EP3830468A1 - Sorptive gas storage device - Google Patents

Sorptive gas storage device

Info

Publication number
EP3830468A1
EP3830468A1 EP19745158.6A EP19745158A EP3830468A1 EP 3830468 A1 EP3830468 A1 EP 3830468A1 EP 19745158 A EP19745158 A EP 19745158A EP 3830468 A1 EP3830468 A1 EP 3830468A1
Authority
EP
European Patent Office
Prior art keywords
storage
gas
layer
storage structure
sorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19745158.6A
Other languages
German (de)
French (fr)
Inventor
Michael Francis Levy
Jorn OUBRAHAM
Carsten Pohlmann
Jean-Baptiste Dementhon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aaqius and Aaqius SA
Original Assignee
Aaqius and Aaqius SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aaqius and Aaqius SA filed Critical Aaqius and Aaqius SA
Publication of EP3830468A1 publication Critical patent/EP3830468A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks

Definitions

  • the invention relates to the storage of gas by sorption.
  • the invention relates more specifically to a device for storing gas by sorption, a system for storing and / or supplying gas, and a method for manufacturing a device for storing gas by sorption.
  • gas storage devices may include a solid material for storing a gas.
  • Solid storage devices must have particular properties, in order to respond to the constraints induced by the gas and linked to the conditions of its use.
  • Gas stored in solid form can, for example, when used as an energy carrier, power a fuel cell. In the mobility sector, it can also be used in a motor vehicle.
  • the storage structures are sized in different ways depending on the choice of storage material and its size. Some of these materials allow both to store and destock gas, depending on the temperature and pressure conditions to which these materials are subjected. Generally, such materials store gas during an exothermic reaction, and destock it during an endothermic reaction. These reactions take place, for example, by sorption of the gas on the material.
  • the storage material In any case, managing the distribution of heat within the storage material is an essential issue to guarantee the performance of such devices.
  • it is for example known to have the storage material inside a confined enclosure comprising heating walls.
  • the storage material is arranged around a cylindrical heating tube.
  • the heating can be adjustable according to storage needs.
  • the known systems are however exposed to efficiency problems, in particular with regard to the homogenization of the transfer of heat from the heating means to all of the storage material. For example, the portion of the material furthest from said heating means is less well heated than the closest portion.
  • the known systems are also exposed to problems of robustness and longevity of operation of the storage structures, but also of safety of use, of manufacturing complexity, and of economic and energy efficiency in the implementation of said systems.
  • An object of the invention is to overcome at least one of the aforementioned drawbacks.
  • Another object of the invention is to improve heat transfers within a structure for storing a gas by sorption.
  • Another object of the invention is to promote the modularity of a gas storage structure.
  • the invention notably proposes a device for storing gas by sorption comprising:
  • a sorption gas storage structure comprising a sorption gas storage material, said storage structure having a circumferential edge,
  • heating means configured to heat the storage material, and facilitate the desorption of the gas, said heating means comprising:
  • first heating part arranged in the storage structure, at a distance from the circumferential edge
  • second heating part arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part on the other hand , the first heating part and the second heating part defining between them a space in which a first portion of the storage structure extends.
  • Such a device makes it possible to reduce the losses associated with heating, while ensuring homogenization of the heat transfers within the storage structure.
  • the device according to the invention may also include one or other of the following characteristics, taken alone or in combination:
  • the first heating part and the second heating part are connected to each other by a third heating part
  • the storage structure has a preferred direction defining a longitudinal axis, the heating means having a substantially annular structure along the longitudinal axis,
  • compositions and / or distributions of the storage material in the first portion of the storage structure are different from the compositions and / or distributions of the storage material in the rest of the storage structure, with a view to optimizing the distribution of the heat from the heating means within the storage structure,
  • an enclosure comprising an outer wall, the storage structure being disposed inside the enclosure, and
  • thermally insulating layer disposed between the storage structure and the outer wall of the enclosure, said layer being further configured to diffuse gas
  • the insulating layer comprises a porous structure
  • the insulating layer comprises a grooved structure
  • the insulating layer is a film
  • the insulating layer is formed at the level of an internal wall of the enclosure, for example by treating said wall, or by depositing an additional coating,
  • the storage structure includes: a first layer comprising a sorption storage material,
  • a second layer comprising:
  • the storage structure comprises:
  • each first layer comprising the gas storage material by sorption in pre-compressed powder form
  • each second layer comprising a material:
  • the invention further relates to a method of manufacturing a device as described above comprising the steps of:
  • the invention also relates to a gas storage and / or supply system comprising a device as described above, and a gas use unit.
  • FIG. 1 represents a sectional view of a first example of a gas storage device according to the invention
  • FIG. 2 represents a sectional view of an example of a gas storage structure
  • FIG. 3 shows a schematic view of a gas storage structure in different operating states
  • FIG. 4 is a top view of a second example of a gas storage device according to the invention.
  • FIG. 5 is a top view of a third example of a gas storage device according to the invention.
  • FIG. 6 shows a sectional view of a fourth example of a gas storage device according to the invention
  • FIG. 7 is an enlarged sectional view of a fifth example of a gas storage device according to the invention.
  • FIG. 8 is an enlarged sectional view of a sixth example of a gas storage device according to the invention.
  • FIG. 9 schematically illustrates a gas storage and / or supply system according to the invention.
  • FIG. 10 is a flowchart illustrating an example of implementation of a method of manufacturing a gas storage device according to the invention.
  • the gas stored can be of any kind and of any type.
  • the storage device 1 can store alone, or in combination, hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide.
  • a sorption gas storage device 1 comprises a sorption gas storage structure 10 comprising a sorption storage material.
  • the sorption storage structure further comprises a circumferential edge B which surrounds said storage structure 10.
  • the sorption gas storage structure 10 can comprise a first layer 100 and a second layer 200.
  • the first layer 100 is then configured to store gas by sorption. To do this, it can include the sorption storage material.
  • the storage material can be in pre-compressed powder form. Indeed, this shape facilitates the transport of the storage material because it is then easier to handle and has a lower volume. In addition, this form is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous.
  • the material can have an optimized porosity in order to increase the volumetric storage capacity of the storage structure, but also to accommodate variations in volume of the second layer 200.
  • the porosity of the storage material is between 10 vol.% and 50 vol.%, and is preferably between 25 vol.% and 35 vol.%.
  • porosity is meant the ratio of the volume of air not occupied by the storage material within a given volume of the storage material, over said given volume.
  • the porosity corresponds to the ratio of the volume not occupied by the storage material, over its apparent volume, that is to say that the porosity is equal to the ratio between the theoretical density at which the apparent density is subtracted from the theoretical density.
  • the pre-compressed powder form makes it possible to control the porosity of the storage material.
  • the storage material can include:
  • a material suitable for forming a metal hydride preferably of the Mghh, NaAlhU, UNH2, and / or UBH4 type, and / or
  • a material suitable for forming an intermediate alloy preferably of the TiMn2, T 2, LaNi 5 , FeTi, TiV, and / or TiZr type, and / or
  • a material suitable for forming a hydroxide preferably of the CaO, and / or Ca (OH) 2 type, or
  • - a material suitable for forming an oxide, preferably of the PbO, and / or CaO type.
  • the above materials are particularly suitable for storing and / or supplying gas such as hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide. This is not, however, limiting, since such materials can also be particularly suitable for other types of gas.
  • the second layer 200 can, for its part, comprise a material:
  • thermally conductive with higher thermal conductivity than storage material, with a view to increasing the heat transfers within the storage structure 10, and
  • the second layer 200 Thanks to the second layer 200, the phenomena of sorption and desorption of gas by the storage material, which involve significant flows of heat, are facilitated. In fact, the heat transfers are thus distributed homogeneously across the entire storage structure 10, which reinforces its efficiency and durability. In fact, the heat can be transported and easily extracted from the first layer 100, which ensures the rapid storage and / or destocking of the gas within the storage structure 10. The energy stored by a given mass of material of storage is therefore increased.
  • the dimensions, the shape, and the relative positioning of the first layer 100 and of the second layer 200 make it possible in particular to optimize the heat transfers within the storage structure 10. For example, when the first layer 100 and the second layer 200 extend in a preferred longitudinal direction, as can be seen in FIG.
  • the layer thickness in the longitudinal direction is a lever for possible optimization of the heat flows within the storage structure 10.
  • providing a porosity gradient of storage material within the first layer 100, in a radial direction relative to the longitudinal direction also constitutes a possible optimization path for the heat exchanges within the storage structure 10.
  • the radial direction constitutes a preferred direction of heat exchange within the storage structure 10.
  • most of the heat emitted or received by the first layer 100 is transferred by the second layer 200.
  • the second layer 200 acts as a buffer during the operation of the storage structure 10.
  • the second layer 200 compensates for the variations in volume of the storage material during the sorption and desorption phases of gas, and thus preserves the mechanical coherence of the storage structure 10.
  • the volumetric capacity of the storage material is advantageously increased, since it is no longer necessary to spare empty spaces within the storage structure 10.
  • the second layer 200 makes it possible to distribute the mechanical forces arising from variations in the volume of the storage material in operation.
  • the second layer 200 may comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite.
  • the second layer 200 can comprise a metal, for example aluminum or copper. The applicant has in fact noticed that these materials have adequate compressibility and / or heat transfer properties to fulfill the functions of the second layer 200.
  • the storage structure 10 may comprise the first layer 100 and the second layer 200, alternately.
  • the storage structure 10 then comprises an alternation of first layers 100 and second layers 200, the first layers 100 preferably being separated in pairs by one of the second layers 200.
  • the plurality of first layers 100 and the plurality of second layers 200 are arranged in an alternating pattern.
  • the alternating distribution in particular facilitates the distribution of thermal and mechanical stresses within the storage structure 10.
  • an alternating structure is easily reproducible on an industrial scale, both at the manufacturing and maintenance stage of the storage structure.
  • storage 10. can easily be adapted according to the needs in terms of storage performance and / or gas supply.
  • such a distribution allows a compactness of the storage structure 10 which can prove to be particularly advantageous for applications such as transport, for example automobile.
  • the storage structure 10 comprises alternating wafers, each first layer 100 and / or each second layer 200 preferably forming a wafer. Privileged, but however optional, the wafers are mechanically independent of each other.
  • Such a configuration can in particular facilitate the handling of the different elements of the storage structure during the various operations associated with the manufacture, maintenance and / or recycling of the storage structure 10.
  • the configuration in wafer promotes geometric optimization distribution and the distribution of materials within the storage structure 10.
  • this configuration is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous.
  • the gas can be better distributed throughout the entire storage structure 10 when loading the storage material.
  • the second layer 200 may comprise a first part of the second layer 201, 203 in contact with the first layer 100, and a second part of the second layer 202.
  • the first part 201, 203 can then comprise a thermally conductive material, with thermal conductivity greater than that of the storage material, in order to increase the heat transfers within the storage structure.
  • the second part 202 may, for its part, comprise a compressible material in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase. gas.
  • the second part material 202 is, in this case, advantageously of greater compressibility than the first part material.
  • the reduction in volume of the second part material 202 is greater than the reduction in volume of the first part material 201, 203.
  • the second part material 202 can also be thermally conductive, with a thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure 10.
  • the functions of the second layer 200 are then partially distributed between the first part 201, 203 and the second part 202.
  • each of these functions can be optimized independently of each other, which improves the efficiency of the storage structure 10, and makes it possible more to adapt the storage structure 10 as a function of gas supply and / or storage needs.
  • the presence of a thermally conductive material in each of the two parts 201, 202, 203 guarantees that the heat exchanges within the storage structure 10 are facilitated in order to distribute the heat evenly throughout the storage structure. 10.
  • the first part material 201, 203 can be identical to the second part material 202. This allows an advantageous cost reduction and a simplification of the manufacture of the storage structure 10. Alternatively, the first part material 201, 203 can be different from the second part material 202. This promotes the adaptation of the storage structure 10 in order to optimize its storage and / or supply capacities for a given gas.
  • first part material 201, 203, and / or the second part material 202 can comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite.
  • first part material 201, 203 can comprise a metal, for example aluminum or copper.
  • second part material 202 may comprise a foam. The applicant has in fact noticed that these materials exhibited compressibility and / or thermal transfer properties adequate to fulfill the functions of first part 201, 203 and / or second part 202 of a storage structure 10.
  • the first part material 201, 203 may furthermore have a lower porosity than the second part material 202.
  • the porosity indeed constitutes a parameter influencing both the compressibility and the thermal properties of a material. Consequently, this difference in porosity favors the deformation of the second part 202 under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and gas desorption phase, and allows the first part 201, 203 to increase the heat transfers within the storage structure 10. More specifically, the first part material 201, 203 can have a porosity of less than 50%, preferably less than 15%, and preferably less than 5%.
  • the mechanical properties of the second layer 200 change during the different operating cycles of the storage structure 10.
  • the first operating cycles of the storage structure 10 make it possible to activate the first layer 100.
  • the storage material included in the first layer 100 acquires its full storage capacity by sorption.
  • This initial conditioning can be implemented during loading and / or unloading cycles which may be of long duration and / or carried out at high temperature and / or carried out at high pressure.
  • activation is facilitated since the number and duration of the first loading and / or unloading cycles decrease.
  • the quantity of gas stored, then supplied, by the first layer 100 increases, as and when successive loading and / or unloading, until reaching an expected level of storage under given temperature and pressure conditions.
  • This expected level corresponds to the maximum quantity of gas that it is possible to store in the first layer 100 at a given temperature and pressure. Once this level is reached, the storage material is activated. However, this or these first operating cycles result in significant changes in the volume of the first layer 100. This leads to plastic compression of the second layer 200, essentially by plastic compression of the second part of the second layer 202, as shown in FIG. 2 .
  • the volume variations of the first layer 100, during storage and / or supply of gas, are less significant than during the activation of the storage material. This is called breathing of the first layer 100.
  • These small variations in volume are compensated for by an elastic deformation of the second layer 200 as visible in FIG. 3.
  • the first part 201, 203 may have, before activation of the storage material, a thickness of less than 5 millimeters, preferably of approximately 2 millimeters, and in a preferred manner of approximately 1 millimeters.
  • the second part 202 can, for its part, present, before activation of the storage material, a thickness of between 2 and 10 millimeters, preferably between 2 and 8 millimeters, and preferably between 2 and 4 millimeters. The applicant has in fact noticed that these thicknesses guarantee the best thermal conductivity within the storage structure 10, but also good compensation for the forces exerted by the storage material during variations in the volume of storage material during gas sorption and desorption phases.
  • the plastic compression of the second layer 200 leads to a reduction in height of the second layer 200 of the order of 20 to 60% relative to its initial height, before activation, and the elastic compression leads to a reduction in height of the second layer 200 of the order of 80 to 99% relative to its initial height, before activation.
  • the second part material 202 may have, before activation of the storage material, a porosity greater than 70%, preferably more than 80%, and more preferably more than 95% and, after activation of the storage material, a porosity greater than 20%, preferably more than 30%, and preferably between 45% and 60%.
  • these porosities guarantee the best thermal conductivity within the storage structure, but also good compensation for the forces exerted by the storage material during variations in the volume of the storage material during gas sorption and desorption phases.
  • the first part 201, 203 can be a first sublayer and / or the second part 202 can be a second sublayer.
  • the functions of the second layer 200 can be ensured while retaining good compactness of the storage structure 10.
  • the second layer 202 can also be structured in angular sectors, each sector corresponding to one or the other of the first part 201, 203 and of the second part 202.
  • the second sublayer 202 may be disposed between the first sublayer 201 and a third sublayer of second layer 203, in contact with another of the at least one first layer 100, and comprising a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure.
  • the second sublayer 202 is not in contact with the first layer 100. This configuration allows optimization of heat transfers through the storage structure 10.
  • a device for storing gas by sorption 1 can also comprise heating means 3 configured to heat the storage material and facilitate the desorption of the gas.
  • the heating means 3 may comprise a device suitable for routing a heat fluid, such as water.
  • a heat fluid such as water.
  • a heating device can take the form of a radiator, or a cylindrical shell of revolution, with a double wall, surrounding the storage structure 1.
  • a gas utilization unit 6 which releases energy in the form of heat (eg fuel cell, combustion engine, exhaust line, etc.)
  • such a heating device may include a closed circuit of heat fluid connecting the storage structure 1 to the gas use unit 6.
  • the heat emitted by the gas use unit 6 is captured by the heat fluid in circulation, then radiated within the storage structure 1, by means of the same circulating heat fluid.
  • This type of heating means 3 thus offers the advantage of being optimized in terms of energy, that is to say it makes it possible not to expend excess energy during the operation of the storage device 1. In addition, this makes it possible to reduce the dimensions of a possible cooling system for the gas use unit 6.
  • the heating means 3 comprise means of ventilation by the air surrounding the storage device 1.
  • the ventilation means indeed offer the advantage of being simple and inexpensive.
  • the heating means 3 may comprise a resistor, for example of the electrical type, connected to an electric power generator.
  • This type of heating means 3 is simple and quick to implement.
  • a resistance also offers the advantage of being easily modular according to the desired applications.
  • the stored gas is a fuel
  • the storage device 1 is connected, in addition to the gas utilization unit 6, to a gas combustion unit (not shown)
  • This type of heating means 3, dedicated to the storage device 1, makes it possible to very quickly increase the temperature within the storage structure 10.
  • the heating means 3 can include:
  • a first heating part 30 arranged in the storage structure 10, at a distance from the circumferential edge B, and
  • a second heating part 32 also arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part 30 on the other hand.
  • first heating part 30 and the second heating part 32 are not directly in contact with the circumferential edge B, nor with each other.
  • the first heating part 30 and the second heating part 32 define between them a space, in which a first portion 1 1 of the storage structure 10 extends.
  • This arrangement of the heating means 3 within the storage structure 10 makes it possible to release a central volume V c and a peripheral volume V p of the storage structure 10.
  • the heating means 3 are neither arranged at a wall of the storage structure 10, nor in the center of said storage structure 10, it is possible to heat the storage structure 10 more homogeneously.
  • the heat flows emitted by the heating means 3 benefit the entire storage structure 10.
  • the gas stored and / or supplied is therefore better distributed throughout the entire storage structure 10, so that it is possible to extend the life of the storage device 10.
  • the first heating part 30 and the second heating part 32 can also be connected to each other by a third heating part 34.
  • the heating means 3 can have a substantially annular section, as in FIG. 1, or in the form of an S, as in FIG. 4. In this way, it is possible to optimize the segmentation of the storage structure 10 between the first portion 11 and the rest of the storage structure 10. For example, with reference to FIG. 1, it is possible to completely isolate the first portion 11 from the rest of the storage structure 10.
  • the storage structure 10 can comprise a second portion 12 extending to the circumferential edge B of the storage structure 10, and connected to the first portion 11.
  • the first portion 11 is not isolated from the rest of the storage structure 10. This configuration advantageously makes it possible to facilitate the diffusion of gas after desorption.
  • compositions and / or distributions of the storage material in the first portion 11 of the storage structure 10 may be different from the compositions and / or distributions of the storage material in the rest of the storage structure storage 10. More specifically, the storage material in the first portion 11 may be different from the storage material in the rest of the storage structure 10. Alternatively, or in addition, a thickness of at least one among the first layers 100 configured to store gas by sorption in the first portion 1 1 may be different in thickness by at least one of the first layers 100 configured to store gas by sorption in the rest of the storage structure 10, l ' thickness means the dimension along the longitudinal axis XX as defined below.
  • the number of first layers 100 and / or second layers 200, comprising the thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the structure storage device 10, and compressible in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase of gas, in the first portion 1 1 may be different from the number of first layers 100 and / or second layers 200 in the rest of the storage structure 10.
  • the material and / or a thickness of at least one of the second layers 200 of the first portion 1 1 may be different from the material and / or a thickness of at least one of the second layers 200 in the rest of the storage structure 10.
  • At least one of the second layers 200 of the first portion 1 1 may not include two and / or three parts 201, 202, 203, while at least one of the second layers 200 in the rest of the storage structure 10 comprises two and / or three separate parts 201, 202, 203, the first part 201 and / or the third part 203 comprising a thermally conductive material, of thermal conductivity greater than that of the storage material , in order to increase the heat transfers within the storage structure 10, the second part 202 comprising, for its part, a compressible material with a view to deforming under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and gas desorption phase .
  • the first portion 1 1 will tend to heat more quickly than the rest of the storage structure 10. Consequently, it is possible to have storage and / or second layer materials 200 whose mechanical and / or thermal properties are more suitable for rapid heating within the first portion 1 1, and vice versa in the rest of the storage structure 10.
  • the storage structure 10 may have a preferred direction defining a longitudinal axis X-X.
  • the heating means 3 may have a substantially annular structure along the longitudinal axis X-X. In this way the distribution of heat within the first portion 1 1 and within the rest of the storage structure 10 is optimized. In fact, heat tends to propagate radially with respect to the longitudinal axis X-X. Also, an annular structure of the heating means 3 guarantees the best possible distribution of the heat transfers within the storage structure 10.
  • the heating means 3 are centered around the longitudinal axis XX, in order to guarantee symmetrical homogeneity of the heat distribution.
  • a gas discharge conduit 400 may be provided within the first portion 1 1. This is not, however, limiting since, as an alternative or in addition, a gas evacuation conduit 400 can also be provided in the rest of the storage structure 10. In any event, such conduits 400 facilitate the transport of the gas during its desorption from the storage material.
  • the storage device 10 can also include an enclosure 4 comprising an outer wall 40, the storage structure 10 being disposed inside the enclosure 4.
  • an enclosure 4 comprising an outer wall 40, the storage structure 10 being disposed inside the enclosure 4.
  • the presence of such an enclosure 4 facilitates the transport and the use of the storage device 1.
  • the enclosure 4 enhances the safety of use of the storage device 1, by protecting a user from possible gas leaks and / or high intensity thermal transfers.
  • the storage device 1 can advantageously comprise a thermally insulating layer 42, disposed between the storage structure 10 and the outer wall 40 of the enclosure 4.
  • This thermally insulating layer 42 is, moreover, configured to diffuse gas.
  • the insulating layer 42 can be in contact with the storage structure 10, in order to further facilitate the diffusion of the gas, but also to improve the compactness of the storage device 1.
  • the insulating layer 42 can also be separated from the storage structure 10, for example by a free space, comprising neither storage material 10 nor second layer material 200, and which can be initially occupied by gas. This latter configuration can be encountered when the storage structure materials 10 are not compatible with the insulating layer material 42, or when it is preferable to increase the thermal insulation thanks to the free space.
  • the insulating layer 42 may, in one embodiment, comprise a porous structure, for example with a decreasing porosity gradient from the storage structure 10 towards the external wall 40 of the enclosure 4. This embodiment is illustrated in particular in FIG. 7. In this way, the portion of insulating layer 42 closest to the storage material can efficiently evacuate the gas after desorption, while the portion of insulating layer 42 closest to the enclosure 4 can effectively isolate heat. released by the storage structure 10.
  • the insulating layer 42 may comprise a grooved structure.
  • grooves 420 are for example formed at the wall of the insulating layer 42 which opens onto the storage structure 10.
  • the portion of insulating layer 42 closest to the storage material can also effectively evacuate the gas after desorption, while the portion of insulating layer 42 closest to the enclosure can isolate efficiently of the heat given off by the storage structure 10.
  • the insulating layer 42 can be formed at the level of an internal wall 44 of the enclosure 4, for example by treating said wall 44, or by depositing an additional coating.
  • Such a configuration simplifies the assembly process of the storage device 1.
  • this embodiment can advantageously lead to a reduction in the maintenance costs of the storage device.
  • the insulating layer 42 can be a film.
  • the insulating layer 42 has a very thin thickness relative to the thickness of the enclosure 4, for example less than 25% of the thickness of the enclosure, or of the order of 10% of the 'thickness of the enclosure, preferably 5% of this thickness. This configuration makes it possible on the one hand to improve the compactness and lightness of the storage device 1, and on the other hand to facilitate its manufacture and maintenance.
  • One or more gas evacuation conduits 400 may also be provided within the insulating layer 42, as visible in FIG. 1, in order to facilitate the transport of the gas outside the storage device 1, after desorption.
  • a gas storage and / or supply system 5 comprises a sorption gas storage device 1 according to any of the embodiments previously described, and a gas utilization unit 6 .
  • the gas utilization unit 6 can, for example, be a motor vehicle fuel cell when the stored gas is hydrogen.
  • a method of manufacturing a sorption gas storage device 1 comprises a step E1 of compressing a powder of gas storage material by sorption so as to form a first layer of gas storage material 100 by sorption in pre-compressed powder form.
  • a method E may include a step E2 of disposing a second layer 200 adjacent to the first layer 100, said second layer 200 comprising a thermally conductive material, with thermal conductivity greater than that of the storage material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a sorptive gas storage device (1) comprising: a sorptive gas storage structure (10) comprising a sorptive gas storage material, said storage structure (10) having a circumferential edge (B), - heating means (3) configured to heat the storage material, and facilitate the desorption of the gas, said heating means (3) comprising: • a first heating part (30) arranged in the storage structure (10), at a distance from the circumferential edge (B), • a second heating part (32) arranged in the storage structure (10), at a distance from the circumferential edge (B) on the one hand and from the first heating part (30) on the other hand, the first heating part (30) and the second heating part (32) defining between them a space whereinto a first portion (11) of the storage structure (10) extends.

Description

DISPOSITIF DE STOCKAGE DE GAZ PAR SORPTION  SORPTION GAS STORAGE DEVICE
DOMAINE DE L’INVENTION L’invention concerne le stockage de gaz par sorption. FIELD OF THE INVENTION The invention relates to the storage of gas by sorption.
L’invention vise plus spécifiquement un dispositif de stockage de gaz par sorption, un système de de stockage et/ou de fourniture de gaz, et un procédé de fabrication d’un dispositif de stockage de gaz par sorption.  The invention relates more specifically to a device for storing gas by sorption, a system for storing and / or supplying gas, and a method for manufacturing a device for storing gas by sorption.
ETAT DE LA TECHNIQUE STATE OF THE ART
L’utilisation de gaz dans l’industrie, qu’il s’agisse du secteur de la mobilité, de l’énergie, de la chimie ou de la production, est soumise à de multiples contraintes. A cet égard, de nombreux dispositifs de stockage de gaz ont déjà été proposés. Certains de ces dispositifs peuvent comprendre un matériau solide permettant de stocker un gaz. The use of gas in industry, whether in the mobility, energy, chemical or production sector, is subject to multiple constraints. In this regard, numerous gas storage devices have already been proposed. Some of these devices may include a solid material for storing a gas.
De tels dispositifs de stockage solide doivent présenter des propriétés particulières, afin de répondre aux contraintes induites par le gaz et liées aux conditions de son utilisation. Le gaz stocké sous forme solide peut, par exemple, lorsqu’il est utilisé comme vecteur énergétique, alimenter une pile à combustible. Dans le secteur de la mobilité, il peut également être utilisé au sein d’un véhicule à moteur.  Such solid storage devices must have particular properties, in order to respond to the constraints induced by the gas and linked to the conditions of its use. Gas stored in solid form can, for example, when used as an energy carrier, power a fuel cell. In the mobility sector, it can also be used in a motor vehicle.
Suivant l’utilisation visée, les structures de stockages sont dimensionnées de différentes manières de par le choix du matériau de stockage et sa taille. Certains de ces matériaux permettent à la fois de stocker et de déstocker du gaz, suivant les conditions de température et de pression auxquelles ces matériaux sont soumis. De manière générale, de tels matériaux stockent du gaz au cours d’une réaction exothermique, et le déstockent au cours d’une réaction endothermique. Ces réactions ont par exemple lieu par sorption du gaz sur le matériau.  Depending on the intended use, the storage structures are sized in different ways depending on the choice of storage material and its size. Some of these materials allow both to store and destock gas, depending on the temperature and pressure conditions to which these materials are subjected. Generally, such materials store gas during an exothermic reaction, and destock it during an endothermic reaction. These reactions take place, for example, by sorption of the gas on the material.
En tout état de cause, la gestion de la répartition de la chaleur au sein du matériau de stockage est un enjeu essentiel pour garantir la performance de tels dispositifs. A cet égard, il est par exemple connu de disposer le matériau de stockage à l’intérieur d’une enceinte confinée comprenant des parois chauffantes. Dans d’autres exemples de dispositif le matériau de stockage est disposé autour d’un tube cylindrique chauffant. Dans tous les cas, le chauffage peut être réglable suivant les besoins de stockage. In any case, managing the distribution of heat within the storage material is an essential issue to guarantee the performance of such devices. In this respect, it is for example known to have the storage material inside a confined enclosure comprising heating walls. In other examples of a device the storage material is arranged around a cylindrical heating tube. In all cases, the heating can be adjustable according to storage needs.
Les systèmes connus sont toutefois exposés à des problèmes d’efficacité, notamment en ce qui concerne d’homogénéisation du transfert de chaleur depuis les moyens chauffants vers l’intégralité du matériau de stockage. Par exemple, la portion du matériau la plus éloignée desdits moyens de chauffage est moins bien chauffée que la portion la plus proche. Les systèmes connus sont en outre exposés à des problèmes de robustesse et de longévité de fonctionnement des structures de stockage, mais aussi de sûreté d’utilisation, de complexité de fabrication, et de rendement économique et énergétique dans la mise en oeuvre desdits systèmes.  The known systems are however exposed to efficiency problems, in particular with regard to the homogenization of the transfer of heat from the heating means to all of the storage material. For example, the portion of the material furthest from said heating means is less well heated than the closest portion. The known systems are also exposed to problems of robustness and longevity of operation of the storage structures, but also of safety of use, of manufacturing complexity, and of economic and energy efficiency in the implementation of said systems.
DESCRIPTION DE L’INVENTION DESCRIPTION OF THE INVENTION
Un but de l’invention est de pallier au moins un des inconvénients précités. Un autre but de l’invention est d’améliorer les transferts thermiques au sein d’une structure de stockage d’un gaz par sorption. An object of the invention is to overcome at least one of the aforementioned drawbacks. Another object of the invention is to improve heat transfers within a structure for storing a gas by sorption.
Un autre but de l’invention est de favoriser la modularité d’une structure de stockage d’un gaz.  Another object of the invention is to promote the modularity of a gas storage structure.
L’invention propose notamment un dispositif de stockage de gaz par sorption comprenant : The invention notably proposes a device for storing gas by sorption comprising:
- une structure de stockage de gaz par sorption comprenant un matériau de stockage de gaz par sorption, ladite structure de stockage présentant un bord circonférentiel,  a sorption gas storage structure comprising a sorption gas storage material, said storage structure having a circumferential edge,
- des moyens de chauffage configurés pour chauffer le matériau de stockage, et faciliter la désorption du gaz, lesdits moyens de chauffage comprenant :  heating means configured to heat the storage material, and facilitate the desorption of the gas, said heating means comprising:
o une première partie chauffante agencée dans la structure de stockage, à distance du bord circonférentiel, o une deuxième partie chauffante agencée dans la structure de stockage, à distance du bord circonférentiel d’une part, et de la première partie chauffante d’autre part, la première partie chauffante et la deuxième partie chauffante définissant entre elles un espace dans lequel une première portion de la structure de stockage s’étend. o a first heating part arranged in the storage structure, at a distance from the circumferential edge, o a second heating part arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part on the other hand , the first heating part and the second heating part defining between them a space in which a first portion of the storage structure extends.
Un tel dispositif permet de réduire les pertes associées au chauffage, tout en assurant une homogénéisation des transferts thermiques au sein de la structure de stockage. Such a device makes it possible to reduce the losses associated with heating, while ensuring homogenization of the heat transfers within the storage structure.
Le dispositif selon l’invention peut en outre comprendre l’une ou l’autre des caractéristiques suivantes, prises seules ou en combinaison : The device according to the invention may also include one or other of the following characteristics, taken alone or in combination:
- la première partie chauffante et la deuxième partie chauffante sont reliées l’une à l’autre par une troisième partie chauffante,  - the first heating part and the second heating part are connected to each other by a third heating part,
- la structure de stockage présente une direction privilégiée définissant un axe longitudinal, les moyens de chauffage présentant une structure substantiellement annulaire le long de l’axe longitudinal,  the storage structure has a preferred direction defining a longitudinal axis, the heating means having a substantially annular structure along the longitudinal axis,
- les compositions et/ou répartitions du matériau de stockage dans la première portion de la structure de stockage sont différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage, en vue d’optimiser la répartition de la chaleur issue des moyens de chauffage au sein de la structure de stockage, the compositions and / or distributions of the storage material in the first portion of the storage structure are different from the compositions and / or distributions of the storage material in the rest of the storage structure, with a view to optimizing the distribution of the heat from the heating means within the storage structure,
- il comprend en outre : - it also includes:
o une enceinte comprenant une paroi extérieure, la structure de stockage étant disposée à l’intérieur de l’enceinte, et  o an enclosure comprising an outer wall, the storage structure being disposed inside the enclosure, and
o une couche isolante thermiquement disposée entre la structure de stockage et la paroi extérieure de l’enceinte, ladite couche étant en outre configurée pour diffuser du gaz,  a thermally insulating layer disposed between the storage structure and the outer wall of the enclosure, said layer being further configured to diffuse gas,
- la couche isolante comprend une structure poreuse,  the insulating layer comprises a porous structure,
- la couche isolante comprend une structure rainurée,  the insulating layer comprises a grooved structure,
- la couche isolante est un film,  - the insulating layer is a film,
- la couche isolante est formée au niveau d’une paroi interne de l’enceinte, par exemple par traitement de ladite paroi, ou par dépôt d’un revêtement additionnel,  the insulating layer is formed at the level of an internal wall of the enclosure, for example by treating said wall, or by depositing an additional coating,
- la structure de stockage comprend : o une première couche comprenant un matériau de stockage par sorption, - the storage structure includes: a first layer comprising a sorption storage material,
o une deuxième couche comprenant :  o a second layer comprising:
une première partie de deuxième couche, en contact avec la première couche, et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage, et a first portion of the second layer, in contact with the first layer, and comprising a thermally conductive material, thermal conductivity greater than that of the storage material, in order to increase heat transfer within the storage structure, and
une deuxième partie de deuxième couche, comprenant un matériau : a second part of second layer comprising a material:
• compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz,  • compressible in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phases of the gas,
• de compressibilité supérieure à celle du matériau de première partie, et  • greater compressibility than that of the first part material, and
• thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage, et la structure de stockage comprend :  • thermally conductive, with a higher thermal conductivity than that of the storage material, with a view to increasing the heat transfers within the storage structure, and the storage structure comprises:
o une pluralité de premières couches, chaque première couche comprenant le matériau de stockage de gaz par sorption sous forme pulvérulente pré-com pressée, et  a plurality of first layers, each first layer comprising the gas storage material by sorption in pre-compressed powder form, and
o une pluralité de deuxièmes couches, chaque deuxième couche comprenant un matériau :  a plurality of second layers, each second layer comprising a material:
compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations de volume du matériau de stockage au cours de phases de sorption et de désorption de gaz, et compressible to be deformed under the action of forces exerted by the storage material during variations in volume of the storage material during phases of sorption and desorption of gas, and
thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage, thermally conductive, with a higher thermal conductivity than that of the storage material, with a view to to increase heat transfers within the repository structure,
les premières et les deuxièmes couches étant disposées selon un motif alterné. L’invention porte en outre sur un procédé de fabrication d’un dispositif tel que précédemment décrit comprenant les étapes de :  the first and second layers being arranged in an alternating pattern. The invention further relates to a method of manufacturing a device as described above comprising the steps of:
- compression d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche de matériau de stockage de gaz par sorption sous forme pulvérulente pré-compressée,  - compression of a powder of gas storage material by sorption so as to form a first layer of gas storage material by sorption in pre-compressed powder form,
- disposition d’une deuxième couche adjacente à la première couche, ladite deuxième couche comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage.  - provision of a second layer adjacent to the first layer, said second layer comprising a thermally conductive material, of thermal conductivity greater than that of the storage material.
L’invention porter par ailleurs sur un système de stockage et/ou de fourniture de gaz comprenant un dispositif tel que précédemment décrit, et une unité d’utilisation de gaz. The invention also relates to a gas storage and / or supply system comprising a device as described above, and a gas use unit.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
D’autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés donnés à titre d’exemple non limitatif et sur lesquels : Other characteristics, objects and advantages of the present invention will appear on reading the detailed description which follows and with reference to the appended drawings given by way of non-limiting example and in which:
- la figure 1 représente une vue en coupe d’un premier exemple d’un dispositif de stockage de gaz selon l’invention,  FIG. 1 represents a sectional view of a first example of a gas storage device according to the invention,
- la figure 2 représente une vue en coupe d’un exemple d’une structure de stockage de gaz,  FIG. 2 represents a sectional view of an example of a gas storage structure,
- la figure 3 représente une vue schématique d’une structure de stockage de gaz dans différents états de fonctionnement,  - Figure 3 shows a schematic view of a gas storage structure in different operating states,
- la figure 4 est une vue de dessus d’un deuxième exemple d’un dispositif de stockage de gaz selon l’invention,  FIG. 4 is a top view of a second example of a gas storage device according to the invention,
- la figure 5 est une vue de dessus d’un troisième exemple d’un dispositif de stockage de gaz selon l’invention,  FIG. 5 is a top view of a third example of a gas storage device according to the invention,
- la figure 6 représente une vue en coupe d’un quatrième exemple d’un dispositif de stockage de gaz selon l’invention, - Figure 6 shows a sectional view of a fourth example of a gas storage device according to the invention,
- la figure 7 est une vue en coupe agrandie d’un cinquième exemple d’un dispositif de stockage de gaz selon l’invention,  FIG. 7 is an enlarged sectional view of a fifth example of a gas storage device according to the invention,
- la figure 8 est une vue en coupe agrandie d’un sixième exemple d’un dispositif de stockage de gaz selon l’invention,  FIG. 8 is an enlarged sectional view of a sixth example of a gas storage device according to the invention,
- la figure 9 illustre schématiquement un système de stockage et/ou de fourniture de gaz selon l’invention, et  FIG. 9 schematically illustrates a gas storage and / or supply system according to the invention, and
- la figure 10 est un organigramme illustrant un exemple de mise en oeuvre d’un procédé de fabrication d’un dispositif de stockage de gaz selon l’invention.  - Figure 10 is a flowchart illustrating an example of implementation of a method of manufacturing a gas storage device according to the invention.
DESCRIPTION DETAILLEE DE L’INVENTION En référence aux figures, on va maintenant décrire un dispositif de stockage de gaz par sorption 1 , un système de stockage et/ou de fourniture de gaz 5, ainsi qu’un procédé E de fabrication d’un dispositif de stockage de gaz par sorption. DETAILED DESCRIPTION OF THE INVENTION With reference to the figures, a description will now be given of a sorption gas storage device 1, a gas storage and / or supply system 5, as well as a method E of manufacturing a device sorption gas storage.
Le gaz stocké peut être de toute nature et de tout type. Par exemple, le dispositif de stockage 1 peut stocker seul, ou en combinaison, de l’hydrogène, de l’ammoniac, de la vapeur d’eau, de l’oxygène, et/ou du dioxyde de carbone.  The gas stored can be of any kind and of any type. For example, the storage device 1 can store alone, or in combination, hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide.
Structure de stockage de gaz Gas storage structure
En référence à la figure 1 , un dispositif de stockage de gaz par sorption 1 comprend une structure de stockage de gaz par sorption 10 comprenant un matériau de stockage par sorption.  Referring to Figure 1, a sorption gas storage device 1 comprises a sorption gas storage structure 10 comprising a sorption storage material.
La structure de stockage par sorption comprend en outre un bord circonférentiel B qui entoure ladite structure de stockage 10.  The sorption storage structure further comprises a circumferential edge B which surrounds said storage structure 10.
Par ailleurs, en référence aux figures 1 et 2, la structure de stockage de gaz par sorption 10 peut comprendre une première couche 100 et une deuxième couche 200.  Furthermore, with reference to FIGS. 1 and 2, the sorption gas storage structure 10 can comprise a first layer 100 and a second layer 200.
La première couche 100 est alors configurée pour stocker du gaz par sorption. Pour ce faire, elle peut comprendre le matériau de stockage par sorption.  The first layer 100 is then configured to store gas by sorption. To do this, it can include the sorption storage material.
Avantageusement, le matériau de stockage peut être sous forme pulvérulente pré- compressé. En effet, cette forme facilite le transport du matériau de stockage car il est alors plus facile à manipuler et présente un volume plus faible. En outre, cette forme est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène. Advantageously, the storage material can be in pre-compressed powder form. Indeed, this shape facilitates the transport of the storage material because it is then easier to handle and has a lower volume. In addition, this form is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous.
En outre, le matériau peut présenter une porosité optimisée en vue d’augmenter la capacité de stockage volumétrique de la structure de stockage, mais aussi de s’accommoder des variations de volume de la deuxième couche 200. Par exemple la porosité du matériau de stockage est comprise entre 10 vol.% et 50 vol.%, et vaut de préférence entre 25 vol.% et 35 vol.%. Par porosité on entend le rapport du volume d’air non occupé par le matériau de stockage au sein d’un volume donné du matériau de stockage, sur ledit volume donné. En d’autres termes, la porosité correspond au rapport du volume non occupé par le matériau de stockage, sur son volume apparent, c’est-à-dire que la porosité est égale au rapport entre la densité théorique à laquelle la densité apparente est retranchée, sur la densité théorique. En tout état de cause, la forme pulvérulente pré-compressée permet de contrôler la porosité du matériau de stockage.  In addition, the material can have an optimized porosity in order to increase the volumetric storage capacity of the storage structure, but also to accommodate variations in volume of the second layer 200. For example the porosity of the storage material is between 10 vol.% and 50 vol.%, and is preferably between 25 vol.% and 35 vol.%. By porosity is meant the ratio of the volume of air not occupied by the storage material within a given volume of the storage material, over said given volume. In other words, the porosity corresponds to the ratio of the volume not occupied by the storage material, over its apparent volume, that is to say that the porosity is equal to the ratio between the theoretical density at which the apparent density is subtracted from the theoretical density. In any event, the pre-compressed powder form makes it possible to control the porosity of the storage material.
De plus, le matériau de stockage peut comprendre :  In addition, the storage material can include:
- un matériau adapté pour former un hydrure métallique, de préférence du type Mghh, NaAlhU, UNH2, et/ou UBH4, et/ou  a material suitable for forming a metal hydride, preferably of the Mghh, NaAlhU, UNH2, and / or UBH4 type, and / or
- un matériau adapté pour forme un alliage intermédiaire, de préférence du type TiMn2, T 2, LaNi5, FeTi, TiV, et/ou TiZr, et/ou a material suitable for forming an intermediate alloy, preferably of the TiMn2, T 2, LaNi 5 , FeTi, TiV, and / or TiZr type, and / or
- un matériau adapté pour former un sel d’ammoniac, de préférence du type BaCh, et/ou CaCh, ou  - a material suitable for forming an ammonia salt, preferably of the BaCh, and / or CaCh type, or
- un matériau adapté pour former un hydroxyde, de préférence du type CaO, et/ou Ca(OH)2, ou  a material suitable for forming a hydroxide, preferably of the CaO, and / or Ca (OH) 2 type, or
- un matériau adapté pour former un oxyde, de préférence du type PbO, et/ou CaO.  - a material suitable for forming an oxide, preferably of the PbO, and / or CaO type.
Le demandeur s’est en effet aperçu que les matériaux ci-dessus sont particulièrement adaptés pour stocker et/ou fournir du gaz tel que de l’hydrogène, de l’ammoniac, de la vapeur d’eau de l’oxygène, et/ou du dioxyde de carbone. Ceci n’est cependant pas limitatif, puisque de tels matériaux peuvent également être particulièrement adaptés pour d’autres types de gaz.  The applicant has in fact noticed that the above materials are particularly suitable for storing and / or supplying gas such as hydrogen, ammonia, water vapor, oxygen, and / or carbon dioxide. This is not, however, limiting, since such materials can also be particularly suitable for other types of gas.
La deuxième couche 200 peut, quant à elle, comprendre un matériau :  The second layer 200 can, for its part, comprise a material:
thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10, et thermally conductive, with higher thermal conductivity than storage material, with a view to increasing the heat transfers within the storage structure 10, and
compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz.  compressible in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase of gas.
Grâce à la deuxième couche 200, les phénomènes de sorption et de désorption de gaz par le matériau de stockage, qui impliquent d’importants flux de chaleur, sont facilités. En effet, les transferts thermiques sont ainsi répartis de manière homogène à travers toute la structure de stockage 10, ce qui en renforce l’efficacité et la pérennité. De fait, la chaleur peut être acheminée et extraite facilement de la première couche 100, ce qui assure le stockage et/ou le déstockage rapide du gaz au sein de la structure de stockage 10. L’énergie stockée par une masse donnée de matériau de stockage en est donc augmentée. Avantageusement, les dimensions, la forme, et le positionnement relatif de première couche 100 et de deuxième couche 200 permettent notamment d’optimiser les transferts thermiques au sein de la structure de stockage 10. Par exemple, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale privilégiée, comme visible sur la figure 1 , l’épaisseur de couche suivant la direction longitudinale est un levier d’optimisation possible des flux de chaleur au sein de la structure de stockage 10. Alternativement, ou en combinaison, prévoir un gradient de porosité de matériau de stockage au sein de la première couche 100, dans une direction radiale par rapport à la direction longitudinale, constitue également une voie d’optimisation possible des échanges thermiques au sein de la structure de stockage 10. En effet, on observe que, lorsque la première couche 100 et la deuxième couche 200 s’étendent suivant une direction longitudinale, la direction radiale constitue une direction privilégiée d’échange de chaleur au sein de la structure de stockage 10. En tout état de cause, la plupart de la chaleur émise ou reçue par la première couche 100 est transférée par la deuxième couche 200.  Thanks to the second layer 200, the phenomena of sorption and desorption of gas by the storage material, which involve significant flows of heat, are facilitated. In fact, the heat transfers are thus distributed homogeneously across the entire storage structure 10, which reinforces its efficiency and durability. In fact, the heat can be transported and easily extracted from the first layer 100, which ensures the rapid storage and / or destocking of the gas within the storage structure 10. The energy stored by a given mass of material of storage is therefore increased. Advantageously, the dimensions, the shape, and the relative positioning of the first layer 100 and of the second layer 200 make it possible in particular to optimize the heat transfers within the storage structure 10. For example, when the first layer 100 and the second layer 200 extend in a preferred longitudinal direction, as can be seen in FIG. 1, the layer thickness in the longitudinal direction is a lever for possible optimization of the heat flows within the storage structure 10. Alternatively, or by combination, providing a porosity gradient of storage material within the first layer 100, in a radial direction relative to the longitudinal direction, also constitutes a possible optimization path for the heat exchanges within the storage structure 10. Indeed, it is observed that, when the first layer 100 and the second layer 200 extend in a long direction itudinal, the radial direction constitutes a preferred direction of heat exchange within the storage structure 10. In any event, most of the heat emitted or received by the first layer 100 is transferred by the second layer 200.
En outre, la deuxième couche 200 assure un rôle de tampon lors du fonctionnement de la structure de stockage 10. En effet, la deuxième couche 200 compense les variations de volume du matériau de stockage lors des phases de sorption et de désorption de gaz, et préserve ainsi la cohérence mécanique de la structure de stockage 10. De cette manière, la capacité volumétrique du matériau de stockage est avantageusement augmentée, puisqu’il n’est plus nécessaire de ménager des espaces vides au sein de la structure de stockage 10. Enfin, la deuxième couche 200 permet de répartir les efforts mécaniques nés des variations de volume du matériau de stockage en fonctionnement. In addition, the second layer 200 acts as a buffer during the operation of the storage structure 10. In fact, the second layer 200 compensates for the variations in volume of the storage material during the sorption and desorption phases of gas, and thus preserves the mechanical coherence of the storage structure 10. In this way, the volumetric capacity of the storage material is advantageously increased, since it is no longer necessary to spare empty spaces within the storage structure 10. Finally, the second layer 200 makes it possible to distribute the mechanical forces arising from variations in the volume of the storage material in operation.
Par ailleurs, la deuxième couche 200 peut comprendre une matrice comprenant du graphite, par exemple du graphite naturel, par exemple du graphite naturel expansé. Alternativement, ou en complément, la deuxième couche 200 peut comprendre un métal, par exemple de l’aluminium ou du cuivre. Le demandeur s’est en effet aperçu que ces matériaux présentaient des propriétés de compressibilité et/ou de transferts thermiques adéquats pour remplir les fonctions de la deuxième couche 200.  Furthermore, the second layer 200 may comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite. Alternatively, or in addition, the second layer 200 can comprise a metal, for example aluminum or copper. The applicant has in fact noticed that these materials have adequate compressibility and / or heat transfer properties to fulfill the functions of the second layer 200.
Structure en alternance Alternating structure
Comme visible sur les figures 1 et 2, mais aussi sur les figures 6 à 8, la structure de stockage 10 peut comprendre la première couche 100 et la deuxième couche 200, en alternance. De manière privilégiée, la structure de stockage 10 comprend alors une alternance de premières couches 100 et de deuxièmes couches 200, les premières couches 100 étant de préférence séparées deux à deux par une des deuxièmes couches 200. En d’autres termes, la pluralité de premières couches 100 et la pluralité de deuxièmes couches 200 sont disposées selon un motif alterné. La répartition en alternance facilite notamment la répartition des contraintes thermiques et mécaniques au sein de la structure de stockage 10. En outre, une structure en alternance est aisément reproductible à l'échelle industrielle, tant au stade de fabrication que de maintenance de la structure de stockage 10. De plus, une telle structure peut facilement être adaptée suivant les besoins en performance de stockage et/ou de fourniture de gaz. Enfin, une telle répartition autorise une compacité de la structure de stockage 10 qui peut s’avérer particulièrement avantageuse pour des applications telles que le transport, par exemple automobile.  As shown in Figures 1 and 2, but also in Figures 6 to 8, the storage structure 10 may comprise the first layer 100 and the second layer 200, alternately. Preferably, the storage structure 10 then comprises an alternation of first layers 100 and second layers 200, the first layers 100 preferably being separated in pairs by one of the second layers 200. In other words, the plurality of first layers 100 and the plurality of second layers 200 are arranged in an alternating pattern. The alternating distribution in particular facilitates the distribution of thermal and mechanical stresses within the storage structure 10. In addition, an alternating structure is easily reproducible on an industrial scale, both at the manufacturing and maintenance stage of the storage structure. storage 10. In addition, such a structure can easily be adapted according to the needs in terms of storage performance and / or gas supply. Finally, such a distribution allows a compactness of the storage structure 10 which can prove to be particularly advantageous for applications such as transport, for example automobile.
Avantageusement, la structure de stockage 10 comprend une alternance de galettes, chaque première couche 100 et/ou chaque deuxième couche 200 formant de préférence une galette. De manière privilégiée, mais toutefois optionnelle, les galettes sont mécaniquement indépendantes les unes des autres. Une telle configuration peut notamment faciliter la manipulation des différents éléments de la structure de stockage lors des différentes opérations associées à la fabrication, la maintenance et/ou le recyclage de la structure de stockage 10. En outre, la configuration en galette favorise une optimisation géométrique de la répartition et de la distribution des matériaux au sein de la structure de stockage 10. De plus, cette configuration est plus adaptée au fonctionnement de stockage par sorption, car elle plus stable, facilite le transfert de chaleur, rend l’expansion du matériau de stockage plus homogène. Ainsi, le gaz peut être mieux distribué à travers toute la structure de stockage 10 lors du chargement du matériau de stockage. Advantageously, the storage structure 10 comprises alternating wafers, each first layer 100 and / or each second layer 200 preferably forming a wafer. Privileged, but however optional, the wafers are mechanically independent of each other. Such a configuration can in particular facilitate the handling of the different elements of the storage structure during the various operations associated with the manufacture, maintenance and / or recycling of the storage structure 10. In addition, the configuration in wafer promotes geometric optimization distribution and the distribution of materials within the storage structure 10. In addition, this configuration is more suitable for the sorption storage operation, because it is more stable, facilitates heat transfer, makes the expansion of the storage material more homogeneous. Thus, the gas can be better distributed throughout the entire storage structure 10 when loading the storage material.
Parties de deuxième couche Second layer parts
En référence aux figures 2 et 3, la deuxième couche 200 peut comprendre une première partie de deuxième couche 201 , 203 en contact avec la première couche 100, et une deuxième partie de deuxième couche 202.  With reference to FIGS. 2 and 3, the second layer 200 may comprise a first part of the second layer 201, 203 in contact with the first layer 100, and a second part of the second layer 202.
Dans cette configuration, la première partie 201 , 203 peut alors comprendre un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage. La deuxième partie 202 peut, quant à elle, comprendre un matériau compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz. En outre, le matériau de deuxième partie 202 est, dans ce cas, avantageusement de compressibilité supérieure au matériau de première partie. Par compressibilité, on comprend la capacité d’un matériau à diminuer son volume lorsqu’il est soumis à un effort de compression donné. Ainsi, pour un même effort de compression, la diminution en volume du matériau de deuxième partie 202 est plus importante que la diminution en volume du matériau de première partie 201 , 203. En d’autres termes, pour obtenir un taux de diminution donné du volume du matériau de première partie 201 , 203 et du matériau de deuxième partie 202, des efforts de compression plus importants sont nécessaires pour le matériau de première partie 201 , 203 que pour le matériau de deuxième partie 202. En tout état de cause, le matériau de deuxième partie 202 peut également être thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10.  In this configuration, the first part 201, 203 can then comprise a thermally conductive material, with thermal conductivity greater than that of the storage material, in order to increase the heat transfers within the storage structure. The second part 202 may, for its part, comprise a compressible material in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase. gas. In addition, the second part material 202 is, in this case, advantageously of greater compressibility than the first part material. By compressibility, we understand the capacity of a material to decrease its volume when it is subjected to a given compression force. Thus, for the same compression force, the reduction in volume of the second part material 202 is greater than the reduction in volume of the first part material 201, 203. In other words, to obtain a given reduction rate of the volume of the first part material 201, 203 and of the second part material 202, greater compressive forces are required for the first part material 201, 203 than for the second part material 202. In any event, the second part material 202 can also be thermally conductive, with a thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure 10.
Les fonctions de la deuxième couche 200 sont alors partiellement réparties entre la première partie 201 , 203 et la deuxième partie 202. De cette manière, chacune de ces fonctions peut être optimisée indépendamment l’une de l’autre, ce qui améliore l’efficacité globale de la structure de stockage 10, et permet davantage d’adapter la structure de stockage 10 en fonction des besoins en fourniture et/ou stockage de gaz. En outre, la présence d’un matériau thermiquement conducteur dans chacun des deux parties 201 , 202, 203 garantit que les échanges thermiques au sein de la structure de stockage 10 sont facilités afin de répartir la chaleur de manière homogène dans toute la structure de stockage 10. The functions of the second layer 200 are then partially distributed between the first part 201, 203 and the second part 202. In this way, each of these functions can be optimized independently of each other, which improves the efficiency of the storage structure 10, and makes it possible more to adapt the storage structure 10 as a function of gas supply and / or storage needs. In addition, the presence of a thermally conductive material in each of the two parts 201, 202, 203 guarantees that the heat exchanges within the storage structure 10 are facilitated in order to distribute the heat evenly throughout the storage structure. 10.
Le matériau de première partie 201 , 203 peut être identique au matériau de deuxième partie 202. Ceci permet une avantageuse réduction de coût et une simplification de la fabrication de la structure de stockage 10. Alternativement, le matériau de première partie 201 , 203 peut être différent du matériau de deuxième partie 202. Ceci favorise l’adaptation de la structure de stockage 10 afin d’optimiser ses capacités de stockage et/ou de fourniture d’un gaz donné.  The first part material 201, 203 can be identical to the second part material 202. This allows an advantageous cost reduction and a simplification of the manufacture of the storage structure 10. Alternatively, the first part material 201, 203 can be different from the second part material 202. This promotes the adaptation of the storage structure 10 in order to optimize its storage and / or supply capacities for a given gas.
Par ailleurs, le matériau de première partie 201 , 203, et/ou le matériau de deuxième partie 202, peuvent comprendre une matrice comprenant du graphite, par exemple du graphite naturel, par exemple du graphite naturel expansé. Alternativement, ou en complément, le matériau de première partie 201 , 203 peut comprendre un métal, par exemple de l’aluminium ou du cuivre. Alternativement, ou en complément, le matériau de deuxième partie 202 peut comprendre une mousse. Le demandeur s’est en effet aperçu que ces matériaux présentaient des propriétés de compressibilité et/ou de transferts thermiques adéquats pour remplir les fonctions de première partie 201 , 203 et/ou de deuxième partie 202 d’une structure de stockage 10.  Furthermore, the first part material 201, 203, and / or the second part material 202, can comprise a matrix comprising graphite, for example natural graphite, for example expanded natural graphite. Alternatively, or in addition, the first part material 201, 203 can comprise a metal, for example aluminum or copper. Alternatively, or in addition, the second part material 202 may comprise a foam. The applicant has in fact noticed that these materials exhibited compressibility and / or thermal transfer properties adequate to fulfill the functions of first part 201, 203 and / or second part 202 of a storage structure 10.
Le matériau de première partie 201 , 203 peut en outre présenter une porosité plus faible que le matériau de deuxième partie 202. La porosité constitue en effet un paramètre influençant à la fois la compressibilité et les propriétés thermiques d’un matériau. Par conséquent, cette différence de porosité favorise la déformation de la deuxième partie 202 sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz, et permet à la première partie 201 , 203 d’augmenter les transferts thermiques au sein de la structure de stockage 10. Plus précisément, le matériau de première partie 201 , 203 peut présenter une porosité inférieure à 50%, de préférence inférieure à 15%, et de manière privilégiée moins de 5%.  The first part material 201, 203 may furthermore have a lower porosity than the second part material 202. The porosity indeed constitutes a parameter influencing both the compressibility and the thermal properties of a material. Consequently, this difference in porosity favors the deformation of the second part 202 under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and gas desorption phase, and allows the first part 201, 203 to increase the heat transfers within the storage structure 10. More specifically, the first part material 201, 203 can have a porosity of less than 50%, preferably less than 15%, and preferably less than 5%.
En référence à la figure 3, les propriétés mécaniques de la deuxième couche 200 évoluent au cours des différents cycles de fonctionnement de la structure de stockage 10. En fait, les premiers cycles de fonctionnement de la structure de stockage 10 permettent d’activer la première couche 100. Plus précisément, lors des premiers cycles de chargement et/ou déchargement de la structure de stockage 10, le matériau de stockage compris dans la première couche 100 acquiert sa pleine capacité de stockage par sorption. Ce conditionnement initial peut être mis en oeuvre lors de cycles de chargement et/ou de déchargement pouvant être de longue durée et/ou réalisés à haute température et/ou réalisés à haute pression. A cet égard, il convient de noter que, lorsque le matériau de stockage est sous forme pulvérulente pré- compressée, l’activation est facilitée car le nombre et la durée des premiers cycles de chargement et/ou déchargement diminuent. Progressivement, la quantité de gaz stockée, puis fournie, par la première couche 100 augmente, au fur et à mesure des chargements et/ou déchargements successifs, jusqu’à atteindre un niveau de stockage attendu dans des conditions de température et de pression donnée. Ce niveau attendu correspond à la quantité maximale de gaz qu’il est possible de stocker dans la première couche 100 à température et pression données. Une fois ce niveau atteint, le matériau de stockage est activé. Or, ce ou ces premiers cycles de fonctionnement entraînent des modifications importantes du volume de première couche 100. Ceci amène à une compression plastique de deuxième couche 200, essentiellement par compression plastique de la deuxième partie de deuxième couche 202, comme visible sur la figure 2. With reference to FIG. 3, the mechanical properties of the second layer 200 change during the different operating cycles of the storage structure 10. In fact, the first operating cycles of the storage structure 10 make it possible to activate the first layer 100. More precisely, during the first loading and / or unloading cycles of the storage structure 10, the storage material included in the first layer 100 acquires its full storage capacity by sorption. This initial conditioning can be implemented during loading and / or unloading cycles which may be of long duration and / or carried out at high temperature and / or carried out at high pressure. In this regard, it should be noted that, when the storage material is in pre-compressed powder form, activation is facilitated since the number and duration of the first loading and / or unloading cycles decrease. Gradually, the quantity of gas stored, then supplied, by the first layer 100 increases, as and when successive loading and / or unloading, until reaching an expected level of storage under given temperature and pressure conditions. This expected level corresponds to the maximum quantity of gas that it is possible to store in the first layer 100 at a given temperature and pressure. Once this level is reached, the storage material is activated. However, this or these first operating cycles result in significant changes in the volume of the first layer 100. This leads to plastic compression of the second layer 200, essentially by plastic compression of the second part of the second layer 202, as shown in FIG. 2 .
Par la suite, les variations de volume de la première couche 100, lors du stockage et/ou de la fourniture de gaz, sont moins importants que lors de l’activation du matériau de stockage. On parle alors de respiration de la première couche 100. Ces faibles variations de volume sont compensées par une déformation élastique de la deuxième couche 200 comme visible sur la figure 3.  Thereafter, the volume variations of the first layer 100, during storage and / or supply of gas, are less significant than during the activation of the storage material. This is called breathing of the first layer 100. These small variations in volume are compensated for by an elastic deformation of the second layer 200 as visible in FIG. 3.
Ainsi, la première partie 201 , 203 peut présenter, avant activation du matériau de stockage, une épaisseur inférieure à 5 millimètres, de préférence d’environ 2 millimètres, et de manière privilégiée d’environ 1 millimètres. La deuxième partie 202 peut, quant à elle, présenter, avant activation du matériau de de stockage, une épaisseur comprise entre 2 et 10 millimètres, de préférence comprise entre 2 et 8 millimètres, et de manière privilégiée comprise entre 2 et 4 millimètres. Le demandeur s’est en effet aperçu que ces épaisseurs garantissent la meilleure conductivité thermique au sein de la structure de stockage 10, mais aussi une bonne compensation des efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz. En tout état de cause, la compression plastique de deuxième couche 200 conduit à une réduction de hauteur de la deuxième couche 200 de l’ordre de 20 à 60 % par rapport à sa hauteur initiale, avant activation, et la compression élastique conduit à une réduction de hauteur de la deuxième couche 200 de l’ordre de 80 à 99 % par rapport à sa hauteur initiale, avant activation. Thus, the first part 201, 203 may have, before activation of the storage material, a thickness of less than 5 millimeters, preferably of approximately 2 millimeters, and in a preferred manner of approximately 1 millimeters. The second part 202 can, for its part, present, before activation of the storage material, a thickness of between 2 and 10 millimeters, preferably between 2 and 8 millimeters, and preferably between 2 and 4 millimeters. The applicant has in fact noticed that these thicknesses guarantee the best thermal conductivity within the storage structure 10, but also good compensation for the forces exerted by the storage material during variations in the volume of storage material during gas sorption and desorption phases. In any event, the plastic compression of the second layer 200 leads to a reduction in height of the second layer 200 of the order of 20 to 60% relative to its initial height, before activation, and the elastic compression leads to a reduction in height of the second layer 200 of the order of 80 to 99% relative to its initial height, before activation.
En outre, le matériau de deuxième partie 202 peut présenter, avant activation du matériau de stockage, une porosité supérieure à 70%, de préférence plus de 80%, et de manière privilégiée plus de 95% et, après activation du matériau de stockage, une porosité supérieure à 20%, de préférence plus de 30%, et de manière privilégiée comprise entre 45% et 60%. Le demandeur s’est en effet aperçu que ces porosités garantissent la meilleure conductivité thermique au sein de la structure de stockage, 10 mais aussi une bonne compensation des efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz.  In addition, the second part material 202 may have, before activation of the storage material, a porosity greater than 70%, preferably more than 80%, and more preferably more than 95% and, after activation of the storage material, a porosity greater than 20%, preferably more than 30%, and preferably between 45% and 60%. The applicant has in fact noticed that these porosities guarantee the best thermal conductivity within the storage structure, but also good compensation for the forces exerted by the storage material during variations in the volume of the storage material during gas sorption and desorption phases.
Comme visible sur les figures 1 à 3, la première partie 201 , 203 peut être une première sous-couche et/ou la deuxième partie 202 peut être une deuxième sous- couche. Ceci garantit une homogénéité structurelle qui facilite les opérations de fabrication, de maintenance et/ou de recyclage de la structure de stockage 10. En outre, les fonctions de la deuxième couche 200 peuvent être assurées tout en conservant une bonne compacité de la structure de stockage 10. Ceci n’est cependant pas limitatif, puisque d’autres formes de première partie 201 , 203 et de deuxième partie 202 sont envisageables. Par exemple, la deuxième couche 202 peut également être structurée en secteurs angulaires, chaque secteur correspondant à l’une ou l’autre de la première partie 201 , 203 et de la deuxième partie 202.  As can be seen in FIGS. 1 to 3, the first part 201, 203 can be a first sublayer and / or the second part 202 can be a second sublayer. This guarantees a structural homogeneity which facilitates the manufacturing, maintenance and / or recycling operations of the storage structure 10. In addition, the functions of the second layer 200 can be ensured while retaining good compactness of the storage structure 10. This is however not limiting, since other forms of first part 201, 203 and second part 202 are conceivable. For example, the second layer 202 can also be structured in angular sectors, each sector corresponding to one or the other of the first part 201, 203 and of the second part 202.
Avantageusement, en référence aux figures 1 à 3, pour au moins une deuxième couche 200, la deuxième sous-couche 202 peut être disposée entre la première sous-couche 201 et une troisième sous-couche de deuxième couche 203, en contact avec une autre de l’au moins une première couche 100, et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage. Dans cette configuration de deuxième couche 200 en « sandwich », la deuxième sous-couche 202 n’est pas en contact avec la première couche 100. Cette configuration autorise une optimisation des transferts thermiques à travers la structure de stockage 10. Advantageously, with reference to FIGS. 1 to 3, for at least a second layer 200, the second sublayer 202 may be disposed between the first sublayer 201 and a third sublayer of second layer 203, in contact with another of the at least one first layer 100, and comprising a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the storage structure. In this second sandwich 200 layer configuration, the second sublayer 202 is not in contact with the first layer 100. This configuration allows optimization of heat transfers through the storage structure 10.
Moyens de chauffage Heating means
En référence aux figures 1 , 4 et 5 un dispositif de stockage de gaz par sorption 1 peut en outre comprendre des moyens de chauffage 3 configurés pour chauffer le matériau de stockage et faciliter la désorption du gaz.  With reference to FIGS. 1, 4 and 5, a device for storing gas by sorption 1 can also comprise heating means 3 configured to heat the storage material and facilitate the desorption of the gas.
Les moyens de chauffage 3 peuvent comprendre un dispositif propre à faire cheminer un fluide calorifique, tel que de l’eau. Par exemple, un tel dispositif peut prendre la forme d’un radiateur, ou d’une coque cylindrique de révolution, à double paroi, entourant la structure de stockage 1 . Lorsque le dispositif de stockage 1 est relié à unité d’utilisation de gaz 6 qui dégage de l’énergie sous forme de chaleur (e.g. pile à combustible, moteur à combustion, ligne d’échappement, etc.), un tel dispositif de chauffage peut comprendre un circuit fermé de fluide calorifique reliant la structure de stockage 1 à l’unité d’utilisation de gaz 6. En fonctionnement, la chaleur émise par l’unité d’utilisation de gaz 6 est captée par le fluide calorifique en circulation, puis rayonnée au sein de la structure de stockage 1 , par l’intermédiaire du même fluide calorifique en circulation. Ceci permet à la fois de refroidir l’unité d’utilisation de gaz 6, mais aussi de faciliter la désorption du gaz par chauffage. Ce type de moyens de chauffage 3 offre ainsi l’avantage d’être optimisé énergétiquement, c’est-à-dire qu’il permet de ne pas dépenser un surplus d’énergie lors du fonctionnement du dispositif de stockage 1. En outre, cela permet de réduire les dimensions d’un éventuel système de refroidissement de l’unité d’utilisation de gaz 6.  The heating means 3 may comprise a device suitable for routing a heat fluid, such as water. For example, such a device can take the form of a radiator, or a cylindrical shell of revolution, with a double wall, surrounding the storage structure 1. When the storage device 1 is connected to a gas utilization unit 6 which releases energy in the form of heat (eg fuel cell, combustion engine, exhaust line, etc.), such a heating device may include a closed circuit of heat fluid connecting the storage structure 1 to the gas use unit 6. In operation, the heat emitted by the gas use unit 6 is captured by the heat fluid in circulation, then radiated within the storage structure 1, by means of the same circulating heat fluid. This makes it possible both to cool the gas utilization unit 6, but also to facilitate the desorption of the gas by heating. This type of heating means 3 thus offers the advantage of being optimized in terms of energy, that is to say it makes it possible not to expend excess energy during the operation of the storage device 1. In addition, this makes it possible to reduce the dimensions of a possible cooling system for the gas use unit 6.
Alternativement, ou en complément, les moyens de chauffage 3 comprennent des moyens de ventilation par l’air entourant le dispositif de stockage 1. Les moyens de ventilation offrent en effet l’avantage d’être simples et peu coûteux.  Alternatively, or in addition, the heating means 3 comprise means of ventilation by the air surrounding the storage device 1. The ventilation means indeed offer the advantage of being simple and inexpensive.
Alternativement, ou en complément, les moyens de chauffage 3 peuvent comprendre une résistance, par exemple de type électrique, reliée à un générateur de puissance électrique. Ce type de moyen de chauffage 3 est simple et rapide à mettre en oeuvre. Une résistance offre en outre l’avantage d’être modulable facilement suivant les applications recherchées.  Alternatively, or in addition, the heating means 3 may comprise a resistor, for example of the electrical type, connected to an electric power generator. This type of heating means 3 is simple and quick to implement. A resistance also offers the advantage of being easily modular according to the desired applications.
Alternativement, ou en complément, lorsque le gaz stocké est un combustible, et que le dispositif de stockage 1 est relié, en plus de l’unité d’utilisation du gaz 6, à une unité de combustion de gaz (non représentée), il est possible de relier les moyens de chauffage 3 à ladite unité de combustion de gaz, de sorte à récupérer la chaleur dégagée par la combustion du gaz. Ce type de moyens de chauffage 3, dédié au dispositif de stockage 1 , permet d’augmenter très rapidement la température au sein de la structure de stockage 10. Alternatively, or in addition, when the stored gas is a fuel, and the storage device 1 is connected, in addition to the gas utilization unit 6, to a gas combustion unit (not shown), it is possible to connect the heating means 3 to said gas combustion unit, so as to recover the heat released by combustion of gas. This type of heating means 3, dedicated to the storage device 1, makes it possible to very quickly increase the temperature within the storage structure 10.
Comme visible sur les figures 4 et 5, les moyens de chauffage 3 peuvent comprendre :  As shown in FIGS. 4 and 5, the heating means 3 can include:
une première partie chauffante 30 agencée dans la structure de stockage 10, à distance du bord circonférentiel B, et  a first heating part 30 arranged in the storage structure 10, at a distance from the circumferential edge B, and
une deuxième partie chauffante 32, également agencée dans la structure de stockage, à distance du bord circonférentiel d’une part, et de la première partie chauffante 30 d’autre part.  a second heating part 32, also arranged in the storage structure, at a distance from the circumferential edge on the one hand, and from the first heating part 30 on the other hand.
Par « à distance », on comprend que la première partie chauffante 30 et la deuxième partie chauffante 32 ne sont pas directement en contact avec le bord circonférentiel B, ni l’une avec l’autre. Ainsi, la première partie chauffante 30 et la deuxième partie chauffante 32 définissent entre elles un espace, dans lequel une première portion 1 1 de la structure de stockage 10 s’étend.  By "remote", it is understood that the first heating part 30 and the second heating part 32 are not directly in contact with the circumferential edge B, nor with each other. Thus, the first heating part 30 and the second heating part 32 define between them a space, in which a first portion 1 1 of the storage structure 10 extends.
Cette disposition des moyens de chauffage 3 au sein de la structure de stockage 10 permet de dégager un volume central Vc et un volume périphérique Vp de la structure de stockage 10. Comme les moyens de chauffage 3 ne sont ni disposés au niveau d’une paroi de la structure de stockage 10, ni au centre de ladite structure de stockage 10, il est possible de chauffer la structure de stockage 10 de manière plus homogène. Ainsi, les flux de chaleur émis par les moyens de chauffage 3 bénéficient à l’ensemble de la structure de stockage 10. Le gaz stocké et/ou fourni est donc mieux réparti à travers toute la structure de stockage 10, si bien qu’il est possible d’allonger la durée de vie du dispositif de stockage 10. This arrangement of the heating means 3 within the storage structure 10 makes it possible to release a central volume V c and a peripheral volume V p of the storage structure 10. As the heating means 3 are neither arranged at a wall of the storage structure 10, nor in the center of said storage structure 10, it is possible to heat the storage structure 10 more homogeneously. Thus, the heat flows emitted by the heating means 3 benefit the entire storage structure 10. The gas stored and / or supplied is therefore better distributed throughout the entire storage structure 10, so that it is possible to extend the life of the storage device 10.
La première partie chauffante 30 et la deuxième partie chauffante 32 peuvent en outre être reliées l’une à l’autre par une troisième partie chauffante 34. Ainsi, les moyens de chauffage 3 peuvent présenter une section substantiellement annulaire, comme sur la figure 1 , ou en forme de S, comme sur la figure 4. De cette manière, il est possible d’optimiser la segmentation de la structure de stockage 10 entre la première portion 1 1 et le reste de la structure de stockage 10. Par exemple, en référence à la figure 1 , il est possible d’isoler totalement la première portion 1 1 du reste de la structure de stockage 10.  The first heating part 30 and the second heating part 32 can also be connected to each other by a third heating part 34. Thus, the heating means 3 can have a substantially annular section, as in FIG. 1, or in the form of an S, as in FIG. 4. In this way, it is possible to optimize the segmentation of the storage structure 10 between the first portion 11 and the rest of the storage structure 10. For example, with reference to FIG. 1, it is possible to completely isolate the first portion 11 from the rest of the storage structure 10.
Par ailleurs, comme visible sur les figures 4 et 5, la structure de stockage 10 peut comprendre une deuxième portion 12 s’étendant jusqu’au bord circonférentiel B de la structure de stockage 10, et reliée à la première portion 1 1 . Dans ce cas, la première portion 1 1 n’est pas isolée du reste de la structure de stockage 10. Cette configuration permet avantageusement de faciliter la diffusion de gaz après désorption. Furthermore, as visible in FIGS. 4 and 5, the storage structure 10 can comprise a second portion 12 extending to the circumferential edge B of the storage structure 10, and connected to the first portion 11. In this case, the first portion 11 is not isolated from the rest of the storage structure 10. This configuration advantageously makes it possible to facilitate the diffusion of gas after desorption.
Comme également visible sur la figure 1 , les compositions et/ou répartitions du matériau de stockage dans la première portion 1 1 de la structure de stockage 10 peuvent être différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage 10. Plus précisément, le matériau de stockage dans la première portion 1 1 peut être différent du matériau de stockage dans le reste de la structure de stockage 10. Alternativement, ou en complément, une épaisseur d’une au moins parmi les premières couches 100 configurées pour stocker du gaz par sorption dans la première portion 1 1 peut être différente d’une épaisseur d’une au moins parmi les premières couches 100 configurées pour stocker du gaz par sorption dans le reste de la structure de stockage 10, l’épaisseur s’entendant de la dimension selon l’axe longitudinal X-X tel que défini ci-après. Alternativement, ou en complément, le nombre de premières couches 100 et/ou de deuxièmes couches 200, comprenant le matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10, et compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz, dans la première portion 1 1 peut être différent du nombre de premières couches 100 et/ou de deuxièmes couches 200 dans le reste de la structure de stockage 10. Alternativement, ou en complément, le matériau et/ou une épaisseur d’une au moins parmi les deuxièmes couches 200 de la première portion 1 1 peut être différent du matériau et/ou d’une épaisseur d’une au moins parmi les deuxièmes couches 200 dans le reste de la structure de stockage 10. Alternativement, ou en complément, l’une au moins parmi les deuxièmes couches 200 de la première portion 1 1 peut ne pas comprendre deux et/ou trois parties 201 , 202, 203, tandis que l’une au moins parmi les deuxièmes couches 200 dans le reste de la structure de stockage 10 comprend deux et/ou trois parties distinctes 201 , 202, 203, la première partie 201 et/ou la troisième partie 203 comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage 10, la deuxième partie 202 comprenant, quant à elle, un matériau compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phase de sorption et de désorption de gaz. As also visible in FIG. 1, the compositions and / or distributions of the storage material in the first portion 11 of the storage structure 10 may be different from the compositions and / or distributions of the storage material in the rest of the storage structure storage 10. More specifically, the storage material in the first portion 11 may be different from the storage material in the rest of the storage structure 10. Alternatively, or in addition, a thickness of at least one among the first layers 100 configured to store gas by sorption in the first portion 1 1 may be different in thickness by at least one of the first layers 100 configured to store gas by sorption in the rest of the storage structure 10, l ' thickness means the dimension along the longitudinal axis XX as defined below. Alternatively, or in addition, the number of first layers 100 and / or second layers 200, comprising the thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers within the structure storage device 10, and compressible in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phase of gas, in the first portion 1 1 may be different from the number of first layers 100 and / or second layers 200 in the rest of the storage structure 10. Alternatively, or in addition, the material and / or a thickness of at least one of the second layers 200 of the first portion 1 1 may be different from the material and / or a thickness of at least one of the second layers 200 in the rest of the storage structure 10. Alternative ment, or in addition, at least one of the second layers 200 of the first portion 1 1 may not include two and / or three parts 201, 202, 203, while at least one of the second layers 200 in the rest of the storage structure 10 comprises two and / or three separate parts 201, 202, 203, the first part 201 and / or the third part 203 comprising a thermally conductive material, of thermal conductivity greater than that of the storage material , in order to increase the heat transfers within the storage structure 10, the second part 202 comprising, for its part, a compressible material with a view to deforming under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and gas desorption phase .
Ainsi, il est possible d’optimiser la répartition de la chaleur issue des moyens de chauffage 3 au sein de la structure de stockage 10, entre la première portion 1 1 et le reste de la structure de stockage 10. En effet, en fonctionnement, la première portion 1 1 aura tendance à chauffer plus rapidement que le reste de la structure de stockage 10. Par conséquent, il est possible de disposer des matériaux de stockage et/ou de deuxième couche 200 dont les propriétés mécaniques et/ou thermiques sont plus adaptées à une chauffe rapide au sein de la première portion 1 1 , et vice-versa dans le reste de la structure de stockage 10.  Thus, it is possible to optimize the distribution of the heat from the heating means 3 within the storage structure 10, between the first portion 11 and the rest of the storage structure 10. In fact, in operation, the first portion 1 1 will tend to heat more quickly than the rest of the storage structure 10. Consequently, it is possible to have storage and / or second layer materials 200 whose mechanical and / or thermal properties are more suitable for rapid heating within the first portion 1 1, and vice versa in the rest of the storage structure 10.
En référence à la figure 1 , la structure de stockage 10 peut présenter une direction privilégiée définissant un axe longitudinal X-X. Une telle configuration rend le dispositif de stockage 10 particulièrement facile à stocker et/ou à transporter. Dans cette configuration, comme visible sur la figure 1 , les moyens de chauffage 3 peuvent présenter une structure substantiellement annulaire le long de l’axe longitudinal X-X. De cette manière la répartition de la chaleur au sein de la première portion 1 1 et au sein du reste de la structure de stockage 10 est optimisée. En effet, la chaleur a tendance à se propager radialement par rapport à l’axe longitudinal X-X. Aussi, une structure annulaire des moyens de chauffage 3 garantit la meilleure répartition possible des transferts thermiques au sein de la structure de stockage 10. Avantageusement, dans ce cas, les moyens de chauffage 3 sont centrés autour de l’axe longitudinal X-X, afin de garantir une homogénéité symétrique de la répartition de la chaleur.  Referring to Figure 1, the storage structure 10 may have a preferred direction defining a longitudinal axis X-X. Such a configuration makes the storage device 10 particularly easy to store and / or transport. In this configuration, as visible in FIG. 1, the heating means 3 may have a substantially annular structure along the longitudinal axis X-X. In this way the distribution of heat within the first portion 1 1 and within the rest of the storage structure 10 is optimized. In fact, heat tends to propagate radially with respect to the longitudinal axis X-X. Also, an annular structure of the heating means 3 guarantees the best possible distribution of the heat transfers within the storage structure 10. Advantageously, in this case, the heating means 3 are centered around the longitudinal axis XX, in order to guarantee symmetrical homogeneity of the heat distribution.
Enceinte et évacuation de gaz Gas enclosure and evacuation
En référence à la figure 1 , un conduit d’évacuation de gaz 400 peut être ménagé au sein de la première portion 1 1 . Ceci n’est cependant pas limitatif puisque, à titre d’alternative ou en complément, un conduit d’évacuation de gaz 400 peut également être ménagé dans le reste de la structure de stockage 10. En tout état de cause, de tels conduits 400 facilitent le transport du gaz lors de sa désorption du matériau de stockage.  Referring to Figure 1, a gas discharge conduit 400 may be provided within the first portion 1 1. This is not, however, limiting since, as an alternative or in addition, a gas evacuation conduit 400 can also be provided in the rest of the storage structure 10. In any event, such conduits 400 facilitate the transport of the gas during its desorption from the storage material.
En référence aux figures 1 , et 6 à 8, le dispositif de stockage 10 peut également comprendre une enceinte 4 comprenant une paroi extérieure 40, la structure de stockage 10 étant disposée à l’intérieur de l’enceinte 4. La présence d’une telle enceinte 4 facilite le transport et l’utilisation du dispositif de stockage 1 . En outre, l’enceinte 4 renforce la sûreté d’utilisation du dispositif de stockage 1 , en protégeant un utilisateur d’éventuelles fuites de gaz et/ou de transferts thermiques d’intensité élevées. With reference to Figures 1, and 6 to 8, the storage device 10 can also include an enclosure 4 comprising an outer wall 40, the storage structure 10 being disposed inside the enclosure 4. The presence of such an enclosure 4 facilitates the transport and the use of the storage device 1. In addition, the enclosure 4 enhances the safety of use of the storage device 1, by protecting a user from possible gas leaks and / or high intensity thermal transfers.
En vue de renforcer la protection de l’utilisateur, mais aussi de faciliter la diffusion du gaz lors de sa désorption du matériau de stockage, le dispositif de stockage 1 peut avantageusement comprendre une couche isolante thermiquement 42, disposée entre la structure de stockage 10 et la paroi extérieure 40 de l’enceinte 4. Cette couche isolante thermiquement 42 est, en outre, configurée pour diffuser du gaz. En outre, la couche isolante 42 peut être en contact avec la structure de stockage 10, afin de faciliter davantage la diffusion du gaz, mais aussi d’améliorer la compacité du dispositif de stockage 1 . Ceci n’est cependant pas limitatif, puisque la couche isolante 42 peut également être séparé de la structure de stockage 10, par exemple par un espace libre, ne comportant ni matériau de stockage 10, ni matériau de deuxième couche 200, et pouvant être initialement occupé par du gaz. Cette dernière configuration peut être rencontrée lorsque les matériaux de structure de stockage 10 ne sont pas compatibles avec le matériau de couche isolante 42, ou lorsqu’il est préférable d’augmenter l’isolation thermique grâce à l’espace libre.  In order to strengthen the protection of the user, but also to facilitate the diffusion of the gas during its desorption of the storage material, the storage device 1 can advantageously comprise a thermally insulating layer 42, disposed between the storage structure 10 and the outer wall 40 of the enclosure 4. This thermally insulating layer 42 is, moreover, configured to diffuse gas. In addition, the insulating layer 42 can be in contact with the storage structure 10, in order to further facilitate the diffusion of the gas, but also to improve the compactness of the storage device 1. This is not, however, limiting, since the insulating layer 42 can also be separated from the storage structure 10, for example by a free space, comprising neither storage material 10 nor second layer material 200, and which can be initially occupied by gas. This latter configuration can be encountered when the storage structure materials 10 are not compatible with the insulating layer material 42, or when it is preferable to increase the thermal insulation thanks to the free space.
La couche isolante 42 peut, dans un mode de réalisation, comprendre une structure poreuse, par exemple avec un gradient de porosité décroissant depuis la structure de stockage 10 vers la paroi extérieur 40 de l’enceinte 4. Ce mode de réalisation est notamment illustré en figure 7. De cette manière, la portion de couche isolante 42 la plus proche du matériau de stockage peut évacuer efficacement le gaz après désorption, tandis que la portion de couche isolante 42 la plus proche de l’enceinte 4 peut isoler efficacement de la chaleur dégagée par la structure de stockage 10.  The insulating layer 42 may, in one embodiment, comprise a porous structure, for example with a decreasing porosity gradient from the storage structure 10 towards the external wall 40 of the enclosure 4. This embodiment is illustrated in particular in FIG. 7. In this way, the portion of insulating layer 42 closest to the storage material can efficiently evacuate the gas after desorption, while the portion of insulating layer 42 closest to the enclosure 4 can effectively isolate heat. released by the storage structure 10.
Alternativement, ou en combinaison, la couche isolante 42 peut comprendre une structure rainurée. En référence à la figure 8, des rainures 420 sont par exemple ménagées au niveau de la paroi de la couche isolante 42 qui débouche sur la structure de stockage 10. Ainsi, la portion de couche isolante 42 la plus proche du matériau de stockage peut également évacuer efficacement le gaz après désorption, tandis que la portion de couche isolante 42 la plus proche de l’enceinte peut isoler efficacement de la chaleur dégagée par la structure de stockage 10. Alternatively, or in combination, the insulating layer 42 may comprise a grooved structure. With reference to FIG. 8, grooves 420 are for example formed at the wall of the insulating layer 42 which opens onto the storage structure 10. Thus, the portion of insulating layer 42 closest to the storage material can also effectively evacuate the gas after desorption, while the portion of insulating layer 42 closest to the enclosure can isolate efficiently of the heat given off by the storage structure 10.
En outre, la couche isolante 42 peut être formée au niveau d’une paroi interne 44 de l’enceinte 4, par exemple par traitement de ladite paroi 44, ou par dépôt d’un revêtement additionnel. Une telle configuration permet de simplifier le processus d’assemblage du dispositif de stockage 1 . En outre, ce mode de réalisation peut avantageusement aboutir à une réduction des coûts de maintenance du dispositif de stockage.  In addition, the insulating layer 42 can be formed at the level of an internal wall 44 of the enclosure 4, for example by treating said wall 44, or by depositing an additional coating. Such a configuration simplifies the assembly process of the storage device 1. In addition, this embodiment can advantageously lead to a reduction in the maintenance costs of the storage device.
Par ailleurs, la couche isolante 42 peut être un film. Dans ce cas, la couche isolante 42 présente une épaisseur très fine par rapport à l’épaisseur de l’enceinte 4, par exemple moins de 25% de l’épaisseur de l’enceinte, ou de l’ordre de 10% de l’épaisseur de l’enceinte, de préférence 5% de cette épaisseur. Cette configuration permet d’une part d’améliorer la compacité et la légèreté du dispositif de stockage 1 , et d’autre part d’en faciliter la fabrication et la maintenance.  Furthermore, the insulating layer 42 can be a film. In this case, the insulating layer 42 has a very thin thickness relative to the thickness of the enclosure 4, for example less than 25% of the thickness of the enclosure, or of the order of 10% of the 'thickness of the enclosure, preferably 5% of this thickness. This configuration makes it possible on the one hand to improve the compactness and lightness of the storage device 1, and on the other hand to facilitate its manufacture and maintenance.
Un ou plusieurs conduits d’évacuation des gaz 400 peuvent en outre être ménagés au sein de la couche isolante 42, comme visible sur la figure 1 , afin de faciliter le transport du gaz en dehors du dispositif de stockage 1 , après la désorption.  One or more gas evacuation conduits 400 may also be provided within the insulating layer 42, as visible in FIG. 1, in order to facilitate the transport of the gas outside the storage device 1, after desorption.
Système de stockage et/ou de fourniture de gaz Gas storage and / or supply system
En référence à la figure 9, un système de stockage et/ou de fourniture de gaz 5 comprend un dispositif de stockage de gaz par sorption 1 selon l’un quelconque des modes de réalisation précédemment décrits, et une unité d’utilisation de gaz 6.  With reference to FIG. 9, a gas storage and / or supply system 5 comprises a sorption gas storage device 1 according to any of the embodiments previously described, and a gas utilization unit 6 .
L’unité d’utilisation de gaz 6 peut, par exemple, être une pile à combustible de véhicule automobile lorsque le gaz stocké est de l’hydrogène.  The gas utilization unit 6 can, for example, be a motor vehicle fuel cell when the stored gas is hydrogen.
Procédé de fabrication d’un dispositif de stockage Method of manufacturing a storage device
En référence à la figure 10, un procédé de fabrication d’un dispositif de stockage de gaz par sorption 1 selon l’un quelconque des modes de réalisation précédemment décrit comprend une étape de compression E1 d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche de matériau 100 de stockage de gaz par sorption sous forme pulvérulente pré- compressée. En outre, un tel procédé E peut comprendre une étape de disposition E2 d’une deuxième couche 200 adjacente à la première couche 100, ladite deuxième couche 200 comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage.  Referring to FIG. 10, a method of manufacturing a sorption gas storage device 1 according to any one of the previously described embodiments comprises a step E1 of compressing a powder of gas storage material by sorption so as to form a first layer of gas storage material 100 by sorption in pre-compressed powder form. In addition, such a method E may include a step E2 of disposing a second layer 200 adjacent to the first layer 100, said second layer 200 comprising a thermally conductive material, with thermal conductivity greater than that of the storage material.

Claims

REVENDICATIONS
1. Dispositif de stockage de gaz par sorption (1 ) comprenant : 1. Gas storage device by sorption (1) comprising:
- une structure de stockage de gaz par sorption (10) comprenant un matériau de stockage de gaz par sorption, ladite structure de stockage (10) présentant un bord circonférentiel (B),  a sorption gas storage structure (10) comprising a sorption gas storage material, said storage structure (10) having a circumferential edge (B),
- des moyens de chauffage (3) configurés pour chauffer le matériau de stockage, et faciliter la désorption du gaz, lesdits moyens de chauffage (3) comprenant :  - heating means (3) configured to heat the storage material, and facilitate the desorption of the gas, said heating means (3) comprising:
o une première partie chauffante (30) agencée dans la structure de stockage (10), à distance du bord circonférentiel (B), o une deuxième partie chauffante (32) agencée dans la structure de stockage (10), à distance du bord circonférentiel (B) d’une part, et de la première partie chauffante (30) d’autre part, la première partie chauffante (30) et la deuxième partie chauffante (32) définissant entre elles un espace dans lequel une première portion (1 1 ) de la structure de stockage (10) s’étend.  o a first heating part (30) arranged in the storage structure (10), at a distance from the circumferential edge (o), a second heating part (32) arranged in the storage structure (10), at a distance from the circumferential edge (B) on the one hand, and the first heating part (30) on the other hand, the first heating part (30) and the second heating part (32) defining between them a space in which a first portion (1 1 ) of the storage structure (10) extends.
2. Dispositif de stockage (1 ) selon la revendication 1 , dans lequel la première partie chauffante (30) et la deuxième partie chauffante (32) sont reliées l’une à l’autre par une troisième partie chauffante (34). 2. Storage device (1) according to claim 1, wherein the first heating part (30) and the second heating part (32) are connected to each other by a third heating part (34).
3. Dispositif de stockage (1 ) selon l’une des revendications 1 et 2, dans lequel la structure de stockage (10) présente une direction privilégiée définissant un axe longitudinal (X-X), les moyens de chauffage (3) présentant une structure substantiellement annulaire le long de l’axe longitudinal (X-X). 3. Storage device (1) according to one of claims 1 and 2, wherein the storage structure (10) has a preferred direction defining a longitudinal axis (XX), the heating means (3) having a substantially structure annular along the longitudinal axis (XX).
4. Dispositif de stockage (1 ) selon l’une des revendications 1 à 3, dans lequel les compositions et/ou répartitions du matériau de stockage dans la première portion (11 ) de la structure de stockage (10) sont différentes des compositions et/ou répartitions du matériau de stockage dans le reste de la structure de stockage (10), en vue d’optimiser la répartition de la chaleur issue des moyens de chauffage (3) au sein de la structure de stockage (10). 4. Storage device (1) according to one of claims 1 to 3, in which the compositions and / or distributions of the storage material in the first portion (11) of the storage structure (10) are different from the compositions and / or distributions of the storage material in the rest of the storage structure (10), in order to optimize the distribution of the heat from the heating means (3) within the storage structure (10).
5. Dispositif de stockage (1 ) selon l’une des revendications 1 à 4, comprenant en outre : 5. Storage device (1) according to one of claims 1 to 4, further comprising:
- une enceinte (4) comprenant une paroi extérieure (40), la structure de stockage (2) étant disposée à l’intérieur de l’enceinte (4), et  - an enclosure (4) comprising an outer wall (40), the storage structure (2) being arranged inside the enclosure (4), and
- une couche isolante thermiquement (42) disposée entre la structure de stockage (10) et la paroi extérieure (40) de l’enceinte (4), ladite couche (42) étant en outre configurée pour diffuser du gaz.  - a thermally insulating layer (42) disposed between the storage structure (10) and the outer wall (40) of the enclosure (4), said layer (42) being further configured to diffuse gas.
6. Dispositif de stockage (1 ) selon la revendication 5, dans lequel la couche isolante (42) comprend une structure poreuse. 6. Storage device (1) according to claim 5, wherein the insulating layer (42) comprises a porous structure.
7. Dispositif de stockage (1 ) selon l’une des revendications 5 et 6, dans lequel la couche isolante (42) comprend une structure rainurée. 7. Storage device (1) according to one of claims 5 and 6, wherein the insulating layer (42) comprises a grooved structure.
8. Dispositif de stockage (1 ) selon l’une des revendications 5 à 7, dans lequel la couche isolante (42) est un film. 8. Storage device (1) according to one of claims 5 to 7, in which the insulating layer (42) is a film.
9. Dispositif de stockage (1 ) selon l’une des revendications 5 à 8, dans lequel la couche isolante (42) est formée au niveau d’une paroi interne (44) de l’enceinte (4), par exemple par traitement de ladite paroi (44), ou par dépôt d’un revêtement additionnel. 9. Storage device (1) according to one of claims 5 to 8, in which the insulating layer (42) is formed at the level of an internal wall (44) of the enclosure (4), for example by treatment of said wall (44), or by depositing an additional coating.
10. Dispositif de stockage (1 ) selon l’une des revendications 1 à 9, dans laquelle la structure de stockage (10) comprend : 10. Storage device (1) according to one of claims 1 to 9, in which the storage structure (10) comprises:
- une première couche (100) comprenant un matériau de stockage par sorption,  - a first layer (100) comprising a sorption storage material,
- une deuxième couche (200) comprenant :  - a second layer (200) comprising:
o une première partie de deuxième couche (201 , 203), en contact avec la première couche (100), et comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure de stockage (10), et o une deuxième partie de deuxième couche (202), comprenant un matériau : compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations du volume du matériau de stockage au cours de phases de sorption et de désorption du gaz, a first part of the second layer (201, 203), in contact with the first layer (100), and comprising a thermally conductive material, of thermal conductivity greater than that of the storage material, with a view to increasing the heat transfers to the within the storage structure (10), and o a second part of the second layer (202), comprising a material: compressible in order to deform under the action of forces exerted by the storage material during variations in the volume of the storage material during the sorption and desorption phases of the gas,
de compressibilité supérieure à celle du matériau de première partie (201 , 203), et greater compressibility than that of the first part material (201, 203), and
thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage (10). thermally conductive, with a higher thermal conductivity than that of the storage material, in order to increase the heat transfers within the storage structure (10).
11. Dispositif de stockage (1 ) selon l’une des revendications 1 à 10, dans lequel la structure de stockage (10) comprend : 11. Storage device (1) according to one of claims 1 to 10, in which the storage structure (10) comprises:
- une pluralité de premières couches (100), chaque première couche (100) comprenant le matériau de stockage de gaz par sorption sous forme pulvérulente pré-com pressée, et  a plurality of first layers (100), each first layer (100) comprising the material for storing gas by sorption in pre-compressed powder form, and
- une pluralité de deuxièmes couches (200), chaque deuxième couche (200) comprenant un matériau :  - a plurality of second layers (200), each second layer (200) comprising a material:
o compressible en vue de se déformer sous l’action d’efforts exercés par le matériau de stockage lors de variations de volume du matériau de stockage au cours de phases de sorption et de désorption de gaz, et  o compressible in order to deform under the action of forces exerted by the storage material during variations in volume of the storage material during sorption and desorption phases of gas, and
o thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage, en vue d’augmenter les transferts thermiques au sein de la structure des stockage (10), les premières (100) et les deuxièmes (200) couches étant disposées selon un motif alterné.  o thermally conductive, with a higher thermal conductivity than that of the storage material, in order to increase the heat transfers within the storage structure (10), the first (100) and the second (200) layers being arranged in a alternate pattern.
12. Procédé de fabrication (E) d’un dispositif (1 ) selon l’une des revendications 1 à 11 comprenant les étapes de : 12. Manufacturing process (E) of a device (1) according to one of claims 1 to 11 comprising the steps of:
- compression (E1 ) d’une poudre de matériau de stockage de gaz par sorption de sorte à former une première couche (100) de matériau de stockage de gaz par sorption sous forme pulvérulente pré-compressée, - disposition (E2) d’une deuxième couche (200) adjacente à la première couche (100), ladite deuxième couche (200) comprenant un matériau thermiquement conducteur, de conductivité thermique supérieure à celle du matériau de stockage. - compression (E1) of a powder of gas storage material by sorption so as to form a first layer (100) of gas storage material by sorption in pre-compressed powder form, - Provision (E2) of a second layer (200) adjacent to the first layer (100), said second layer (200) comprising a thermally conductive material, of thermal conductivity greater than that of the storage material.
13. Système de stockage et/ou de fourniture de gaz (5) comprenant un dispositif (1 ) selon l’une des revendications 1 à 1 1 , et une unité d’utilisation de gaz (6). 13. A gas storage and / or supply system (5) comprising a device (1) according to one of claims 1 to 1 1, and a gas utilization unit (6).
EP19745158.6A 2018-07-31 2019-07-31 Sorptive gas storage device Withdrawn EP3830468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857183A FR3084719A1 (en) 2018-07-31 2018-07-31 SORPTION GAS STORAGE DEVICE
PCT/EP2019/070603 WO2020025662A1 (en) 2018-07-31 2019-07-31 Sorptive gas storage device

Publications (1)

Publication Number Publication Date
EP3830468A1 true EP3830468A1 (en) 2021-06-09

Family

ID=63896374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19745158.6A Withdrawn EP3830468A1 (en) 2018-07-31 2019-07-31 Sorptive gas storage device

Country Status (7)

Country Link
US (1) US20210293383A1 (en)
EP (1) EP3830468A1 (en)
JP (1) JP2021533313A (en)
CN (1) CN112789445A (en)
FR (1) FR3084719A1 (en)
MA (1) MA53318A (en)
WO (1) WO2020025662A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028274B (en) * 2021-03-16 2022-12-20 张家港中集圣达因特种装备有限公司 Low temperature container
CN114370602B (en) * 2022-01-18 2023-04-11 中国科学院上海应用物理研究所 Metal hydride hydrogen storage tank with strong stress resistance and good heat and mass transfer effects

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441716A (en) * 1989-03-08 1995-08-15 Rocky Research Method and apparatus for achieving high reaction rates
AU2005209634B2 (en) * 1999-08-11 2009-06-18 Hennara Investments Limited Gas Storage on an Adsorbent with Exfoliated Laminae
EP1730435B1 (en) * 2004-02-19 2014-11-12 Intelligent Energy, Inc. Safe storage of volatiles
JP4167607B2 (en) * 2004-02-27 2008-10-15 株式会社豊田自動織機 Hydrogen storage tank
JPWO2006022329A1 (en) * 2004-08-26 2008-05-08 クラレケミカル株式会社 Transpiration fuel gas adsorbent, transpiration fuel gas collector, activated carbon and method for producing the same
JP4929654B2 (en) * 2005-09-02 2012-05-09 トヨタ自動車株式会社 Hydrogen storage device
FR2939784B1 (en) * 2008-12-16 2012-02-03 Centre Nat Rech Scient ADIABATIC METAL HYDRIDE RESERVOIR
FR2950045B1 (en) * 2009-09-17 2012-10-12 Mcphy Energy STORAGE AND STORAGE TANK FOR HYDROGEN AND / OR HEAT
WO2011103626A1 (en) * 2010-02-24 2011-09-01 Hydrexia Pty Ltd Hydrogen storage unit
IN2015DN00921A (en) * 2012-08-09 2015-06-12 Aaqius & Aaqius Sa
US9006137B2 (en) * 2013-05-13 2015-04-14 Ford Global Technologies, Llc Adsorbent material with anisotropic layering
FR3014999B1 (en) * 2013-12-17 2016-05-27 Commissariat Energie Atomique METAL HYDRAULIC HYDROGEN STORAGE TANK PROVIDING EFFECTIVE CONFINEMENT OF HYDRIDES
US10267458B2 (en) * 2017-09-26 2019-04-23 Hystorsys AS Hydrogen storage and release arrangement
AU2020318929A1 (en) * 2019-07-19 2022-02-17 H2Go Power Ltd Hydrogen storage device
KR20210074895A (en) * 2019-12-12 2021-06-22 현대자동차주식회사 System for strong solid state hydrogen

Also Published As

Publication number Publication date
FR3084719A1 (en) 2020-02-07
CN112789445A (en) 2021-05-11
WO2020025662A1 (en) 2020-02-06
JP2021533313A (en) 2021-12-02
MA53318A (en) 2022-01-26
US20210293383A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
EP1807895B1 (en) Fuel cell module provided with flexible interconnectors
EP3830468A1 (en) Sorptive gas storage device
EP3458791B1 (en) System and method of heat storage and release comprising at least two concentric heat storage volumes
EP3235022A1 (en) Lithium accumulator with a two-layered thermally insulating package and with a heat pipe for thermal management
WO2009080975A2 (en) Hydrogen storage tank
FR3054027A1 (en) CONTAINER OF A HEAT STORAGE AND RESTITUTION SYSTEM COMPRISING AT LEAST TWO CONCRETE MODULES
EP2376370A1 (en) Adiabatic tank for metal hydride
EP3827895B1 (en) Tubular reactor with fixed bed
WO2011033192A1 (en) Tank for storing and withdrawing hydrogen and/or heat
FR3054028A1 (en) CONTAINER OF A HEAT STORAGE AND RESTITUTION SYSTEM COMPRISING A DOUBLE CONCRETE WALL
EP3338045A1 (en) Modular assembly for store or battery
FR2683094A1 (en) METAL OXIDE-HYDROGEN BATTERY HAVING LONGITUDINALLY EXTENDED MODULES RELATIVE TO A PRESSURE RECEPTACLE.
FR3014998A1 (en) HYDROGEN STORAGE TANK WITH IMPROVED THERMAL METAL HYDRIDES
CA2935694A1 (en) Reversible h2 storage system with a tank containing metal hydrides, with pressure balancing
WO2018167382A1 (en) Heat exchanger and thermal regulation device for at least one electrical energy storage element
FR3037942A1 (en) METHOD FOR HYDRURING AN INTERMETALLIC COMPOUND AND HYDRATION DEVICE
WO2020025682A1 (en) Device for sorption storage of gas
WO2020025660A1 (en) Device for storing gas by sorption
FR3084721A1 (en) SORPTION HYDROGEN STORAGE DEVICE
EP3338020B1 (en) Assembly and articulated panel with intermediate positioning portions, for thermal insulation
JP4213512B2 (en) Pressure vessel
WO2023152046A1 (en) Device for storing hydrogen in solid form
FR2682535A1 (en) WELDED RECEPTACLE FOR METAL OXIDE-HYDROGEN BATTERY USING A FLEXIBLE SOLDERING RING.
WO2018154050A1 (en) Hydrogen storage and supply system
WO2020084249A1 (en) Electrochemical device comprising an electrochemical unit disposed in a containment enclosure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20210301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220517