EP3832791B1 - Leistungsteiler - Google Patents

Leistungsteiler Download PDF

Info

Publication number
EP3832791B1
EP3832791B1 EP19212846.0A EP19212846A EP3832791B1 EP 3832791 B1 EP3832791 B1 EP 3832791B1 EP 19212846 A EP19212846 A EP 19212846A EP 3832791 B1 EP3832791 B1 EP 3832791B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
cuboid
shaped
output waveguides
input waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19212846.0A
Other languages
English (en)
French (fr)
Other versions
EP3832791A1 (de
Inventor
Andreas Schinagl-Weiß
Michael Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Airbus Defence and Space SAS
Original Assignee
Airbus Defence and Space GmbH
Airbus Defence and Space SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH, Airbus Defence and Space SAS filed Critical Airbus Defence and Space GmbH
Priority to EP19212846.0A priority Critical patent/EP3832791B1/de
Publication of EP3832791A1 publication Critical patent/EP3832791A1/de
Application granted granted Critical
Publication of EP3832791B1 publication Critical patent/EP3832791B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/22Hybrid ring junctions

Definitions

  • a general problem e.g. in the technical field of array antenna technology, is a limited space for a waveguide network behind the radiator because of the array density. For example, if implementing a diamond-shaped array grid for a multiple feed per beam concept with groups of four Horns, not a uniform power distribution is needed but a pair wise power distribution with unequal power between two pairs. Regarding this, the network gets more complex, even so the space is limited.
  • Waveguide arrangements for splitting electromagnetic energy provided are known e.g. from documents EP 0075394 A1 , EP 2869396 A1 , US 2015/0372369 A1 and ES 255634 .
  • the waveguide arrangements disclosed by these documents provide an equal split of electromagnetic waves provided with regard to a magnitude of the waves provided.
  • diamond-shaped array grids may require an unequal power split due to their array formation.
  • document EP 1492191 B1 discloses a more flexible waveguide arrangement.
  • this arrangement requires several movable components and requires, therefore, extensive space, which may not be available for a waveguide network behind the radiator.
  • the disclosed arrangement comprises a plurality of movable components, failure susceptibility is increased compared to fixed waveguide arrangements.
  • the document US 2 941 166 A discloses a waveguide arrangement comprising a cuboid-shaped waveguide coupled to a plurality of output waveguides and an input waveguide coupled to the cuboid-shaped waveguide.
  • a propagation direction of an electromagnetic wave guided through the input waveguide is perpendicular to propagation directions of electromagnetic waves, which are guided through the output waveguides.
  • the disclosed waveguide arrangement is configured to split an electromagnetic wave provided into the cuboid-shaped input waveguide into a plurality of electromagnetic waves guided through the output waveguides.
  • ISAO OHTA "A New Six-Port Microwave Network: Six-Port Magic Junction", I.E.E.E. TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1 May 1988, pages 859-864 .
  • a waveguide arrangement comprises a cuboid-shaped waveguide coupled to a plurality of output waveguides.
  • the waveguide arrangement further comprises an input waveguide coupled to the cuboid-shaped waveguide.
  • a propagation direction of an electromagnetic wave guided through the input waveguide is perpendicular to propagation directions of electromagnetic waves, which are guided through the output waveguides.
  • the waveguide arrangement is configured to split an electromagnetic wave provided into the input waveguide into a plurality of electromagnetic waves guided through the output waveguides.
  • a power ratio of/between the plurality of electromagnetic waves travelling/propagating through the output waveguides is defined by an angle, ⁇ , enclosed by a polarization (or an imaginary two-dimensional plane extending along the polarization and/or indicated/defined by the polarization direction) of the wave guided by the input waveguide and a surface (or an imaginary two-dimensional plane extending along the surface and/or indicated/defined by the surface) of the cuboid-shaped waveguide on which an output waveguide is arranged.
  • the magnitude of the power division between multiple output waveguides /ports can be determined by rotating a polarization direction of an electromagnetic wave provided with respect to the cuboid-shaped waveguide and/or the output waveguide arranged at the cuboid-shaped waveguide.
  • An advantage of the proposed arrangement is a very compact and reliable design suitable for limited space environments. Further, the arrangement is capable of covering a wide bandwidth independent of a desired coupling factor.
  • the waveguide arrangement may comprise two or four or more than four output waveguides.
  • the output waveguides may be coupled with the cuboid-shaped waveguide.
  • a propagation direction of waves guided through the output waveguides is always at least substantially perpendicular to a propagation direction of a wave propagating through and/or guided by the input-waveguide.
  • more than one output waveguide may be arranged/coupled to a surface of the cuboid-shaped waveguide.
  • Coupled may be understood to mean that an output waveguide and/or the input waveguide is positioned on/at a surface/side of the cuboid-shaped waveguide, wherein the cuboid-shaped waveguide's surface/side comprises an opening enabling an unobstructed propagation of a guided electromagnetic wave from or to the output waveguide and/or the input waveguide through the opening.
  • the opening corresponds to the geometry of the output waveguide and/or the input waveguide and/or is covered/enclosed by the output waveguide and/or the input waveguide.
  • the term "power ratio of the plurality of electromagnetic waves” may define a power or magnitude ratio between the plurality of the electromagnetic waves guided (or traveling/propagating) through the plurality of output waveguides and/or a power or magnitude ratio between a certain electromagnetic wave guided (or traveling/propagating) through one of the plurality of output waveguides and a certain electromagnetic wave guided or provided (or traveling/propagating) through the input waveguide.
  • At least two output waveguides of the plurality of output waveguides may be arranged at surfaces of the cuboid-shaped waveguide which oppose each other.
  • each of the output waveguides of the plurality of output waveguides opposes another of the output waveguides coupled with the cuboid-shaped waveguide.
  • one or two or four or all of the output waveguides are cuboid shaped or cylindrical-shaped waveguide terminals.
  • one or two or four or all of the output waveguides may be identically-shaped output waveguides, particularly identically shaped cuboid shaped or cylindrical-shaped output waveguides.
  • An advantage of identically-shaped output waveguides is that no waveguide transitions are needed and, therefore, no phase issue arises.
  • the input waveguide can be implemented as cuboid-shaped waveguide or as cylindrical-shaped waveguide.
  • a geometric center of the input waveguide may be positioned, in a direction identical to a propagation direction of an electromagnetic wave traveling/propagating through the input waveguide, over a geometric center of the cuboid-shaped waveguide.
  • the geometric center of the input waveguide may be positioned, seen from a two-dimensional top- or side-view of the arrangement in which the cuboid-shaped waveguide is seen as a rectangular surface, over a geometric center of the cuboid-shaped waveguide.
  • the polarization direction of the electromagnetic wave travelling through the input waveguide can be determined by the shape of the input waveguide and/or the polarization direction of the electromagnetic wave travelling through the input waveguide can be perpendicular and/or parallel to an inner wall of the waveguide.
  • the implementation as a cuboid-shaped input waveguide allows to force and/or to steady the polarization direction of an electromagnetic wave to a desired polarization direction.
  • the angle ⁇ can be alternatively defined as the angle enclosed by an inner surface of the cuboid-shaped input waveguide (or an imaginary two-dimensional plane along the inner surface and/or indicated/defined by the inner surface of input waveguide) and a surface of the cuboid-shaped waveguide (or an imaginary two-dimensional plane along the surface and/or indicated/defined by the surface of the cuboid-shaped waveguide).
  • the input waveguide can be coupled rotatably with the cuboid-shaped waveguide.
  • the input waveguide may be rotated relative to the cuboid-shaped waveguide around an axis extending in the propagation direction of a wave propagating in or guided by the input waveguide.
  • An advantage of an input waveguide rotatably coupled to a waveguide, particularly a rotable cuboid-shaped waveguide, is that a power ratio between the electromagnetic waves provided or guided by the output waveguides can be adjusted e.g. to meet certain requirements of a concrete implementation.
  • an advantage of a rotatably coupled cuboid-shaped input waveguide is that a polarization direction of the electromagnetic wave travelling/propagating through the input waveguide can be determined/changed by rotating the input waveguide relative to the cuboid-shaped waveguide.
  • the waveguide arrangement design remains delicately compact, reliable and efficient compared to known arrangements since the number of movable parts/elements is reduced to a single one.
  • the waveguide arrangement comprises four output waveguides each coupled to the cuboid-shaped waveguide, wherein each of the four output waveguides opposes another of the output waveguides coupled to the cuboid-shaped waveguide.
  • a power of an electromagnetic wave travelling in one of the output waveguides is defined by the factor "0.5 cos (a)” or "0.5 sin (a)", respectively, multiplicated with the power of the electromagnetic wave provided into the input waveguide.
  • the cuboid-shaped waveguide and/or the input waveguide and/or the output waveguides may comprise a metal material and/or may be made of a metal material.
  • An alternative waveguide arrangement which provides an alternative solution for the problem defined above, comprises a cylindrical-shaped waveguide coupled to a plurality of output waveguides.
  • An input waveguide is coupled to the cylindrical-shaped waveguide.
  • a propagation direction of an electromagnetic wave guided through the input waveguide is perpendicular to propagation directions of electromagnetic waves, which are guided through the output waveguides.
  • the waveguide arrangement is configured to split an electromagnetic wave provided into the input waveguide into a plurality of electromagnetic waves guided through the output waveguides.
  • a power ratio of/between the plurality of electromagnetic waves travelling through the output waveguides is defined by a polarization direction of the wave guided by the input waveguide, wherein the polarization direction of the electromagnetic wave travelling through the input waveguide is determined by a shape of the input waveguide.
  • the input waveguide can be coupled rotatably to the cylindrical-shaped waveguide.
  • the input waveguide can be implemented as a cuboid-shaped waveguide.
  • An advantage of a rotatably coupled cuboid-shaped input waveguide is that a polarization direction of the electromagnetic wave travelling/propagating through the input waveguide can be determined/changed by rotating the input waveguide relative to the cylindrical-shaped waveguide.
  • the waveguide arrangement comprises four output waveguides.
  • Each of the output waveguides of the plurality of output waveguides can be arranged opposing another of the output waveguides coupled with the cylindrical-shaped waveguide.
  • Figure 1 shows a waveguide arrangement 100, which comprises a cuboid-shaped waveguide coupled to a plurality of output waveguides, particularly four output waveguides, each defining a Port to provide electromagnetic wave energy.
  • An also cuboid-shaped input waveguide is coupled to a top-surface of the cuboid-shaped waveguide.
  • a propagation direction of an electromagnetic wave guided through the input waveguide is perpendicular to propagation directions of electromagnetic waves, which are guided through the output waveguides.
  • the input waveguide extends orthogonal to each of shown the output waveguides.
  • the shown waveguide arrangement 100 is capable of splitting an electromagnetic wave provided into the input waveguide into a plurality, particularly four, of electromagnetic waves guided and/or propagating through the output waveguides.
  • the power ratio of the electromagnetic waves travelling/propagating through the output waveguides to the Ports is defined by an angle, a, enclosed by a polarization direction of the wave guided by (or travelling/propagating through) the input waveguide and a (lateral) surface of the cuboid-shaped waveguide on which an output waveguide is arranged.
  • the angle ⁇ is also to be defined as an angle enclosed by an inner wall of the input waveguide and a (lateral) surface of the cuboid-shaped waveguide on which an output waveguide is arranged and/or an (imaginary) 2-dimensional plane defined/indicated or extending by/through a (lateral) surface of the cuboid-shaped waveguide on which an output waveguide is arranged.
  • the angle ⁇ describes the smallest angle enclosed by these two surfaces and/or (imaginary) planes.
  • Figure 2 shows the same arrangement 100 as figure 1 but from a two-dimensional top view.
  • the geometric center of the input waveguide 10 is positioned, seen from this two-dimensional top-view of the arrangement, over the geometric center of the cuboid-shaped waveguide 20 (or over the geometric center of the surface of the cuboid-shaped waveguide 20 on which the input waveguide 10 is coupled to).
  • the output waveguides 22, 24, 26, 28 are coupled to lateral surfaces of the cuboid-shaped waveguide 20.
  • the angle ⁇ is - identically - to be defined as an angle enclosed by the polarization direction a wave travelling/propagating through the input waveguide 10 and a lateral surface of the cuboid-shaped waveguide 20 and as an angle enclosed by an inner surface of the cuboid-shaped input waveguide 10 and a lateral surface of the cuboid-shaped waveguide 20.
  • a ratio of the power/magnitude of the electromagnetic energy provided at the Ports and/or the output waveguides 22, 24, 26, 28 relative to the power/magnitude of the electromagnetic energy provided into the input waveguide is defined by the angle o.
  • the output waveguides 22, 26 (0° Port 1 and 0° Port 2) each provide 0.5 cos (a) of the electromagnetic power/magnitude provided into the input waveguide 10, wherein the output waveguides 24, 28 (90° Port 1 and 90° Port 2) each provide 0.5 sin ( ⁇ ) of the electromagnetic power/magnitude provided into the input waveguide 10.
  • the input waveguide 10 may be implemented as an element rotable with respect to the cuboid-shaped waveguide 20, the angle ⁇ may be adjusted as required. In consequence, also a ratio of the output power/magnitude provided at certain Ports may be adjusted as required.
  • Figure 3 illustrates that the power/magnitude provided at a certain Port and/or an waveguide depends on the angle ⁇ shown in figures 1 and 2 .
  • 90°
  • the power/magnitude provided at two Ports or output waveguides can be reduced to substantially zero.
  • the remaining Ports may provide a power, which, in addition, substantially equals the power provided into the input waveguide.
  • this effect can be switched/changed/adjusted by rotating the input waveguide about 90°.
  • Figures 4 and 5 show another waveguide arrangement 200 comprising a cylindrical-shaped input waveguide 30, wherein the remaining elements correspond to the arrangement 100 shown in figures 1 and 2 .
  • the angle ⁇ is defined exclusively by the polarization direction of the electromagnetic wave provided and a lateral surface of the cuboid waveguide 20.
  • an effect similar to the one described above is to be achieved.
  • changing the polarization direction of an electromagnetic wave provided into the cylindrical-shaped input waveguide 30 directly affects the power/magnitude of the waves provided by the output waveguide 22, 24, 26, 28 and/or the Ports. This effect can be achieved without implementing any movable parts, which enhances the reliability and compactness of the shown waveguide arrangement.
  • Figure 6 shows further examples for cross-sectional geometries for input waveguides and/or output waveguides.
  • the input waveguide and/or output waveguides may comprise - at least partially - rectangular-, quadratic-, rhombus, spherical- and/or elliptical shaped cross-sectional geometries.
  • other implementations of the waveguide arrangement may include waveguides comprising other geometries than shown and/or described.
  • Figure 7 shows an alternative waveguide arrangement 300 comprising a cylindrical-shaped waveguide 40 coupled to a plurality of output waveguides, particularly four output waveguides 22, 24, 26, 28, each defining a Port to provide electromagnetic wave energy.
  • a cuboid-shaped input 10 waveguide is rotatably coupled to a top-surface of the cylindrical-shaped waveguide.
  • a direction of the polarization of the electromagnetic wave travelling/propagating through the input waveguide 10 can be determined/changed by rotating the input waveguide 10.
  • a ratio of/between the magnitude/power of the electromagnetic waves travelling/propagating through the four output waveguides 22, 24, 26, 28 can be determined/influenced/changed by rotating the cuboid input waveguide 10.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (9)

  1. Eine Wellenleiteranordnung (100, 200), die umfasst:
    einen quaderförmigen Wellenleiter (20), der mit einer Vielzahl von Ausgangswellenleitern (22, 24, 26, 28) gekoppelt ist; und
    einen quaderförmigen Eingangswellenleiter (10), der mit dem quaderförmigen Wellenleiter (20) gekoppelt ist, wobei eine Ausbreitungsrichtung einer durch den quaderförmigen Eingangswellenleiter (10) geführten elektromagnetischen Welle senkrecht zu Ausbreitungsrichtungen von elektromagnetischen Wellen ist, die durch die Ausgangswellenleiter (22, 24, 26, 28) geführt werden; wobei
    die Wellenleiteranordnung konfiguriert ist, eine elektromagnetische Welle, die in den quaderförmigen Eingangswellenleiter (10) eingespeist wird, in eine Vielzahl von elektromagnetischen Wellen aufzuteilen, die durch die Ausgangswellenleiter (22, 24, 26, 28) geführt werden, wobei
    ein Leistungsverhältnis der Vielzahl von elektromagnetischen Wellen, die sich durch die Ausgangshohlleiter (22, 24, 26, 28) ausbreiten, durch einen Winkel, α, definiert ist, der durch eine Polarisation der durch den quaderförmigen Eingangswellenleiter (10) geführten Welle und eine Seitenfläche des quaderförmigen Wellenleiters (20) eingeschlossen wird, auf der einer der Ausgangswellenleiter angeordnet ist,
    dadurch gekennzeichnet, dass
    der quaderförmige Eingangswellenleiter (10) drehbar mit dem quaderförmigen Wellenleiter (20) gekoppelt ist, so dass ein Leistungsverhältnis zwischen den von den Ausgangswellenleitern (22, 24, 26, 28) gelieferten oder geführten elektromagnetischen Wellen einstellbar ist.
  2. Die Wellenleiteranordnung (100, 200) nach Anspruch 1, umfassend
    zwei oder vier oder mehr als vier Ausgangswellenleiter (22, 24, 26, 28).
  3. Die Wellenleiteranordnung (100, 200) nach einem der vorhergehenden Ansprüche, wobei
    mindestens zwei Ausgangswellenleiter der Vielzahl von Ausgangswellenleitern (22, 24, 26, 28) an einander gegenüberliegenden Flächen des quaderförmigen Wellenleiters (20) angeordnet sind und/oder
    jeder der Ausgangswellenleiter der Vielzahl von Ausgangswellenleitern (22, 24, 26, 28) einem anderen der mit dem quaderförmigen Wellenleiter (20) gekoppelten Ausgangwellenleiter gegenüberliegt.
  4. Die Wellenleiteranordnung (100, 200) nach einem der vorhergehenden Ansprüche, wobei
    ein oder zwei oder vier oder alle Ausgangswellenleiter quaderförmig (22, 24, 26, 28) oder zylinderförmig sind.
  5. Die Wellenleiteranordnung (100, 200) nach einem der vorhergehenden Ansprüche, wobei
    zwei oder vier oder alle Ausgangswellenleiter (22, 24, 26, 28) identisch geformt sind.
  6. Die Wellenleiteranordnung (100) nach einem der vorhergehenden Ansprüche, wobei
    die Polarisationsrichtung der durch den quaderförmigen Eingangswellenleiter (10) laufenden elektromagnetischen Welle durch eine Form des quaderförmigen Eingangswellenleiters bestimmt wird, und/oder
    die Polarisationsrichtung der elektromagnetischen Welle, die durch den quaderförmigen Eingangswellenleiter (10) läuft, senkrecht und/oder parallel zu einer Seitenfläche des quaderförmigen Eingangswellenleiters (10) ist.
  7. Die Wellenleiteranordnung (100, 200) nach einem der vorhergehenden Ansprüche, wobei
    die Wellenleiteranordnung vier Ausgangswellenleiter (22, 24, 26, 28) umfasst, die jeweils mit dem quaderförmigen Wellenleiter (20) gekoppelt sind, wobei
    jeder der vier Ausgangswellenleiter (22, 24, 26, 28) einem anderen der mit dem quaderförmigen Wellenleiter gekoppelten Ausgangswellenleiter gegenüberliegt,
    wobei eine Leistung einer elektromagnetischen Welle, die sich in einem der Ausgangswellenleiter ausbreitet,
    0,5 cos (a) oder 0,5 sin (a) der Leistung der in den quaderförmigen Eingangswellenleiter (10) eingespeisten elektromagnetischen Welle ist.
  8. Eine Wellenleiteranordnung (300), die umfasst:
    einen zylinderförmigen Wellenleiter (40), der mit einer Vielzahl von Ausgangswellenleitern (22, 24, 26, 28) gekoppelt ist; und
    einen quaderförmigen Eingangswellenleiter (10), der mit dem zylinderförmigen Wellenleiter (40) gekoppelt ist, wobei eine Ausbreitungsrichtung einer elektromagnetischen Welle, die durch den quaderförmigen Eingangswellenleiter (10) geführt wird, senkrecht zu Ausbreitungsrichtungen von elektromagnetischen Wellen ist, die durch die Ausgangswellenleiter (22, 24, 26, 28) geführt werden; wobei
    die Wellenleiteranordnung konfiguriert ist, eine elektromagnetische Welle, die in den quaderförmigen Eingangswellenleiter (10) eingespeist wird, in eine Vielzahl von elektromagnetischen Wellen aufzuteilen, die durch die Ausgangswellenleiter (22, 24, 26, 28) geführt werden, wobei
    ein Leistungsverhältnis der Vielzahl von elektromagnetischen Wellen, die durch die Ausgangswellenleiter (22, 24, 26, 28) laufen, durch eine Polarisationsrichtung der durch den quaderförmigen Eingangswellenleiter (10) geführten Welle definiert ist, und wobei
    die Polarisationsrichtung der elektromagnetischen Welle, die den Eingangswellenleiter (10) durchläuft, durch die Form des quaderförmigen Eingangswellenleiters (10) bestimmt wird,
    und wobei der quaderförmige Eingangswellenleiter (10) drehbar mit dem zylinderförmigen Hohlleiter (40) gekoppelt ist, so dass ein Leistungsverhältnis zwischen den von den Ausgangswellenleitern (22, 24, 26, 28) gelieferten oder geführten elektromagnetischen Wellen einstellbar ist.
  9. Die Wellenleiteranordnung (300) nach Anspruch 8, wobei
    die Wellenleiteranordnung vier Ausgangswellenleiter (22, 24, 26, 28) umfasst, und/oder
    jeder der Ausgangswellenleiter aus der Vielzahl von Ausgangswellenleitern (22, 24, 26, 28) einem anderen der mit dem zylinderförmigen Wellenleiter (40) gekoppelten Ausgangswellenleiter gegenüberliegt.
EP19212846.0A 2019-12-02 2019-12-02 Leistungsteiler Active EP3832791B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19212846.0A EP3832791B1 (de) 2019-12-02 2019-12-02 Leistungsteiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19212846.0A EP3832791B1 (de) 2019-12-02 2019-12-02 Leistungsteiler

Publications (2)

Publication Number Publication Date
EP3832791A1 EP3832791A1 (de) 2021-06-09
EP3832791B1 true EP3832791B1 (de) 2023-11-15

Family

ID=68762585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19212846.0A Active EP3832791B1 (de) 2019-12-02 2019-12-02 Leistungsteiler

Country Status (1)

Country Link
EP (1) EP3832791B1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941166A (en) * 1956-09-26 1960-06-14 Lab For Electronics Inc Microwave power dividers
ES255634A1 (es) 1960-02-09 1960-05-16 Ribas Fontseca Miguel Aparato inyector auxiliar para aumentar el rendimiento de los motores de combustiën
NO156069C (no) 1981-09-17 1987-07-15 Hughes Aircraft Co Boelgeleder.
JP3908071B2 (ja) 2002-04-02 2007-04-25 三菱電機株式会社 ロータリージョイント
FR3012918B1 (fr) 2013-11-04 2018-03-23 Thales Coupleur en te dans le plan e, repartiteur de puissance, reseau rayonnant et antenne comportant un tel coupleur
US9350064B2 (en) 2014-06-24 2016-05-24 The Boeing Company Power division and recombination network with internal signal adjustment

Also Published As

Publication number Publication date
EP3832791A1 (de) 2021-06-09

Similar Documents

Publication Publication Date Title
Skobelev Phased array antennas with optimized element patterns
US5359338A (en) Linear conformal antenna array for scanning near end-fire in one direction
US11095009B2 (en) Partial dielectric loaded septum polarizer
CA1301265C (en) Waveguide matrix including in-plane crossover
EP0252114B1 (de) In einem radialwellenleiter ausgeführter reaktanzfreier leistungsverteiler/-addierer mit integriertem modefilter
Skobelev Methods of constructing optimum phased-array antennas for limited field of view
US6768468B2 (en) Reflecting surfaces having geometries independent of geometries of wavefronts reflected therefrom
WO1999043046A1 (en) Geodesic slotted cylindrical antenna
EP3048669B1 (de) Aus platten geformte antenne und verfahren zur herstellung
Rogers et al. Use of broadside twin element antennas to increase efficiency on electrically thick dielectric substrates
EP2843763B1 (de) Funkfrequenzvorrichtung mit Zuführstruktur
US2692336A (en) Aperture antenna
JPH0246004A (ja) 方形導波管スロットアレイアンテナ
Mailloux et al. Grating lobe control in limited scan arrays
Clarricoats et al. Multimode corrugated waveguide feed for monopulse radar
EP3832791B1 (de) Leistungsteiler
EP0221036B1 (de) Wellenleiterelement für eine elektrisch gesteuerte Radarantenne
US4241353A (en) Multimode monopulse feed and antenna incorporating same
US6304228B1 (en) Stepped waveguide slot array with phase control and satellite communication system employing same
Bartolomei et al. A Circularly Polarized Parallel Plate Waveguide Lens-Like Multiple-Beam Linear Array Antenna for Satcom Applications
EP1158594B1 (de) Generator für zirkular polarisierte wellen
US4032917A (en) Synthesis technique for constructing cylindrical and spherical shaped wave guide arrays to form pencil beams
Berretti et al. Ridged Meandered Waveguides for 3D Routing and Phase Delay Control and its application to Discrete Lenses
US4797643A (en) Coaxial hybrid coupler and crossing element
WO2017203597A1 (ja) 3電力分配器及びマルチビーム形成回路

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019041379

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1632632

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315