EP3831149A1 - Verfahren für eigenständigen mtc-betrieb - Google Patents

Verfahren für eigenständigen mtc-betrieb

Info

Publication number
EP3831149A1
EP3831149A1 EP18928451.6A EP18928451A EP3831149A1 EP 3831149 A1 EP3831149 A1 EP 3831149A1 EP 18928451 A EP18928451 A EP 18928451A EP 3831149 A1 EP3831149 A1 EP 3831149A1
Authority
EP
European Patent Office
Prior art keywords
transmission
signal
extension
radio access
data transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18928451.6A
Other languages
English (en)
French (fr)
Other versions
EP3831149A4 (de
Inventor
Rapeepat Ratasuk
Matthew Baker
Nitin MANGALVEDHE
David Bhatoolaul
Chunhai Yao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Publication of EP3831149A1 publication Critical patent/EP3831149A1/de
Publication of EP3831149A4 publication Critical patent/EP3831149A4/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This invention relates generally to enhanced Machine Type Communication (eMTC) and, particular, to maintaining support and extending coverage for eMTC user equipment.
  • eMTC Machine Type Communication
  • eMTC can only be transmitted or deployed in-band within an LTE carrier.
  • the first N OFDM symbols are reserved for legacy PDCCH transmission which is not used by eMTC.
  • eMTC operates on a narrowband concept, which may not use all available PRBs in different allowable bandwidths. This reduces eMTC efficiency and may result in resource waste.
  • eMTC UEs will be around for a long time (e.g. water/power meters can have a lifetime of 10-15 years or more) .
  • LTE systems are re-farmed to NR, there would be no need to support broadband LTE UEs.
  • eMTC LTE UEs would still need to be supported, the current invention moves beyond current techniques in order to maintain support for eMTC user equipment (UE) .
  • UE eMTC user equipment
  • MIB Master Information Block (information broadcasted by
  • the eNB irrespective of UE presence; first amongst the
  • N a Number of, quantity of, or amount of
  • SIB1 System Information Block Type 1
  • An exemplary embodiment of the present invention broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention is a method comprising: receiving by a UE a broadcast signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; receiving, by the UE, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention is an apparatus comprising: at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer code are configured, with the at least one processor, to cause the apparatus to at least perform the following: broadcasting a signal indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; transmitting the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention is a computer program comprising code for broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; and code for transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention is an apparatus comprising means for broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; and means for transmitting, by the base station, the transmission in the at least one time-frequency region.
  • FIG. 1 depicts re-farming of LTE spectrum to (a) NR with eMTC carrier in-band and (b) separate NR and eMTC carriers, where 1 narrowband is needed for eMTC;
  • FIG. 2 depicts re-farming of LTE spectrum to NR with eMTC carrier in-band and (b) separate NR and eMTC carriers, where 2 narrowbands are needed for eMTC;
  • FIG. 3 is a schematic of an exemplary embodiment ofa standalone eMTC deployment within NR in accordance with the present invention using all OFDM symbols in 1 narrowband;
  • FIG. 4 is a schematic of an exemplary embodiment of a standalone eMTC deployment within NR in accordance with the present invention using all in 2 narrowbands;
  • FIG. 5 is a schematic of another exemplary embodiment of a standalone eMTC deployment within NR in accordance with the present invention using all in 2 narrowbands;
  • FIG. 6 is a logic flow diagram an exemplary method, a result of execution of computer program instructions embodied on a computer readable memory, functions performed by logic implemented in hardware, and/or interconnected means for performing functions in accordance with exemplary embodiment;
  • FIG. 7 is a block diagram of an exemplary system in which the exemplary embodiments may be practiced.
  • eMTC can only be transmitted or deployed in-band within an LTE carrier.
  • the first N OFDM symbols are reserved for legacy PDCCH transmission which is not used by eMTC.
  • eMTC operates on a narrowband concept, which may not use all available PRBs in different allowable bandwidths. This may result in resource waste.
  • eMTC UEs have to be supported for a longer than LTE UEs, as LTE systems are re-farmed to NR and there is no need to support LTE UEs.
  • a goal of the current invention is to increase the eMTC efficiency.
  • the invention seeks to re-use all available time resources for UEs of Rel-16 and beyond while minimizing impact to legacy eMTC UEs, to support switching between NR and eMTC for NR-IoT dual-mode UE, and to minimize resource waste while maintaining the expected coverage and performance for legacy eMTC UEs.
  • the invention proposes transmitting Rel-16 information as SIB-NR, enhanced wake up signal, or enhanced synchronization signal. In this way, new functionality can be introduced without any impact to legacy UEs or system performance.
  • an embodiment of the present invention is a method for stand-alone eMTC deployment, including following main steps:
  • SIB 1-BR eMTC System Information Block
  • the unused symbols e.g. reserved symbols (for instance, for the LTE control region, for interference coordination, for co-existence with other radio technologies, etc) , symbols that have been marked as invalid, or symbols that are reserved for legacy radio technologies (where legacy radio technologies refer to those for Rel-15 and prior releases)
  • PRBs are available for use by Rel-16 UE. They can be used for SIB-NR, enhanced wake-up signal, enhanced synchronization signals, or MPDCCH/PDSCH extension.
  • a bitmap can be used to broadcast which subframes/symbols/PRBs are reserved for specific purposes.
  • SIB-NR A new SIB containing NR-related information (SIB-NR) will be introduced and can be transmitted on this unused time-frequency region.
  • SIB-NR may contain NR assistance information and NR coexistence information.
  • an enhanced wake-up signal can be transmitted.
  • an enhanced synchronization signal i.e., PSS, SSS, can be transmitted.
  • MPDCCH or PDSCH or SIB will be extended to occupy the first N OFDM symbols.
  • NB-IoT uses the unusable OFDM symbols to extend the NPDCCH &NPDSCH, that NB-IoT in standalone rhode has NPDCCH and NPDSCH start from the first OFDM symbols, and that NB-IoT for in-band deployment mode NPDCCH and NPDSCH start from the Nth OFDM symbol.
  • the present invention proposes to use unusable OFDM symbols and PRBs to transmit Rel-16 information only related to Rel-16 UE and transmitted on a region that only Rel-16 UE can use, which minimizes the impact to legacy eMTC UEs.
  • An eNB in eMTC will broadcast a System Information Block (SIB 1-BR) indicating whether the unused symbols and PRBs are available for use by Rel-16 UE. They can be used for SIB-NR, enhanced wake-up signal, enhanced synchronization signals, or MPDCCH/PDSCH extension.
  • SIB 1-BR System Information Block
  • a bitmap can be used to broadcast which subframes/symbols/PRBs are reserved for which purpose.
  • SIB-NR NR-related information
  • SIB-NR may contain NR assistance information and NR coexistence information.
  • an enhanced wake-up signal can be transmitted and/or an enhanced synchronization signal, i.e., PSS, SSS, can be transmitted.
  • MPDCCH or PDSCH or SIB will be extended to occupy the first N OFDM symbols.
  • an eMTC carrier could be deployed as a separate carrier or within an NR carrier.
  • FIG. 1 depicts re-farming the LTE spectrum to (a) NR with eMTC carrier in-band and (b) separate NR and eMTC carriers, where 1 narrowband is needed for eMTC. Only 1 narrowband is needed for eMTC (e.g. based on number of IoT devices within the cell) .
  • LTE is re-farmed to NR
  • only the 1.4 MHz carrier is required for eMTC.
  • FIG. 2 which also depicts re-farming of LTE spectrum to (a) NR with eMTC carrier in-band and (b) separate NR and eMTC carriers, this time for where 2 narrowbands are needed for eMTC.
  • 3 MHz carrier is required for eMTC.
  • the first N OFDM symbols as well as 3 PRBs remain unusable for eMTC carrier due to legacy design.
  • Deploying an eMTC carrier within NR carrier may be more desirable as opposed to deploying separate eMTC and NR carriers since NR does not support bandwidth smaller than 5 MHz. For instance, in FIG. 2, 10 MHz LTE carrier can be re-farmed to 10 MHz NR carrier with eMTC taking up 3 MHz, leaving 7 MHz to NR. However, if separate carriers are used, eMTC will take up 3 MHz while NR can only use 5 MHz, leaving 2 MHz unused. Furthermore, deploying an eMTC carrier within NR carrier also allow load-balancing so NR can use more spectrum when eMTC load is low.
  • an NR-IoT UE may also be dual mode with support for eMTC.
  • an NR-IoT UE can transmit at high data rates (e.g. 100 Mbps)
  • bad radio conditions i.e. in coverage enhancement
  • it can switch to eMTC to transmit a small amount of information (e.g. location, status, diagnostic, etc. ) .
  • this invention introduces standalone eMTC and support ofNR-based IoT (NR-IoT) UE.
  • NR-IoT NR-based IoT
  • This invention enhances eMTC to (a) use all available time-frequency resource for UEs envisioned by Rel-16 and beyond while minimizing any impact to legacy eMTC UEs, (b) support switching between NR and eMTC for NR-IoT dual-mode UE, and (c) minimize resource waste while maintaining the expected coverage and performance for legacy eMTC UEs.
  • FIG. 3, FIG. 4, and FIG. 5 show embodiments of the present invention for standalone eMTC deployment within NR using one, two, or all OFDM symbols, respectively, though all of these embodiments are similar in most respects.
  • An eNB will broadcast, in eMTC System Information Block (SIB1-BR) whether the unused symbols and PRBs available for use for a Rel-16 UE, such that they can be used for SIB-NR, enhanced wake-up signal, enhanced synchronization signals, or MPDCCH/PDSCH extension.
  • SIB1-BR eMTC System Information Block
  • a bitmap can be used to broadcast which subframes/symbols/PRBs are reserved for which purpose (as can be seen in Figure 3 for example) .
  • Another alternative is the spare bits in MIB is to be used to indicate the number of available symbols for Rel-16 UE.
  • SIB-NR NR-related information
  • the scheduling information for this SIB-NR will be given in SIB 1.
  • the scheduling information comprises TBS value, frequency domain allocation (narrowband index) , and time domain allocation (start subframe, subframe offset, number of subframes, number of repetitions, in first N symbols or in symbols of data region) .
  • the SIB-NR may contain [0029] NR assistance information and/or [0030] NR coexistence information.
  • the NR assistance information would be to help with fast switching from eMTC to NR.
  • Examples of the NR coexistence information are time restriction (e.g. invalid subframes or symbols) , frequency guard band, and power control restriction.
  • an enhanced wake-up signal can be transmitted.
  • This enhanced wake-up signal is intended for UEs with a wake-up receiver.
  • the UE monitors the wake-up signal to determine whether it should turn on its baseband unit for a specified number of subframes. This number may be either preconfigured or carried in the sequence itself.
  • the enhanced wake-up signal can be a sequence but it may also carry a small amount of information.
  • the enhanced wake-up signal may span between 1 and N symbols. For example, for a UE in coverage enhancement, a basic sequence may be repeated over N symbols. Note that this signal is different from Rel-15 wake-up signal, which is used by UE to check for the presence of paging.
  • enhanced synchronization signal i.e., PSS, SSS
  • PSS enhanced synchronization signal
  • SSS enhanced synchronization signal
  • the MPDCCH, PDSCH, or SIB will be extended to occupy the first N OFDM symbols, preferably duplicate symbols with the same CRS pattern as first N OFDM symbols.
  • the MPDCCH symbols carried in the first N symbols are the repetition of the N symbols MPDCCH in data region of the subframe, such N symbols in the data region being repeated according to predefined rules.
  • the data symbols are mapped onto all symbols of the subframe.
  • FIG. 3 shows an example of a standalone eMTC using all OFDM symbols (1 narrowband) , where the signals/channels are time-multiplexed together (e.g. according to a bit-map) .
  • the bit map can indicate which subframes are reserved for which purpose.
  • FIG. 4 shows an example of a standalone eMTC using all OFDM symbols (2 narrowbands) . where the signals/channels are multiplexed in time and frequency together.
  • FIG. 5 shows an example of a standalone eMTC using all OFDM symbols (2 narrowbands) , where new signals are in 1 narrowband while the other narrowband is simply used for MPDCCH/PDSCH extension.
  • FIG. 6 is a logic flow diagram an exemplary method, a result of execution of computer program instructions embodied on a computer readable memory, functions performed by logic implemented in hardware, and/or interconnected means for performing functions in accordance with exemplary embodiment.
  • base station broadcasts a signal indicating that at least one time-frequency region, which is unused by a data transmission in a first radio access technology, is available for a transmission.
  • Block 604 defines that the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission.
  • Block 606 shows that the base station transmits the transmission in the at least one time-frequency region.
  • An exemplary embodiment of the invention is a method that comprises broadcasting, by an eNB in eMTC, a System Information Block (SIB 1-BR) indicating availability for use by a Rel-16 UE of unused symbols and PRBs, which can be used for SIB-NR, enhanced wake-up signal, enhanced synchronization signals, or MPDCCH/PDSCH extension.
  • SIB 1-BR System Information Block
  • a bitmap can be used to broadcast which subframes/symbols/PRBs are reserved for which purpose.
  • the SIB-NR comprises at least one of: NR assistance information, NR coexistence information, and NR related information.
  • MPDCCH or PDSCH or SIB will be extended to occupy the first N OFDM symbols, preferably duplicating symbols with the same CRS pattern as unused symbols.
  • a response from a UE would vary depending on which of the listed signals is actually transmitted by the base-station in said time-frequency region. For example, if the transmitted signal is the wake-up signal, then the response of the UE would be to allow the UE to determine a need to turn on a baseband unit of the UE; if the transmitted signal is the SI for the 2 nd RAT, the response of the UE would depend on the exact contents of the SI, but it could for example be to use that information to accelerate switching to the 2nd RAT, or to improve coexistence with the 2 nd RAT [0042] ; if the transmitted signal is the synchronization signal, the response could be that the UE uses it to speed up synchronization of its receiver to the BS, or to improve the accuracy of its receiver’s synchronization to the BS; if the transmitted signal is an extension of the data transmission, the response of the UE would be to use it in the decoding of the data transmission. So, as can be seen theer are myriad response that depden on the type
  • the UE should does not reply to that transmission using the time-freq region for two reasons.
  • the downlink (from BS to UE) and uplink (from UE to BS) use entirely different time-frequency regions; therefore the UE cannot transmit anything in the same time-frequency region;
  • the transmissions themselves do not demand a transmitted response; as explained in detail above, the four possible transmissions mentioned are used to improve the configuration or synchronisation or reception at the UE.
  • FIG. 7 presents a block diagram of one possible and non-limiting exemplary system in which the exemplary embodiments may be practiced.
  • a user equipment (UE) 710 is in wireless communication with a wireless network 700.
  • a UE is a wireless, typically mobile device that can access a wireless network.
  • the UE 710 includes one or more processors 720, one or more memories 725, and one or more transceivers 730 interconnected through one or more buses 727.
  • Each of the one or more transceivers 730 includes a receiver, Rx, 732 and a transmitter, Tx, 733.
  • the one or more buses 727 may be address, data, or control buses, and may include any interconnection mechanism, such as a series of lines on a motherboard or integrated circuit, fiber optics or other optical communication equipment, and the like.
  • the one or more transceivers 730 are connected to one or more antennas 728.
  • the one or more memories 725 include computer program code 723.
  • the UE 710 includes a YYY module 740, comprising one of or both parts 740-1 and/or 740-2, which may be implemented in a number of ways.
  • the YYY module 740 may be implemented in hardware as YYY module 740-1, such as being implemented as part of the one or more processors 720.
  • the YYY module 740-1 may be implemented also as an integrated circuit or through other hardware such as a programmable gate array.
  • the YYY module 740 may be implemented as YYY module 740-2, which is implemented as computer program code 723 and is executed by the one or more processors 720.
  • the one or more memories 725 and the computer program code 723 may be configured to, with the one or more processors 720, cause the user equipment 710 to perform one or more of the operations as described herein.
  • the UE 710 communicates with gNB 770 via a wireless link 711.
  • the base station 770 (which in the shown embodiment is a gNB or NR/5G Node B but possibly an evolved NodeB for LTE, long term evolution, but could be any similar access point to a wireless network) that provides access by wireless devices such as the UE 710 to the wireless network 700.
  • the gNB 770 includes one or more processors 752, one or more memories 755, one or more network interfaces (N/W I/F (s) ) 761, and one or more transceivers 760 interconnected through one or more buses 757.
  • Each of the one or more transceivers 760 includes a receiver, Rx, 762 and a transmitter, Tx, 763.
  • the one or more transceivers 760 are connected to one or more antennas 758.
  • the one or more memories 755 include computer program code 753.
  • the gNB 770 includes a ZZZ module 750, comprising one of or both parts 750-1 and/or 750-2, which may be implemented in a number of ways.
  • the ZZZ module 750 may be implemented in hardware as ZZZ module 750-1, such as being implemented as part of the one or more processors 752.
  • the ZZZ module 750-1 may be implemented also as an integrated circuit or through other hardware such as a programmable gate array.
  • the ZZZ module 750 may be implemented as ZZZ module 750-2, which is implemented as computer program code 753 and is executed by the one or more processors 752.
  • the one or more memories 755 and the computer program code 753 are configured to, with the one or more processors 752, cause the gNB 770 to perform one or more of the operations as described herein.
  • the one or more network interfaces 761 communicate over a network such as via the links 776 and 731.
  • Two or more gNBs 770 communicate using link 778, while the gNB can communicate with other entities via link 776, where both link 776, sand 778 may be wired or wireless or both and may implement, e.g., an X2 interface.
  • the one or more buses 757 may be address, data, or control buses, and may include any interconnection mechanism, such as a series of lines on a motherboard or integrated circuit, fiber optics or other optical communication equipment, wireless channels, and the like.
  • the one or more transceivers 760 may be implemented as a remote radio head (RRH) 795, with the other elements of the gNB 770 being physically in a different location from the RRH, and the one or more buses 757 could be implemented in part as fiber optic cable to connect the other elements of the gNB 770 to the RRH 795.
  • RRH remote radio head
  • each cell can correspond to a single carrier and an eNB may use multiple carriers. So if there are three 120-degree cells per carrier and two carriers, then the eNB has a total of 6 cells.
  • the wireless network 700 may include a network control element (NCE) 790 that may include MME (Mobility Management Entity) /SGW (Serving Gateway) functionality, and which provides connectivity with a further network, such as a telephone network and/or a data communications network (e.g., the Internet) .
  • the gNB 770 is coupled via a link 731 to the NCE 790.
  • the link 731 may be implemented as, e.g., an S 1 interface.
  • the NCE 790 includes one or more processors 775, one or more memories 771, and one or more network interfaces (N/W I/F (s) ) 780, interconnected through one or more buses 785.
  • the one or more memories 771 include computer program code 773.
  • the one or more memories 771 and the computer program code 773 are configured to, with the one or more processors 775, cause the NCE 790 to perform one or more operations.
  • the wireless network 700 may implement network virtualization, which is the process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Network virtualization involves platform virtualization, often combined with resource virtualization.
  • Network virtualization is categorized as either external, combining many networks, or parts of networks, into a virtual unit, or internal, providing network-like functionality to software containers on a single system. Note that the virtualized entities that result from the network virtualization are still implemented, at some level, using hardware such as processors 752 or 775 and memories 755 and 771, and also such virtualized entities create technical effects.
  • the computer readable memories 725, 755 and 771 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the processors 720, 752, and 775 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multi-core processor architecture, as non-limiting examples.
  • the various embodiments of the user equipment 710 can include, but are not limited to, cellular telephones such as smart phones, personal digital assistants (PDAs) having wireless communication capabilities, portable computers having wireless communication capabilities, image capture devices such as digital cameras having wireless communication capabilities, gaming devices having wireless communication capabilities, music storage and playback appliances having wireless communication capabilities, Internet appliances permitting wireless Internet access and browsing, tablets with wireless communication capabilities, as well as portable units or terminals that incorporate combinations of such functions.
  • PDAs personal digital assistants
  • portable computers having wireless communication capabilities
  • image capture devices such as digital cameras having wireless communication capabilities
  • gaming devices having wireless communication capabilities
  • music storage and playback appliances having wireless communication capabilities
  • Internet appliances permitting wireless Internet access and browsing, tablets with wireless communication capabilities, as well as portable units or terminals that incorporate combinations of such functions.
  • Embodiments herein may be implemented in software (executed by one or more processors) , hardware (e.g., an application specific integrated circuit) , or a combination of software and hardware.
  • the software e.g., application logic, an instruction set
  • a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer, with one example of a computer described and depicted, as in FIG. 7 for example.
  • a computer-readable medium may comprise a computer-readable storage medium (e.g., memories 725, 755, 771 or other device) that may be any media or means that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.
  • a computer-readable storage medium e.g., memories 725, 755, 771 or other device
  • Edge computing covers a wide range of technologies such as wireless sensor networks, mobile data acquisition, mobile signature analysis, cooperative distributed peer-to-peer ad hoc networking and processing also classifiable as local cloud/fog computing and grid/mesh computing, dew computing, mobile edge computing, cloudlet, distributed data storage and retrieval, autonomic self-healing networks, remote cloud services and augmented reality.
  • edge cloud may mean node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head or base station comprising radio parts. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may differ from that of the LTE or even be non-existent. Some other technology advancements probably to be used are Software-Defined Networking (SDN) , Big Data, and all-IP, which may change the way networks are being constructed and managed.
  • SDN Software-Defined Networking
  • Big Data Big Data
  • all-IP all-IP
  • An exemplary embodiment comprises a radio node connected to a server.
  • Exemplary embodiments implementing the system allow the edge cloud server and the radio node as standalone apparatuses communicating with each other via a radio path or via a wired connection or they may be located in a same entity communicating via a wired connection.
  • an advantage or technical effect of one or more of the exemplary embodiments disclosed herein is that instead of simply reusing the first N OFDM symbols for MPDCCH and PDSCH, the current invention will use this to transmit SIB-NR, enhanced wake up signal, or enhanced synchronization signal.
  • This is information that is only related to Rel-16 UE and transmitted on a region that only Rel-16 UE can use. Therefore, this allows the introduction of new functionality without any impact to legacy UEs or system performance.
  • An exemplary embodiment of the present invention which can be referred to as item 1, is a method comprising: broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 2, is the method of item 1, wherein a bitmap is used to indicate which time-frequency regions are available for which purpose.
  • Another exemplary embodiment of the present invention which can be referred to as item 3, is the method of item 1, wherein the system information for the second radio access technology comprises at least one of: information to assist access to the second radio access technology, information to facilitate coexistence between the first and second radio access technologies, and other information related to the second radio access technology.
  • Another exemplary embodiment of the present invention which can be referred to as item 4, is the method of item 1, wherein the wake-up signal, detectable by a UE, allows the UE to determine a need to turn on a baseband unit of the UE.
  • Another exemplary embodiment of the present invention which can be referred to as item 5, is the method of item 1, wherein the synchronization signal is transmitted in a same subframe as a further synchronization signal.
  • Another exemplary embodiment of the present invention which can be referred to as item 6, is the method of item 1, wherein the system information for a second radio access technology, the wake-up signal, the synchronization signal, or the extension of the data transmission, occupies a first number of OFDM symbols.
  • Another exemplary embodiment of the present invention which can be referred to as item 7, is the method of item 1, wherein extension of the data transmission at least include the downlink control channel for data transmission, the downlink data channel, and the system information.
  • Another exemplary embodiment of the present invention which can be referred to as item 8, is the method of item 7, wherein the extension of the downlink control channel for data transmission or extension of the system information transmission in a first one of the OFDM symbols contains a reference signal in at least one resource element in the frequency domain, and wherein the extension of the downlink control channel for data transmission or extension of the system information transmission replicates the data transmission in a later OFDM symbol which contains a reference signal in the same at least one resource elements in the frequency domain.
  • Another exemplary embodiment of the present invention which can be referred to as item 9, is the method of item 7, wherein the extension of the downlink data channel transmission in a first one of the OFDM symbols, the data symbols in the downlink data channel are mapping onto all symbols of the subframe.
  • Another exemplary embodiment of the present invention is a method comprising: receiving by a UE a broadcast signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; receiving, by the UE, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention is an apparatus comprising: at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer code are configured, with the at least one processor, to cause the apparatus to at least perform the following: broadcasting a signal indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; transmitting the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 12, is the apparatus of item 11, wherein a bitmap is used to indicate which time-frequency regions are available for which purpose.
  • system information for the second radio access technology comprises at least one of: information to assist access to the second radio access technology, information to facilitate coexistence between the first and second radio access technologies, and other information related to the second radio access technology.
  • Another exemplary embodiment of the present invention which can be referred to as item 14, is the apparatus of item 11, wherein the wake-up signal, detectable by a UE, allows the UE to determine a need to turn on a baseband unit of the UE.
  • Another exemplary embodiment of the present invention which can be referred to as item 15, is the apparatus of item 11, wherein the synchronization signal is transmitted in a same subframe as a further synchronization signal.
  • Another exemplary embodiment of the present invention which can be referred to as item 16, is the apparatus of item 1 l, wherein the system information for a second radio access technology, the wake-up signal, the synchronization signal, or the extension of the data transmission, occupies a first number of OFDM symbols.
  • Another exemplary embodiment of the present invention which can be referred to as item 17, is the apparatus of item 11, wherein extension of the data transmission at least include the downlink control channel for data transmission, the downlink data channel, and the system information.
  • Another exemplary embodiment of the present invention which can be referred to as item 18, is the apparatus of item 17, wherein the extension of the downtink control channel for data transmission or extension of the system information transmission in a first one of the OFDM symbols contains a reference signal in at least one resource element in the frequency domain, and wherein the extension of the downlink control channel for data transmission or extension of the system information transmission replicates the data transmission in a later OFDM symbol which contains a reference signal in the same at least one resource elements in the frequency domain.
  • Another exemplary embodiment of the present invention which can be referred to as item 19, is the apparatus of item 17, wherein the extension of the downlink data channel transmission in a first one of the OFDM symbols, the data symbols in the downlink data channel are mapping onto all symbols of the subframe.
  • Another exemplary embodiment of the present invention which can be referred to as item 20, is a computer program product embodied on a non-transitory computer-readable medium in which a computer program is stored that, when being executed by a computer, is configured to provide instructions to control or carry out: broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 21, is a computer program comprising code for broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; and code for transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 22, is an apparatus comprising means for broadcasting a signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake- up signal, a synchronization signal, and an extension of the data transmission; and means for transmitting, by the base station, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 23, is an apparatus comprising: at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer code are configured, with the at least one processor, to cause the apparatus to at least perform the following: receiving by a UE a broadcast signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; receiving, by the UE, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 24, is an apparatus comprising: means for receiving by a UE a broadcast signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; and means for receiving, by the UE, the transmission in the at least one time-frequency region.
  • Another exemplary embodiment of the present invention which can be referred to as item 25, is a computer program comprising: code for receiving by a UE a broadcast signal, by a base station, indicating that at least one time-frequency region, unused by a data transmission in a first radio access technology, is available for a transmission, wherein the transmission comprises at least one of: system information for a second radio access technology, a wake-up signal, a synchronization signal, and an extension of the data transmission; and code for receiving, by the UE, the transmission in the at least one time-frequency region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
EP18928451.6A 2018-08-02 2018-08-02 Verfahren für eigenständigen mtc-betrieb Pending EP3831149A4 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098328 WO2020024219A1 (en) 2018-08-02 2018-08-02 Method for standalone mtc operation

Publications (2)

Publication Number Publication Date
EP3831149A1 true EP3831149A1 (de) 2021-06-09
EP3831149A4 EP3831149A4 (de) 2022-03-16

Family

ID=69230611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18928451.6A Pending EP3831149A4 (de) 2018-08-02 2018-08-02 Verfahren für eigenständigen mtc-betrieb

Country Status (4)

Country Link
US (1) US11902879B2 (de)
EP (1) EP3831149A4 (de)
CN (1) CN112840727B (de)
WO (1) WO2020024219A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534770B (zh) * 2018-08-09 2024-01-16 Lg 电子株式会社 在支持mtc的无线通信系统中发送或接收mpdcch的方法及其装置
WO2020032771A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 단말의 셀 접속 방법 및 이를 위한 장치
US20220053423A1 (en) * 2018-09-27 2022-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment (ue) and methods performed in a wireless communication network
US11991529B2 (en) * 2018-11-02 2024-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Utilizing NR guard band for efficient deployment of LTE-M in coexistence with NR
US11477810B2 (en) * 2019-02-08 2022-10-18 Lg Electronics Inc. Method and device for transmitting and receiving physical uplink shared channel in wireless communication system
CN113412600A (zh) * 2019-02-14 2021-09-17 苹果公司 用于ue触发的csi-rs的系统和方法
CN114600479A (zh) * 2019-11-08 2022-06-07 瑞典爱立信有限公司 用于mMTC中的资源保留的方法和相关设备
EP4142333A4 (de) * 2020-04-21 2024-01-10 Ntt Docomo, Inc. Endgerät und kommunikationsverfahren

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493703C (en) * 2011-08-11 2020-03-04 Sca Ipla Holdings Inc OFDM subcarrier allocations in wireless telecommunications systems
CN109327822B (zh) * 2012-10-05 2022-10-25 交互数字专利控股公司 增强机器类型通信(mtc)设备覆盖的方法和装置
WO2015190750A1 (en) 2014-06-08 2015-12-17 Lg Electronics Inc. Method and apparatus for indicating usage of mbsfn area in wireless communication system
US9820247B2 (en) * 2014-07-30 2017-11-14 Intel IP Corporation Enhanced node B (ENB) and method for MTC coexistence
US10652768B2 (en) * 2015-04-20 2020-05-12 Qualcomm Incorporated Control channel based broadcast messaging
CN104936133B (zh) 2015-05-29 2019-01-25 Oppo广东移动通信有限公司 机器类型通信的方法、基站以及终端
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
WO2017052459A1 (en) 2015-09-25 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) A radio network node, a wireless device and methods therein
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
CN106685607A (zh) * 2015-11-05 2017-05-17 上海朗帛通信技术有限公司 一种窄带无线传输的方法和装置
GB2544317B (en) * 2015-11-12 2018-07-04 Vodafone Ip Licensing Ltd Method of intialising physical downlink control channel (PDCCH) for eMTC and IoT devices
US10285028B2 (en) * 2016-02-05 2019-05-07 Qualcomm Incorporated Adaptive radio link monitoring
US10129877B2 (en) * 2016-03-16 2018-11-13 Qualcomm Incorporated Paging for machine type communication devices
US10477513B2 (en) 2016-04-25 2019-11-12 Qualcomm Incorporated Cooperative group broadcasting of on-demand system information
US10624079B2 (en) * 2016-05-11 2020-04-14 Qualcomm Incorporated Coexistence of narrow-band internet-of-things/enhanced machine type communication and 5G
US10917875B2 (en) 2016-06-06 2021-02-09 Qualcomm Incorporated Multicast and/or broadcast for enhanced machine type communications and/or narrowband internet-of-things
WO2018008918A1 (ko) * 2016-07-02 2018-01-11 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018031746A1 (en) * 2016-08-12 2018-02-15 Intel IP Corporation Long term evolution (lte) and new radio coexistence with reserved resource scheduling
MY202340A (en) * 2016-09-30 2024-04-24 Ericsson Telefon Ab L M Methods and devices for downlink control channel transmission and detection in a wireless communication system
WO2018083660A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) System information for narrowband
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
CN106937335A (zh) * 2017-04-14 2017-07-07 武汉邮电科学研究院 一种5g网络频谱资源云化的系统及方法

Also Published As

Publication number Publication date
EP3831149A4 (de) 2022-03-16
US20210314851A1 (en) 2021-10-07
CN112840727A (zh) 2021-05-25
WO2020024219A1 (en) 2020-02-06
CN112840727B (zh) 2024-09-06
US11902879B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
US11902879B2 (en) Method for standalone MTC operation
US11399356B2 (en) Synchronization signal block (SSB)-based positioning measurement signals
US11025403B2 (en) Frame structure dependent configuration of physical channels
US11601932B2 (en) Information sending and receiving methods and devices
AU2012319821B2 (en) Wireless communication apparatus, wireless communication method, and wireless communication system
EP3934329B1 (de) Kommunikationsverfahren und -vorrichtung
US10880845B2 (en) Signaling procedure for new radio initial access
US11737144B2 (en) On multiple PRACH preambles and random access responses
CN105356978B (zh) 一种传输csi-rs的方法和设备
US10763985B2 (en) Control channel design and use for narrow band communication
TW201635819A (zh) 用於對頻譜的分層共享的信標
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
CN115104373A (zh) 物理随机接入信道重复和接收波束扫描和关联的波束细化
US20220394601A1 (en) Method and apparatus for wireless communication
US20230319841A1 (en) Method to Indicate Cell Support for Reduced Capability UE
CN111713156A (zh) 第一网络节点、第二网络节点、第一无线设备和由其执行的用于处理无线通信网络中的载波的方法
US20220264495A1 (en) Synchronization signal/pbch block transmission method, receiving method, apparatus, device, and medium
WO2019196066A1 (en) Random access response for bwp
US11133908B2 (en) Apparatus and method for physical layer transmission of paging and broadcasted system information
US20240039669A1 (en) Reference signal transmission
WO2024197843A1 (en) Methods, devices, and computer readable medium for communication
US20240114508A1 (en) Method and apparatus for communication of enhanced reduced capability user equipment in wireless communication system
WO2023155981A1 (en) Determining puncturing assumption for the synchronization and physical broadcast channel
WO2023052680A1 (en) Detection of a control resource set in a communication network

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20220216

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 4/70 20180101ALI20220210BHEP

Ipc: H04W 72/08 20090101AFI20220210BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240321