EP3835582B1 - Mini air pump - Google Patents

Mini air pump Download PDF

Info

Publication number
EP3835582B1
EP3835582B1 EP20176187.1A EP20176187A EP3835582B1 EP 3835582 B1 EP3835582 B1 EP 3835582B1 EP 20176187 A EP20176187 A EP 20176187A EP 3835582 B1 EP3835582 B1 EP 3835582B1
Authority
EP
European Patent Office
Prior art keywords
valve
spring
air
chamber
communicating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20176187.1A
Other languages
German (de)
French (fr)
Other versions
EP3835582A1 (en
Inventor
Qing-xiang XU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Koge Micro Tech Co Ltd
Original Assignee
Xiamen Koge Micro Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Koge Micro Tech Co Ltd filed Critical Xiamen Koge Micro Tech Co Ltd
Publication of EP3835582A1 publication Critical patent/EP3835582A1/en
Application granted granted Critical
Publication of EP3835582B1 publication Critical patent/EP3835582B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/021Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms the plate-like flexible member is pressed against a wall by a number of elements, each having an alternating movement in a direction perpendicular to the plane of the plate-like flexible member and each having its own driving mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • F04B43/0063Special features particularities of the flexible members bell-shaped flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/043Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/001Noise damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves

Definitions

  • the present invention relates to a pump, especially to a mini air pump.
  • a conventional mini pump design is known, for example, from document DE 10 2018 207 800 A1 and includes a diaphragm, a bladder base, a valve seat stacked over the diaphragm, a pump cover stacked on the valve seat, an air inlet valve disposed in a flowing direction of air in an air inlet channel and an air outlet valve arranged in a flowing direction of air in an exhaust channel, wherein the pump is further provided with a relief valve and an elastic member for applying a preload to the relief valve.
  • Document DE 10 2018 102 120 A1 teaches a similar pump structure.
  • document WO 2013/030408 A1 discloses another quite similar pump structure, as defined in the preamble of claim 1.
  • the present invention provides a mini air pump according to claim 1, which includes: a diaphragm which includes a plurality of bladders on one side of the diaphragm and each of the bladders having a bladder cavity with an opening toward the other side of the diaphragm; a bladder base which includes a plurality of air inlet channels and a plurality of bladder holes penetrating the bladder base in thickness direction while the diaphragm is attached to the bladder base and the bladders are passed through the bladder holes correspondingly; a pump body which includes a valve seat provided with a plurality of exhaust channels and stacked over the diaphragm, a pump cover stacked on the valve sea, an exhaust chamber and a spring chamber separated from each other and constructed by the valve seat and the pump cover, and a return channel constructed by the valve seat, the diaphragm, and the bladder base and communicating the valve seat, the diaphragm, and the bladder base with one another; the exhaust channels communicating with the bladder cavity while return channel communicating with the air inlet channel but
  • the spring chamber is disconnected from both the exhaust chamber and the return channel to prevent the exhaust flow or the return flow from flowing into the spring chamber.
  • the spring is quite stably positioned in the spring chamber to ensure the abutting force applied to the relief valve by the spring remains the same and the relief valve can act more accurately. Therefore the stability of the mini air pump during blowing up of the objects to be inflated is increased.
  • a mini air pump 100 includes a diaphragm 10, a bladder base 20, a pump body 30, an air inlet valve 40, an air outlet valve 51, a relief valve 52 and a preload member 70.
  • a plurality of bladders 11 are disposed on one side of the diaphragm 10 (such as a lower side in Fig. 2 ) and each bladder 11 includes a bladder cavity 111 with an opening toward the other side of the diaphragm 10 (such as an upper side in Fig. 2 ).
  • the diaphragm 10 is a flexible member made of materials such as rubber. The volume of the bladder cavity 111 can be increased or decreased due to the bladder 11 being squeezed or stretched by an external force so as to pump air/gas in/out.
  • the bladder base 20 is used for supporting the diaphragm 10 and composed of a plurality of bladder holes 21 and a plurality of air inlet channels 22.
  • the bladder holes 21 are penetrating the bladder base 20 in the thickness direction of the bladder base 20.
  • the diaphragm 10 is attached to the bladder base 20 and each of the bladders 11 is inserted through one of the bladder holes 21 correspondingly.
  • the air inlet channels 22 are used for delivering air/gas to the bladder cavity 111.
  • the air inlet channel 22 can not only be disposed on the bladder base 20.
  • a part of the air inlet channels 22 may be formed on the bladder base 20 while the rest part of the air inlet channels 22 may be formed on the pump body 30.
  • an intake air flow first is passed through the part of the air inlet channels 22 of the bladder base 20, moved upward through the part of the air inlet channels 22 on the pump body 30 and then turned downward to be sucked into the bladder cavity 111.
  • the flow noise is reduced by the air flow travelling further.
  • the air inlet valve 40 is disposed in the flowing direction of the air in the air inlet channels 22 and used for communicating the bladder cavity 111 with the air inlet channels 22 in one-way manner. More specifically, the air inlet valve 40 is opened and the air is allowed to pass through the air inlet channels 22 to be delivered into the bladder cavity 111 when the bladder cavity 111 is stretched to increase the volume thereof and draw the air in. While, when the bladder cavity 111 is squeezed to decrease the volume thereof and exhaust the air, the air inlet valve 40 is closed. Thus, arrangement of the air inlet valve 40 in the flowing direction of the intake flow prevents the air flow from flowing back.
  • the pump body 30 consists of a valve seat 31 and a pump cover 32 stacked on each other.
  • the valve seat 31 is stacked over the diaphragm 10.
  • the pump body 30 is generally made of plastic which is easy to mold.
  • an exhaust chamber 33 and a spring chamber 34 are constructed by the valve seat 31 and the pump cover 32.
  • the valve seat 31 is provided with a plurality of exhaust channels 311 which are communicating with the bladder cavities 111. When the bladder cavities 111 are compressed, the air from inside the bladder cavities 111 is flowing into the exhaust chamber 33 through the exhaust channels 311 while exhaust flow will not flow into the spring chamber 34.
  • the air outlet valve 51 is disposed in the flowing direction of the air in the exhaust channels 311 and used for communicating the bladder cavities 111 with the exhaust chamber 33 in one-way manner. More concretely, the air outlet valve 51 is closed and the air is delivered to the bladder cavities 111 through the air inlet channels 22 when the bladder cavity 111 is stretched to increase the volume thereof and draw the air in. While, when the bladder cavity 111 is squeezed to decrease the volume thereof and exhaust the air, the air outlet valve 51 is opened and the air flow moves out through the exhaust channels 311. Moreover, the air outlet valve 51 is open when the air inlet valve 40 is closed while the air outlet valve 51 is closed once the air inlet valve 40 is open. Thereby the air is drawn into the bladder cavity 111 and exhausted from the bladder cavity 111 repeatedly.
  • a return channel 35 is constructed by the valve seat 31, the diaphragm 10 and the bladder base 20 and communicating the valve seat 31, the diaphragm 10, and the bladder base 20 with one another.
  • the return channel 35 is communicating with the air inlet channel 22 but is not communicating with the spring chamber 34.
  • the relief valve 52 is mounted in the exhaust chamber 33 for selectively communicating the exhaust chamber 33 with the return channel 35.
  • a preload member 70 which includes at least one spring 71 is mounted in the spring chamber 34.
  • the spring 71 applies a preload to the relief valve 52.
  • the air flow in the exhaust chamber 33 will not flow into the spring chamber 34 because the exhaust chamber 33 and the spring chamber 34 are separated from each other.
  • the air flow in the return channel 35 also won't flow into the spring chamber 34.
  • the spring 71 will not shake or shift due to the relief flow or the exhaust flow.
  • the assembly position of the spring 71 in the spring chamber 34 remains and the same abutting force (the above preload) is applied to the relief valve 52 by the spring 71. Therefore accurate actuation of the relief valve 52 is ensured and the stability of the mini air pump 100 during the blowing-up is improved.
  • the spring chamber 34 is not only disconnected from the exhaust chamber 33 but also the return channel 35 so as to prevent the exhaust flow or the return flow from flowing into the spring chamber 34.
  • the spring 71 is relatively stably positioned in the spring chamber 34 to ensure that the abutting force applied to the relief valve 52 by the spring 71 remains the same and the relief valve 52 can actuate more accurately. Therefore the stability of the mini air pump 100 during the blow-up of the objects to be inflated is increased.
  • noise caused by air flow can be reduced due to the return flow being exhausted to the air inlet channel 22, instead of being directly released to the atmosphere. And the operating noise of the mini air pump 100 is further minimized.
  • the air outlet valve 51 and the relief valve 52 are integrally formed on a valve membrane 50, as shown in Fig. 1 together with Fig. 2 and Fig. 3 . That means the air outlet valve 51 and the relief valve 52 are integrated with the valve membrane 50.
  • the valve membrane 50 is clipped between the valve seat 31 and the pump cover 32.
  • the air outlet valve 51 is used to control on/off of the exhaust channels 311 while the pressure of the air in the exhaust chamber 33 is regulated through the relief valve 52.
  • the regulation of the blow-up of the objects to be inflated by the mini air pump 100 is achieved.
  • the relief valve 52 is formed on one side of the valve membrane 50 facing the valve seat 31.
  • the valve seat 31 is provided with a groove 312 while the valve membrane 50 is provided with at least one communication hole 53 by which the groove 312 and the exhaust chamber 33 are communicating with each other.
  • the air flow in the exhaust chamber 33 can flow to the groove 312 through the communication hole 53.
  • the relief valve 52 is open, the air flow moves from the groove 312 to the return channel 35. Thereby pressure relief is achieved.
  • the groove 312 includes a circular groove 3121 and a plurality of long grooves 3122 which are arranged around and radiated from the circular groove 3121. A free end of the long groove 3122 is arranged corresponding to the communication hole 53.
  • the return channel 35 is located at a central portion of the pump body 30 while the exhaust chamber 33 is located around the pump body 30. The air flow in the exhaust chamber 33 is directed to the central circular groove 3121 through the long grooves 3122. Then the air flow is output through the return channel 35 when the relief valve 52 is open.
  • the relief valve 52 is a circular flange which is arranged around an entrance of the return channel 35 and is directly abutting against the valve seat 31.
  • the spring 71 of the preload member 70 is abutting against the valve membrane 50 so that the circular flange is tightly attached to the valve seat 31.
  • the relief valve 52 is moved upward so that the circular flange and the attached surface of the valve seat 31 are separated from each other to allow the groove 312 and the return channel 35 communicating with each other.
  • a positioning rod 54 is mounted on the other side of the valve membrane 50.
  • the preload member 70 further includes a spring seat 72 and a stopper 73.
  • the positioning rod 54 is inserted through the spring seat 72 and one end of the spring 71 is abutting against and mounted in a limit slot 721 defined in the spring seat 72.
  • the spring seat 72 is positioned on the valve membrane 50 by the positioning rod 54.
  • the spring 71 is locked in the limit slot 721 and applying an abutting force to the spring seat 72 so that the relief valve 52 is further abutting against the valve seat 31. That means the spring 71 and the valve membrane 50 are connected firmly by the spring seat 72 in combination with the positioning rod 54.
  • a guiding chamber 321 communicating with the spring chamber 34 is formed in the pump cover 32 and the other end of the spring 71 is extended into the guiding chamber 321 while the stopper 73 which applies a pre-tension to the other end of the spring 71 is mounted in the guiding chamber 321.
  • the two ends of the spring 71 is limited between the spring seat 72 and the stopper 73 while the cylindrical surface of the spring 71 is limited in the guiding chamber 321 for preventing shaking or weaving of the spring 71.
  • the stability of the preload member 70 within the spring chamber 34 is further improved.
  • the bladder base 20 is further provided with a plurality of sink slots 23 each of which is communicating with the air inlet channel 22 and the return channel 35 correspondingly.
  • the sink slots 23 the return flow is dispersed and delivered into different air inlet channels 22 to prevent the return flow from concentrating in and flowing out from the return channel 35 on the bladder base 20. Thereby air flow noise is further reduced.
  • a valve cap 80 is disposed over the pump cover 32 and a buffer chamber 81 is constructed by the pump cover 32 and the valve cap 80.
  • the buffer chamber 81 is communicating with the exhaust chamber 33. That means the air flowing out from the exhaust chamber 33 is reaching the buffer chamber 81 first, not being directly delivered to the object to be inflated. Thereby the air flow is delivered to the outside after noise attenuation in the buffer chamber 81. Therefore the operating noise of the mini air pump 100 is further reduced.
  • a one-way valve 90 is arranged at an air vent of the valve cap 80 or the pump cover 32.
  • the one-way valve 90 is open when air in the exhaust chamber 33 is delivered to the outside. While the air in the exhaust chamber 33 is not delivered to the outside, the one-way valve 90 is closed.
  • the air inlet valve 40 is integrally formed on the diaphragm 10 and arranged corresponding to an outlet of the air inlet channel 22. That means the air inlet valve 40 is a part of the e diaphragm 10.
  • the terms “mounted”, “coupled”, “connected”, “fixed” and the like are used broadly and may be, for example, fixed connections, detachable connection, or integral connection; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or interaction of two elements, which can be understood by those skilled in the art according to specific situations.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include the first and second features are not in direct contact but through additional features between them.
  • the first feature is "on”, “over” and “above” the second feature means the first feature directly is right on the top of or diagonally above the second feature, or merely indicating that the first feature is at a higher level than the second feature.
  • the first feature is "beneath”, “under” and “below” the second feature means the first feature is directly is just beneath or diagonally below the second feature, or merely the first feature is at a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

    BACKGROUND OF THE INVENTION 1. Technical Field
  • The present invention relates to a pump, especially to a mini air pump.
  • 2. Description of Related Art
  • In a conventional mini air pump in which valves and a pump body are integrated, relief flows flow into the sprig chamber and directly act on the spring. Under the influence of air pressure, the spring can't be set up stably in the spring chamber and this causes changes in the abutting force applied to the relief valve by the spring. Thereby accurate actuation of the relief valve within preset air pressure is unable to be ensured.
  • Moreover, buzzing noises of the air flow are usually generated when relief flows are directly released to the atmosphere. Thus the operating noise of the mini air pump is increased to a certain extent.
  • A conventional mini pump design is known, for example, from document DE 10 2018 207 800 A1 and includes a diaphragm, a bladder base, a valve seat stacked over the diaphragm, a pump cover stacked on the valve seat, an air inlet valve disposed in a flowing direction of air in an air inlet channel and an air outlet valve arranged in a flowing direction of air in an exhaust channel, wherein the pump is further provided with a relief valve and an elastic member for applying a preload to the relief valve. Document DE 10 2018 102 120 A1 teaches a similar pump structure. Furthermore, document WO 2013/030408 A1 discloses another quite similar pump structure, as defined in the preamble of claim 1.
  • However, there is still room for improvement and there is a need to provide a novel mini air pump which solves the above problems to some degree.
  • SUMMARY OF THE INVENTION
  • It is a primary object of the present invention to provide a mini air pump in which a relief valve actuates accurately for precise regulation of air pressure in objects to be inflated and overpressure protection of the objects to be inflated.
  • The present invention provides a mini air pump according to claim 1, which includes: a diaphragm which includes a plurality of bladders on one side of the diaphragm and each of the bladders having a bladder cavity with an opening toward the other side of the diaphragm; a bladder base which includes a plurality of air inlet channels and a plurality of bladder holes penetrating the bladder base in thickness direction while the diaphragm is attached to the bladder base and the bladders are passed through the bladder holes correspondingly; a pump body which includes a valve seat provided with a plurality of exhaust channels and stacked over the diaphragm, a pump cover stacked on the valve sea, an exhaust chamber and a spring chamber separated from each other and constructed by the valve seat and the pump cover, and a return channel constructed by the valve seat, the diaphragm, and the bladder base and communicating the valve seat, the diaphragm, and the bladder base with one another; the exhaust channels communicating with the bladder cavity while return channel communicating with the air inlet channel but not communicating with the spring chamber; an air inlet valve disposed in flowing direction of air in the air inlet channel and used for communicating the bladder cavity with the air inlet channel in one-way manner; an air outlet valve arranged in flowing direction of air in the exhaust channel and used for communicating the exhaust chamber with the bladder cavity in one-way manner; a relief valve mounted in the exhaust chamber for selectively communicating the return channel with the exhaust chamber; and a preload member mounted in the spring chamber and having at least one spring which applies a preload to the relief valve.
  • The spring chamber is disconnected from both the exhaust chamber and the return channel to prevent the exhaust flow or the return flow from flowing into the spring chamber. Thus, the spring is quite stably positioned in the spring chamber to ensure the abutting force applied to the relief valve by the spring remains the same and the relief valve can act more accurately. Therefore the stability of the mini air pump during blowing up of the objects to be inflated is increased.
  • Implementation of the present invention produces advantageous effects which are described in detail as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
    • Fig. 1 is an explosive view of an embodiment according to the present invention;
    • Fig. 2 is a sectional view of an embodiment according to the present invention; and
    • Fig. 3 is a sectional view of an embodiment viewed from another angle according to the present invention.
    DETAILED DESCRIPTION OF THE INVENTION
  • Preferred embodiments of the present invention are described in detail as follows and are shown in the figures, wherein the same or similar reference numerals are used to refer to the same or similar elements having the same or similar functions. The embodiments described with reference to the figures are exemplary and explanatory only.
  • Referring to Fig. 1, Fig. 2 and Fig. 3, a mini air pump 100 according to the present invention includes a diaphragm 10, a bladder base 20, a pump body 30, an air inlet valve 40, an air outlet valve 51, a relief valve 52 and a preload member 70.
  • With reference to Fig. 1, Fig. 2 and Fig. 3, a plurality of bladders 11 are disposed on one side of the diaphragm 10 (such as a lower side in Fig. 2) and each bladder 11 includes a bladder cavity 111 with an opening toward the other side of the diaphragm 10 (such as an upper side in Fig. 2). The diaphragm 10 is a flexible member made of materials such as rubber. The volume of the bladder cavity 111 can be increased or decreased due to the bladder 11 being squeezed or stretched by an external force so as to pump air/gas in/out.
  • The bladder base 20 is used for supporting the diaphragm 10 and composed of a plurality of bladder holes 21 and a plurality of air inlet channels 22. The bladder holes 21 are penetrating the bladder base 20 in the thickness direction of the bladder base 20. The diaphragm 10 is attached to the bladder base 20 and each of the bladders 11 is inserted through one of the bladder holes 21 correspondingly.
  • The air inlet channels 22 are used for delivering air/gas to the bladder cavity 111. The air inlet channel 22 can not only be disposed on the bladder base 20. For example, a part of the air inlet channels 22 may be formed on the bladder base 20 while the rest part of the air inlet channels 22 may be formed on the pump body 30. In this case, an intake air flow first is passed through the part of the air inlet channels 22 of the bladder base 20, moved upward through the part of the air inlet channels 22 on the pump body 30 and then turned downward to be sucked into the bladder cavity 111. In this embodiment, the flow noise is reduced by the air flow travelling further.
  • In order to prevent backflow of the air into the bladder cavity 111, the air inlet valve 40 is disposed in the flowing direction of the air in the air inlet channels 22 and used for communicating the bladder cavity 111 with the air inlet channels 22 in one-way manner. More specifically, the air inlet valve 40 is opened and the air is allowed to pass through the air inlet channels 22 to be delivered into the bladder cavity 111 when the bladder cavity 111 is stretched to increase the volume thereof and draw the air in. While, when the bladder cavity 111 is squeezed to decrease the volume thereof and exhaust the air, the air inlet valve 40 is closed. Thus, arrangement of the air inlet valve 40 in the flowing direction of the intake flow prevents the air flow from flowing back.
  • Moreover, the pump body 30 consists of a valve seat 31 and a pump cover 32 stacked on each other. The valve seat 31 is stacked over the diaphragm 10. The pump body 30 is generally made of plastic which is easy to mold.
  • More specifically, as shown in Fig. 2 and Fig. 3, an exhaust chamber 33 and a spring chamber 34, separated from each other, are constructed by the valve seat 31 and the pump cover 32. The valve seat 31 is provided with a plurality of exhaust channels 311 which are communicating with the bladder cavities 111. When the bladder cavities 111 are compressed, the air from inside the bladder cavities 111 is flowing into the exhaust chamber 33 through the exhaust channels 311 while exhaust flow will not flow into the spring chamber 34.
  • In order to prevent the air flowing into the exhaust chamber 33 from returning, the air outlet valve 51 is disposed in the flowing direction of the air in the exhaust channels 311 and used for communicating the bladder cavities 111 with the exhaust chamber 33 in one-way manner. More concretely, the air outlet valve 51 is closed and the air is delivered to the bladder cavities 111 through the air inlet channels 22 when the bladder cavity 111 is stretched to increase the volume thereof and draw the air in. While, when the bladder cavity 111 is squeezed to decrease the volume thereof and exhaust the air, the air outlet valve 51 is opened and the air flow moves out through the exhaust channels 311. Moreover, the air outlet valve 51 is open when the air inlet valve 40 is closed while the air outlet valve 51 is closed once the air inlet valve 40 is open. Thereby the air is drawn into the bladder cavity 111 and exhausted from the bladder cavity 111 repeatedly.
  • A return channel 35 is constructed by the valve seat 31, the diaphragm 10 and the bladder base 20 and communicating the valve seat 31, the diaphragm 10, and the bladder base 20 with one another. The return channel 35 is communicating with the air inlet channel 22 but is not communicating with the spring chamber 34. The relief valve 52 is mounted in the exhaust chamber 33 for selectively communicating the exhaust chamber 33 with the return channel 35. When the mini air pump 100 is used to blow up an object, which users intend to inflate, and the pressure in the object raises over a preset value, the relief valve 52 is opened and air in the exhaust chamber 33 is output through the return channel 35 and returned to the air inlet channels 22.
  • As shown in Fig. 2 and Fig. 3, a preload member 70 which includes at least one spring 71 is mounted in the spring chamber 34. The spring 71 applies a preload to the relief valve 52. The air flow in the exhaust chamber 33 will not flow into the spring chamber 34 because the exhaust chamber 33 and the spring chamber 34 are separated from each other. The air flow in the return channel 35 also won't flow into the spring chamber 34. Thus, the spring 71 will not shake or shift due to the relief flow or the exhaust flow. Thereby the assembly position of the spring 71 in the spring chamber 34 remains and the same abutting force (the above preload) is applied to the relief valve 52 by the spring 71. Therefore accurate actuation of the relief valve 52 is ensured and the stability of the mini air pump 100 during the blowing-up is improved.
  • In a nutshell, in the mini air pump 100, the spring chamber 34 is not only disconnected from the exhaust chamber 33 but also the return channel 35 so as to prevent the exhaust flow or the return flow from flowing into the spring chamber 34. Thus, the spring 71 is relatively stably positioned in the spring chamber 34 to ensure that the abutting force applied to the relief valve 52 by the spring 71 remains the same and the relief valve 52 can actuate more accurately. Therefore the stability of the mini air pump 100 during the blow-up of the objects to be inflated is increased.
  • Furthermore, noise caused by air flow can be reduced due to the return flow being exhausted to the air inlet channel 22, instead of being directly released to the atmosphere. And the operating noise of the mini air pump 100 is further minimized.
  • In some embodiments of the present invention, the air outlet valve 51 and the relief valve 52 are integrally formed on a valve membrane 50, as shown in Fig. 1 together with Fig. 2 and Fig. 3. That means the air outlet valve 51 and the relief valve 52 are integrated with the valve membrane 50. The valve membrane 50 is clipped between the valve seat 31 and the pump cover 32. The air outlet valve 51 is used to control on/off of the exhaust channels 311 while the pressure of the air in the exhaust chamber 33 is regulated through the relief valve 52. Thus the regulation of the blow-up of the objects to be inflated by the mini air pump 100 is achieved.
  • More specifically, the relief valve 52 is formed on one side of the valve membrane 50 facing the valve seat 31. The valve seat 31 is provided with a groove 312 while the valve membrane 50 is provided with at least one communication hole 53 by which the groove 312 and the exhaust chamber 33 are communicating with each other. The air flow in the exhaust chamber 33 can flow to the groove 312 through the communication hole 53. When the relief valve 52 is open, the air flow moves from the groove 312 to the return channel 35. Thereby pressure relief is achieved.
  • As shown in Fig. 1, the groove 312 includes a circular groove 3121 and a plurality of long grooves 3122 which are arranged around and radiated from the circular groove 3121. A free end of the long groove 3122 is arranged corresponding to the communication hole 53. As shown in Fig. 2 and Fig. 3, the return channel 35 is located at a central portion of the pump body 30 while the exhaust chamber 33 is located around the pump body 30. The air flow in the exhaust chamber 33 is directed to the central circular groove 3121 through the long grooves 3122. Then the air flow is output through the return channel 35 when the relief valve 52 is open.
  • As shown in Fig. 2 and Fig. 3, the relief valve 52 is a circular flange which is arranged around an entrance of the return channel 35 and is directly abutting against the valve seat 31. The spring 71 of the preload member 70 is abutting against the valve membrane 50 so that the circular flange is tightly attached to the valve seat 31. When the air pressure in the exhaust chamber 33 is insufficient to push and open the relief valve 52, the groove 312 and the return channel 35 are not communicating with each other. While the air pressure in the exhaust chamber 33 is larger than the abutting force of the spring 71, the relief valve 52 is moved upward so that the circular flange and the attached surface of the valve seat 31 are separated from each other to allow the groove 312 and the return channel 35 communicating with each other.
  • In a preferred embodiment, as shown in Fig. 1 and Fig. 3, a positioning rod 54 is mounted on the other side of the valve membrane 50. The preload member 70 further includes a spring seat 72 and a stopper 73. The positioning rod 54 is inserted through the spring seat 72 and one end of the spring 71 is abutting against and mounted in a limit slot 721 defined in the spring seat 72. The spring seat 72 is positioned on the valve membrane 50 by the positioning rod 54. The spring 71 is locked in the limit slot 721 and applying an abutting force to the spring seat 72 so that the relief valve 52 is further abutting against the valve seat 31. That means the spring 71 and the valve membrane 50 are connected firmly by the spring seat 72 in combination with the positioning rod 54.
  • In another preferred embodiment, refer to Fig. 1 and Fig. 3, a guiding chamber 321 communicating with the spring chamber 34 is formed in the pump cover 32 and the other end of the spring 71 is extended into the guiding chamber 321 while the stopper 73 which applies a pre-tension to the other end of the spring 71 is mounted in the guiding chamber 321. The two ends of the spring 71 is limited between the spring seat 72 and the stopper 73 while the cylindrical surface of the spring 71 is limited in the guiding chamber 321 for preventing shaking or weaving of the spring 71. The stability of the preload member 70 within the spring chamber 34 is further improved.
  • As shown in Fig. 1 and Fig. 3, in a preferred embodiment of the present invention, the bladder base 20 is further provided with a plurality of sink slots 23 each of which is communicating with the air inlet channel 22 and the return channel 35 correspondingly. By the sink slots 23, the return flow is dispersed and delivered into different air inlet channels 22 to prevent the return flow from concentrating in and flowing out from the return channel 35 on the bladder base 20. Thereby air flow noise is further reduced.
  • As shown in Fig. 2 and Fig. 3, according to the present invention, a valve cap 80 is disposed over the pump cover 32 and a buffer chamber 81 is constructed by the pump cover 32 and the valve cap 80. The buffer chamber 81 is communicating with the exhaust chamber 33. That means the air flowing out from the exhaust chamber 33 is reaching the buffer chamber 81 first, not being directly delivered to the object to be inflated. Thereby the air flow is delivered to the outside after noise attenuation in the buffer chamber 81. Therefore the operating noise of the mini air pump 100 is further reduced.
  • In order to avoid the air flow returning to the exhaust chamber 33, a one-way valve 90 is arranged at an air vent of the valve cap 80 or the pump cover 32. The one-way valve 90 is open when air in the exhaust chamber 33 is delivered to the outside. While the air in the exhaust chamber 33 is not delivered to the outside, the one-way valve 90 is closed.
  • In some other embodiments of the present invention, the air inlet valve 40 is integrally formed on the diaphragm 10 and arranged corresponding to an outlet of the air inlet channel 22. That means the air inlet valve 40 is a part of the e diaphragm 10. When the air is delivered into the bladder cavity 111, the intake air flow first is directly passed through the air inlet channel 22 of the bladder base 20 to be sent into the bladder cavity 111.
  • It should be understood that terms such as "top", "bottom", "in", "out", "upper", "lower", etc. should be constructed to refer to the orientation as then described or as shown in the drawings. These relative terms are for convenience of description and do not require that the present invention to constructed or operated in a particular orientation.
  • In the present invention, unless specified or limited otherwise, the terms "mounted", "coupled", "connected", "fixed" and the like are used broadly and may be, for example, fixed connections, detachable connection, or integral connection; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or interaction of two elements, which can be understood by those skilled in the art according to specific situations.
  • In the present disclosure, unless specified or limited otherwise, the first feature "on" or "under" the second feature may include direct contact of the first and second features, and may also include the first and second features are not in direct contact but through additional features between them. Moreover, the first feature is "on", "over" and "above" the second feature means the first feature directly is right on the top of or diagonally above the second feature, or merely indicating that the first feature is at a higher level than the second feature. The first feature is "beneath", "under" and "below" the second feature means the first feature is directly is just beneath or diagonally below the second feature, or merely the first feature is at a lower level than the second feature.
  • In the description of the present specification, the description with reference to the term "one embodiment", "some embodiments", "an example", "a specific example", or "some examples" etc., means that particular features, structures, materials, or characteristics of the described embodiment is included in at least one embodiment or example of the present invention. In the present specification, the schematic description related to the above term is not necessary for the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be connected in at least one embodiment or example in a suitable manner.

Claims (8)

  1. A mini air pump (100) comprising:
    a diaphragm (10) which includes a plurality of bladders (11) on one side of the diaphragm (10) and each of the bladders (11) having a bladder cavity (111) with an opening toward the other side of the diaphragm (10);
    a bladder base (20) which includes a plurality of air inlet channels (22) and a plurality of bladder holes (21) penetrating the bladder base (20) in thickness direction while the diaphragm (10) is attached to the bladder base (20) and the bladders (11) are passed through the bladder holes (21) correspondingly;
    a pump body (30) which includes a valve seat (31) provided with a plurality of exhaust channels (311) and stacked over the diaphragm (10), a pump cover (32) stacked on the valve seat (31), an exhaust chamber (33) and a spring chamber (34) separated from each other and constructed by the valve seat (31) and the pump cover (32), and a return channel (35) constructed by the valve seat (31), the diaphragm (10), and the bladder base (20) and communicating the valve seat (31), the diaphragm (10) and the bladder base (20) with one another; the exhaust channels (311) communicating with the bladder cavity (111) while return channel (35) communicating with the air inlet channels (22) but not communicating with the spring chamber (34);
    an air inlet valve (40) disposed in flowing direction of air in the air inlet channel (22) and used for communicating the bladder cavity (111) with the air inlet channels (22) in one-way manner;
    an air outlet valve (51) arranged in flowing direction of air in the exhaust channel (311) and used for communicating the exhaust chamber (33) with the bladder cavity (111) in one-way manner;
    a relief valve (52) mounted in the exhaust chamber (33) for selectively communicating the return channel (35) with the exhaust chamber (33); and
    a preload member (70) mounted in the spring chamber (34) and having at least one spring (71) which applies a preload to the relief valve (52);
    wherein the spring (71) is relatively stably positioned in the spring chamber (34) to ensure that the abutting force applied to the relief valve (52) by the spring (71) remains the same and the relief valve (52) can actuate more accurately;
    wherein the diaphragm (10) is a flexible member being preferably made of a rubber material; and
    wherein the pump body (30) is made of an easy-moldable plastic;
    characterized in that
    the exhaust chamber (33) and the spring chamber (34) are separated from each other;
    a valve cap (80) is disposed over the pump cover (32) and a buffer chamber (81) is constructed by the pump cover (32) and the valve cap (80); wherein the buffer chamber (81) is communicating with the exhaust chamber (33);
    wherein a one-way valve (90) is arranged at an air vent of the valve cap (80) or the pump cover (32);
    wherein the one-way valve (90) is open when air in the exhaust chamber (33) is delivered to the outside, whereas, while the air in the exhaust chamber (33) is not delivered to the outside, the one-way valve (90) is closed.
  2. The mini air pump (100) as claimed in claim 1, wherein the air outlet valve (51) and the relief valve (52) are integrally formed on a valve membrane (50) while the relief valve (52) is formed on one side of the valve membrane (50) facing the valve seat (31); wherein a groove (312) is mounted on the valve seat (31) and the valve membrane (50) is provided with at least one communication hole (53) by which the groove (312) and the exhaust chamber (33) are communicating with each other.
  3. The mini air pump (100) as claimed in claim 2, wherein the relief valve (52) is a circular flange which is arranged around an entrance of the return channel (35) and is directly abutting against the valve seat (31).
  4. The mini air pump (100) as claimed in claim 2, wherein the groove (312) includes a circular groove (3121) and a plurality of long grooves (3122) which are arranged around and radiated from the circular groove (3121) while a free end of the long groove (3122) is arranged corresponding to the communication hole (53).
  5. The mini air pump (100) as claimed in claim 2, wherein a positioning rod (54) is mounted on the other side of the valve membrane (50) while the preload member (70) further includes a spring seat (72) and the positioning rod (54) is inserted through the spring seat (72); one end of the spring (71) is abutting against and mounted in a limit slot (721) defined in the spring seat (72).
  6. The mini air pump (100) as claimed in claim 5, wherein a guiding chamber (321) communicating with the spring chamber (34) is formed in the pump cover (32) and the other end of the spring (71) is extended into the guiding chamber (321) while a stopper (73) which applies a pre-tension to the other end of the spring (71) is mounted in the guiding chamber (321).
  7. The mini air pump (100) as claimed in claim 1, wherein the bladder base (20) is further provided with a plurality of sink slots (23) each of which is communicating with one of the air inlet channels (22) and the return channel (35) correspondingly.
  8. The mini air pump (100) as claimed in claim 1, wherein the air inlet valve (40) is integrally formed on the diaphragm (10) and arranged corresponding to an outlet of the air inlet channels (22).
EP20176187.1A 2019-12-13 2020-05-22 Mini air pump Active EP3835582B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911280686 2019-12-13

Publications (2)

Publication Number Publication Date
EP3835582A1 EP3835582A1 (en) 2021-06-16
EP3835582B1 true EP3835582B1 (en) 2023-05-31

Family

ID=70802800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20176187.1A Active EP3835582B1 (en) 2019-12-13 2020-05-22 Mini air pump

Country Status (2)

Country Link
US (1) US20210180585A1 (en)
EP (1) EP3835582B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012005082B3 (en) * 2011-09-02 2018-04-26 Alfmeier Präzision AG Baugruppen und Systemlösungen Pump, in particular pneumatic pump
WO2018082154A1 (en) * 2016-11-01 2018-05-11 厦门科际精密器材有限公司 Upper cover for pump and pump
DE102018207800B4 (en) * 2017-11-29 2024-04-18 Xiamen Koge Micro Tech Co., Ltd. Diaphragm pump with reduced operating noise during pressure relief
DE102018102120B4 (en) * 2017-11-29 2022-04-28 Xiamen Koge Micro Tech Co., Ltd. diaphragm pump

Also Published As

Publication number Publication date
US20210180585A1 (en) 2021-06-17
EP3835582A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US11148301B2 (en) Auto-release vacuum device
US8006870B2 (en) Discharger for a flowable medium
US8365756B2 (en) Fuel tank valve device
JP4738797B2 (en) Valve device
KR102501055B1 (en) suction device.
EP3792490B1 (en) Diaphragm pump
ES2228395T3 (en) ANTIVIBRATORY DEVICE INCLUDING A FLUID.
EP3825129B1 (en) Valve assembly and ink box provided with same
US10041601B2 (en) Valve device
EP3835582B1 (en) Mini air pump
CN110905788B (en) Pneumatic pump
JP2004360770A (en) Electric-to-pneumatic conversion type pneumatic regulator
US6776591B1 (en) Membrane pump comprising an inlet opening that is controlled by the membrane
KR20190003769A (en) Control Valves for Variable Capacity Compressors
CN115355118B (en) Fuel supply device
JP3836312B2 (en) Liquid jet pump
US7025080B2 (en) Cross over valve
CN211852124U (en) Miniature air pump
JP4206910B2 (en) Float valve
KR102478140B1 (en) Brake system with negative pressure amplifyingapparatus
US11125353B2 (en) Pneumatic lost motion/binary device system and method
CN113464693B (en) Pressure reducing valve
KR200435049Y1 (en) The structure for a flux control valve response speed enhance of the valve corporate body which has the complex facility
KR102643040B1 (en) Vacuum suction pad
EP4053409A1 (en) Integrated pump valve unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1571078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020011250

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1571078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020011250

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531