EP3828848B1 - Système de surveillance de la sécurité - Google Patents
Système de surveillance de la sécurité Download PDFInfo
- Publication number
- EP3828848B1 EP3828848B1 EP19211595.4A EP19211595A EP3828848B1 EP 3828848 B1 EP3828848 B1 EP 3828848B1 EP 19211595 A EP19211595 A EP 19211595A EP 3828848 B1 EP3828848 B1 EP 3828848B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- node
- radio frequency
- image file
- frequency transceiver
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims description 88
- 230000005540 biological transmission Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 34
- 230000006854 communication Effects 0.000 claims description 33
- 238000004891 communication Methods 0.000 claims description 33
- 230000033001 locomotion Effects 0.000 claims description 29
- 230000004044 response Effects 0.000 claims description 16
- 238000003306 harvesting Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 32
- 230000001276 controlling effect Effects 0.000 description 9
- 238000000060 site-specific infrared dichroism spectroscopy Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009118 appropriate response Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000845082 Panama Species 0.000 description 1
- 241000269400 Sirenidae Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19695—Arrangements wherein non-video detectors start video recording or forwarding but do not generate an alarm themselves
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19654—Details concerning communication with a camera
- G08B13/19656—Network used to communicate with a camera, e.g. WAN, LAN, Internet
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19665—Details related to the storage of video surveillance data
- G08B13/19667—Details realated to data compression, encryption or encoding, e.g. resolution modes for reducing data volume to lower transmission bandwidth or memory requirements
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19665—Details related to the storage of video surveillance data
- G08B13/19671—Addition of non-video data, i.e. metadata, to video stream
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19639—Details of the system layout
- G08B13/19645—Multiple cameras, each having view on one of a plurality of scenes, e.g. multiple cameras for multi-room surveillance or for tracking an object by view hand-over
Definitions
- the present invention relates to a security monitoring system for monitoring premises, a camera node and a control unit for such a system, and methods of operating a camera node, a control, and a system.
- Security monitoring systems for monitoring premises typically provide a means for detecting the presence and/or actions of people at the premises, and reacting to detected events.
- Such systems include sensors to detect the opening and closing of doors and windows, movement detectors to monitor spaces for signs of movement, microphones to detect sounds such as breaking glass, and image sensors to capture still or moving images of monitored zones.
- Such systems may be self-contained, with alarm indicators such as sirens and flashing lights that may be activated in the event of an alarm condition being detected.
- a security monitoring system may include an installation at a premises, domestic or commercial, that is linked to a Central Monitoring Station (CMS) where typically human operators manage the responses required by different alarm and notification types.
- CMS Central Monitoring Station
- Such installations typically include a central unit (also known as a control unit) that is coupled to the sensors, detectors, cameras, etc. (“nodes”), and which processes received notifications and determines a response.
- the central unit is commonly linked to the various nodes wirelessly, rather than by wires, since this facilitates installation and may also provide some safeguards against sensors/detectors effectively being disabled by disconnecting them from the central unit.
- the nodes of such systems typically include an autonomous power supply, such as a battery, rather than being mains powered.
- the central unit at the premises installation typically processes notifications received from the nodes in the installation, and notifies the Central Monitoring Station of only some of these, depending upon the settings of the system and the nature of the detected events.
- the central unit at the installation is effectively acting as a gateway between the nodes and the Central Monitoring Station.
- Wi-Fi radios It is known to provide video cameras for security monitoring systems with Wi-Fi radios to enable them to transmit video data to a central unit of the monitoring system over Wi-Fi.
- the Wi-Fi radio, and the video camera are turned on in the event that a PIR associated with the video camera detects movement.
- Wi-Fi radios tend to drain batteries quite quickly, and such an arrangement typically requires large capacity batteries, and/or an external power source, if frequent battery replacement or power loss are to be avoided.
- Another disadvantage of using Wi-Fi in a security system is that one needs to monitor or supervise the nodes of the system. This is done by periodic messaging, and Wi-Fi consumes significant power in performing this simple task.
- a wireless camera can be configured to generate a video feed, operate a first radio to transmit at least a portion of the video feed to a base station over a first wireless channel, and operate a second radio in a polling mode to receive information over a second wireless channel.
- the base station can be configured to receive the video feed from the wireless camera.
- the base station can reserve the first wireless channel for the wireless camera by transmitting on the first wireless channel, wherein the base station transmits information to the wireless camera over the second wireless channel to instruct the wireless camera to transmit on the first wireless channel at a known time.
- the base station can be configured to process the video feed and deliver the processed video feed to a video portal for remote viewing of the video feed.
- the low-bandwidth radio can be, e.g., a low-overhead, long-range radio transceiver.
- the low-bandwidth radio can be a radio frequency and baseband chipset that implements any low power, low-bandwidth technique that will likely have longer reach and higher reliability than the bulk high-bandwidth radio.
- One purpose of the low-bandwidth radio is to transfer status, control and alarm information to and from the base station. In receive mode, the power consumption can be extremely low in comparison to the bulk radio and can be low enough to allow the low-bandwidth radio to operate continuously.
- the low-bandwidth radio has a low power mode where the radio can be activated to respond to a short duration, beacon transmission that originates from the base station.
- the bit stream information contained in the beacon transmission can identify the correct camera and can also have other command/status information.
- the low-bandwidth radio can be used as a backup when the bulk radio fails or is disabled, e.g., due to jamming signals. In this manner, reliability of the wireless camera can be increased because there are a primary high-bandwidth radio and secondary low-bandwidth radio for redundancy.
- the high-bandwidth radio and the low-bandwidth radio can be in the same transceiver block.
- the present invention provides a security monitoring system for a building or a secured space within a building, the system being operatively connected to a monitoring station, the system including:
- Such a system is advantageous in that image data of an incident can still be delivered to a central monitoring station even if the primary, high data rate, communications channel does not permit delivery.
- the failure of the high data rate channel may be caused by deliberate action of a bad actor, or may be due to other interference or equipment failure, but the provision of a secondary communications route can help ensure delivery of vital image data.
- a security monitoring system of a building or a secured space within a building the system being operatively connected to a monitoring station, the system including:
- a control unit for a security monitoring system for a building or a secured space within a building the system being operatively connected to a monitoring station, and the system including a camera node having:
- a control unit of a security monitoring system for a building or a secured space within a building the system being operatively connected to a monitoring station, and the system including a camera node having:
- the present invention provides a camera node for a security monitoring system for a building or a secured space within a building , the system including a control unit for controlling, arming and disarming the security monitoring system; the camera node comprising:
- the present invention provides a method of operating a camera node of a security monitoring system for a building or a secured space within a building , the system including a control unit for controlling, arming and disarming the security monitoring system; the camera node comprising:
- nodes are in bidirectional contact with the central unit, being able to receive as well as send information to the control unit 110.
- some security monitoring installations may operate on a synchronised basis, with each of the nodes having an internal clock that must be kept synchronised with the master clock in the control unit 110.
- the central unit may send out periodic beacon signals, and the nodes periodically listen for these and adjust their clock synchronisation as necessary.
- Such synchronisation can help ensure that plural nodes can communicate with the central unit, in the event of detecting an incident, without the nodes' transmissions colliding.
- Power consumption considerations also influence the choice of RF communication mode, and regular speed transmission is typically possible between the nodes and the central unit, and vice versa.
- ISM radio channels and protocols designed to reduce power consumption.
- the radios of the nodes When not listening for synchronisation beacons, and when not sending an event notification, the radios of the nodes are typically in a low-power consumption sleep state.
- Some detectors and sensors such as magnetic switches used on doors and windows, and PIR detectors, consume virtually no power when waiting to detect an event. But other detectors, such as cameras, need to have high power functionality shut down to avoid consuming power, typically only being powered up when trigged by low power functionality of the detector, when another sensor detects movement or when instructed to power up by the control unit 110.
- an event has been detected by a sensor such as a PIR or a door/window opening sensor, and there is for example a video camera able to monitor a zone including the location of the event, it would be desirable to be able to transfer useable images and video frames to the central unit as soon as possible so that the nature and scale of the threat can be determined - and so that in a centrally monitored system the images/video sequence can be forwarded to the CMS 200 for analysis and action.
- Currently such analysis is typically performed by human operators, but it is likely that in the near future artificial intelligence will be used to supplement, and eventually perhaps replace or largely replace human operators. But in any event, the need exists for images and video sequences to be available for analysis at the CMS as soon as possible after an incident is first detected.
- FIG. 1 is an overview of a security monitoring system according to a first aspect of the invention.
- the figure shows a stylised domestic installation 100 of a monitoring system according to an embodiment of the invention, and a monitoring centre (Central Monitoring Station) 200 that supports the domestic installation.
- the installation 100 includes a gateway or control unit, 110, which is connected to the monitoring centre 200 by means of a data connection 150.
- the data connection 150 may be provided over a phone line, a broadband internet connection, Ethernet, a dedicated data connection, or wirelessly, for example using an LTE or GSM network, and in general multiple of these options will exist for any installation, so that there is security of connection between the gateway 110 and the monitoring centre 200.
- the central unit 110, or a sensor in communication with the central unit 110 and the monitoring centre may both be provided with means to support an ISM radio connection, for example in the European 863 to 870MHz frequency band, preferably one configured to resist jamming.
- the domestic installation 100 involves a typical arrangement where the exterior doors 120 and windows 124 are fitted with sensors 114, for example magnetic contact sensors, to detect opening of the door or window.
- sensors 114 for example magnetic contact sensors
- Each of the rooms of the building having the installation may be provided with a combined fire/smoke detector 116, as shown in the Figure.
- several rooms have movement detectors 118, such as passive infrared (PIR) detectors, to detect movement within an observed zone within the room.
- PIR passive infrared
- the front door 120 of the building leads into a hall which also has internal doors to various rooms of the house.
- the hall is monitored by a video camera 125 having an associated motion detector.
- the kitchen which is entered from the back door 121 is monitored by a video camera 126 which includes a motion detector.
- Each of the sensors, detectors and video cameras which may throughout this specification be referred to generically as nodes, includes a wireless interface by means of which it can communicate with the central unit 110.
- the central unit 110 includes first and second antennas 130 and 132 for communication with the sensors, detectors and video cameras.
- the central unit 110 may include at least one further antenna 134 for wireless communication with the monitoring centre. Each of these antennas may be connected to a corresponding transceiver, not shown.
- the central unit 110 may include a dedicated antenna arrangement for Wi-Fi, for example to connect to camera nodes 125 and also to connect to a domestic Wi-Fi access point 180.
- the Wi-Fi access point may also provide one of the means of access to the monitoring centre 200.
- the central unit 110 may itself function as a Wi-Fi access point, with a connection (e.g. a wired connection) to an Internet service provider, to provide Wi-Fi coverage within the building in place of the Wi-Fi access point 180.
- Some installations may include more than one control unit (CU), for example two control units, to provide a failsafe backup.
- CU control unit
- the two CUs work together in parallel.
- the two CUs may work in parallel in communication with some of the nodes of the domestic installation and individually in communication with other nodes of the domestic installation. The latter may be the case when CU is used as a range extender in domestic installations covering larger installations. That is, if there are two CUs, they work in parallel but a node is only logged into one of the CUs at a time, and that CU is responsible for all communication with the node while the other CU can hear all and understand all communication between the other two - if it is not a range extension scenario.
- the control unit 110 typically has knowledge of all nodes comprised in the installation 100.
- Each node may have a unique node identifier or serial number that is used to identify the node.
- Each node may have different functionalities associated with it, such as e.g. video capabilities, motion detection, still imaging, audio recording, communication speeds etc.
- Some or all capabilities may be communicated from the node to the control unit during a login procedure during setup of the installation 100. Alternatively and/or additionally, some or all capabilities may be communicated to the control unit from the node upon request from the control unit 110. Alternatively and/or additionally, some or all capabilities may be retrieved, by the control unit 110, from the CMS 200.
- FIG 2 is a schematic drawing showing in more detail features of a gateway or control unit 110 of Figure 1 .
- the control unit 110 includes a first transceiver 230 coupled to the first antenna 130.
- the transceiver 230 can both transmit and receive, but cannot both transmit and receive at the same time. Thus, the transceiver 230 operates in half duplex, and may use the same frequency for transmit and receive, or different frequencies.
- the transceiver 230 is coupled to a controller 250 by a bus.
- the controller 250 is also connected to a network interface 260 by means of which the controller 250 may be provided with a wired connection to the Internet and hence to the monitoring centre 200.
- the controller 250 is also coupled to a memory 270 which may store data received from the various nodes of the installation - for example event data, sounds, images and video data, as well as stored programs to control the operation of the control unit.
- the control unit acts as a router providing a path to the central monitoring station for audio and video (more generally image) data - the storing of such data at the control unit is optional.
- the control unit 110 includes a power supply 262 which may be coupled to a domestic mains supply, from which the control unit 110 generally derives power, and a backup battery pack 264 which provides power to the control unit in the event of failure of the mains power supply.
- the control unit 110 also includes a second transceiver 240 which, unlike the first transceiver, supports the use of Wi-Fi protocols (using some variant of IEEE 802.11), and associated antenna arrangement 242, which may be used for communication with any of the nodes that is Wi-Fi enabled, for example with one or camera nodes.
- a Wi-Fi enabled camera node may include or be associated with a motion detector and have video and/or still picture capabilities.
- Such a Wi-Fi node (whether a camera node or not) may, and preferably will, include both means for Wi-Fi communication and means for regular (non-Wi-Fi) ISM communication.
- the control unit 110 may also include an interface enabling bidirectional communication over a Public Land Mobile Network (PLMN), such as GSM or LTE, and one is shown in the Figure as interface 244 with antenna arrangement 246.
- PLMN Public Land Mobile Network
- a third antenna 134 and associated ISM transceiver 234 may be provided for communication with the monitoring centre 200 over, for example, the European 863 to 870MHz frequency band.
- Wi-Fi refers to systems and elements operating according to some variant of the 802.11 standard. Conversely, systems, devices and elements referred to as ISM should not be taken to embrace Wi-Fi, unless the context requires otherwise.
- the first transceiver is tuneable ISM device, operating for example in the European 863 to 870MHz frequency band or in the 915MHz band (which may span 902-928MHz or 915-928MHZ depending upon the country).
- the first transceiver may be tuned, i.e. is tuneable, to the frequencies within the regulatorily agreed sub-bands within this defined frequency band.
- first transceiver 230 generally provides a control channel for communication between the control unit and the nodes of the system, but may also be used for other purposes.
- the Wi-Fi transceiver 240 is used to support a high speed channel (that is one having a higher symbol rate or bitrate than the control channel provided by the first transceiver) that is not supported by the first transceiver.
- the controller of the gateway may be configured to offer one or more communication channels operated over the first transceiver that provide a higher transmission speed than is provided by control channel provided by the first transceiver.
- FIG 3 is a schematic drawing showing features of a Wi-Fi enabled node of the security monitoring system according to an embodiment of the invention.
- the node is a camera node like the video camera 126 which is mounted in the kitchen, as shown in figure 1 , although it could instead be a camera to produce only still images or sequences of still images.
- the Wi-Fi node includes one radiofrequency node transceiver 340, coupled to an antenna 330, primarily for the exchange of control messages with the control unit. This transceiver may be referred to as the secondary transceiver.
- the camera node also includes a primary radiofrequency node transceiver 350, coupled to an antenna 355, which supports the use of Wi-Fi protocols and which hence can communicate with the second transceiver of the control unit 110.
- a controller 360 is coupled to the primary and secondary transceivers of the node, and also to the image sensor 310 of the video camera.
- the controller 360 may also be coupled to a motion sensor 320, which may be an integral motion sensor, as shown, or one mounted remotely, and to a memory 370.
- An autonomous power supply for example a battery, 380, provides power to the node, in particular powering the controller, transceivers, image sensor and integral motion sensor (if present).
- the autonomous power supply may include one or more elements to enable energy to be obtained from the environment - such as one or more photovoltaic elements, an RF energy harvesting arrangement, and even a compact wind turbine arrangement.
- the video camera also includes a lens arrangement 315 for forming an image on the image sensor 310.
- the node includes an infrared light source 325, and possibly a source of visible light, suitable for illuminating images detectable by the image sensor.
- the secondary node transceiver 340 is tuneable. In particular, the node transceiver 340 can be tuned to frequencies to match those transmitted by or receivable by the first transceiver of the gateway 110.
- the secondary node transceiver 350 is tuneable. In particular, the secondary node transceiver 350 can be tuned to frequencies to match those transmitted by or receivable by the second transceiver of the control unit 110.
- a motion detector for example a PIR (passive infrared) sensor of or associated with a camera node
- detects motion it transmits a signal to the control unit 110 using the secondary node transceiver in control channel mode.
- the control unit 110 may forward this movement detected signal to the central monitoring station. If the motion detector reporting the detection of motion is, for example, in or associated with a video camera, the control unit 110 will know this from the identity of the node that transmitted the motion detected signal.
- the control unit 110 may then send a message to the video camera using the control unit's first transceiver in control channel mode, the message requesting the video camera to transmit video data to the central unit 110 at high speed (e.g. higher bitrate than is used for control signals). Such a request may be for the video camera to stream video data. More generally, the control unit may send a message to an image source, such as a camera, requesting it to transmit image data, in the form of an image file, at high speed.
- an image source such as a camera
- Trigger events other than the triggering of a movement sensor may also be used to initiate the process.
- the activation of a node that monitors the status of an entrance to the building or to a controlled space in the building, for example a magnetic switch at a door or window, or detection of a sound, such as that of breaking glass, by a node comprising a microphone will be transmitted by the relevant node to the control unit 110.
- the control unit 110 may, depending upon its programming and status, report the event to the CMS 200.
- a trigger event may be sent from CMS 200 requesting images or audio data from a particular node, this trigger may be used by the control unit 110 to instruct that particular node to transmit the requested images or audio data.
- a motion detector of or associated with a camera node detects motion, the camera is activated to capture an image(s) or video.
- the camera node will then prepare two images or clips.
- One of the images or clips will be a relatively low resolution (e.g. standard VGA or QVGA) in the form of an image file of modest file size (e.g . 30kB once compressed), while the other image will be of significantly higher resolution (e.g .1080P or 4K) and in the form of an image file of considerably (which might have a file size possibly in the range 600kB - 2MB) greater size (although the size of the image file once compressed might be in the range of 4 to 10 times the size of the compressed low resolution image file .
- the smaller image file (hereinafter the second image file) is transmitted using the secondary transceiver of the node, while the larger image file (hereinafter the first image file) is transmitted using the node's Wi-Fi primary transceiver.
- the node controller provides the two image files with the same ID.
- the system may be configured such that when the control unit receives an event notification from the motion sensor, the control unit sends a message to the camera node (over a non-Wi-Fi channel) instructing the camera node to transmit image data.
- the CMS (more particularly the analyst in the CMS) to receive the more detailed image file
- the smaller file sent using the secondary transceiver may actually arrive sooner than that sent via the Wi-Fi transceiver, for example due to congestion of the Wi-Fi network or interference (intentional or not) with transmission over the Wi-Fi network) - and hence the CMS may be able to make an earlier decision based on the smaller image file than would be the case if the CMS had to await the bigger file sent via Wi-Fi.
- the control unit when the control unit receives an event notification from the motion sensor, the control unit sends a message to the camera node (over a non-Wi-Fi channel) instructing the camera node to transmit image data the node's secondary transceiver will already be active - having been used to receive the message from the control unit, the secondary transceiver is likely to be able to begin transmitting its smaller image file before the node's Wi-Fi transceiver has been activated, configured and registered with the Wi-Fi transceiver (effectively the Wi-Fi bases station) of the control unit.
- the smaller image file transmitted by the node's secondary transceiver may actually arrive before the larger image file sent via Wi-Fi, even if the current radio environment supports high speed transmission over a Wi-Fi channel.
- the control unit 110 forwards to the CMS the first to arrive of the first or second image files. Subsequently, if the first arrived file was the smaller second image file, on arrival of the larger first image file, the control unit will forward the first image file to the CMS. Conversely, of course, the control unit does not forward the smaller second image file to the CMS if the larger first image file with the same ID has already been forwarded to the CMS.
- the human (or Al) analyst reacts to the arrival of the first to arrive image file. If another image file with the same ID arrives at the CMS while the relevant event is still being handled by the analyst, the CMS system substitutes the later arriving image file for the first.
- the system of the CMS may be configured to notify the operator of the availability of a higher resolution image file. For example, a work station of a human operator may provide an on-screen warning and/or an audible announcement of the updating of the available image.
- the secondary transceiver may be used to provide redundancy enabling an image file to be transmitted to the control unit even though that image file sent using the primary transceiver has failed to reach the control unit.
- a camera node may be configured to transmit, possibly in response to receiving a message from the control unit to transmit image data, the image file using just the primary transceiver, or may be configured, as in the first example, to transmit image data by transmitting the image file using both the primary and secondary transceivers.
- the control unit may be configured to respond to receiving an image file by transmitting an acknowledgement ("ack") message, so that the camera node knows whether or not the transmission of an image file was successful. If the camera node fails to receive an expected ack message in respect of the transmission of an image file using the primary transceiver, it may be configured to attempt to transmit the image file (or a smaller image file) using the secondary transceiver instead.
- ack acknowledgement
- the camera node may be configured to transmit the higher resolution image file using the secondary transceiver.
- the lower bandwidth of the secondary transceiver will mean that transmission of the larger file will take longer than it should have taken using the primary transceiver, if transmission problems are affecting the higher bandwidth channel the larger file might actually reach the CMS more quickly using the lower bandwidth transceiver instead of the primary transceiver.
- an image file intended for transmission using the primary transceiver may instead be sent using the control channel transceiver in the event that an expected ack message in response to attempted transmission of the image file using the primary transceiver is not received.
- a low resolution image can enable a person/ not a person decision to be made - e.g. distinguishing between the presence of a non-human animal or other source of movement, such as vegetation being moved by the wind
- a higher resolution image file may enable a description to be given of the person or persons captured by the image, or to enable the identity of the person or persons captured by the image - e.g. to enable the householder to be told that one or other children of the house are present.
- a camera node having one transceiver that supports one or more control channels and another, primary transceiver that supports a higher bitrate is arranged to maintain the primary transceiver in an inactive state (e.g. powered down, turned off) until either the control channel transceiver (which may be termed the secondary transceiver) receives a message from the control unit of the system following the latter's reception of an event notification from a node of the system, or the primary transceiver is activated as the result of a motion (or other) sensor of or associated with the camera node being triggered causing the camera to capture one or more images or video sequences.
- the control channel transceiver which may be termed the secondary transceiver
- the primary transceiver is activated as the result of a motion (or other) sensor of or associated with the camera node being triggered causing the camera to capture one or more images or video sequences.
- the message from the control unit of the system includes credentials for use by the primary transceiver in accessing a higher bitrate channel for the transmission of an image file.
- the message from the control unit may contain the SSID, PSK and channel ID to enable the primary transceiver to reduce the lead time needed to access a transmission channel.
- Wi-Fi enabled devices typically store the SSID and corresponding PSK of the last Wi-Fi connection that they used, generally the channel identifier is not stored - because in general Wi-Fi devices switch between different channels of an SSID very frequently. It is therefore normal for a Wi-Fi enabled device to have to hunt for a free channel with the correct SSID before being able to start to transmit data.
- the system control unit which in this instance is also working as a Wi-Fi base station, provide not only the relevant SSID and PSK but also the identifier of an available channel, potentially several seconds of delay are avoided. It also needs to be borne in mind that there may be months or potentially years between events in which the system control unit will message a particular camera node for image data. There is therefore a possibility that, when a camera node next needs to activate its primary transceiver, the SSID and or the PSK may have changed since the transceiver was last activated - so that the SSID and/or PSK in the memory of the camera node may no longer be correct. It will be appreciated that in general, most installed Wi-Fi devices maintain some level of connectivity with the Wi-Fi Base Station/ Access Point. In this example, and generally for all the examples, the camera node turns off its Wi-Fi transceiver completely when not in use.
- the secondary control channel non-Wi-Fi
- the secondary control channel also enables the control unit to transmit any changes in the Wi-Fi credentials as and when they occur, so that the updated credentials are stored in a memory of the camera node for use when the camera node next needs to use its Wi-Fi transceiver. Consequently, even if since the last time the Wi-Fi transceiver of the camera node was in use there have been changes to the credentials needed to access a suitable Wi-Fi channel, the camera node will quickly be able to access a suitable channel.
- the transmissions of the Wi-Fi access credentials must be secure from eavesdroppers, so they are encrypted appropriately.
- a target delivery time is determined within which a camera image will be delivered to the central monitoring station.
- the camera node uses an estimate of uplink bandwidth to determine the parameters for the image file to ensure that the image file will be delivered in time at a level of quality satisfying a known quality requirement.
- the control unit and the camera node periodically exchange control messages over a control channel, for example they may exchange control messages every 10 minutes.
- the control channel will typically be provided in the 868 MHz band.
- each of the control unit and the camera node will determine an RSSI level and_supply the determined level to its counterpart. These supplied RSSI levels are stored until the next control packet is received.
- the control unit may send a message requesting an image file, and that message may include an RSSI measurement from the control unit.
- the camera node can then use this supplied RSSI measurement to estimate uplink bandwidth.
- the camera node may perform an RSSI check or similar at each of several RF frequencies to determine whether local signal conditions / background noise (e.g. interference or jamming) prevent or otherwise make undesirable the selection of particular ones of the several RF frequencies. Based on this determination, the camera node may compose an acceptance message, and the node transmits this message to the control unit at a usual control signal frequency/speed.
- the controller of the control unit 110 then sets the controls for the second transceiver to suit the parameters corresponding to the choice made by the node.
- the control unit 110 may then onward transmit these data to the CMS 200 using an available connection, so that an automated system or human operator can determine an appropriate response - such as despatching human intervention (e.g. security personnel, Fire, police, Ambulance, etc.) or the like, and/or they may be played out locally to enable an appropriate response to be determined locally.
- despatching human intervention e.g. security personnel, Fire, police, Ambulance, etc.
- the node sends notice to the control unit 110 (in any appropriate form) to enable the control unit 110 to repurpose the second transceiver. This will generally involve the control unit 110 switching the second transceiver back to a regular speed mode until the second transceiver is needed for some other purpose.
- the second transceiver can again be regarded as providing diversity.
- the controller of the camera node may then determine a resolution and compression ratio to be used to produce an image file which can be delivered to the CMS within the target delivery at an acceptable resolution.
- the controller of the camera node may refer to a table which, for a given target delivery time maps uplink bandwidth to target image file size and hence compression ratio.
- the uplink bandwidth is low, for a given resolution, the compression ratio may need to be high to ensure timely delivery .
- a lower compression ratio and/or higher resolution may be used - and the table will include the relevant parameters. The goal is to deliver something as quickly as possible.
- the important input is the target size estimated based on the uplink.
- the target size we can, based on experience, guess a good quality value for the compression. If we miss the target we can do a second one and if that also misses the target we can use linear extrapolation (even it is not 100% linear). As a rule of thumb its always better to compress than resample. It keeps more information in the image.
- the camera node is configured to transmit a captured image as an image file using a node radio frequency transceiver, the transmission of the image file to the control unit being subject to a predetermined maximum transmission duration, the node controller being configured to determine the resolution and compression of the image file based on the predetermined maximum transmission duration and an estimate up of the uplink bandwidth between the camera node and the control unit in order to enable the image file to be transmitted to the control unit within the predetermined maximum transmission duration.
- the installation 100 is configured such that a user of the installation 100 can request images, audio data, or other relevant data from particular nodes of the installation 100 to be delivered to e.g. a mobile device of the user.
- the request may be generated from the mobile device and sent to the CMS 200 where it may be forwarded to the control unit 110.
- the control unit 110 may, if configured to do so, formulate an instruction and send that instruction to the node from which the user requested data.
- the message from the control unit 110 requesting high speed transmission of video may specify the parameters of at least one high speed channel.
- the parameters may include the SSID and PSK for connection to the Wi-Fi transceiver of the control unit, and may also include an identifier for a particular channel provided by the SSID.
- the packet structure of the communications described herein are of known structures comprising preamble, synch word and data.
- data messages may contain packet identifiers, sender identification, recipient identifier and/or counters and the length of packets may be e.g. predetermined, configurable, negotiable etc.
- the packets may be encrypted and there may a Cyclic Redundancy Check, CRC, comprised in the packet.
- CRC Cyclic Redundancy Check
- Embodiments of the invention deployed in Europe may make use of the g1 and g2 sub-bands, where the allowable Effective Radiated Power (ERP) is 25 mW (+14 dBm), with a 1% duty cycle for communication between the Central Unit 110 and the nodes.
- ERP Effective Radiated Power
- Typically systems are configured to provide choices of predefined frequencies in each of the g1 and g2 bands.
- high speed channels may be offered in the g3 sub-band, which has an allowable ERP of 500mW (+27 dBm) with a 10% duty cycle. Again, more than one frequency may be pre-selected in this band to enable alternative options.
- channels could be set aside for high speed use within the g1 or g2 sub-bands. If the security monitoring system is deployed in another territory, it is anticipated that the RF bands allocated security and alarm systems, or available for such use even if not specifically allocated, will likewise provide opportunities to preselect some frequencies for regular speed, control and messaging functions, while allowing others to be preselected for use as high speed channels in the context of the invention.
- the regular speed channels or configuration may operate around 30 to 45 kbit/s - e.g. 38.4 kbit/s.
- the "High speed" may equate to 128 to 500 kbit/s e.g. 200 kbit/s.
- the abovementioned frequencies and their corresponding maximum allowable duty cycles may optionally be used by the Control Unit 110 when formulating the offer to a node.
- the control unit 110 may have at least one counter per band and node keeping track of how much time each node has transmitted into each frequency band during a configurable time period. If the time spent transmitting is close to, or at, the maximum allowed duty cycle of the associated band, the Control Unit 110 may decide against making an offer of a high speed channel in that band.
- each node may have similar counters keeping track of their respective time spent transmitting in each band and may consequently reject certain offers if they are in a band where the node is close to, or at, the maximum allowable duty cycle.
- Control Unit 110 is part of the installation.
- the Control Units are in communication with each other and are synchronized.
- the Control Unit 110 being used for high speed data may be chosen to be the Control Unit that has the most suitable data connection 150 to the CMS 200, for instance Ethernet over Wi-Fi over cellular.
- nodes having e.g. video capabilities or audio capabilities are understood to be easily replaced with nodes having other relevant functionality that will benefit from high bit-rate transfers such as, but not limited to still imaging, thermal imaging etc.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Library & Information Science (AREA)
- Alarm Systems (AREA)
- Closed-Circuit Television Systems (AREA)
Claims (35)
- Système de surveillance de sécurité (100) pour un bâtiment ou un espace sécurisé dans un bâtiment, le système étant fonctionnellement relié à une station de surveillance (200), le système comprenant :une unité de commande (110) pour la commande, l'activation et la désactivation du système de surveillance de sécurité, et présentant un premier émetteur-récepteur radiofréquence (230) qui peut supporter un premier débit binaire maximal, et un deuxième émetteur-récepteur radiofréquence (232) qui peut supporter un deuxième débit binaire maximal qui est inférieur au premier débit binaire, et un contrôleur (250) pour commander les émetteurs-récepteurs radiofréquence (230, 232) ;un noeud de caméra (126) présentantun contrôleur de noeud (360) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ;le contrôleur de noeud (360) du noeud de caméra (126) étant réalisé de manière :à transmettre une image saisie avec un premier identifiant d'image en tant que premier fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud primaire (340) et en tant que deuxième fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud secondaire (350), le premier fichier d'images présentant une résolution plus élevée et une taille plus grande que le deuxième fichier d'images ;le contrôleur de noeud (360) étant en outre réalisé de telle sorte que lorsqu'un accusé de réception est reçu pour la réception du deuxième fichier d'images mais pas pour la réception du premier, il retransmet le premier fichier d'images en utilisant l'émetteur-récepteur secondaire (350) ;l'unité de commande (110) étant réalisée de manière à transmettre, lors de la réception du fichier d'images arrivé en premier parmi le premier et le deuxième fichier d'images, le fichier arrivé en premier à la station de surveillance (200) et ensuite, si le fichier arrivé en premier était le deuxième fichier d'images, à transmettre, lors de l'arrivée du premier fichier d'images, le premier fichier d'images à la station de surveillance (200).
- Système de surveillance de sécurité selon la revendication 1, l'unité de commande (110) étant réalisée de manière à transmettre un message de commande au noeud de caméra (126) en réponse à la réception d'une notification d'événement provenant d'un noeud (114, 118) du système en utilisant le deuxième émetteur-récepteur radiofréquence (232) de sorte que le noeud de caméra (126) transmet une image saisie ; et le contrôleur de noeud (360) du noeud de caméra (126) étant réalisé de manière à transmettre le premier et le deuxième fichier d'images uniquement en réponse à la réception du message de commande.
- Système de surveillance de sécurité selon la revendication 1 ou la revendication 2, le premier émetteur-récepteur radiofréquence (230) et l'émetteur-récepteur radiofréquence de noeud primaire (340) étant des émetteurs-récepteurs Wi-Fi.
- Système de surveillance de sécurité selon l'une des revendications précédentes, le deuxième émetteur-récepteur radiofréquence (232) et l'émetteur-récepteur radiofréquence de noeud secondaire (350) étant des émetteurs-récepteurs non Wi-Fi réalisés de manière à fonctionner dans une ou plusieurs bandes radiofréquences industrielles, scientifiques et médicales.
- Système de surveillance de sécurité selon la revendication 4, le deuxième émetteur-récepteur radiofréquence (232) et l'émetteur-récepteur radiofréquence de noeud secondaire (350) fonctionnant dans une plage de fréquences de 863 à 870 MHz.
- Système de surveillance de sécurité selon la revendication 5, la plage de fréquences étant comprise entre 868 et 870 MHz.
- Système de surveillance de sécurité selon l'une des revendications précédentes, le noeud de caméra (126) présentant une alimentation électrique autonome.
- Système de surveillance de sécurité selon l'une des revendications précédentes, le premier fichier d'images comprenant une séquence vidéo.
- Système de surveillance de sécurité selon l'une des revendications précédentes, le deuxième fichier d'images comprenant une ou plusieurs images fixes.
- Système de surveillance de sécurité selon l'une des revendications précédentes, la notification d'événement étant la sortie d'un capteur de mouvement, d'un microphone, ou d'un capteur d'ouverture de porte ou de fenêtre.
- Procédé de mise en oeuvre d'un système de surveillance de sécurité (100) d'un bâtiment ou d'un espace sécurisé dans un bâtiment, le système (100) étant fonctionnellement relié à une station de surveillance (200), le système (100) comprenant :une unité de commande (110) pour la commande, l'activation et la désactivation du système de surveillance de sécurité, et présentant un premier émetteur-récepteur radiofréquence (230) qui peut supporter un premier débit binaire maximal, et un deuxième émetteur-récepteur radiofréquence (232) qui peut supporter un deuxième débit binaire maximal qui est inférieur au premier débit binaire, et un contrôleur (250) pour commander les émetteurs-récepteurs radiofréquence (230, 232) ;un noeud de caméra (126) présentantun contrôleur de noeud (350) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande (110) ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ;le procédé comprenant :la transmission, par le contrôleur de noeud (360) du noeud de caméra, d'une image saisie avec un premier identifiant d'image en tant que premier fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud primaire (340) et en tant que deuxième fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud secondaire (350), le premier fichier d'images présentant une résolution plus élevée et une taille plus grande que le deuxième fichier d'images ;le procédé comprenant en outre, lorsqu'un accusé de réception est reçu pour la réception du deuxième fichier d'images mais pas pour la réception du premier, la retransmission du premier fichier d'images par le contrôleur de noeud (360) en utilisant l'émetteur-récepteur secondaire (350) ;la transmission, par l'unité de commande (110), lors de la réception du fichier d'images arrivé en premier parmi le premier et le deuxième fichier d'images, du fichier arrivé en premier à la station de surveillance (200) et ensuite, si le fichier arrivé en premier était le deuxième fichier d'images, la transmission, lors de l'arrivée du premier fichier d'images, du premier fichier d'images à la station de surveillance (200).
- Procédé selon la revendication 11, comprenant en outre :la transmission d'un message de commande au noeud de caméra (126) en réponse à la réception, au niveau de l'unité de commande (110), d'une notification d'événement provenant d'un noeud (114, 118) du système en utilisant le deuxième émetteur-récepteur radiofréquence (232) de sorte que le noeud de caméra (126) transmet une image saisie ;et la transmission, par le contrôleur de noeud (360) du noeud de caméra (126), du premier et du deuxième fichier d'images uniquement en réponse à la réception du message de commande.
- Procédé selon la revendication 11 ou 12, le premier émetteur-récepteur radiofréquence (230) et l'émetteur-récepteur radiofréquence de noeud primaire (350) étant des émetteurs-récepteurs Wi-Fi.
- Procédé selon l'une des revendications 11 à 13, le deuxième émetteur-récepteur radiofréquence (232) et l'émetteur-récepteur radiofréquence de noeud secondaire (350) étant des émetteurs-récepteurs non Wi-Fi réalisés de manière à fonctionner dans une ou plusieurs bandes radiofréquences industrielles, scientifiques et médicales.
- Procédé selon la revendication 14, le deuxième émetteur-récepteur radiofréquence (232) et l'émetteur-récepteur radiofréquence de noeud secondaire (340) fonctionnant dans une plage de fréquences de 863 à 870 MHz.
- Procédé selon la revendication 15, la plage de fréquences étant comprise entre 868 et 870 MHz.
- Procédé selon l'une des revendications 11 à 16, le noeud de caméra (126) présentant une alimentation électrique autonome.
- Procédé selon l'une des revendications 11 à 17, le premier fichier d'images comprenant une séquence vidéo.
- Procédé selon l'une des revendications 11 à 18, le deuxième fichier d'images comprenant une ou plusieurs images fixes.
- Procédé selon l'une des revendications 11 à 19, la notification d'événement étant la sortie d'un capteur de mouvement, d'un microphone, ou d'un capteur d'ouverture de porte ou de fenêtre.
- Unité de commande (110) pour un système de surveillance de sécurité (100) pour un bâtiment ou un espace sécurisé dans un bâtiment, le système étant fonctionnellement relié à une station de surveillance (200), et le système comprenant un noeud de caméra (126) présentant :un contrôleur de noeud (360) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande (110) ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ;l'unité de commande (110) présentant :un premier émetteur-récepteur radiofréquence (230) qui peut supporter un premier débit binaire maximal, et un deuxième émetteur-récepteur radiofréquence (232) qui peut supporter un deuxième débit binaire maximal qui est inférieur au premier débit binaire, et un contrôleur (250) pour commander les émetteurs-récepteurs radiofréquence (230, 232) ;l'unité de commande (110) étant réalisée de manière à répondre avec un accusé de réception, lors de la réception d'un fichier d'image saisi provenant du noeud de caméra (126), le fichier d'images reçu présentant un premier identifiant, et à transmettre le fichier d'images reçu à la station de surveillance (200), et ensuite, si un deuxième fichier d'images présentant le premier identifiant est reçu, à répondre avec un accusé de réception et à transmettre le deuxième fichier d'images à la station de surveillance (200) au cas où le deuxième fichier d'images présente une résolution plus élevée et une taille plus grande que le premier fichier d'images.
- Unité de commande (110) selon la revendication 21, l'unité de commande (110) étant réalisée de telle sorte que :en réponse à la réception d'une notification d'événement provenant d'un noeud (114, 118) du systèmeelle transmet, en utilisant le deuxième émetteur-récepteur radiofréquence (232), un message de commande au noeud de caméra (126) de sorte que le noeud de caméra (126) transmet une image saisie.
- Procédé de mise en oeuvre d'une unité de commande (110) d'un système de surveillance de sécurité (100) pour un bâtiment ou un espace sécurisé dans un bâtiment, le système (100) étant fonctionnellement relié à une station de surveillance (200), et le système (100) comprenant un noeud de caméra (126) présentant :un contrôleur de noeud (360) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande (110) ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ;l'unité de commande (110) présentant :un premier émetteur-récepteur radiofréquence (230) qui peut supporter un premier débit binaire maximal, et un deuxième émetteur-récepteur radiofréquence (232) qui peut supporter un deuxième débit binaire maximal qui est inférieur au premier débit binaire, et un contrôleur (250) pour commander les émetteurs-récepteurs radiofréquence (230, 232) ;le procédé comprenant :
la réponse, par l'unité de commande (110), avec un accusé de réception, lors de la réception d'un fichier d'image saisi provenant du noeud de caméra (126), le fichier d'images reçu présentant un premier identifiant, et la transmission du fichier d'images reçu à la station de surveillance (200), et ensuite, si un deuxième fichier d'images présentant le premier identifiant est reçu, la réponse avec un accusé de réception et la transmission du deuxième fichier d'images à la station de surveillance (200) au cas où le deuxième fichier d'images présente une résolution plus élevée et une taille plus grande que le premier fichier d'images. - Procédé selon la revendication 23, comprenant en outre, en réponse à la réception d'une notification d'événement provenant d'un noeud (114, 118) du système au niveau de l'unité de commande (110), la transmission, en utilisant le deuxième émetteur-récepteur radiofréquence (232), d'un message de commande au noeud de caméra (126) de sorte que le noeud de caméra (126) transmet une image saisie.
- Noeud de caméra (126) pour un système de surveillance de sécurité (100) pour un bâtiment ou un espace sécurisé dans un bâtiment, le système présentant une unité de commande (110) pour la commande, l'activation et la désactivation du système de surveillance de sécurité (100) ;
le noeud de caméra (126) comprenant :un contrôleur de noeud (360) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande(110) ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ; etle contrôleur de noeud (360) étant réalisé de manière :à transmettre une image saisie avec un premier identifiant d'image en tant que premier fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud primaire (340) et en tant que deuxième fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud secondaire (350), le premier fichier d'images présentant une résolution plus élevée et une taille plus grande que le deuxième fichier d'images ;le contrôleur de noeud (360) étant en outre réalisé de telle sorte que lorsqu'un accusé de réception est reçu pour la transmission du deuxième fichier d'images mais pas pour la transmission du premier, il retransmet le premier fichier d'images en utilisant l'émetteur-récepteur secondaire (350). - Noeud de caméra selon la revendication 25, le contrôleur de noeud (360) étant réalisé de manière à transmettre le premier et le deuxième fichier d'images uniquement en réponse à la réception d'un message de commande provenant de l'unité de commande (110).
- Noeud de caméra selon la revendication 25 ou la revendication 26, l'émetteur-récepteur radiofréquence de noeud primaire (340) étant un émetteur-récepteur Wi-Fi.
- Noeud de caméra selon l'une des revendications 25 à 27, l'émetteur-récepteur radiofréquence de noeud secondaire (350) étant un émetteur-récepteur non Wi-Fi réalisé de manière à fonctionner dans une ou plusieurs bandes radiofréquences industrielles, scientifiques et médicales.
- Noeud de caméra selon l'une des revendications 25 à 28, le premier et le deuxième fichier d'images étant transmis en parallèle.
- Noeud de caméra selon l'une des revendications 25 à 29, le noeud de caméra présentant une alimentation électrique autonome.
- Noeud de caméra selon la revendication 30, l'alimentation électrique présentant un agencement passif de récolte d'énergie radiofréquence.
- Noeud de caméra selon la revendication 30 ou la revendication 31, l'alimentation électrique présentant un ou plusieurs éléments photovoltaïques.
- Noeud selon l'une des revendications 25 à 32, le noeud étant réalisé de manière à effectuer une détermination de conditions de radiofréquence.
- Procédé de mise en oeuvre d'un noeud de caméra (126) d'un système de surveillance de sécurité pour un bâtiment ou un espace sécurisé dans un bâtiment, le système comprenant une unité de commande (110) pour la commande, l'activation et la désactivation du système de surveillance de sécurité ;
le noeud de caméra (126) comprenant :un contrôleur de noeud (360) ;un capteur d'image (310) pour saisir des images ;un émetteur-récepteur radiofréquence de noeud primaire (340) pour la communication avec l'unité de commande (110) ;un émetteur-récepteur radiofréquence de noeud secondaire (350) pour recevoir des messages de commande provenant de l'unité de commande (110), l'émetteur-récepteur radiofréquence de noeud primaire (340) supportant un débit binaire maximal plus élevé que l'émetteur-récepteur radiofréquence de noeud secondaire (350) ; etle procédé comprenant la transmission, par le contrôleur de noeud (360), d'une image saisie avec un premier identifiant d'image en tant que premier fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud primaire (340)et en tant que deuxième fichier d'images en utilisant l'émetteur-récepteur radiofréquence de noeud secondaire (360), le premier fichier d'images présentant une résolution plus élevée et une taille plus grande que le deuxième fichier d'images ;le procédé comprenant en outre, lorsqu'un accusé de réception est reçu pour la transmission du deuxième fichier d'images mais pas pour la transmission du premier, la retransmission, par le contrôleur de noeud (360), du premier fichier d'images en utilisant l'émetteur-récepteur secondaire (350). - Procédé selon la revendication 34, le contrôleur de noeud (360) transmettant le premier et le deuxième fichier d'images uniquement en réponse à la réception d'un message de commande provenant de l'unité de commande (110).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES19211595T ES2982422T3 (es) | 2019-11-26 | 2019-11-26 | Sistema de monitorización de seguridad |
EP19211595.4A EP3828848B1 (fr) | 2019-11-26 | 2019-11-26 | Système de surveillance de la sécurité |
IL293260A IL293260A (en) | 2019-11-26 | 2020-11-24 | Security control system |
PE2022000831A PE20230217A1 (es) | 2019-11-26 | 2020-11-24 | Sistema de monitoreo de seguridad |
BR112022009667A BR112022009667A2 (pt) | 2019-11-26 | 2020-11-24 | Sistema de monitoramento de segurança, unidade de controle e nó de câmera para o dito sistema e métodos de operação |
AU2020393380A AU2020393380A1 (en) | 2019-11-26 | 2020-11-24 | A security monitoring system |
PCT/EP2020/083180 WO2021105107A1 (fr) | 2019-11-26 | 2020-11-24 | Système de surveillance de sécurité |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19211595.4A EP3828848B1 (fr) | 2019-11-26 | 2019-11-26 | Système de surveillance de la sécurité |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3828848A1 EP3828848A1 (fr) | 2021-06-02 |
EP3828848C0 EP3828848C0 (fr) | 2024-05-29 |
EP3828848B1 true EP3828848B1 (fr) | 2024-05-29 |
Family
ID=68699195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19211595.4A Active EP3828848B1 (fr) | 2019-11-26 | 2019-11-26 | Système de surveillance de la sécurité |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3828848B1 (fr) |
AU (1) | AU2020393380A1 (fr) |
BR (1) | BR112022009667A2 (fr) |
ES (1) | ES2982422T3 (fr) |
IL (1) | IL293260A (fr) |
PE (1) | PE20230217A1 (fr) |
WO (1) | WO2021105107A1 (fr) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9300921B2 (en) * | 1999-07-20 | 2016-03-29 | Comcast Cable Communications, Llc | Video security systems and methods |
US9282297B2 (en) * | 2008-01-24 | 2016-03-08 | Micropower Technologies, Inc. | Video delivery systems using wireless cameras |
US9816370B2 (en) * | 2012-09-19 | 2017-11-14 | Honeywell International Inc. | System and method for optimizing an operation of a sensor used with wellbore equipment |
US9756570B1 (en) * | 2016-06-28 | 2017-09-05 | Wipro Limited | Method and a system for optimizing battery usage of an electronic device |
-
2019
- 2019-11-26 ES ES19211595T patent/ES2982422T3/es active Active
- 2019-11-26 EP EP19211595.4A patent/EP3828848B1/fr active Active
-
2020
- 2020-11-24 AU AU2020393380A patent/AU2020393380A1/en active Pending
- 2020-11-24 BR BR112022009667A patent/BR112022009667A2/pt unknown
- 2020-11-24 WO PCT/EP2020/083180 patent/WO2021105107A1/fr active Application Filing
- 2020-11-24 PE PE2022000831A patent/PE20230217A1/es unknown
- 2020-11-24 IL IL293260A patent/IL293260A/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR112022009667A2 (pt) | 2022-08-16 |
EP3828848C0 (fr) | 2024-05-29 |
AU2020393380A1 (en) | 2022-06-02 |
WO2021105107A1 (fr) | 2021-06-03 |
ES2982422T3 (es) | 2024-10-16 |
IL293260A (en) | 2022-07-01 |
EP3828848A1 (fr) | 2021-06-02 |
PE20230217A1 (es) | 2023-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3828850B1 (fr) | Système de surveillance de la sécurité | |
WO2020039044A1 (fr) | Système de surveillance de sécurité et nœud associé | |
EP3828848B1 (fr) | Système de surveillance de la sécurité | |
EP3828847A1 (fr) | Système de surveillance de sécurité | |
EP3828849A1 (fr) | Système de surveillance de sécurité | |
EP4114136A1 (fr) | Détection et atténuation de panne de réseau pour des dispositifs intelligents dans un système en réseau | |
EP3841742A1 (fr) | Système de surveillance de sécurité | |
EP4073773B1 (fr) | Système de surveillance de sécurité | |
US11431943B2 (en) | System and method for camera and beacon integration | |
WO2020039043A1 (fr) | Système de surveillance de sécurité et nœud et unité centrale associée | |
WO2020039042A1 (fr) | Système de surveillance de sécurité, nœud et unité centrale associée | |
EP4231263A1 (fr) | Système de surveillance de sécurité de locaux | |
EP4207120A1 (fr) | Système de surveillance de sécurité | |
EP4207123A1 (fr) | Système de surveillance de sécurité de locaux | |
WO2023156096A1 (fr) | Périphérique pour systèmes de surveillance de sécurité de locaux | |
WO2023126307A1 (fr) | Localisation d'intrus | |
AU2022427765A1 (en) | Sensor node for security monitoring systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211115 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VERISURE SARL |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019052859 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20240625 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240830 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2982422 Country of ref document: ES Kind code of ref document: T3 Effective date: 20241016 |