a base in an organic solvent. The co-diols and dihalogenated aromatic compounds which can be used are those described above.

De manière avantageuse, le procédé de l'invention permet de contrôler le ratio molaire entre le tetrahydrofurane diméthanol et le composé aromatique dihalogéné de manière à obtenir des polymères présentant une grande hydrophilie et/ou de bonnes propriétés de perméabilité.Advantageously, the process of the invention makes it possible to control the molar ratio between the tetrahydrofuran dimethanol and the dihalogenated aromatic compound so as to obtain polymers having high hydrophilicity and/or good permeability properties.

Cette hydrophilie importante est une propriété particulièrement intéressante pour la fabrication de membranes de filtration : ladite membrane va s'humidifier rapidement, ce qui conduit à une filtration rapide avec des débits et des rendements élevés.This significant hydrophilicity is a particularly interesting property for the manufacture of filtration membranes: said membrane will humidify quickly, which leads to rapid filtration with high flow rates and yields.

Ainsi, le procédé objet de la présente Demande est un procédé de préparation d'un polymère comprenant le ou les motifs de répétition de la formule (I),

Figure imgb0072
dans laquelle

  • le ratio m/n est compris entre 100/0 et 1/99
  • p est un nombre entier supérieur à 1
  • Ar est sélectionné dans le groupe constitué de :
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
  • D est sélectionné dans le groupe constitué de :
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
  • X est un halogène, de préférence X est choisi parmi le fluor et le chlore, de préférence encore X est le fluor,
et comprend une étape de réaction entre le tetrahydrofurane diméthanol, éventuellement en présence d'un composé de formule OH-D-OH, avec un composé aromatique dihalogéné de formule X-Ar-X, en présence d'une base dans un solvant organique.Thus, the process which is the subject of this Application is a process for preparing a polymer comprising the repeat unit(s) of formula ( I ),
Figure imgb0072
in which
  • the m/n ratio is between 100/0 and 1/99
  • p is an integer greater than 1
  • Ar is selected from the group consisting of:
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
  • D is selected from the group consisting of:
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
  • X is a halogen, preferably X is chosen from fluorine and chlorine, more preferably X is fluorine,
and comprises a reaction step between tetrahydrofuran dimethanol, optionally in the presence of a compound of formula OH- D -OH, with a dihalogenated aromatic compound of formula X- Ar -X, in the presence of a base in an organic solvent.

De manière générale, la masse moléculaire moyenne du polymère de la formule (I) est comprise entre 1 000 et 150 000 g/mol,.Generally speaking, the average molecular mass of the polymer of formula (I) is between 1,000 and 150,000 g/mol.

Une classe particulière de polymères objets de la présente Demande sont les polymères de formule (I) précitée, dont la masse moléculaire moyenne est comprise entre 40 000 et 150 000 g/mol, de préférence entre 70 000 et 150 000 g/mol.A particular class of polymers which are the subject of this Application are the polymers of formula (I) mentioned above, the average molecular mass of which is between 40,000 and 150,000 g/mol, preferably between 70,000 and 150,000 g/mol.

Des variantes du procédé selon l'invention, sont les variantes qui conduisent aux polymères de formules (II), (III), (IV) et (V), en opérant les choix relatifs aux composés X-Ar-X et HO-D-OH, au ratio m/n et à l'entier p, qui ont été explicités précédemment, en ce qui concerne lesdits polymères de formules (II), (III), (IV) et (V). Ces choix s'appliquent donc mutatis mutandis aux différentes variantes du procédé selon l'invention.Variants of the process according to the invention are the variants which lead to the polymers of formulas ( II ), ( III ), ( IV ) and ( V ), by making the choices relating to the compounds X- Ar -X and HO- D -OH, at the ratio m/n and at the integer p, which have been explained previously, with regard to said polymers of formulas ( II ), ( III ), ( IV ) and ( V ). These choices therefore apply mutatis mutandis to the different variants of the process according to the invention.

La réaction entre le tetrahydrofurane diméthanol, et optionnellement un co-diol, avec le composé aromatique dihalogéné est mise en oeuvre en présence d'une base dans un solvant organique et permet de former le polymère de l'invention.The reaction between tetrahydrofuran dimethanol, and optionally a co-diol, with the dihalogenated aromatic compound is carried out in the presence of a base in an organic solvent and makes it possible to form the polymer of the invention.

La base est avantageusement choisie parmi les sels de métaux alcalins. De préférence, la base est choisie parmi le carbonate de potassium (K2CO3), le carbonate de sodium (Na2CO3), le carbonate de césium (CsCO3), le carbonate de lithium (LiCO3), le méthanolate de potassium, le méthanolate de sodium, l'éthanolate de potassium, le tert-butylate de potassium, le tert-pentylate de potassium, le bis(triméthyl)silanolate de potassium, le bis(triméthylsilyl)amide de potassium, l'hydroxyde de potassium, l'hydroxyde de sodium, et l'hydrure de sodium. De préférence encore, la base est choisie parmi le carbonate de potassium et le carbonate de sodium. Encore plus préférentiellement, la base est le carbonate de potassium et le carbonate de sodium.The base is advantageously chosen from alkali metal salts. Preferably, the base is chosen from potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), cesium carbonate (CsCO 3 ), lithium carbonate (LiCO 3 ), methanolate potassium, sodium methanolate, potassium ethanolate, potassium tert- butoxide, potassium tert -pentylate, potassium bis(trimethyl)silanolate, potassium bis(trimethylsilyl)amide, potassium hydroxide potassium, sodium hydroxide, and sodium hydride. More preferably, the base is chosen from potassium carbonate and sodium carbonate. Even more preferably, the base is potassium carbonate and sodium carbonate.

Avantageusement, la proportion de base est comprise entre 1 et 3 équivalents en mole par rapport à la quantité totale de tetrahydrofurane diméthanol et de co-diol. De préférence, la proportion de base est d'environ 2 équivalents en mole par rapport à la quantité totale de tetrahydrofurane diméthanol et de co-diol.Advantageously, the proportion of base is between 1 and 3 mole equivalents relative to the total quantity of tetrahydrofuran dimethanol and co-diol. Preferably, the proportion of base is approximately 2 mole equivalents relative to the total quantity of tetrahydrofuran dimethanol and co-diol.

Le solvant organique est avantageusement choisi parmi les solvants polaires aprotiques. Par « solvant polaire aprotique », on entend au sens de la présente invention un solvant possédant un moment dipolaire sans atome d'hydrogène acide, c'est-à-dire lié à un hétéroatome. De préférence, le solvant est choisi parmi les solvants polaires aprotiques comprenant un atome de soufre ou un atome d'azote. De préférence encore, le solvant est choisi parmi le diméthylsulfoxyde, le diéthylsulfoxyde, le sulfolane, la diméthylsulfone, la diéthylsulfone, la diphénylsulfone, la diisopropylsulfone, le tétrahydrothiophène-1-monoxyde, le diméthylacétamide, le diméthylformamide, la N-méthyl-2-pyrrolidone, et la N-cyclohexyl-2-pyrrolidone, seuls ou en mélange. Plus préférentiellement, le solvant est choisi parmi la N-méthyl-2-pyrrolidone et le diméthylsulfoxyde, seuls ou en mélange. Encore plus préférentiellement, le solvant est le diméthylsulfoxyde ou la N-méthyl-2-pyrrolidone.The organic solvent is advantageously chosen from polar aprotic solvents. By “aprotic polar solvent” is meant for the purposes of the present invention a solvent having a dipole moment without an acidic hydrogen atom, that is to say linked to a heteroatom. Preferably, the solvent is chosen from polar aprotic solvents comprising a sulfur atom or a nitrogen atom. More preferably, the solvent is chosen from dimethylsulfoxide, diethylsulfoxide, sulfolane, dimethylsulfone, diethylsulfone, diphenylsulfone, diisopropylsulfone, tetrahydrothiophene-1-monoxide, dimethylacetamide, dimethylformamide, N-methyl-2- pyrrolidone, and N-cyclohexyl-2-pyrrolidone, alone or in mixture. More preferably, the solvent is chosen from N-methyl-2-pyrrolidone and dimethyl sulfoxide, alone or as a mixture. Even more preferably, the solvent is dimethyl sulfoxide or N-methyl-2-pyrrolidone.

Dans un mode de réalisation, un co-solvant peut être ajouté au solvant organique. Le co-solvant est avantageusement choisi parmi le toluène, le benzène, le chlorobenzène, le tetrahydrofurane, seuls ou en mélange. De préférence, le co-solvant est le toluène.In one embodiment, a co-solvent may be added to the organic solvent. The co-solvent is advantageously chosen from toluene, benzene, chlorobenzene, tetrahydrofuran, alone or as a mixture. Preferably, the co-solvent is toluene.

Ainsi, le polymère est formé par réaction entre le tetrahydrofurane diméthanol, optionnellement un co-diol, et le composé aromatique dihalogéné en tant que monomères. Avantageusement, la proportion totale en monomères, c'est-à-dire la somme de la quantité de tetrahydrofurane diméthanol, de co-diol et de composé aromatique dihalogéné, est comprise entre 10% et 50%, de préférence entre 20% et 40% en masse par rapport à la somme de la masse du solvant et de la masse des monomères. De préférence encore, la proportion en monomères est d'environ 30% en masse par rapport à la somme de la masse du solvant et de la masse des monomères.Thus, the polymer is formed by reaction between tetrahydrofuran dimethanol, optionally a co-diol, and the dihalogenated aromatic compound as monomers. Advantageously, the total proportion of monomers, that is to say the sum of the quantity of tetrahydrofuran dimethanol, co-diol and dihalogenated aromatic compound, is between 10% and 50%, preferably between 20% and 40%. % by mass relative to the sum of the mass of the solvent and the mass of the monomers. More preferably, the proportion of monomers is approximately 30% by weight relative to the sum of the mass of the solvent and the mass of the monomers.

Afin de démarrer la réaction entre le tetrahydrofurane diméthanol, optionnellement un co-diol et le composé aromatique dihalogéné pour former le polymère, le milieu réactionnel comprenant le tetrahydrofurane diméthanol, optionnellement un co-diol, et le composé aromatique dihalogéné est chauffé. Avantageusement, la préparation du polymère est réalisée à une température comprise entre 160°C et 240°C, de préférence entre 190°C et 230°C, de préférence encore entre 200°C et 220°C, pendant une durée comprise entre 30 minutes et 12 heures, de préférence entre 30 minutes et 6 heures, de préférence encore entre 1 heure et 3 heures. Encore plus préférentiellement, le polymère est réalisée à une température d'environ 210°C, pendant une durée d'environ 2 heures.In order to start the reaction between tetrahydrofuran dimethanol, optionally a co-diol and the dihalogenated aromatic compound to form the polymer, the reaction medium comprising tetrahydrofuran dimethanol, optionally a co-diol, and the compound dihalogenated aromatic is heated. Advantageously, the preparation of the polymer is carried out at a temperature between 160°C and 240°C, preferably between 190°C and 230°C, more preferably between 200°C and 220°C, for a period of between 30 minutes and 12 hours, preferably between 30 minutes and 6 hours, more preferably between 1 hour and 3 hours. Even more preferably, the polymer is produced at a temperature of approximately 210° C., for a period of approximately 2 hours.

A l'issue de la réaction, le polymère obtenu peut être précipité par les techniques connues de l'homme du métier, comme par exemple la précipitation du milieu réactionnel dans un grand volume d'eau, environ 10 fois le volume du milieu réactionnel. Le polymère peut ensuite être séché selon les techniques connues de l'homme du métier comme par exemple dans une étuve à 80°C pendant 12 heures. Le polymère résultant peut enfin, de manière optionnelle, subir des étapes de post traitement, notamment en vue d'augmenter sa pureté ou d'améliorer certaines de ses propriétés.At the end of the reaction, the polymer obtained can be precipitated by techniques known to those skilled in the art, such as for example the precipitation of the reaction medium in a large volume of water, approximately 10 times the volume of the reaction medium. The polymer can then be dried according to techniques known to those skilled in the art, for example in an oven at 80°C for 12 hours. The resulting polymer can finally, optionally, undergo post-treatment steps, in particular with a view to increasing its purity or improving certain of its properties.

Un autre objet de la présente invention concerne l'utilisation du polymère selon l'invention pour la fabrication de membranes, de pièces manufacturées et de revêtement.Another object of the present invention relates to the use of the polymer according to the invention for the manufacture of membranes, manufactured parts and coatings.

Des membranes peuvent être fabriquées à partir du polymère selon l'invention selon les techniques connues de l'homme du métier.Membranes can be manufactured from the polymer according to the invention according to techniques known to those skilled in the art.

En particulier, les membranes obtenues avec le polymère à selon l'invention présentent des propriétés d'hydrophilie et de perméabilité aux gaz intéressantes. Les membranes peuvent se présenter sous forme de films poreux ou non poreux. Les membranes peuvent être fabriquées sous forme de mono filament ou de fibres creuses. Le polymère selon l'invention peut être utilisé dans les milieux aqueux, incluant les fluides corporels. Le polymère selon l'invention est biocompatible et peut donc être utilisé sous forme de membrane dans le milieu médical comme pour les hémodialyses ou dans le milieu de la consommation (alimentaire et boissons), dans le milieu du traitement des eaux usées. Les membranes poreuses sous forme de tubes ou de fibres creuses peuvent présenter différentes tailles de pores connues de l'homme du métier en fonction de leurs applications (microfiltration, ultrafiltration, nanofiltration, osmose inverse). Les performances des membranes aqueuses obtenues avec le polymère selon l'invention peuvent être améliorées par les techniques connues de l'homme du métier, en particulier l'utilisation de monomères sulfonés ou le post-traitement des membranes par sulfonation ou par traitement de surface pour éviter l'encrassement.In particular, the membranes obtained with the polymer according to the invention have interesting hydrophilic and gas permeability properties. The membranes can be in the form of porous or non-porous films. The membranes can be manufactured in the form of monofilament or hollow fibers. The polymer according to the invention can be used in aqueous media, including body fluids. The polymer according to the invention is biocompatible and can therefore be used in the form of a membrane in the medical environment such as for hemodialysis or in the consumer environment (food and drinks), in the wastewater treatment environment. Porous membranes in the form of tubes or hollow fibers can have different pore sizes known to those skilled in the art depending on their applications (microfiltration, ultrafiltration, nanofiltration, reverse osmosis). The performance of the aqueous membranes obtained with the polymer according to the invention can be improved by techniques known to those skilled in the art, in particular the use of monomers sulfonated or post-treatment of membranes by sulfonation or surface treatment to prevent clogging.

Les membranes en phase gazeuse peuvent servir à la production d'azote à partir de la séparation du mélange azote, oxygène de l'air, la production du méthane à partir de la séparation du méthane et du CO2.Gas phase membranes can be used for the production of nitrogen from the separation of the mixture of nitrogen and oxygen from the air, and the production of methane from the separation of methane and CO 2 .

Les membranes sous forme de films ou de plaques peuvent être utilisées pour l'optique ou pour l'emballage.Membranes in the form of films or plates can be used for optics or packaging.

Des pièces moulées peuvent être fabriquées à partir du polymère de l'invention selon les techniques connues de l'homme du métier. Le moulage à injection du polymère selon l'invention peut conduire à la production de pièces utilisées dans le secteur de la santé, avec des applications dentaires pour remplacer les métaux, le verre et d'autres ustensiles jetables ou réutilisables, mais aussi dans le secteur aéronautique, électronique et automobile.Molded parts can be manufactured from the polymer of the invention according to techniques known to those skilled in the art. Injection molding of the polymer according to the invention can lead to the production of parts used in the health sector, with dental applications to replace metals, glass and other disposable or reusable utensils, but also in the sector aeronautics, electronics and automobiles.

Un autre objet de cette invention est l'utilisation du polymère de l'invention en tant que résine de revêtement des métaux pour prévenir de la corrosion.Another object of this invention is the use of the polymer of the invention as a metal coating resin to prevent corrosion.

Le revêtement obtenu à partir du polymère selon l'invention peut être appliqué sur l'acier, l'aluminium, le cuivre, métaux utilisés dans le secteur de la consommation (alimentation et boisson), le secteur de la marine avec les coques des bateaux, les secteurs de l'aérospatial, de l'automobile, électrique avec les câbles et électronique avec les circuits. La résine obtenue à partir du polymère selon l'invention peut aussi être appliquée à d'autres substrats comme le verre ou la fibre de carbone pour former un composite après évaporation du solvant de la résine. Les composites formés à partir de la résine du polymère selon l'invention peuvent être utilisés dans le domaine aérospatial et automobile pour remplacer les pièces métalliques.The coating obtained from the polymer according to the invention can be applied to steel, aluminum, copper, metals used in the consumer sector (food and beverage), the marine sector with the hulls of boats , the aerospace, automotive, electrical with cables and electronics with circuits sectors. The resin obtained from the polymer according to the invention can also be applied to other substrates such as glass or carbon fiber to form a composite after evaporation of the resin solvent. The composites formed from the polymer resin according to the invention can be used in the aerospace and automotive fields to replace metal parts.

L'invention sera encore mieux comprise à la lecture des exemples qui suivent, lesquels se veulent purement illustratifs et ne limitent en rien la portée de la protection.The invention will be even better understood on reading the examples which follow, which are intended to be purely illustrative and in no way limit the scope of the protection.

EXEMPLESEXAMPLES Exemple 1. Mode opératoire général de préparation d'un copolymère selon l'invention Example 1. General procedure for preparing a copolymer according to the invention

Le tetrahydrofurane diméthanol et optionnellement un co-diol (5 mmol au total), le composé aromatique dihalogéné (5 mmol) et le carbonate de potassium (1,3961 g, 10 mmol) sont introduits dans un ballon tricol de 100 mL équipé d'une pale d'agitation, d'une entrée et d'une sortie d'azote pour éviter l'oxydation. L'ensemble est solubilisé dans le DMSO (5 mL) et est porté à 210°C avec une agitation de 50 rpm. Après 2 h à 9 h de chauffage à 210°C, le milieu est dilué avec 10 mL de DMSO. Lorsque le milieu est revenu à température ambiante, le polymère est précipité dans 100 mL d'eau distillée dans un bécher sous agitation magnétique. Après 1 h d'agitation le polymère est récupéré par filtration Büchner puis il est séché dans une étuve pendant 12 h à 80°C. Le polymère est analysé en SEC, RMN 1H et DSC.The tetrahydrofuran dimethanol and optionally a co-diol (5 mmol in total), the dihalogenated aromatic compound (5 mmol) and the potassium carbonate (1.3961 g, 10 mmol) are introduced into a 100 mL three-necked flask equipped with a stirring blade, a nitrogen inlet and outlet to avoid oxidation. The whole is dissolved in DMSO (5 mL) and is brought to 210°C with stirring at 50 rpm. After 2 h to 9 h of heating at 210°C, the medium is diluted with 10 mL of DMSO. When the medium has returned to room temperature, the polymer is precipitated in 100 mL of distilled water in a beaker with magnetic stirring. After 1 hour of stirring, the polymer is recovered by Büchner filtration and then dried in an oven for 12 hours at 80°C. The polymer is analyzed by SEC, 1 H NMR and DSC.

Résonance Magnétique Nucléaire (RMN)Nuclear Magnetic Resonance (NMR)

Les spectres 100MHz 13C ont été réalisés sur un Brüker Ascend 400 dans un tube en verre de 5mm dans le DMSO- d 6.The 100MHz 13 C spectra were carried out on a Brüker Ascend 400 in a 5mm glass tube in DMSO- d 6 .

Calorimétrie différentielle à balayage (DSC)Differential Scanning Calorimetry (DSC)

L'analyse de calorimétrie différentielle à balayage a été réalisée sur une DSC-Q5000 SA, TA Instruments, USA avec un débit de 50ml/min à l'azote à 10°C/min ou 20°C/min de 20°C à 300°C et dans un creuset en aluminium percé.The differential scanning calorimetry analysis was carried out on a DSC-Q5000 SA, TA Instruments, USA with a flow rate of 50ml/min with nitrogen at 10°C/min or 20°C/min from 20°C to 300°C and in a pierced aluminum crucible.

Chromatographie d'Exclusion Stérique (SEC)Size Exclusion Chromatography (SEC)

L'analyse des masses molaires a été réalisée par chromatographie d'exclusion stérique avec une colonne Agilent PLgel 5µm dans le DMF/LiBr à 50°C pendant 35min avec un débit de 0,5mL/min et en calibration PS.The analysis of molar masses was carried out by size exclusion chromatography with an Agilent PLgel 5µm column in DMF/LiBr at 50°C for 35min with a flow rate of 0.5mL/min and in PS calibration.

Polymère 1. THFDM/co-diol = 100/0 Polymer 1. THFDM/co-diol = 100/0

Le polymère 1 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (5 mmol) et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 1 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.

Polymère 2. THFDM/co-diol = 100/0 Polymer 2. THFDM/co-diol = 100/0

Le polymère 2 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (5 mmol) et de dichlorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 2 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and dichlorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.

Polymère 3. THFDM/co-diol = 100/0 Polymer 3. THFDM/co-diol = 100/0

Le polymère 3 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (5 mmol) et de difluorobenzonitrile (5 mmol) en tant que composé aromatique dihalogéné.Polymer 3 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorobenzonitrile (5 mmol) as a dihalogenated aromatic compound.

Polymère 4. THFDM/co-diol = 100/0 Polymer 4. THFDM/co-diol = 100/0

Le polymère 4 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (5 mmol) et de difluorobenzophénone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 4 is prepared according to the general procedure above from tetrahydrofuran dimethanol (5 mmol) and difluorobenzophenone (5 mmol) as a dihalogenated aromatic compound.

Polymère 5. THFDM/BPA = 20/80 Polymer 5. THFDM/BPA = 20/80

Le polymère 5 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (1 mmol), de Bisphénol A (4 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 5 is prepared according to the general procedure above from tetrahydrofuran dimethanol (1 mmol), Bisphenol A (4 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .

Polymère 6. THFDM/BPA = 25/75 Polymer 6. THFDM/BPA = 25/75

Le polymère 6 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (1,25 mmol), de Bisphénol A (3,75 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 6 is prepared according to the general procedure above from tetrahydrofuran dimethanol (1.25 mmol), Bisphenol A (3.75 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.

Polymère 7. THFDM/BPA = 40/60 Polymer 7. THFDM/BPA = 40/60

Le polymère 7 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (2 mmol), de Bisphénol A (3 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 7 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2 mmol), Bisphenol A (3 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .

Polymère 8. THFDM/BPA = 50/50 Polymer 8. THFDM/BPA = 50/50

Le polymère 8 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (2,5 mmol), de Bisphénol A (2,5 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 8 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), Bisphenol A (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.

Polymère 9. THFDM/BPA = 60/40 Polymer 9. THFDM/BPA = 60/40

Le polymère 9 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (3 mmol), de Bisphénol A (2 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 9 is prepared according to the general procedure above from tetrahydrofuran dimethanol (3 mmol), Bisphenol A (2 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .

Polymère 10. THFDM/BPA = 80/20 Polymer 10. THFDM/BPA = 80/20

Le polymère 10 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (4 mmol), de Bisphénol A (1 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 10 is prepared according to the general procedure above from tetrahydrofuran dimethanol (4 mmol), Bisphenol A (1 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as dihalogenated aromatic compound. .

Polymère 11. THFDM/BB = 50/50 Polymer 11. THFDM/BB = 50/50

Le polymère 11 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (2,5 mmol), de 4,4'-dihydroxydiphényle (2,5 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 11 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), 4,4'-dihydroxydiphenyl (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as a dihalogenated aromatic compound.

Polymère 12. THFDM/Bis S = 50/50 Polymer 12. THFDM/Bis S = 50/50

Le polymère 12 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (2,5 mmol), de Bisphénol S (2,5 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 12 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), Bisphenol S (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.

Polymère 13. THFDM/IS = 50/50 Polymer 13. THFDM/IS = 50/50

Le polymère 13 est préparé selon le mode opératoire général ci-dessus à partir de tetrahydrofurane diméthanol (2,5 mmol), d'isosorbide (2,5 mmol) en tant que co-diol et de difluorodiphényle sulfone (5 mmol) en tant que composé aromatique dihalogéné.Polymer 13 is prepared according to the general procedure above from tetrahydrofuran dimethanol (2.5 mmol), isosorbide (2.5 mmol) as co-diol and difluorodiphenyl sulfone (5 mmol) as as a dihalogenated aromatic compound.

Les caractérisations des polymères selon l'invention 1 à 13 sont présentées dans le tableau 1.The characterizations of the polymers according to the invention 1 to 13 are presented in Table 1.

Le Polymère 14 un polyéthersulfone acheté chez ACROS ORGANICS 178910050 sous forme de granulés transparents. Ce produit est un polyéthersulfone à base de bisphénol A et de dérivé diphényle sulfone. Tableau 1 Polymère Caractérisation Dihalogéné Ratio THFDM/Co-diol Durée de réaction (h) Mn (g/mol) Tg (°C) 1 Difluorodiphényle sulfone 100/0 2 80 000 145 2 Dichlorodiphényle sulfone 100/0 8 10 000 129 3 Difluorobenzonitrile 100/0 9 12 000 126 4 Difluorobenzophénone 100/0 9 13 500 103 5 Difluorodiphényle sulfone 20/80 3 31 000 184 6 Difluorodiphényle sulfone 25/75 7 36 000 178 7 Difluorodiphényle sulfone 40/60 3 22 000 167 8 Difluorodiphényle sulfone 50/50 8 45 000 154 9 Difluorodiphényle sulfone 60/40 3 26 000 160 10 Difluorodiphényle sulfone 80/20 3 21 900 145 11 Difluorodiphényle sulfone 50/50 3 32 000 177 12 Difluorodiphényle sulfone 50/50 3 26 900 181 13 Difluorodiphényle sulfone 50/50 3 22 600 168 14 - - - 90 000 190 Polymer 14, a polyethersulfone purchased from ACROS ORGANICS 178910050 in the form of transparent granules. This product is a polyethersulfone based on bisphenol A and a diphenyl sulfone derivative. <b>Table 1</b> Polymer Characterization Dihalogenated THFDM/Co-diol ratio Reaction time (h) Mn (g/mol) Tg (°C) 1 Difluorodiphenyl sulfone 100/0 2 80,000 145 2 Dichlorodiphenyl sulfone 100/0 8 10,000 129 3 Difluorobenzonitrile 100/0 9 12,000 126 4 Difluorobenzophenone 100/0 9 13,500 103 5 Difluorodiphenyl sulfone 20/80 3 31,000 184 6 Difluorodiphenyl sulfone 25/75 7 36,000 178 7 Difluorodiphenyl sulfone 40/60 3 22,000 167 8 Difluorodiphenyl sulfone 50/50 8 45,000 154 9 Difluorodiphenyl sulfone 60/40 3 26,000 160 10 Difluorodiphenyl sulfone 80/20 3 21,900 145 11 Difluorodiphenyl sulfone 50/50 3 32,000 177 12 Difluorodiphenyl sulfone 50/50 3 26,900 181 13 Difluorodiphenyl sulfone 50/50 3 22,600 168 14 - - - 90,000 190

Ce tableau illustre les caractéristiques de procédé mis en eouvre, et certaines des caractéristiques physico-chimiques des polymères résultant. Il démontre bien la possibilité d'obtenir des polyéthers aromatiques avantageusement à partir d'un composé biosourcé.This table illustrates the characteristics of the process used, and some of the physicochemical characteristics of the resulting polymers. It clearly demonstrates the possibility of obtaining aromatic polyethers advantageously from a biosourced compound.

Exemple 2. Mode opératoire général de préparation de membranes à partir de polymères selon l'invention et comparaison avec une membrane obtenue à partir d'un polymère commercial Example 2. General procedure for preparing membranes from polymers according to the invention and comparison with a membrane obtained from a commercial polymer

Une membrane est préparée à partir d'une solution du polymère à 20%m dans la NMP coulée sur une plaque en verre. Le solvant est ensuite évaporé à l'aide du cycle thermique suivant : 50°C pendant 12h, 80°C pendant 1 h, 120°C pendant 1 h, 150°C pendant 1 h et 200°C pendant 2 h. Après la cuisson une membrane est obtenue.A membrane is prepared from a solution of the polymer at 20% m in NMP cast on a glass plate. The solvent is then evaporated using the following thermal cycle: 50°C for 12 h, 80°C for 1 h, 120°C for 1 h, 150°C for 1 h and 200°C for 2 h. After cooking a membrane is obtained.

Des membranes ont été préparées selon le mode opératoire général ci-dessus à partir des polymères 1, 6 et 8 selon l'invention en comparaison avec une membrane préparée à partir d'un polymère commercial.Membranes were prepared according to the general procedure above from polymers 1, 6 and 8 according to the invention in comparison with a membrane prepared from a commercial polymer.

Les caractérisations appliquées aux membranes sont décrites ci-dessous :The characterizations applied to the membranes are described below:

Angle de contactContact angle

L'angle de contact des membranes préparées à partir des polymères 1 et 8 selon l'invention a été mesuré avec l'eau et le diiodométhane selon le modèle de Owens, Wendt, Rabel et Kaelble.The contact angle of the membranes prepared from polymers 1 and 8 according to the invention was measured with water and diiodomethane according to the model of Owens, Wendt, Rabel and Kaelble.

Sorption DynamiqueDynamic Sorption

La mesure de reprise en eau a été réalisée avec un appareil de Sorption Dynamique de Vapeur (DVS Q-5000 SA, TA Instruments) à la pression atmosphérique et à l'isotherme de 21°C avec un cycle sorption/désorption de 0 à 90% d'humidité.The water recovery measurement was carried out with a Dynamic Vapor Sorption device (DVS Q-5000 SA, TA Instruments) at atmospheric pressure and at the isotherm of 21°C with a sorption/desorption cycle from 0 to 90 % humidity.

Les résultats sont présentés dans le tableau 2. Tableau 2 Energie de surface Angle de contact Sorption à 50% (g d'eau/g échantillon) Polymère Energie (mN/m) Partie polaire (mN/m) Partie disperse (mN/m) Eau (°) Diiodométhane (°) 1 49,7 29,9 19,9 55,8 57,8 1,37% 8 43,5 34,9 8,6 70,9 49,2 0,88% 6 51,5 38,5 13,0 59,8 41,9 0,91 % Référence 44,6 43,9 0,7 89,2 32,3 0,39% The results are presented in Table 2. <b>Table 2</b> Surface energy Contact angle Sorption at 50% (g water/g sample) Polymer Energy (mN/m) Polar part (mN/m) Disperse part (mN/m) Water (°) Diiodomethane (°) 1 49.7 29.9 19.9 55.8 57.8 1.37% 8 43.5 34.9 8.6 70.9 49.2 0.88% 6 51.5 38.5 13.0 59.8 41.9 0.91% Reference 44.6 43.9 0.7 89.2 32.3 0.39%

Ces résultats montrent que l'hydrophilie des polymères selon l'invention augmente en fonction du taux d'incorporation du tétrahydrofurane diméthanol. En effet, la mesure d'angle de contact des membranes préparées à partir des polymères 1 et 8 permet d'attester de la mouillabilité des films contenant du THFDM par rapport à la référence de PES. L'augmentation de l'énergie de surface en fonction du taux d'incorporation du tétrahydrofurane diméthanol permet la création d'interactions plus fortes du film de polymère avec la goutte d'eau. Ceci conduit ainsi à une diminution de l'angle de contact de l'eau en fonction du taux d'incorporation du tétrahydrofurane diméthanol. Enfin, et de manière particulièrement avantageuse, les polymères selon l'invention présentent une capacité d'apsorption d'eau bien supérieure à la référence : cette hydrophilie beaucoup plus marquée est particulièrement avantageuse pour une membrane, dont la capacité à s'hydrater rapidement va conditionner son rendement et son efficacité.These results show that the hydrophilicity of the polymers according to the invention increases as a function of the rate of incorporation of tetrahydrofuran dimethanol. Indeed, measuring the contact angle of the membranes prepared from polymers 1 and 8 makes it possible to attest to the wettability of the films containing THFDM compared to the PES reference. Increasing the surface energy as a function of the tetrahydrofuran dimethanol incorporation rate allows the creation of stronger interactions of the polymer film with the water drop. This thus leads to a reduction in the contact angle of the water as a function of the rate of incorporation of tetrahydrofuran dimethanol. Finally, and in a particularly advantageous manner, the polymers according to the invention have a water adsorption capacity much greater than the reference: this much more marked hydrophilicity is particularly advantageous for a membrane, whose capacity to hydrate quickly goes condition its performance and effectiveness.

PerméabilitéPermeability

Les expériences sont réalisées à température ambiante. La manipulation consiste à insérer le film à étudier dans la cellule de perméation. Après une désorption sous vide secondaire de 16 h, l'expérience de perméation consiste à imposer une pression (3 bar) d'un gaz choisi dans le compartiment amont de la cellule et à mesurer la remontée de pression dans le compartiment aval de la cellule. La perméabilité est calculée à partir de la pente de la droite pression en fonction du temps dans le régime stationnaire, corrigée du vide statique si nécessaire. Les propriétés de perméation de gaz des membranes préparées à partir du polymère 6 selon l'invention ont été mesurées. Les résultats sont présentés dans le tableau 3. Tableau 3 P(He) P(CO2) P(O2) Sélectivité He/CO2 Sélectivité CO2/O2 Polymère 6 9,2 3,9 0,62 2,36 6,29 Référence 12,4 6,1 2,65 2,03 2,30 The experiments are carried out at room temperature. The manipulation consists of inserting the film to be studied into the permeation cell. After desorption under secondary vacuum for 16 hours, the permeation experiment consists of imposing a pressure (3 bar) of a chosen gas in the upstream compartment of the cell and measuring the rise in pressure in the downstream compartment of the cell. Permeability is calculated from the slope of the pressure versus time line in the steady state, corrected for static vacuum if necessary. The gas permeation properties of the membranes prepared from polymer 6 according to the invention were measured. The results are presented in Table 3. <b>Table 3</b> P(He) P(CO 2 ) P(O 2 ) He/CO 2 selectivity CO 2 /O 2 selectivity Polymer 6 9.2 3.9 0.62 2.36 6.29 Reference 12.4 6.1 2.65 2.03 2.30

Ces résultats montrent que la membrane préparée à partir du polymère 6 contenant seulement 25% en mole de THFDM présente une sélectivité pour le dioxyde de carbone par rapport à l'oxygène (6,29) supérieure à celle de la membrane de référence obtenue avec un PES commercial (2,3).These results show that the membrane prepared from polymer 6 containing only 25 mol% of THFDM has a selectivity for carbon dioxide relative to oxygen (6.29) greater than that of the reference membrane obtained with a Commercial PES (2.3).

Claims (13)

  1. An aromatic polyether type polymer of formula I comprising a repeating unit formed from a furanic bio-based diol and an aromatic compound X-Ar-X, and optionally a second repeating unit formed from a co-diol HO-D-OH and an aromatic compound X-Ar-X:
    Figure imgb0233
    wherein
    Ar is selected from the group consisting of:
    Figure imgb0234
    Figure imgb0235
    and
    Figure imgb0236
    D is selected from the group consisting of:
    Figure imgb0237
    Figure imgb0238
    Figure imgb0239
    Figure imgb0240
    Figure imgb0241
    Figure imgb0242
    Figure imgb0243
    Figure imgb0244
    Figure imgb0245
    Figure imgb0246
    Figure imgb0247
    Figure imgb0248
    Figure imgb0249
    Figure imgb0250
    Figure imgb0251
    Figure imgb0252
    Figure imgb0253
    Figure imgb0254
    and
    Figure imgb0255
    - X is a halogen
    - m is an integer which is greater than 1
    - n is 0 or an integer which is greater than 1
    - the ratio m/n is comprised between 100/0 and 1/99
    - p is an integer which is greater than 1
  2. The polymer of formula (I) according to claim 1
    Figure imgb0256
    wherein
    - the ratio m/n is comprised between 100/0 and 1/99, preferably between 100/0 and 10/90
    - p is an integer which is greater than 1
    - Ar is selected from the group consisting of:
    Figure imgb0257
    Figure imgb0258
    Figure imgb0259
    - D is selected from the group consisting of:
    Figure imgb0260
    Figure imgb0261
    Figure imgb0262
    Figure imgb0263
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
  3. The polymer of formula (II) according to claim 1
    Figure imgb0264
    wherein
    - the ratio m/n is comprised between 100/0 and 1/99, preferably between 100/0 and 10/90
    - p is an integer which is greater than 1
    - D is selected from the group consisting of:
    Figure imgb0265
    Figure imgb0266
    Figure imgb0267
    Figure imgb0268
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
  4. The polymer of formula (III) according to claim 1
    Figure imgb0269
    wherein
    - m is an integer which is greater than 1
    - n is 0 or an integer which is greater than 1
    - the ratio m/n is comprised between 100/0 and 1/99, preferably between 100/0 and 10/90
    - p is an integer which is greater than 1
    - Ar is selected from the group consisting of:
    Figure imgb0270
    Figure imgb0271
    Figure imgb0272
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
  5. The polymer of formula (IV) according to claim 1
    Figure imgb0273
    wherein
    - p is an integer which is greater than 1
    - Ar is selected from the group consisting of:
    Figure imgb0274
    Figure imgb0275
    Figure imgb0276
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
  6. The polymer of formula (V) according to claim 1
    Figure imgb0277
    wherein
    - p is an integer which is greater than 1
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
  7. A method for preparing a polymer comprising the repeating unit(s) of formula (I)
    Figure imgb0278
    wherein
    - m is an integer which is greater than 1
    - n is 0 or an integer which is greater than 1
    - the ratio m/n is comprised between 100/0 and 1/99
    - p is an integer which is greater than 1
    - Ar is selected from the group consisting of:
    Figure imgb0279
    Figure imgb0280
    Figure imgb0281
    - D is selected from the group consisting of:
    Figure imgb0282
    Figure imgb0283
    Figure imgb0284
    Figure imgb0285
    Figure imgb0286
    Figure imgb0287
    Figure imgb0288
    Figure imgb0289
    Figure imgb0290
    Figure imgb0291
    Figure imgb0292
    Figure imgb0293
    Figure imgb0294
    Figure imgb0295
    Figure imgb0296
    Figure imgb0297
    Figure imgb0298
    Figure imgb0299
    Figure imgb0300
    - X is a halogen, preferably X is selected from fluorine and chlorine, more preferably X is fluorine.
    and comprises a step of reaction between tetrahydrofuran dimethanol, optionally in the presence of a compound of formula HO-D-OH, with a dihalogenated aromatic compound of formula X-Ar-X, in the presence of a base in an organic solvent.
  8. The method according to claim 7, characterised in that the tetrahydrofuran dimethanol/co-diol molar ratio is comprised between 100/0 and 1/99.
  9. The method according to claim 7 or 8, characterised in that the base is selected from the alkali metal salts.
  10. The method according to any one of claims 7 to 9, characterised in that the organic solvent is selected from the aprotic polar solvents.
  11. The method according to any one of claims 7 to 10, characterised in that the proportion of monomers is comprised between 10% and 50% by mass relative to the sum of the mass of the solvent and the mass of the monomers.
  12. The method according to any one of claims 7 to 11, characterised in that the reaction between tetrahydrofuran dimethanol, optionally in the presence of a co-diol, with a dihalogenated aromatic compound is carried out at a temperature comprised between 160°C and 240°C.
  13. A use of a polymer according to one of claims 1 to 6, for manufacturing membranes of manufactured parts and coatings.
EP19780287.9A 2018-08-20 2019-08-20 Aromatic polyethers containing a biosourced furan diol Active EP3841147B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857546A FR3085039B1 (en) 2018-08-20 2018-08-20 AROMATIC POLYETHERS BASED ON A FURANIC DIOL BIOSOURCE
PCT/FR2019/000138 WO2020039128A1 (en) 2018-08-20 2019-08-20 Aromatic polyethers containing a biosourced furan diol

Publications (2)

Publication Number Publication Date
EP3841147A1 EP3841147A1 (en) 2021-06-30
EP3841147B1 true EP3841147B1 (en) 2023-10-04

Family

ID=65443921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780287.9A Active EP3841147B1 (en) 2018-08-20 2019-08-20 Aromatic polyethers containing a biosourced furan diol

Country Status (6)

Country Link
US (1) US20210317265A1 (en)
EP (1) EP3841147B1 (en)
JP (1) JP2021535246A (en)
KR (1) KR20220035016A (en)
FR (1) FR3085039B1 (en)
WO (1) WO2020039128A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704475B1 (en) 2014-08-25 2017-02-10 주식회사 삼양사 Polysulfone copolymer having excellent chemical resistance and heat resistance and method for preparing the same

Also Published As

Publication number Publication date
FR3085039B1 (en) 2020-10-23
US20210317265A1 (en) 2021-10-14
EP3841147A1 (en) 2021-06-30
FR3085039A1 (en) 2020-02-21
JP2021535246A (en) 2021-12-16
KR20220035016A (en) 2022-03-21
WO2020039128A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US10029248B2 (en) Membrane separation of olefin and paraffin mixtures
JP6080136B2 (en) Hydrophilic block copolymers and membranes produced therefrom (II)
KR101745513B1 (en) Hydrophilically modified fluorinated membrane (iv)
JP6377633B2 (en) Hydrophilic fluoropolymer
US9254466B2 (en) Crosslinked cellulosic membranes
US9309367B2 (en) Membranes comprising cellulosic material and hydrophilic block copolymer (V)
EP0969025A1 (en) Amorphous fluoropolymer manufactured articles
EP2963078B1 (en) Fluorinated polymer and use thereof in the preparation of hydrophilic membranes
JP6124162B2 (en) Hydrophilic modified fluorinated membrane (III)
EP2962746B1 (en) Hydrophilic membranes and method of preparation thereof
EP3841149B1 (en) Method for producing aromatic polyethersulfones containing isohexide
EP3841147B1 (en) Aromatic polyethers containing a biosourced furan diol
US9260569B2 (en) Hydrophilic block copolymers and method of preparation thereof (III)
CN110892000A (en) Hydrophilic copolymer and film
RU2471539C2 (en) Membrane for separation of spirit mixes by pervaporation
EP3947523A1 (en) Process for synthesising semi-aromatic polyethers
CN116669843A (en) Novel method for separating propylene from a Gas Mixture (GM) comprising propylene and propane

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230414

RIC1 Information provided on ipc code assigned before grant

Ipc: C08G 75/23 20060101ALI20230331BHEP

Ipc: C08G 65/40 20060101ALI20230331BHEP

Ipc: C08G 65/34 20060101AFI20230331BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DELAUNAY, THIERRY

Inventor name: MERCIER, REGIS

Inventor name: DEGRAS, SARAH

Inventor name: JACQUEL, NICOLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019038721

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1617728

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240205