EP3838447A1 - Procédé de fabrication par compression isostatique à chaud d'une pièce outil - Google Patents

Procédé de fabrication par compression isostatique à chaud d'une pièce outil Download PDF

Info

Publication number
EP3838447A1
EP3838447A1 EP20214230.3A EP20214230A EP3838447A1 EP 3838447 A1 EP3838447 A1 EP 3838447A1 EP 20214230 A EP20214230 A EP 20214230A EP 3838447 A1 EP3838447 A1 EP 3838447A1
Authority
EP
European Patent Office
Prior art keywords
useful
support
sub
support part
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20214230.3A
Other languages
German (de)
English (en)
Inventor
Sébastien CHOMETTE
Pierre-Eric Frayssines
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3838447A1 publication Critical patent/EP3838447A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware

Definitions

  • the invention relates to the field of machine tools and in particular tool parts ensuring the function of the machine tool.
  • the invention relates in particular to a method of manufacturing a tool part involving the mechanical joining of a useful part and a support part.
  • the method according to the present invention involving hot isostatic compression, makes it possible, in this regard, to improve the mechanical and environmental resistance of the tool part.
  • the tool parts used for abrasion or cutting of materials are generally monolithic in shape, and made of a metal alloy with high mechanical strength.
  • the tool parts may include areas, in particular the areas providing the function of the tool part, of greater hardness than the other areas. of the part considered.
  • the first category comprises the bonding of the useful part with the support part by means of a binder, and in particular an organic binder.
  • the interfaces brought into contact during bonding must provide for the insertion of the adhesive.
  • the second category of assembly comprises brazing as described in documents [2] to [4] cited at the end of the description.
  • Brazing comprises in particular the use of a material which has a melting temperature lower than those of the materials forming the parts to be assembled, so as to be able to pass to the liquid state during a heating step and thus bind the parts. between them.
  • Brazing gives the tool part a thermomechanical strength as well as an increased environmental resistance with regard to the tool parts formed by bonding.
  • brazing zone remains a zone of mechanical weakness which equally affects the mechanical strength of the tool part.
  • checking the brazing also requires mastering the dimensional and geometric tolerances of the parts to be assembled.
  • the third category of assembly as described in document [5] cited at the end of the description, comprises the use of a so-called composite material with a composition gradient between the useful part and the support part.
  • This third method of assembly although making it possible to contain the mechanical stresses likely to occur at the level of the assembly interface, remains complex to implement, and has a cost which is sometimes incompatible with the envisaged applications.
  • the fourth category of assembly includes mechanical assembly.
  • the mechanical assembly of the tool part can be obtained by bolting.
  • This technique which makes it possible to obtain a removable tool part, does not give the latter the mechanical resistance required for the most demanding applications.
  • the mechanical assembly can be obtained by riveting.
  • This technique in addition to the drawbacks relating to bolting, does not allow the tool part to be dismantled.
  • the mechanical assembly may involve mechanical anchoring, for example by hooping as described in documents [9] to [11] cited at the end of the description or even by compression, optionally in combination with hooping, such as described in documents [12] and [13] cited at the end of the description.
  • the profile of the interface must be essentially linear so as to allow the relative sliding of the parts to be assembled.
  • An aim of the present invention is therefore to provide a method for manufacturing a tool part making it possible to give said part increased mechanical strength with respect to the tool parts formed by the methods known in the art.
  • Another object of the present invention is to provide a method of manufacturing a tool part making it possible to give said part increased environmental resistance with respect to the tool parts formed by the methods known in the art.
  • Another aim of the present invention is to provide a method for manufacturing a tool part for which the machining tolerances of the parts to be assembled are less restrictive with regard to the methods known in the art.
  • Another object of the present invention is to provide a method of manufacturing a tool part that does not require the addition of material, in particular in liquid form, to perform the assembly.
  • the hermetic closing of the container is carried out so that the pressure inside the latter is less than 10 -3 mbar.
  • the housing formed by the container has a shape conforming to the assembly formed by the useful part with the support part.
  • step a) is carried out by means of complementary interlocking formed on one and the other of the useful and support parts.
  • said method further comprises a step a1), carried out before step c), of forming weld spots intended to keep the useful part and the support part integral with one another. .
  • said method comprises a step e), executed at the end of step d), of machining the useful part.
  • said method comprises a step f) of final heat treatment.
  • an anti-diffusion layer is formed at the interface formed between the useful part and the support part, said anti-diffusion layer being intended to limit the diffusion of material from the support part to the useful part.
  • an intermediate layer is interposed between the useful part and the support part, the intermediate layer being configured to reduce the level of stresses at the level of the interface formed between the part. useful and the support part with regard to a tool part without said intermediate layer.
  • the heat treatment comprises a temperature rise to a temperature of between 1000 ° C and 1200 ° C.
  • the heat treatment is carried out for a period of between 1 hour and 6 hours.
  • the useful part has a Rockwell C type hardness greater than that of the support part.
  • the useful part has a Rockwell C type hardness greater than 45 HRC.
  • the tool part comprises at least elements chosen from: cutting blade, a drilling head.
  • a useful part 1 is a part which is shaped to perform the function of the tool part 10.
  • the useful part carries the wire. the blade (this aspect is discussed in the remainder of the statement in the context of a first practical example of implementation of the present invention).
  • the Rockwell C type hardness measured according to standard [14] cited at the end of the description, may in this regard be greater than or equal to 45 HRC.
  • the material forming the useful part can comprise a ceramic-metal composite alloy (cermet) of the tungsten carbide type containing between 4% and 20% of cobalt in mass proportion while the support part can comprise a metal alloy, and in particular of steel 1.7225.
  • ceramic-metal composite alloy tungsten carbide type containing between 4% and 20% of cobalt in mass proportion
  • the support part can comprise a metal alloy, and in particular of steel 1.7225.
  • the working part 1 and the support part 2 can be formed by laser cutting, photochemical drilling, conventional machining, sinking, cutting by wire EDM, punching.
  • the invention is not however limited to these shaping techniques only.
  • a WC-Co tool can be used.
  • the method according to the present invention comprises a step a) of assembling the useful part 1 with the support part 2 (illustrated on figure 2 ).
  • the “assembly” according to the present invention relates only to the installation or contacting of faces, respectively, of the working part 1 and of the support part 2.
  • the assembly step has ) is nothing but a montage useful parts and support, and does not lead to a mechanical and non-removable joining of said useful parts 1 and support 2.
  • the assembly can comprise bringing a working face 11 of the working part into contact with a support face 21 of the support part 2 (the interface formed between these two faces being referenced 11A).
  • the assembly can also be carried out by means of complementary interlocking means formed on one and the other of the useful face 11 and of the support face 21.
  • the complementary interlocking means may comprise a mortise-tenon pair formed, respectively, on one of the working and support faces, and on the other of the working and support faces.
  • the complementary interlocking means may comprise a contained and containing dovetail pair formed, respectively, on one of the useful and support faces, and on the other of the useful and support faces.
  • interlocking means formed for example by machining, may have a tolerance of +0.1 mm for the containing means and of -0.1 mm for the contained means.
  • the method also comprises a step b) which consists in providing a container provided with a receptacle 4 and a cover 5 ( figure 3 ).
  • the receptacle 4 comprises a housing 4A intended to house the assembly formed in step a).
  • the shape of the housing 4A conforms to that of the assembly formed of the useful part 1 and of the support part 2.
  • the receptacle 4 as well as the cover 5 can be formed from a metal plate, for example by stamping or by folding.
  • the metal plate can in particular comprise stainless steel 1.4307 2 mm thick.
  • Step b) is then followed by step c) which consists in placing the assembly formed by the useful parts 1 and support 2 in the receptacle 4 and in closing the latter hermetically with the cover 5 ( figure 4 ).
  • hermetically sealed is understood to mean a closure which prevents any gas exchange between the external environment and the interior of the container.
  • the closure of the container may in particular comprise the formation of weld beads intended to ensure the tightness of the container.
  • the container can be closed using the TIG (Tungsten Inert Gas) technique without filler metal.
  • TIG Tungsten Inert Gas
  • the hermetic closure of the container is carried out so that the pressure inside the latter is less than 10 -3 mbar.
  • a hole can be made at a wall of the container in order to be able to impose a vacuum inside the latter by means of a pump.
  • Step c) can also be preceded by a1) forming weld spots intended to keep the useful part 1 and the support part 2 integral with one another.
  • Step c) is followed by a step d) of hot isostatic compression in a dedicated chamber.
  • the container is subjected to a thermal cycle and under a controlled pressure atmosphere, and in particular a pressure between 500 bar and 2000 bar, for example 1000 bar.
  • This step d) makes it possible in particular to seal the different parts of the useful parts 1 and support 2 together.
  • the combined action of the controlled pressure and of the thermal cycle allows in particular the plasticization and the creep of the material forming the working part 1 and of the support part 2. This results in anchoring and joining of the working parts 1 and support 2 between they.
  • a diffusion of chemical elements of the material forming the parts possibly reinforces the sealing and the solidarisation between them.
  • the thermal cycle can include a phase of temperature rise to a plateau, called the maintenance temperature.
  • the temperature rise phase can last between 1 h and 4 h, while the plateau can last between 1 h and 6 h.
  • the holding temperature can be between 1000 ° C and 1200 ° C.
  • Step d) ends with opening the container and extracting the tool part 10 thus formed ( figure 5 ).
  • the method according to the present invention may comprise a final heat treatment step f) of the tool part intended to restore the mechanical properties of the useful part only, of the support part only or of both, parts likely to have been affected during performing step d).
  • step f) can comprise a first phase and a second annealing phase.
  • the first phase can be carried out at a temperature between 800 ° C and 900 ° C, and last between 10 minutes and 60 minutes.
  • the part formed by the useful part and the support part undergoes thermal quenching, in particular oil quenching.
  • the second annealing phase is then carried out at a temperature between 600 ° C and 700 ° C, and lasts between 10 minutes and 60 minutes.
  • the method according to the present invention can also comprise one or more intermediate machining steps, and in particular a step e), executed at the end of step d), for machining the useful part.
  • the assembly step a) can be preceded by the formation of an anti-diffusion layer on one or other of the useful faces. 11 and support 21.
  • the anti-diffusion layer is intended in particular to limit the diffusion of material from the support part to the useful part.
  • an intermediate layer can be formed on one or the other of the useful faces 11 and support 21.
  • This intermediate layer is in particular configured to reduce the load. level of constraints at the level of the interface formed between the useful part and the support part with respect to a tool part without said intermediate layer.
  • the method according to the present invention thus makes it possible to seal the constituent parts of the tool part, and in particular constituent parts of a different nature.
  • the sealing thus produced between the useful part and the support part in order to obtain the tool part has a mechanical and environmental resistance much greater than that of the tool parts produced according to the methods known from the state of the art.
  • the method according to the present invention has the advantage of not involving any material in the liquid state for sealing the working and support parts.
  • the method according to the present invention opens the way to the sealing of parts with more complex shapes.
  • the remainder of the description is dedicated to the presentation of two implementation examples.
  • the first example relates to a method of manufacturing a cutting blade, while the second example describes the manufacture of a part of a drill head.
  • the figures 6 to 12 illustrate the method of manufacturing a cutting blade according to the first example of implementation of the method of manufacturing a tool part by hot isostatic compression.
  • the useful part 1 comprises in particular a ceramic-metal composite alloy (cermet) of the tungsten carbide type containing 15% cobalt in mass proportion while the support parts 2 1 , 2 2 , 2 3 , and 2 4 are made of a steel 1.7225.
  • ceramic-metal composite alloy tungsten carbide type containing 15% cobalt in mass proportion while the support parts 2 1 , 2 2 , 2 3 , and 2 4 are made of a steel 1.7225.
  • the useful face 11 of part 1 comprises a contained dovetail while the support face 21 of the support parts 2 1 and 2 4 comprises a containing dovetail.
  • the parts of the support part 2 2 and 2 3 which are identical, are provided with a half profile of the dovetail type.
  • the face opposite the useful face 11 of the useful part 1 is for example intended to support the function of the tool part 1.
  • Parts 1, 2 1 , 2 2 , 2 3 , and 2 4 are then assembled according to the terms of step a) of the process ( figure 9 ).
  • the container provided with the receptacle 4 and the cover 5 is then produced according to the terms of step b) of the process ( figure 10 ).
  • the figure 11 represents the container hermetically sealed according to the terms of step c), and housing the parts 1, 2 1 , 2 2 , 2 3 , and 2 4 assembled during step a).
  • the container housing the assembled parts 1, 2 1 , 2 2 , 2 3 , and 2 4, is then placed in a hot isostatic compression chamber so as to seal the parts together according to the terms of step d ).
  • step d the tool part, formed by the parts 1, 2 1 , 2 2 , 2 3 , and 2 4 sealed together, is extracted from the container, and is subjected to a treatment step final thermal f) intended to restore the mechanical properties of the useful part only, of the support part only or of both, liable to have been altered during the execution of step d).
  • step f) can comprise a first phase and a second annealing phase.
  • the first phase can be carried out at a temperature between 800 ° C and 900 ° C, and last between 10 minutes and 60 minutes.
  • the part formed by the useful part and the support part undergoes thermal quenching, in particular oil quenching.
  • the second annealing phase is then carried out at a temperature between 600 ° C and 700 ° C, and lasts between 10 minutes and 60 minutes.
  • the tool part 10 can be machined at the level of an opposite face of the useful face 11 so as to form a blade wire.
  • the figures 13 to 17 illustrate the method of manufacturing a part of a drilling head according to the second example of implementation of the method of manufacturing a tool part by hot isostatic compression.
  • the drilling head part by sealing a working part 1 ( figure 13 ) with two parts forming the support part 2 referenced 2 1 and 2 2 ( figures 14 ).
  • the useful part 1 comprises a ceramic-metal composite alloy (cermet) of the tungsten carbide type containing 15% cobalt in mass proportion while the parts forming the support part 2 1 and 2 2 are made of a 1.7225 steel.
  • the useful part 1 comprises a conical axisymmetric zone 1 1 and a conical tip 1 2 .
  • the parts of the support part 2 1 and 2 2 are arranged to, when assembled along their assembly face 2a, form a cavity delimited by support surface 2b intended to accommodate the conical part 1 1 of the useful part.
  • the container provided with the receptacle 4 and the cover 5 is then produced according to the terms of step b) of the process ( figure 16 ).
  • the figure 17 represents the container hermetically sealed according to the terms of step c), and housing the parts 1, 2 1 and 2 2 assembled during step a).
  • the container, housing the assembled parts 1, 2 1 and 2 2 , is then placed in a hot isostatic compression chamber so as to seal the parts together according to the terms of step d).
  • step d) the tool part, formed by the parts 1, 2 1 , and 2 2 sealed together, is extracted from the container, and is subjected to a final heat treatment step f) intended for restore the mechanical properties of the useful part only, of the support part only or of both, which may have been affected during the execution of step d) (FIG. 18).
  • step f) can comprise a first phase and a second annealing phase.
  • the first phase can be carried out at a temperature between 800 ° C and 900 ° C, and last between 10 minutes and 60 minutes.
  • the part formed by the useful part and the support part undergoes thermal quenching, in particular oil quenching.
  • the second annealing phase is then carried out at a temperature of between 600 ° C and 700 ° C, and lasts between 10 minutes and 60 minutes.
  • the tool part 10 can be machined at the level of the conical point 1 2 .
  • the first and second examples of a method for manufacturing a tool part can implement an anti-diffusion layer of the first variant and / or the intermediate layer of the second variant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

L'invention concerne un procédé de fabrication par compression isostatique à chaud d'une pièce outil (10) formée par au moins une partie utile (1) et au moins une partie support (2<sub>1</sub>, 2<sub>2</sub>, 2<sub>3</sub>, 2<sub>4</sub>) scellées entre elles, le procédé comprenant les étapes suivantes :a) assembler l'au moins une partie utile (1) avec l'au moins une partie support (2<sub>1</sub>, 2<sub>2</sub>, 2<sub>3</sub>, 2<sub>4</sub>) ;b) fournir un conteneur pourvu d'un réceptacle et d'un couvercle ;c) placer l'assemblage formé lors de l'étape a) dans le réceptacle et positionner le couvercle sur le réceptacle de manière à fermer de manière hermétique le conteneur ;d) soumettre le conteneur fermé de manière hermétique à un traitement thermique, et à un environnement d'une pression comprise entre 500 bar et 2000 bar, de manière à sceller les parties utile et support entre elles.

Description

    DOMAINE TECHNIQUE
  • L'invention se rapporte au domaine des machines outil et en particulier des pièces outils assurant la fonction de la machine-outil.
  • L'invention concerne notamment un procédé de fabrication d'une pièce outil impliquant la solidarisation mécanique d'une partie utile et d'une partie support.
  • Le procédé selon la présente invention, impliquant une compression isostatique à chaud, permet, à cet égard, d'améliorer la résistance mécanique et environnementale de la pièce outil.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • Les pièces outils mises en œuvre pour l'abrasion ou la découpe de matériaux sont généralement de forme monolithique, et faites d'un alliage métallique à haute résistance mécanique.
  • Toutefois, lorsque les circonstances l'imposent, notamment lorsque les exigences en termes de résistance mécanique sont plus sévères, les pièces outils peuvent comprendre des zones, en particulier les zones assurant la fonction de la pièce outil, d'une dureté supérieure aux autres zones de la pièce considérée.
  • Les procédés de fabrication de telles pièces outils connus de l'état de la technique imposent donc un assemblage et la solidarisation d'une partie utile, destinée à assurer la fonction de l'outil, avec une partie support.
  • Les procédés connus de l'état de la technique se divisent en quatre grandes catégories d'assemblage et de solidarisation.
  • La première catégorie, dont un exemple est décrit dans le document [1] cité à la fin de la description, comprend le collage de la partie utile avec la partie support au moyen d'un liant, et notamment d'un liant organique.
  • Toutefois, ce mode de fabrication reste réservé aux pièces outils soumises à un environnement, en termes d'humidité ou d'exposition chimique, peu ou pas contraignant.
  • Par ailleurs, les interfaces mises en contact lors de collage doivent prévoir l'insertion de la colle.
  • La deuxième catégorie d'assemblage comprend le brasage tel que décrit dans les documents [2] à [4] cités à la fin de la description.
  • Le brasage comprend notamment l'emploi d'un matériau qui présente une température de fusion inférieure à celles des matériaux formant les parties à assembler, de manière à pouvoir passer à l'état liquide lors d'une étape de chauffage et ainsi lier les parties entre elles.
  • Le brasage confère à la pièce outil une tenue thermomécanique ainsi qu'une résistance environnementale accrues au regard des pièces outils formées par collage.
  • Par ailleurs, à l'instar du collage, la zone de brasage reste une zone de faiblesse mécanique qui affecte d'autant la tenue mécanique de la pièce outil.
  • Par surcroit, le contrôle du brasage impose également une maîtrise des tolérances dimensionnelles et géométriques des parties à assembler.
  • La troisième catégorie d'assemblage, telle que décrite dans le document [5] cité à la fin de la description, comprend la mise en œuvre d'un matériau composite dit à gradient de composition entre la partie utile et la partie support.
  • Ce troisième mode d'assemblage, bien que permettant de contenir les contraintes mécaniques susceptibles de se produire au niveau de l'interface d'assemblage, reste complexe à mettre en œuvre, et présente un coût parfois incompatible avec les applications envisagées.
  • En outre ce mode d'assemblage n'offre que peu de flexibilité en termes de géométrie de surface à assembler.
  • Enfin la quatrième catégorie d'assemblage comprend l'assemblage mécanique.
  • Selon un premier exemple, notamment décrit dans les documents [6] et [7], l'assemblage mécanique de la pièce outil peut être obtenu par boulonnage. Cette technique qui permet d'obtenir une pièce outil démontable ne confère pas à cette dernière la résistance mécanique requise pour les applications les plus exigeantes.
  • De manière alternative, l'assemblage mécanique peut être obtenu par rivetage. Cette technique, en plus des inconvénients relatifs au boulonnage, ne permet pas le démontage de la pièce outil.
  • Enfin, l'assemblage mécanique peut faire intervenir un ancrage mécanique par exemple par frettage tel que décrit dans les documents [9] à [11] cités à la fin de la description ou encore par compression, éventuellement en combinaison avec le frettage, tel que décrit dans les documents [12] et [13] cités à la fin de la description.
  • Ces méthodes d'ancrage mécanique ne sont toutefois pas satisfaisantes.
  • En effet, ces méthodes sont particulièrement contraignantes en termes de tolérances d'usinage. Par ailleurs, le profil de l'interface doit être essentiellement linéaire de manière à permettre le coulissement relatif des pièces à assembler.
  • Un but de la présente invention est donc de proposer un procédé de fabrication d'une pièce outil permettant de conférer à ladite pièce une résistance mécanique accrue au regard des pièces outils formées par les procédés connus de la technique.
  • Un autre but de la présente invention est de proposer un procédé de fabrication d'une pièce outil permettant de conférer à ladite pièce une résistance environnementale accrue au regard des pièces outils formées par les procédés connus de la technique.
  • Un autre but de la présente invention est de proposer un procédé de fabrication d'une pièce outil pour lequel les tolérances d'usinages des parties à assembler sont moins contraignantes au regard des procédés connus de la technique.
  • Un autre but de la présente invention est de proposer un procédé de fabrication d'une pièce outil ne nécessitant pas l'adjonction de matériau, notamment sous forme liquide, pour réaliser l'assemblage.
  • EXPOSÉ DE L'INVENTION
  • Les buts de l'invention sont, au moins en partie, atteints par un procédé de fabrication par compression isostatique à chaud d'une pièce outil formée par un scellement d'au moins une partie utile et d'au moins une partie support, le procédé comprenant les étapes suivantes :
    1. a) assembler l'au moins une partie utile avec l'au moins une partie support ;
    2. b) fournir un conteneur pourvu d'un réceptacle et d'un couvercle ;
    3. c) placer l'assemblage formé lors de l'étape a) dans le réceptacle et positionner le couvercle sur le réceptacle de manière à fermer de manière hermétique le conteneur ;
    4. d) soumettre le conteneur fermé de manière hermétique à un traitement thermique, et à un environnement d'une pression comprise entre 500 bar et 2000 bar, de manière à sceller les parties utile et support entre elles.
  • Selon un mode de mise en œuvre, la fermeture hermétique du conteneur est exécutée de sorte que la pression à l'intérieur de ce dernier est inférieure à 10-3 mbar.
  • Selon un mode de mise en œuvre, le logement formé par le conteneur présente une forme conforme à l'assemblage formé par la partie utile avec la partie support.
  • Selon un mode de mise en œuvre, l'étape a) est exécutée au moyen d'emboîtements complémentaires formés sur l'une et l'autre des parties utile et support.
  • Selon un mode de mise en œuvre, ledit procédé comprend en outre une étape a1), exécutée avant l'étape c), de formation de points de soudure destinée à maintenir solidaire l'une de l'autre la partie utile et la partie support.
  • Selon un mode de mise en œuvre, ledit procédé comprend une étape e), exécutée à l'issue de l'étape d), d'usinage de la partie utile.
  • Selon un mode de mise en œuvre, ledit procédé comprend une étape f) de traitement thermique final.
  • Selon un mode de mise en œuvre, une couche anti diffusion est formée à l'interface formée entre la partie utile et la partie support, ladite couche anti diffusion étant destinée à limiter la diffusion de la matière de la partie support vers la partie utile.
  • Selon un mode de mise en œuvre, une couche intermédiaire est intercalée entre la partie utile et la partie support, la couche intercalaire étant configurée pour diminuer le niveau de contraintes au niveau de l'interface formée entre la partie utile et la partie support au regard d'une pièce outil dépourvue de ladite couche intermédiaire.
  • Selon un mode de mise en œuvre, le traitement thermique comprend une élévation de température à une température comprise entre 1000 °C et 1200 °C.
  • Selon un mode de mise en œuvre, le traitement thermique est exécuté selon une durée comprise entre 1 heure et 6 heures.
  • Selon un mode de mise en œuvre, la partie utile présente une dureté de type Rockwell C supérieure à celle de la partie support.
  • Selon un mode de mise en œuvre, la partie utile présente une dureté de type Rockwell C supérieure à 45 HRC.
  • Selon un mode de mise en œuvre, la pièce outil comprend au moins des éléments choisis parmi : lame de découpe, une tête de forage.
  • BRÈVE DESCRIPTION DES DESSINS
  • D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un procédé de fabrication par compression isostatique à chaud d'une pièce outil selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
    • La figure 1 est une représentation schématique d'une partie outil et d'une partie support destinées à former la pièce outil selon les termes de la présente invention ;
    • La figure 2 est une illustration schématique d'une étape a) d'assemblage de la partie utile avec la partie support selon la présente invention ;
    • La figure 3 est une représentation schématique d'une étape b) destinée à fournir un conteneur pourvu d'un réceptacle et d'un couvercle ;
    • La figure 4 est une représentation schématique du conteneur hermétiquement fermé ;
    • La figure 5 est une représentation schématique de la pièce formée par compression isostatique à chaud ;
    • La figure 6 est une représentation schématique d'une partie utile selon un premier exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 7 est une représentation schématique d'une partie support selon le premier exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 8 est une représentation schématique d'une autre pièce de la partie support selon le premier exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 9 est une représentation schématique de l'étape a) du procédé selon le premier exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 10 est une représentation schématique de l'étape b) du procédé selon le premier exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 11 représente le conteneur fermé hermétiquement et logeant les parties utile et support assemblées lors de l'étape a) ;
    • La figure 12 est une schématique d'une pièce outil, notamment d'une lame de découpe, fabriquée selon le premier exemple de mise en œuvre de la présente invention ;
    • La figure 13 est une représentation schématique d'une partie utile selon un deuxième exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 14 est une représentation schématique d'une partie support selon le deuxième exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 15 est une représentation schématique de l'étape a) du procédé selon le deuxième exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 16 est une représentation schématique de l'étape b) du procédé selon le deuxième exemple de mise en œuvre du procédé selon la présente invention ;
    • La figure 17 représente le conteneur fermé hermétiquement et logeant les parties utile et support assemblées lors de l'étape a).
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Aux figures 1 à 5, on peut voir un exemple de procédé de fabrication d'une pièce outil 10 pourvue d'une pièce utile 1 et d'une pièce support 2 selon la présente invention.
  • Par « partie utile » ou « partie support », on entend une partie monobloc de la pièce outil à former.
  • Une partie utile 1 selon des termes de la présente invention est une partie qui est conformée pour assurer la fonction de la pièce outil 10. Notamment, dans le cadre d'une pièce outil formant une lame de découpe, la partie utile porte le fil de la lame (cet aspect est discuté dans la suite de l'énoncé dans le cadre d'un premier exemple pratique de mise en œuvre de la présente invention).
  • Il est ainsi possible de considérer une partie utile 1 qui présente une dureté adaptée pour assurer la fonction de la pièce outil. La dureté de type Rockwell C, mesurée selon la norme [14] citée à la fin de la description, peut à cet égard être supérieure ou égale à 45 HRC.
  • Notamment, le matériau formant la partie utile peut comprendre un alliage composite céramique-métal (cermet) de type carbure de tungstène contenant entre 4% et 20% de cobalt en proportion massique tandis que la partie support peut comprendre un alliage métallique, et notamment de l'acier 1.7225.
  • La partie utile 1 et la partie support 2 peuvent être formées par découpe laser, perçage photochimique, usinage conventionnel, enfonçage, découpe par électroérosion par fil, poinçonnage. L'invention n'est toutefois pas limitée à ces seules techniques de mise en forme.
  • Dans le cas particulier d'une formation de la partie utile 1 par usinage, un outil en WC-Co peut être utilisé.
  • Le procédé selon la présente invention comprend une étape a) d'assemblage de la partie utile 1 avec la partie support 2 (illustrée à la figure 2).
  • L'« assemblage » selon la présente invention concerne uniquement la mise en place ou la mise en contact de faces, respectivement, de la partie utile 1 et de la partie support 2. En d'autres termes, l'étape d'assemblage a) n'est autre qu'un montage des parties utile et support, et ne conduit pas à une solidarisation mécanique et non démontable desdites parties utile 1 et support 2.
  • En particulier, l'assemblage peut comprendre la mise en contact d'une face utile 11 de la partie utile avec une face support 21 de la partie support 2 (l'interface formée entre ces deux faces étant référencée 11A).
  • De manière alternative ou complémentaire, l'assemblage peut également être réalisé par l'intermédiaire de moyens d'emboîtement complémentaires formés sur l'une et l'autre de la face utile 11 et de la face support 21.
  • Selon un premier exemple, les moyens d'emboîtement complémentaires peuvent comprendre un couple mortaise-tenon formés, respectivement, sur l'une des faces utile et support, et sur l'autre des faces utile et support.
  • Selon un autre exemple, les moyens d'emboîtement complémentaires peuvent comprendre un couple queue d'aronde contenue et contenante formées, respectivement, sur l'une des faces utile et support, et sur l'autre des faces utile et support.
  • Ces moyens d'emboîtement, formés par exemple par usinage, peuvent présenter une tolérance de +0,1 mm pour le moyen contenant et de -0,1mm pour le moyen contenu.
  • Le procédé comprend également une étape b) qui consiste à fournir un conteneur pourvu d'un réceptacle 4 et d'un couvercle 5 (figure 3).
  • Le réceptacle 4 comprend un logement 4A destiné à loger l'assemblage formé à l'étape a).
  • En particulier, la forme du logement 4A est conforme à celle de l'assemble formé de la partie utile 1 et de la partie support 2.
  • Le réceptacle 4 ainsi que le couvercle 5 peuvent être formés à partir d'une plaque métallique, par exemple par emboutissage ou par pliage. La plaque métallique peut notamment comprendre de l'acier inoxydable 1.4307 de 2 mm d'épaisseur.
  • L'étape b) est alors suivie d'une étape c) qui consiste à placer l'assemblage formé par les parties utile 1 et support 2 dans le réceptacle 4 et de fermer ce dernier de manière hermétique avec le couvercle 5 (figure 4).
  • Par « fermer de manière hermétique », on entend une fermeture qui prévient tout échange gazeux entre l'environnement extérieur et l'intérieur du conteneur.
  • La fermeture du conteneur peut notamment comprendre la formation de cordons de soudure destinés à assurer l'étanchéité du conteneur.
  • De manière alternative, la fermeture du conteneur peut être mise en œuvre par la technique TIG (Tungsten Inert Gas) sans métal d'apport.
  • Par ailleurs, la fermeture hermétique du conteneur est exécutée de sorte que la pression à l'intérieur de ce dernier est inférieure à 10-3 mbar.
  • A cet égard, un trou peut être ménagé au niveau d'une paroi du conteneur afin de pouvoir imposer un vide à l'intérieur de ce dernier au moyen d'une pompe.
  • L'étape c) peut également être précédée d'une a1) de formation de points de soudure destinée à maintenir solidaires l'une de l'autre la partie utile 1 et la partie support 2.
  • L'étape c) est suivie d'une étape d) de compression isostatique à chaud dans une enceinte dédiée.
  • En particulier, lors de l'exécution de cette étape d), le conteneur est soumis à un cycle thermique et sous une atmosphère à pression contrôlée, et notamment une pression comprise entre 500 bar et 2000 bar, par exemple 1000 bar.
  • Cette étape d) permet en particulier de sceller les différentes pièces des parties utiles 1 et support 2 entre elles.
  • L'action combinée de la pression contrôlée et du cycle thermique permet notamment la plastification et le fluage de la matière formant la partie utile 1 et de la partie support 2. Il en résulte un ancrage et une solidarisation de parties utile 1 et support 2 entre elles.
  • Une diffusion d'éléments chimiques de la matière formant les parties vient éventuellement renforcer le scellement et la solidarisation entre ces dernières.
  • Le cycle thermique peut comprendre une phase d'élévation de température jusqu'à un palier, dit température de maintien.
  • La phase d'élévation de température peut être d'une durée comprise entre 1 h et 4 h, tandis que le palier peut durer entre 1 h et 6 h.
  • La température de maintien peut être comprise entre 1000 °C et 1200°C.
  • L'étape d) se termine par une ouverture du conteneur et de l'extraction de la pièce outil 10 ainsi formée (figure 5).
  • Le procédé selon la présente invention peut comprendre une étape de traitement thermique final f) de la pièce outil destinée à restaurer les propriétés mécaniques de la partie utile seulement, de la partie support seulement ou des deux, parties susceptibles d'avoir été affectées lors de l'exécution de l'étape d).
  • A titre d'exemple, l'étape f) peut comprendre une première phase et une seconde phase de recuit.
  • La première phase peut être exécutée à une température comprise entre 800°C et 900°C, et être d'une durée comprise entre 10 minutes et 60 minutes. A l'issue de cette première phase, la pièce formée par la partie utile et la partie support subit une trempe thermique, notamment une trempe à l'huile. La seconde phase de recuit est ensuite réalisée à une température comprise entre 600°C et 700°C, et est d'une durée comprise entre 10 minutes et 60 minutes.
  • Le procédé selon la présente invention peut également comprendre une ou plusieurs étapes d'usinage intermédiaires, et notamment une étape e), exécutée à l'issue de l'étape d), d'usinage de la partie utile.
  • Selon une première variante avantageuse du procédé qui reprend l'essentiel des étapes décrites ci-avant, l'étape a) d'assemblage peut être précédée de la formation d'une couche anti diffusion sur l'une ou l'autre des faces utile 11 et support 21. La couche anti diffusion est notamment destinée à limiter la diffusion de la matière de la partie support vers la partie utile.
  • Selon une deuxième variante avantageuse du procédé qui reprend l'essentiel des étapes décrites ci-avant, une couche intermédiaire peut être formée sur l'une ou l'autre des faces utile 11 et support 21. Cette couche intermédiaire est notamment configurée pour diminuer le niveau de contraintes au niveau de l'interface formée entre la partie utile et la partie support au regard d'une pièce outil dépourvue de ladite couche intermédiaire.
  • Le procédé selon la présente invention permet ainsi de sceller les parties constitutives de la pièce outil, et notamment des pièces constitutives de nature différente.
  • Le scellement ainsi réalisé entre la partie utile et la partie support en vue d'obtenir la pièce outil, présente une résistance mécanique et environnementale bien supérieure à celle des pièces outils réalisées selon les procédés connus de l'état de la technique.
  • Par ailleurs, le procédé selon la présente invention présente l'intérêt de de ne pas faire intervenir de matériau à l'état liquide pour le scellement des parties utile et support.
  • En outre, les exigences en termes de tolérances de formation, notamment par usinage, des parties 1 et 2 sont moins contraignantes que celles rencontrées lors de la mise en œuvre des procédés connus de l'état de la technique.
  • Enfin, le procédé selon la présente invention ouvre la voie au scellement de parties à formes plus complexes.
  • La suite de la description est dédiée à la présentation de deux exemples de mise en œuvre. Le premier exemple concerne un procédé de fabrication d'une lame de découpe, tandis que le deuxième exemple décrit la fabrication d'une partie d'une tête de forage.
  • Ainsi, les figures 6 à 12 illustrent le procédé de fabrication d'une lame de découpe selon le premier exemple de mise en œuvre du procédé de fabrication d'une pièce outil par compression isostatique à chaud.
  • Selon ce premier exemple, il est proposé de former la lame de découpe en scellant une partie utile 1 (figure 6) avec quatre pièces constituant la partie support 2 référencées 21, 22, 23, et 24 (figures 7 et 8).
  • La partie utile 1 comprend notamment un alliage composite céramique-métal (cermet) de type carbure de tungstène contenant 15% cobalt en proportion massique tandis que les parties support 21, 22, 23, et 24 sont faites d'un acier 1.7225.
  • La face utile 11 de la partie 1 comprend une queue d'aronde contenue tandis que la face support 21 des parties support 21 et 24 comprend une queue d'aronde contenante. Les pièces de la partie support 22 et 23, identiques, sont, elles, pourvues d'un demi profil de type queue d'aronde.
  • La face opposée à la face utile 11 de la partie utile 1 est par exemple destinée à supporter la fonction de la pièce outil 1.
  • Les pièces 1, 21, 22, 23, et 24 sont ensuite assemblées selon les termes de l'étape a) du procédé (figure 9).
  • Le conteneur pourvu du réceptacle 4 et du couvercle 5 est ensuite réalisé selon les termes de l'étape b) du procédé (figure 10).
  • La figure 11 représente le conteneur fermé hermétiquement selon les termes de l'étape c), et logeant les parties 1, 21, 22, 23, et 24 assemblées lors de l'étape a).
  • Le conteneur, logeant les parties 1, 21, 22, 23, et 24 assemblées est ensuite mis dans une enceinte de compression isostatique à chaud de manière à réaliser le scellement des parties entre elles selon les termes de l'étape d).
  • A l'issue de l'étape d), la pièce outil, formée par les parties 1, 21, 22, 23, et 24 scellées entre elles, est extraite du conteneur, et est soumise à une étape de traitement thermique final f) destinée à restaurer les propriétés mécaniques de la partie utile seulement, de la partie support seulement ou des deux, susceptibles d'avoir été altérées lors de l'exécution de l'étape d).
  • A titre d'exemple, l'étape f) peut comprendre une première phase et une seconde phase de recuit.
  • La première phase peut être exécutée à une température comprise entre 800°C et 900°C, et être d'une durée comprise entre 10 minutes et 60 minutes. A l'issue de cette première phase, la pièce formée par la partie utile et la partie support subit une trempe thermique, notamment une trempe à l'huile. La seconde phase de recuit est ensuite réalisée à une température comprise entre 600°C et 700°C, et est d'une durée comprise entre 10 minutes et 60 minutes.
  • Enfin, la pièce outil 10 peut être usinée au niveau d'une face opposée de la face utile 11 de manière à former un fil de lame.
  • Les figures 13 à 17 illustrent le procédé de fabrication d'une partie d'une tête de forage selon le deuxième exemple de mise en œuvre du procédé de fabrication d'une pièce outil par compression isostatique à chaud.
  • Selon ce deuxième exemple, il est proposé de former la partie de tête de forage en scellant une partie utile 1 (figure 13) avec deux pièces formant la partie support 2 référencées 21 et 22 (figures 14).
  • La partie utile 1 comprend un alliage composite céramique-métal (cermet) de type carbure de tungstène contenant 15% cobalt en proportion massique tandis que les pièces formant la partie support 21 et 22 sont faites d'un acier 1.7225.
  • La partie utile 1 comprend une zone axisymétrique conique 11 et une pointe conique 12.
  • Les pièces de la partie support 21 et 22 sont agencées pour, lorsqu'elles sont assemblées selon leur face d'assemblage 2a, former une cavité délimitée par surface support 2b destinée à accueillir la partie conique 11 de la partie utile.
  • Les pièces 1, 21, et 22 sont alors assemblées selon les termes de l'étape a) du procédé (figure 15).
  • Le conteneur pourvu du réceptacle 4 et du couvercle 5 est ensuite réalisé selon les termes de l'étape b) du procédé (figure 16).
  • La figure 17 représente le conteneur fermé hermétiquement selon les termes de l'étape c), et logeant les parties 1, 21 et 22 assemblées lors de l'étape a).
  • Le conteneur, logeant les pièces 1, 21 et 22 assemblées, est ensuite mis dans une enceinte de compression isostatique à chaud de manière à réaliser le scellement des parties entre elles selon les termes de l'étape d).
  • A l'issue de l'étape d), la pièce outil, formée par les pièces 1, 21, et 22 scellées entre elles, est extraite du conteneur, et est soumise à une étape de traitement thermique final f) destinée à restaurer les propriétés mécaniques de la partie utile seulement, de la partie support seulement ou des deux, susceptibles d'avoir été affectées lors de l'exécution de l'étape d) (figure 18).
  • A titre d'exemple, l'étape f) peut comprendre une première phase et une seconde phase de recuit.
  • La première phase peut être exécutée à une température comprise entre 800°C et 900°C, et être d'une durée comprise entre 10 minutes et 60 minutes. A l'issue de cette première phase, la pièce formée par la partie utile et la partie support subit une trempe thermique, notamment une trempe à l'huile. La seconde phase de recuit est ensuite réalisée à une température comprise entre 600°C et 700°C, et est d'une durée comprise entre 10 minutes et 60 minutes.
  • La pièce outil 10 peut être à usinée au niveau de la pointe conique 12.
  • Les premier et deuxième exemples de procédé fabrication d'une pièce outil peuvent mettre en œuvre couche anti diffusion de la première variante et/ou la couche intermédiaire de la deuxième variante.
  • RÉFÉRENCES
    1. [1] US 7,367,753 B2
    2. [2] US 8,268,452 B2
    3. [3] WO2011/146743 A3
    4. [4] WO2011/146760 A4
    5. [5] WO2009/149071 A3
    6. [6] WO2019/043461
    7. [7] CN101774033
    8. [8] CN101602112
    9. [9] WO2008/121219
    10. [10] US9,827,611
    11. [11] EP0284579
    12. [12] US 2,944,323
    13. [13] WO 2004/103617 A1
    14. [14] ASTM18 - Rockwell C hardness test

Claims (14)

  1. Procédé de fabrication par compression isostatique à chaud d'une pièce outil (10) formée par au moins une partie utile (1) et au moins une partie support (2) scellées entre elles, le procédé comprenant les étapes suivantes :
    a) assembler l'au moins une partie utile (1) avec l'au moins une partie support (2, 21, 22, 23, 24) ;
    b) fournir un conteneur pourvu d'un réceptacle (4) et d'un couvercle (5);
    c) placer l'assemblage formé lors de l'étape a) dans le réceptacle (4) et positionner le couvercle (5) sur le réceptacle (4) de manière à fermer de manière hermétique le conteneur ;
    d) soumettre le conteneur fermé de manière hermétique à un traitement thermique, et à un environnement d'une pression comprise entre 500 bar et 2000 bar, de manière à sceller les parties utile et support entre elles.
  2. Procédé selon la revendication 1, dans lequel la fermeture hermétique du conteneur est exécutée de sorte que la pression à l'intérieur de ce dernier est inférieure à 10-3 mbar.
  3. Procédé selon la revendication 1 ou 2, dans lequel le logement formé par le conteneur présente une morphologie conforme à l'assemblage comprenant la partie utile et la partie support.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel l'étape a) est exécutée au moyen d'emboîtements complémentaires formés sur l'une et l'autre des parties utile (1) et support (2, 21, 22, 23, 24).
  5. Procédé selon l'une des revendications 1 à 4, dans lequel ledit procédé comprend en outre une étape a1), exécutée avant l'étape c), de formation de points de soudure destinés à maintenir solidaire l'une de l'autre la partie utile et la partie support.
  6. Procédé selon l'une des revendications 1 à 5, dans lequel ledit procédé comprend une étape e), exécutée à l'issue de l'étape d), d'usinage de la partie utile.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel ledit procédé comprend une étape f) de traitement thermique final.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel une couche anti diffusion est formée à l'interface formée entre la partie utile et la partie support, ladite couche anti diffusion étant destinée à limiter la diffusion de la matière de la partie support vers la partie utile.
  9. Procédé selon l'une des revendications 1 à 8, dans lequel une couche intermédiaire est intercalée entre la partie utile et la partie support, la couche intercalaire étant configurée pour permettre un soudage par diffusion et diminuer le niveau de contraintes au niveau de l'interface formée entre la partie utile et la partie support au regard d'une pièce outil dépourvue de ladite couche intermédiaire.
  10. Procédé selon l'une des revendications 1 à 9, dans lequel le traitement thermique de l'étape d) comprend une élévation de température à une température comprise entre 1000 °C et 1200 °C.
  11. Procédé selon l'une des revendications 1 à 10, dans lequel le traitement thermique de l'étape d) est exécuté selon une durée comprise entre 1 heure et 6 heures.
  12. Procédé selon l'une des revendications 1 à 11, dans lequel la partie utile présente une dureté de type Rockwell C supérieure à celle de la partie support.
  13. Procédé selon l'une des revendications 1 à 12, dans lequel la partie utile présente une dureté de type Rockwell C supérieure à 45 HCR.
  14. Procédé selon l'une des revendications 1 à 13, dans lequel la pièce outil comprend au moins des éléments choisis parmi : lame de découpe, une tête de forage.
EP20214230.3A 2019-12-18 2020-12-15 Procédé de fabrication par compression isostatique à chaud d'une pièce outil Pending EP3838447A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1914777A FR3105040B1 (fr) 2019-12-18 2019-12-18 Procédé de fabrication par compression isostatique à chaud d’une pièce outil

Publications (1)

Publication Number Publication Date
EP3838447A1 true EP3838447A1 (fr) 2021-06-23

Family

ID=70008742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20214230.3A Pending EP3838447A1 (fr) 2019-12-18 2020-12-15 Procédé de fabrication par compression isostatique à chaud d'une pièce outil

Country Status (2)

Country Link
EP (1) EP3838447A1 (fr)
FR (1) FR3105040B1 (fr)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944323A (en) 1954-12-07 1960-07-12 Georg Hufnagel Werkzengfabrik Compound tool
GB2184382A (en) * 1985-12-23 1987-06-24 Hip Ltd Securing inserts
EP0284579A1 (fr) 1987-03-13 1988-09-28 Sandvik Aktiebolag Outil en carbure cémenté
WO2004103617A1 (fr) 2003-05-14 2004-12-02 Diamond Innovations, Inc. Inserts d'outils de coupe et leurs procedes de fabrication
US20050244266A1 (en) * 2004-04-05 2005-11-03 Snecma Moteurs Turbine casing having refractory hooks and obtained by a powder metallurgy method
US7367753B2 (en) 2005-09-14 2008-05-06 Jakob Lach Gmbh & Co. Kg Milling cutter
WO2008121219A1 (fr) 2007-03-30 2008-10-09 Baker Hughes Incorporated Ensemble de manchon d'agencement serré pour foret comprenant un ensemble de buse, et procédé
WO2009149071A2 (fr) 2008-06-02 2009-12-10 Tdy Industries, Inc. Composites carbure cémenté-alliage métallique
CN101602112A (zh) 2009-06-29 2009-12-16 株洲钻石切削刀具股份有限公司 用于可转位刀片的固定刀夹
CN101774033A (zh) 2010-01-19 2010-07-14 株洲钻石切削刀具股份有限公司 装配刀片用紧固结构
WO2011146743A2 (fr) 2010-05-20 2011-11-24 Baker Hughes Incorporated Procédés de formation d'au moins une partie d'outils de forage terrestre
WO2011146760A2 (fr) 2010-05-20 2011-11-24 Baker Hughes Incorporated Procédés de formation d'au moins une partie d'outils de forage terrestre, et articles formés par de tels procédés
US20120039739A1 (en) * 2010-08-10 2012-02-16 David Krauter Cutter rings and method of manufacture
US8268452B2 (en) 2007-07-31 2012-09-18 Baker Hughes Incorporated Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures
US20140305045A1 (en) * 2011-05-25 2014-10-16 Beckmann Engineering Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US9827611B2 (en) 2015-01-30 2017-11-28 Diamond Innovations, Inc. Diamond composite cutting tool assembled with tungsten carbide
WO2019043461A2 (fr) 2017-08-31 2019-03-07 Emerson Process Management (Tianjin) Valves Co., Ltd. Procédé de fixation mécanique pour bouchon de clapet à pointe en carbure
EP3656974A1 (fr) * 2018-11-23 2020-05-27 Sandvik Mining and Construction Tools AB Coupe-disque pour appareil de sous-coupe et son procédé de fabrication

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944323A (en) 1954-12-07 1960-07-12 Georg Hufnagel Werkzengfabrik Compound tool
GB2184382A (en) * 1985-12-23 1987-06-24 Hip Ltd Securing inserts
EP0284579A1 (fr) 1987-03-13 1988-09-28 Sandvik Aktiebolag Outil en carbure cémenté
WO2004103617A1 (fr) 2003-05-14 2004-12-02 Diamond Innovations, Inc. Inserts d'outils de coupe et leurs procedes de fabrication
US20050244266A1 (en) * 2004-04-05 2005-11-03 Snecma Moteurs Turbine casing having refractory hooks and obtained by a powder metallurgy method
US7367753B2 (en) 2005-09-14 2008-05-06 Jakob Lach Gmbh & Co. Kg Milling cutter
WO2008121219A1 (fr) 2007-03-30 2008-10-09 Baker Hughes Incorporated Ensemble de manchon d'agencement serré pour foret comprenant un ensemble de buse, et procédé
US8268452B2 (en) 2007-07-31 2012-09-18 Baker Hughes Incorporated Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures
WO2009149071A2 (fr) 2008-06-02 2009-12-10 Tdy Industries, Inc. Composites carbure cémenté-alliage métallique
CN101602112A (zh) 2009-06-29 2009-12-16 株洲钻石切削刀具股份有限公司 用于可转位刀片的固定刀夹
CN101774033A (zh) 2010-01-19 2010-07-14 株洲钻石切削刀具股份有限公司 装配刀片用紧固结构
WO2011146743A2 (fr) 2010-05-20 2011-11-24 Baker Hughes Incorporated Procédés de formation d'au moins une partie d'outils de forage terrestre
WO2011146760A2 (fr) 2010-05-20 2011-11-24 Baker Hughes Incorporated Procédés de formation d'au moins une partie d'outils de forage terrestre, et articles formés par de tels procédés
US20120039739A1 (en) * 2010-08-10 2012-02-16 David Krauter Cutter rings and method of manufacture
US20140305045A1 (en) * 2011-05-25 2014-10-16 Beckmann Engineering Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US9827611B2 (en) 2015-01-30 2017-11-28 Diamond Innovations, Inc. Diamond composite cutting tool assembled with tungsten carbide
WO2019043461A2 (fr) 2017-08-31 2019-03-07 Emerson Process Management (Tianjin) Valves Co., Ltd. Procédé de fixation mécanique pour bouchon de clapet à pointe en carbure
EP3656974A1 (fr) * 2018-11-23 2020-05-27 Sandvik Mining and Construction Tools AB Coupe-disque pour appareil de sous-coupe et son procédé de fabrication

Also Published As

Publication number Publication date
FR3105040B1 (fr) 2023-11-24
FR3105040A1 (fr) 2021-06-25

Similar Documents

Publication Publication Date Title
FR3105041A1 (fr) Procédé de fabrication par compression isostatique à chaud d’une pièce outil
EP3364479B1 (fr) Pile, notamment pile bouton, et son procede de fabrication
FR2619331A1 (fr) Procede de fabrication de rotors a ailettes integrales, notamment pour moteurs a turbine a gaz
EP2516107B1 (fr) Procede de realisation d&#39;un renfort metallique d&#39;aube de turbomachine
CA2870229C (fr) Procede de realisation d&#39;un renfort metallique avec insert pour la protection d&#39;un bord d&#39;attaque en materiau composite
EP2998062A1 (fr) Procédé de réalisation d&#39;un renfort métallique d&#39;aube de turbomachine
FR2652611A1 (fr) Disque de turbine constitue de deux alliages.
FR2882948A1 (fr) Procede ameliore de preparation de composites a matrice metallique et dispositif de mise en oeuvre d&#39;un tel procede
WO2011104192A1 (fr) Procede de realisation d&#39;un renfort metallique d&#39;aube de turbomachine
EP3838447A1 (fr) Procédé de fabrication par compression isostatique à chaud d&#39;une pièce outil
EP2245206B1 (fr) Procédé de fabrication d&#39;une pièce métallique renforcée de fibres céramiques
GB2486800A (en) Composite part including a cutting element
WO2014053754A1 (fr) Procede pour l&#39;integration de materiau abradable dans un logement par compression isostatique
EP1459818B1 (fr) Ensemble permettant la fabrication d&#39;une pièce mécanique creuse par soudage-diffusion et formage superplastique, utilisation d&#39;un tel ensemble et procédé de fabrication d&#39;une telle pièce mécanique
EP3240371B1 (fr) Composant d&#39;assemblage d&#39;une enceinte a vide et procede de realisation du composant d&#39;assemblage
EP2931454B1 (fr) Procédé d&#39;assemblage par sertissage magnétique
WO2021123577A1 (fr) Procédé de fabrication d&#39;une roue aubagée de turbomachine composite à renfort céramique
WO2009037411A2 (fr) Bandeau de porte pour vehicule automobile, porte de vehicule automobile et procedes de fabrication de ceux-ci
FR3130176A1 (fr) Procédé d’assemblage et de renforcement de pièces par fabrication additive et pièce ainsi obtenue
EP3774303B1 (fr) Outillage pour la mise en oeuvre d&#39;un procédé de frittage flash d&#39;une poudre d&#39;origine naturelle
WO2020128398A1 (fr) Revetement pour noyau de conformage a chaud
FR3035808A1 (fr) Procede de fabrication d&#39;une piece a partir d&#39;elements fabriques par mise en forme d&#39;un melange de poudre de metal ou de ceramique et d&#39;au moins un liant
WO2022184991A1 (fr) Elément tubulaire fileté à segment
KR101211090B1 (ko) 절삭 공구용 인서트

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR