EP3826972B1 - Method for obtaining a decorative mirror - Google Patents

Method for obtaining a decorative mirror Download PDF

Info

Publication number
EP3826972B1
EP3826972B1 EP19736765.9A EP19736765A EP3826972B1 EP 3826972 B1 EP3826972 B1 EP 3826972B1 EP 19736765 A EP19736765 A EP 19736765A EP 3826972 B1 EP3826972 B1 EP 3826972B1
Authority
EP
European Patent Office
Prior art keywords
reflective
reflective coating
regions
layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19736765.9A
Other languages
German (de)
French (fr)
Other versions
EP3826972A1 (en
Inventor
Juliette MARIA
Alexia YON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3826972A1 publication Critical patent/EP3826972A1/en
Application granted granted Critical
Publication of EP3826972B1 publication Critical patent/EP3826972B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0875Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising two or more metallic layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3663Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3684Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used for decoration purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/26Cr, Mo, W
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/72Decorative coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Definitions

  • the invention relates to the field of decorative mirrors. It relates more particularly to obtaining so-called “partial” mirrors, comprising reflective zones forming a pattern and non-reflecting zones.
  • Mirrors typically comprise sheets of glass coated with a reflective coating.
  • reflective zone we mean in this text an area which presents, on the covering side, a light reflection within the meaning of standard EN 410 of at least 25%, in particular at least 40%, or even at least 50%. %.
  • the light transmission of the reflective zone still within the meaning of standard EN 410, is generally at most 70%, preferably at most 20%, or even at most 15% or 10%.
  • a “non-reflective zone” is an area presenting a light reflection of at most 20%, in particular at most 15%, or even at most 10%. This is generally an area where the glass is uncoated, which therefore has light transmission generally much higher than light reflection.
  • Such decorative mirrors can be used for example in construction, interior furnishings, household appliances, etc.
  • the glass sheet can be thermally tempered, by heating it beyond its glass transition temperature then rapidly cooling it by so as to create compressive stresses on the surface of the glass.
  • the reflective coating can be deposited after tempering, but as tempered glass can no longer be cut, this involves deposition steps after cutting, therefore on glass sheets of very different sizes, which is not interesting for a economic point of view.
  • the reflective coating is deposited before quenching, on very large standard substrates, which are cut to the desired dimensions, before the quenching step. This alternative is more interesting economically and industrially speaking, but requires the development of reflective coatings resistant to temperatures above 500°C, or even 600°C.
  • Partial mirrors are often produced in small series, because the dimensions and designs desired by customers vary greatly. It is therefore not economically feasible - even if it is technically possible, for example using masks - to only deposit the reflective coating on certain areas of the large substrate, in particular when the coating is deposited by spraying. magnetron cathode. Solutions such as laser ablation have been considered but are very expensive.
  • the document BE 1 002 215 A4 describes a silver-produced mirror in which a solution reacting with silver is deposited to form silver reaction products. Consequently, the possibly non-reflective zones are not zones of uncoated glass but are covered by this reaction product. The glass is also not tempered.
  • a method is described in which a mirror is subjected to laser radiation to selectively remove the reflective layer. The glass is not tempered glass. The mirror has reflective and non-reflective areas.
  • the document US 3,152,948 A describes a process in which a layer of resin is selectively deposited before silvering. The zone in which the resin is deposited produces a diffuse reflection and not a non-reflective zone in which the glass sheet is not coated. The glass is also not tempered.
  • the aim of the invention is therefore to propose an economical process for manufacturing partial mirrors with high mechanical resistance.
  • Another object of the invention is a decorative mirror comprising reflective zones forming a pattern and non-reflective zones, capable of being obtained by the process according to the invention.
  • the mirror comprises a sheet of soda-lime-silica glass which is uncoated in said non-reflective areas and coated with a reflective coating in said reflective areas.
  • the invention also relates to an intermediate product intended to form a decorative mirror comprising reflective zones forming a pattern and non-reflective zones, said intermediate product comprising a sheet of soda-lime-silico glass coated on the entirety of one of its faces a reflective coating, said reflective coating being coated in certain areas with a composition comprising a phosphate salt.
  • the method according to the invention easily makes it possible to obtain partial mirrors at a reduced cost since it only involves the addition of a step of selective application of a composition containing a phosphate salt. During tempering, the latter completely dissolves the underlying reflective stack, so that, in the areas where the composition has been applied, only bare glass remains.
  • the glass sheet is preferably flat.
  • the thickness of the glass sheet is preferably in a range ranging from 1 to 19 mm, in particular from 2 to 12 mm and even from 3 to 9 mm.
  • the glass sheet has at least one dimension greater than 50 cm, in particular 1 m.
  • the glass sheet is preferably obtained by flotation, a process in which molten glass is poured onto a bath of molten tin.
  • the glass is preferably colorless, but can be tinted, for example blue, green, gray, bronze etc.
  • Soda-lime-silica glass generally has a chemical composition by weight comprising 60 to 75% SiO 2 , 10 to 20% Na 2 O, 5 to 15% CaO, 0 to 10% MgO, 0 to 5% Al 2 O 3 .
  • the reflective coating comprises at least one functional layer. It may include only one, or several, for example two, identical or different.
  • functional layer we mean a layer capable of imparting to the coating, and possibly in combination with other layers of said coating, the reflection and transmission properties which make it a reflective coating within the meaning of the invention.
  • At least one functional layer is preferably a metal layer or a layer of a metal nitride.
  • the or each metallic layer is preferably based on chromium or niobium.
  • the or each layer of a metal nitride is preferably a layer of niobium nitride or based on such a nitride.
  • the metal layer is based on chromium, it is advantageously a layer comprising at least 45% by weight of chromium.
  • the chromium content by weight is preferably at least 50%, in particular at least 55% and even at least 60% or at least 70%, or even at least 80% or at least 90%.
  • the metal layer may consist of chromium.
  • the metal layer can be made of an alloy of chromium and at least one other element, in particular chosen from Al and/or Si. Mention may in particular be made of CrAl alloys containing 75 to 80% by weight of chromium, CrSi alloys containing 45 to 85% by weight of chromium, CrAlSi alloys containing 70 to 80% by weight of chromium. Such materials exhibit both high light reflectance and quench resistance.
  • the or each layer based on chromium preferably has a physical thickness ranging from 10 to 60 nm, in particular from 20 to 40 nm.
  • the metal layer is based on niobium, it is advantageously a layer of niobium. It preferably has a physical thickness ranging from 5 to 50 nm, in particular from 8 to 40 nm.
  • the functional layer is made of niobium nitride, it preferably has a physical thickness ranging from 5 to 50 nm, in particular from 8 to 40 nm.
  • the reflective coating is preferably a stack of thin layers in which the or each functional layer, in particular metallic, is surrounded by two protective layers of oxides, nitrides or oxynitrides, in particularly silicon or aluminum.
  • Nitrides and oxynitrides are preferred, and silicon nitride has proven to be particularly effective in protecting the functional layer, particularly metallic, during quenching.
  • each protective layer is preferably within a range ranging from 2 to 50 nm, in particular from 5 to 40 nm.
  • a layer of titanium or silicon having a thickness ranging from 1 to 5 nm is advantageously deposited as the last layer of the stack.
  • the functional layer is made of metal nitride, in particular niobium nitride, a metal layer, in particular of titanium, having a thickness ranging from 1 to 5 nm, is advantageously deposited directly on and/or under the functional layer.
  • a preferred reflective coating includes a first layer of silicon nitride, then a layer of chromium or niobium, or niobium nitride, then a second layer of silicon nitride.
  • the reflective coating is a stack alternating thin dielectric layers with a high refractive index and thin dielectric layers with a low refractive index.
  • the optical thicknesses of the layers are then chosen to maximize reflection by creating constructive interference.
  • the stack may in particular comprise the succession, moving away from the glass sheet, of a first thin layer based on titanium oxide, of a thin layer based on silicon oxide, then of a second thin layer based on titanium oxide.
  • the titanium oxide can be replaced by a solid solution of titanium oxide and an oxide of another metal, for example zirconium.
  • the physical thickness of the reflective coating is preferably at most 250 nm.
  • the reflective coating has preferably been deposited by cathode sputtering, in particular assisted by a magnetic field (so-called magnetron process).
  • Other processes are possible, in particular chemical vapor deposition (CVD) processes.
  • the deposition was previously carried out on a large substrate, from which the glass sheet was obtained by cutting.
  • the method according to the invention can therefore comprise a step of depositing the reflective coating on the entire face of a soda-lime-silica glass substrate, then a step of cutting said substrate in order to obtain the coated glass sheet used in the following stages of the process.
  • the step of depositing the reflective coating will however generally be carried out in another location, possibly by another actor, than the subsequent steps of cutting, application of the composition comprising the phosphate salt and quenching.
  • the phosphate salt is preferably an ammonium phosphate or an alkali metal phosphate, in particular a sodium phosphate.
  • phosphate also means hydrogen phosphates and dihydrogen phosphates.
  • the generic term sodium phosphate therefore covers sodium hydrogen phosphate Na 2 HPO 4 , sodium dihydrogen phosphate NaH 2 PO 4 , and trisodium phosphate Na 3 PO 4 , as well as mixtures of these compounds.
  • the composition comprising the phosphate salt preferably comprises a solvent, in particular organic, and a resin.
  • the quantities of solvent and resin make it possible to regulate the viscosity of the composition, and must be adapted according to the application process used.
  • the resin also makes it possible to form a temporary layer which has both sufficient adhesion to the glass sheet and good mechanical properties.
  • a certain mechanical strength is in fact beneficial in order to prevent this temporary layer from being damaged before the quenching step, for example during transport between the workshop where the composition is applied and the quenching workshop. This is particularly appreciable when the two workshops are not located in the same factory, but even otherwise the glass sheet generally passes on conveyors which can damage the temporary layer.
  • the resin and the solvent are removed during the quenching stage at the latest.
  • the resins and solvents conventionally used in enamel compositions have proven to be well suited.
  • the application step is preferably carried out by screen printing.
  • Screen printing involves the deposition, in particular using a doctor blade, of a pasty liquid on the glass sheet through the mesh of a screen printing screen.
  • the meshes of the screen are closed in the corresponding part to the areas of the glass sheet that we do not want to coat, so that the paste can only pass through the screen in the areas to be printed, according to a predefined pattern.
  • the pattern to be printed corresponds to the negative of the final reflective pattern.
  • the application step can be carried out by other techniques, for example by spraying, roller or curtain, using a mask in order to carry out the application only in the application areas.
  • Roller application is also possible even in the absence of a mask when the decor is sufficiently simple, such as a peripheral area, for the creation of a marie-louise.
  • Other possible application techniques are digital printing processes, in particular by inkjet.
  • the application step is preferably followed by a drying step. Drying makes it possible, where appropriate, to eliminate at least part of the solvent and/or to at least partially crosslink the resin.
  • the drying temperature is typically between 100 and 250°C, in particular between 120 and 200°C. Drying using infrared radiation is for example suitable.
  • the glass sheet is subjected to a temperature preferably of at least 600°C, in particular at least 620°C and/or at most 750°C, in particular at least 620°C. plus 725°C or at most 700°C.
  • the glass sheet is then subjected to rapid cooling, for example by means of air nozzles.
  • the method further comprises, after the quenching step, a cleaning step.
  • a deposit in the form of gel remains, which is easily removed, for example by spraying with water or immersion in water.
  • the light reflection of the reflective zones, on the side of the reflective coating is preferably at least 25%, in particular at least 40%, or even at least 50%.
  • the light reflection is generally not more than 90%. This is preferably a specular reflection and not a diffuse reflection.
  • the light reflection of non-reflecting areas corresponds to that of bare glass; it is therefore preferably of the order of 6 to 10%, in particular around 8%.
  • the light transmission of the non-reflecting zones is preferably at least 80%, in particular 85%, even 89%, and generally at most 92%.
  • the light transmission of the reflective zones is preferably at most 70%, in particular at most 30% or 25%, or even at most 20% or 15%, or even at most 10%. It is typically at least 1% or at least 5%.
  • very reflective coatings having a light reflection between 40% and 90%, in particular between 50% and 80%, as well as a light transmission between 1 and 25%, in particular between 2 and 20%, or even between 3 and 15%
  • medium reflective coatings having a light reflection between 25% and 35% as well as a light transmission between 40 and 70%. The latter give a mirror effect in certain lighting conditions.
  • the reflective zones preferably occupy from 10 to 90% of the surface of the glass sheet, in particular from 20 to 80%.
  • the pattern formed by the reflective zones and/or the non-reflective zones can be arbitrary because no technological limitation arises. It may for example be a geometric pattern, periodic or not, the reproduction of an image, a logo, etc.
  • the mirror can be used in many applications, both indoors and outdoors: interior partitions and doors, shower screens and bathroom screens, shop fittings, lounges and showrooms, facade cladding, parts of household appliances such as example oven doors etc.
  • An oven door can thus comprise, as the wall closest to the user, a decorative mirror according to the invention, comprising for example a reflective zone in the form of a peripheral frame, having a metallic appearance, and a non-reflective part. central reflective allowing the user to view the interior of the oven.
  • a sheet of clear soda-lime-silica glass was obtained by cutting a glass substrate previously coated by cathode sputtering with a reflective stack, marketed under the reference SGG Mirastar.
  • the reflective stack used consists of the succession, from the glass, of a first layer of silicon nitride, a layer of chromium, then a second layer of silicon nitride.
  • composition comprising sodium phosphate and a resin was applied by screen printing, in decorative geometric patterns.
  • the application made it possible to obtain a temporary layer having a wet thickness (before drying) of approximately 25 ⁇ m.
  • the glass sheet thus coated was then subjected to a thermal tempering treatment involving heating to around 650-680°C for 180 seconds in a tempering furnace.
  • the areas where the phosphate salt was applied were covered with a gel which could be removed by simply wiping with a damp cloth. In these areas, the reflective coating has completely disappeared, making the glass appear bare, and therefore transparent. In the adjacent areas, however, which had not been covered with the phosphate salt, the reflective coating remained present.
  • the mirror obtained therefore has reflective zones and non-reflective zones forming patterns, the separation between the zones also being very clear.
  • the light reflection on the coating side of the reflective areas is 60%, and the light transmission is 3%.
  • Example 2 only differs from Example 1 by the nature of the reflective stack, here the stack marketed by the Applicant under the reference SGG Cool-Lite ST108.
  • This stack consists of the succession, from a clear glass substrate, of a first layer of silicon nitride, of a layer of niobium, then of a second layer of silicon nitride.
  • Example 3 also differs from example 1 by the nature of the reflective stack, in this case the stack marketed by the Applicant under the reference Cool-Lite ST Bright Silver.
  • the reflective coating is a stack alternating thin dielectric layers with a high refractive index and thin dielectric layers with a low refractive index. More precisely, this stack comprises a layer of titanium oxide (high index), then a layer of silica (low index) and finally a layer based on titanium oxide (high index).

Description

L'invention se rapporte au domaine des miroirs décoratifs. Elle porte plus particulièrement sur l'obtention de miroirs dits « partiels », comprenant des zones réfléchissantes formant motif et des zones non-réfléchissantes. Les miroirs comprennent généralement des feuilles de verre revêtues d'un revêtement réfléchissant. Par « zone réfléchissante » on entend dans le présent texte une zone qui présente, côté revêtement, une réflexion lumineuse au sens de la norme EN 410 d'au moins 25%, notamment d'au moins 40%, voire d'au moins 50%. La transmission lumineuse de la zone réfléchissante, toujours au sens de la norme EN 410, est généralement d'au plus 70%, de préférence d'au plus 20%, voire d'au plus 15% ou 10%. Une « zone non réfléchissante » est une zone présentant une réflexion lumineuse d'au plus 20%, notamment d'au plus 15%, voire d'au plus 10%. Il s'agit généralement d'une zone où le verre est non-revêtu, qui présente donc une transmission lumineuse généralement bien supérieure à la réflexion lumineuse. De tels miroirs décoratifs peuvent être utilisés par exemple dans le bâtiment, l'ameublement intérieur, les dispositifs électroménagers etc...The invention relates to the field of decorative mirrors. It relates more particularly to obtaining so-called “partial” mirrors, comprising reflective zones forming a pattern and non-reflecting zones. Mirrors typically comprise sheets of glass coated with a reflective coating. By “reflective zone” we mean in this text an area which presents, on the covering side, a light reflection within the meaning of standard EN 410 of at least 25%, in particular at least 40%, or even at least 50%. %. The light transmission of the reflective zone, still within the meaning of standard EN 410, is generally at most 70%, preferably at most 20%, or even at most 15% or 10%. A “non-reflective zone” is an area presenting a light reflection of at most 20%, in particular at most 15%, or even at most 10%. This is generally an area where the glass is uncoated, which therefore has light transmission generally much higher than light reflection. Such decorative mirrors can be used for example in construction, interior furnishings, household appliances, etc.

Une autre exigence portant sur les miroirs concerne leur résistance mécanique. Pour des raisons touchant à la sécurité des personnes, il peut être utile d'augmenter la résistance à l'impact des miroirs, tout en assurant en cas de bris une fragmentation du miroir en fragments non-coupants. Pour cela, la feuille de verre peut être trempée thermiquement, en la chauffant au-delà de sa température de transition vitreuse puis en la refroidissant rapidement de manière à créer à la surface du verre des contraintes de compression. Le revêtement réfléchissant peut être déposé après la trempe, mais comme un verre trempé ne peut plus être découpé cela implique des étapes de dépôt après découpe, donc sur des feuilles de verre de tailles très diverses, ce qui n'est pas intéressant d'un point de vue économique. Alternativement, le revêtement réfléchissant est déposé avant la trempe, sur des substrats standards de très grande taille, lesquels sont découpés aux dimensions voulues, avant l'étape de trempe. Cette alternative est plus intéressante économiquement et industriellement parlant, mais nécessite le développement de revêtements réfléchissants résistant à des températures supérieures à 500°C, voire à 600°C.Another requirement for mirrors concerns their mechanical resistance. For reasons relating to personal safety, it may be useful to increase the impact resistance of mirrors, while ensuring that, in the event of breakage, the mirror is fragmented into non-sharp fragments. For this, the glass sheet can be thermally tempered, by heating it beyond its glass transition temperature then rapidly cooling it by so as to create compressive stresses on the surface of the glass. The reflective coating can be deposited after tempering, but as tempered glass can no longer be cut, this involves deposition steps after cutting, therefore on glass sheets of very different sizes, which is not interesting for a economic point of view. Alternatively, the reflective coating is deposited before quenching, on very large standard substrates, which are cut to the desired dimensions, before the quenching step. This alternative is more interesting economically and industrially speaking, but requires the development of reflective coatings resistant to temperatures above 500°C, or even 600°C.

Dans le cadre de cette deuxième alternative, la production de miroirs partiels pose des difficultés. Les miroirs partiels sont souvent produits en petites séries, car les dimensions et les designs désirés par les clients sont très variés. Il n'est donc pas économiquement envisageable - même si cela est techniquement possible, par exemple à l'aide de masques - de ne déposer le revêtement réfléchissant que sur certaines zones du substrat de grande taille, en particulier lorsque le revêtement est déposé par pulvérisation cathodique magnétron. Des solutions telles que l'ablation laser ont été envisagées mais sont très coûteuses.In the context of this second alternative, the production of partial mirrors poses difficulties. Partial mirrors are often produced in small series, because the dimensions and designs desired by customers vary greatly. It is therefore not economically feasible - even if it is technically possible, for example using masks - to only deposit the reflective coating on certain areas of the large substrate, in particular when the coating is deposited by spraying. magnetron cathode. Solutions such as laser ablation have been considered but are very expensive.

Le document BE 1 002 215 A4 décrit un miroir produit par argenture dans lequel une solution réagissant avec l'argent est déposée pour former des produits de réaction avec l'argent. Par conséquent, les zones éventuellement non-réfléchissantes ne sont pas des zones de verre non revêtue mais sont recouvertes par ce produit de réaction. Le verre n'est en outre pas trempé. Dans le document DE 40 22 745 A1 , il est décrit un procédé dans lequel un miroir est soumis à un rayonnement laser pour retirer sélectivement la couche réfléchissante. Le verre n'est pas un verre trempé. Le miroir comporte des zones réfléchissantes et non-réfléchissantes. Le document US 3 152 948 A décrit un procédé dans lequel une couche de résine est déposée sélectivement avant l'argenture. La zone dans laquelle la résine est déposée produit une réflexion diffuse et non pas une zone non-réfléchissante dans laquelle la feuille de verre n'est pas revêtue. Le verre n'est en outre pas trempé.The document BE 1 002 215 A4 describes a silver-produced mirror in which a solution reacting with silver is deposited to form silver reaction products. Consequently, the possibly non-reflective zones are not zones of uncoated glass but are covered by this reaction product. The glass is also not tempered. In the document DE 40 22 745 A1 , a method is described in which a mirror is subjected to laser radiation to selectively remove the reflective layer. The glass is not tempered glass. The mirror has reflective and non-reflective areas. The document US 3,152,948 A describes a process in which a layer of resin is selectively deposited before silvering. The zone in which the resin is deposited produces a diffuse reflection and not a non-reflective zone in which the glass sheet is not coated. The glass is also not tempered.

L'invention a donc pour but de proposer un procédé économique de fabrication de miroirs partiels à résistance mécanique élevée.The aim of the invention is therefore to propose an economical process for manufacturing partial mirrors with high mechanical resistance.

A cet effet, l'invention a pour objet un procédé d'obtention d'un miroir décoratif comprenant des zones réfléchissantes formant motif et des zones non-réfléchissantes, ledit procédé comprenant les étapes suivantes :

  • la fourniture d'une feuille de verre silico-sodocalcique revêtue d'un revêtement réfléchissant sur la totalité d'une de ses faces, puis
  • une étape d'application d'une composition comprenant un sel de phosphate sur ledit revêtement réfléchissant, uniquement sur des zones d'application, lesdites zones d'application étant les zones destinées à devenir les zones non-réfléchissantes, puis
  • une étape de trempe de ladite feuille de verre, dans laquelle on soumet ladite feuille de verre à une température d'au moins 550°C, provoquant la dissolution du revêtement réfléchissant dans les zones d'application de manière à former lesdites zones non-réfléchissantes dans lesquelles la feuille de verre n'est pas revêtue.
To this end, the subject of the invention is a method for obtaining a decorative mirror comprising reflective zones forming a pattern and non-reflective zones, said method comprising the following steps:
  • the supply of a sheet of soda-lime-silica glass coated with a reflective coating on all of one of its faces, then
  • a step of applying a composition comprising a phosphate salt to said reflective coating, only on application zones, said application zones being the zones intended to become non-reflective zones, then
  • a step of tempering said glass sheet, in which said glass sheet is subjected to a temperature of at least 550°C, causing the reflective coating to dissolve in the application zones so as to form said non-reflective zones in which the glass sheet is not coated.

Un autre objet de l'invention est un miroir décoratif comprenant des zones réfléchissantes formant motif et des zones non-réfléchissantes, susceptible d'être obtenu par le procédé selon l'invention. Le miroir comprend une feuille de verre silico-sodocalcique non-revêtue dans lesdites zones non-réfléchissantes et revêtue d'un revêtement réfléchissant dans lesdites zones réfléchissantes.Another object of the invention is a decorative mirror comprising reflective zones forming a pattern and non-reflective zones, capable of being obtained by the process according to the invention. The mirror comprises a sheet of soda-lime-silica glass which is uncoated in said non-reflective areas and coated with a reflective coating in said reflective areas.

L'invention a aussi pour objet un produit intermédiaire destiné à former un miroir décoratif comprenant des zones réfléchissantes formant motif et des zones non-réfléchissantes, ledit produit intermédiaire comprenant une feuille de verre silico-sodocalcique revêtue sur la totalité d'une de ses faces d'un revêtement réfléchissant, ledit revêtement réfléchissant étant revêtu dans certaines zones d'une composition comprenant un sel de phosphate.The invention also relates to an intermediate product intended to form a decorative mirror comprising reflective zones forming a pattern and non-reflective zones, said intermediate product comprising a sheet of soda-lime-silico glass coated on the entirety of one of its faces a reflective coating, said reflective coating being coated in certain areas with a composition comprising a phosphate salt.

Le procédé selon l'invention permet aisément d'obtenir des miroirs partiels à un coût réduit puisqu'il n'implique que l'ajout d'une étape d'application sélective d'une composition contenant un sel de phosphate. Lors de la trempe, ce dernier dissout totalement l'empilement réfléchissant sous-jacent, de sorte que, dans les zones où la composition a été appliquée, ne subsiste plus que le verre nu.The method according to the invention easily makes it possible to obtain partial mirrors at a reduced cost since it only involves the addition of a step of selective application of a composition containing a phosphate salt. During tempering, the latter completely dissolves the underlying reflective stack, so that, in the areas where the composition has been applied, only bare glass remains.

La feuille de verre est de préférence plane. L'épaisseur de la feuille de verre est de préférence comprise dans un domaine allant de 1 à 19 mm, notamment de 2 à 12 mm et même de 3 à 9 mm. De préférence, la feuille de verre présente au moins une dimension supérieure à 50 cm, notamment à 1 m.The glass sheet is preferably flat. The thickness of the glass sheet is preferably in a range ranging from 1 to 19 mm, in particular from 2 to 12 mm and even from 3 to 9 mm. Preferably, the glass sheet has at least one dimension greater than 50 cm, in particular 1 m.

La feuille de verre est de préférence obtenue par flottage, procédé dans lequel du verre fondu est déversé sur un bain d'étain en fusion. Le verre est de préférence incolore, mais peut être teinté, par exemple en bleu, vert, gris, bronze etc...The glass sheet is preferably obtained by flotation, a process in which molten glass is poured onto a bath of molten tin. The glass is preferably colorless, but can be tinted, for example blue, green, gray, bronze etc.

Le verre silico-sodocalcique possède généralement une composition chimique pondérale comprenant 60 à 75% de SiO2, 10 à 20% de Na2O, 5 à 15% de CaO, 0 à 10% de MgO, 0 à 5% d'Al2O3.Soda-lime-silica glass generally has a chemical composition by weight comprising 60 to 75% SiO 2 , 10 to 20% Na 2 O, 5 to 15% CaO, 0 to 10% MgO, 0 to 5% Al 2 O 3 .

Selon un mode de réalisation préféré, le revêtement réfléchissant comprend au moins une couche fonctionnelle. Il peut en comprendre une seule, ou plusieurs, par exemple deux, identiques ou différentes. Par couche fonctionnelle on entend une couche capable d'impartir au revêtement, et éventuellement en combinaison avec d'autres couches dudit revêtement, les propriétés de réflexion et de transmission qui en font un revêtement réfléchissant au sens de l'invention.According to a preferred embodiment, the reflective coating comprises at least one functional layer. It may include only one, or several, for example two, identical or different. By functional layer we mean a layer capable of imparting to the coating, and possibly in combination with other layers of said coating, the reflection and transmission properties which make it a reflective coating within the meaning of the invention.

Au moins une couche fonctionnelle, notamment la ou chaque couche fonctionnelle, est de préférence une couche métallique ou une couche d'un nitrure métallique.At least one functional layer, in particular the or each functional layer, is preferably a metal layer or a layer of a metal nitride.

La ou chaque couche métallique est de préférence à base de chrome ou de niobium. La ou chaque couche d'un nitrure métallique est de préférence une couche de nitrure de niobium ou à base d'un tel nitrure.The or each metallic layer is preferably based on chromium or niobium. The or each layer of a metal nitride is preferably a layer of niobium nitride or based on such a nitride.

Lorsque la couche métallique est à base de chrome, il s'agit avantageusement d'une couche comprenant au moins 45% en poids de chrome. La teneur pondérale en chrome est de préférence d'au moins 50%, notamment d'au moins 55% et même d'au moins 60% ou d'au moins 70%, voire d'au moins 80% ou d'au moins 90%. La couche métallique peut être constituée de chrome. Alternativement, la couche métallique peut être en un alliage de chrome et d'au moins un autre élément, notamment choisi parmi Al et/ou Si. On peut notamment citer des alliages CrAl contenant 75 à 80% en poids de chrome, des alliages CrSi contenant 45 à 85% en poids de chrome, des alliages CrAlSi contenant 70 à 80% en poids de chrome. De tels matériaux présentent à la fois une réflexion lumineuse et une résistance à la trempe élevées. La ou chaque couche à base de chrome possède de préférence une épaisseur physique allant de 10 à 60 nm, notamment de 20 à 40 nm.When the metal layer is based on chromium, it is advantageously a layer comprising at least 45% by weight of chromium. The chromium content by weight is preferably at least 50%, in particular at least 55% and even at least 60% or at least 70%, or even at least 80% or at least 90%. The metal layer may consist of chromium. Alternatively, the metal layer can be made of an alloy of chromium and at least one other element, in particular chosen from Al and/or Si. Mention may in particular be made of CrAl alloys containing 75 to 80% by weight of chromium, CrSi alloys containing 45 to 85% by weight of chromium, CrAlSi alloys containing 70 to 80% by weight of chromium. Such materials exhibit both high light reflectance and quench resistance. The or each layer based on chromium preferably has a physical thickness ranging from 10 to 60 nm, in particular from 20 to 40 nm.

Lorsque la couche métallique est à base de niobium, il s'agit avantageusement d'une couche de niobium. Elle possède de préférence une épaisseur physique allant de 5 à 50 nm, notamment de 8 à 40 nm.When the metal layer is based on niobium, it is advantageously a layer of niobium. It preferably has a physical thickness ranging from 5 to 50 nm, in particular from 8 to 40 nm.

Lorsque la couche fonctionnelle est en nitrure de niobium, elle possède de préférence une épaisseur physique allant de 5 à 50 nm, notamment de 8 à 40 nm.When the functional layer is made of niobium nitride, it preferably has a physical thickness ranging from 5 to 50 nm, in particular from 8 to 40 nm.

Afin d'éviter tout changement d'aspect lié à la trempe, le revêtement réfléchissant est de préférence un empilement de couches minces dans lequel la ou chaque couche fonctionnelle, notamment métallique, est entourée par deux couches protectrices en oxydes, nitrures ou oxynitrures, en particulier de silicium ou d'aluminium. Les nitrures et oxynitrures sont préférés, et le nitrure de silicium s'est révélé particulièrement efficace pour protéger la couche fonctionnelle, notamment métallique, lors de la trempe.In order to avoid any change in appearance linked to quenching, the reflective coating is preferably a stack of thin layers in which the or each functional layer, in particular metallic, is surrounded by two protective layers of oxides, nitrides or oxynitrides, in particularly silicon or aluminum. Nitrides and oxynitrides are preferred, and silicon nitride has proven to be particularly effective in protecting the functional layer, particularly metallic, during quenching.

L'épaisseur physique de chaque couche protectrice est de préférence comprise dans un domaine allant de 2 à 50 nm, notamment de 5 à 40 nm. Lorsque la couche métallique est à base de chrome, une couche en titane ou silicium ayant une épaisseur allant de 1 à 5 nm est avantageusement déposée en tant que dernière couche de l'empilement. Lorsque la couche fonctionnelle est en nitrure métallique, notamment en nitrure de niobium, une couche métallique, notamment en titane, ayant une épaisseur allant de 1 à 5 nm, est avantageusement déposée directement sur et/ou sous la couche fonctionnelle.The physical thickness of each protective layer is preferably within a range ranging from 2 to 50 nm, in particular from 5 to 40 nm. When the metal layer is based on chromium, a layer of titanium or silicon having a thickness ranging from 1 to 5 nm is advantageously deposited as the last layer of the stack. When the functional layer is made of metal nitride, in particular niobium nitride, a metal layer, in particular of titanium, having a thickness ranging from 1 to 5 nm, is advantageously deposited directly on and/or under the functional layer.

Un revêtement réfléchissant préféré comprend une première couche de nitrure de silicium, puis une couche de chrome ou de niobium, ou encore de nitrure de niobium, puis une deuxième couche de nitrure de silicium.A preferred reflective coating includes a first layer of silicon nitride, then a layer of chromium or niobium, or niobium nitride, then a second layer of silicon nitride.

Selon un autre mode de réalisation, le revêtement réfléchissant est un empilement alternant des couches minces diélectriques à haut indice de réfraction et des couches minces diélectriques à bas indice de réfraction. Les épaisseurs optiques des couches sont alors choisies pour maximiser la réflexion en créant des interférences constructives. L'empilement peut notamment comprendre la succession, en s'éloignant de la feuille de verre, d'une première couche mince à base d'oxyde de titane, d'une couche mince à base d'oxyde de silicium, puis d'une deuxième couche mince à base d'oxyde de titane. L'oxyde de titane peut être remplacé par une solution solide d'oxyde de titane et d'un oxyde d'un autre métal, par exemple le zirconium.According to another embodiment, the reflective coating is a stack alternating thin dielectric layers with a high refractive index and thin dielectric layers with a low refractive index. The optical thicknesses of the layers are then chosen to maximize reflection by creating constructive interference. The stack may in particular comprise the succession, moving away from the glass sheet, of a first thin layer based on titanium oxide, of a thin layer based on silicon oxide, then of a second thin layer based on titanium oxide. The titanium oxide can be replaced by a solid solution of titanium oxide and an oxide of another metal, for example zirconium.

L'épaisseur physique du revêtement réfléchissant est de préférence d'au plus 250 nm.The physical thickness of the reflective coating is preferably at most 250 nm.

Le revêtement réfléchissant a de préférence été déposé par pulvérisation cathodique, notamment assistée par champ magnétique (procédé dit magnétron). D'autres procédés sont envisageables, notamment des procédés de dépôt chimique en phase vapeur (CVD). Typiquement, le dépôt a été préalablement réalisé sur un substrat de grande taille, à partir duquel la feuille de verre a été obtenue par découpe. Le procédé selon l'invention peut donc comprendre une étape de dépôt du revêtement réfléchissant sur la totalité d'une face d'un substrat de verre silico-sodocalcique, puis une étape de découpe dudit substrat afin d'obtenir la feuille de verre revêtue servant aux étapes suivantes du procédé. L'étape de dépôt du revêtement réfléchissant sera toutefois généralement réalisée dans un autre lieu, éventuellement par un autre acteur, que les étapes ultérieures de découpe, d'application de la composition comprenant le sel de phosphate et de trempe.The reflective coating has preferably been deposited by cathode sputtering, in particular assisted by a magnetic field (so-called magnetron process). Other processes are possible, in particular chemical vapor deposition (CVD) processes. Typically, the deposition was previously carried out on a large substrate, from which the glass sheet was obtained by cutting. The method according to the invention can therefore comprise a step of depositing the reflective coating on the entire face of a soda-lime-silica glass substrate, then a step of cutting said substrate in order to obtain the coated glass sheet used in the following stages of the process. The step of depositing the reflective coating will however generally be carried out in another location, possibly by another actor, than the subsequent steps of cutting, application of the composition comprising the phosphate salt and quenching.

Le sel de phosphate est de préférence un phosphate d'ammonium ou un phosphate de métal alcalin, notamment un phosphate de sodium. Par le terme « phosphate », on entend également les hydrogénophosphates et les dihydrogénophosphates. Le terme générique phosphate de sodium couvre donc l'hydrogénophosphate de sodium Na2HPO4, le dihydrogénophosphate de sodium NaH2PO4, et le phosphate trisodique Na3PO4, ainsi que les mélanges de ces composés.The phosphate salt is preferably an ammonium phosphate or an alkali metal phosphate, in particular a sodium phosphate. The term “phosphate” also means hydrogen phosphates and dihydrogen phosphates. The generic term sodium phosphate therefore covers sodium hydrogen phosphate Na 2 HPO 4 , sodium dihydrogen phosphate NaH 2 PO 4 , and trisodium phosphate Na 3 PO 4 , as well as mixtures of these compounds.

La composition comprenant le sel de phosphate comprend de préférence un solvant, notamment organique, et une résine. Les quantités de solvant et de résine permettent de réguler la viscosité de la composition, et sont à adapter en fonction du procédé d'application utilisé.The composition comprising the phosphate salt preferably comprises a solvent, in particular organic, and a resin. The quantities of solvent and resin make it possible to regulate the viscosity of the composition, and must be adapted according to the application process used.

La résine permet également de former une couche temporaire qui présente à la fois une adhésion suffisante à la feuille de verre et de bonnes propriétés mécaniques. Une certaine tenue mécanique est en effet bénéfique afin d'éviter que cette couche temporaire ne soit endommagée avant l'étape de trempe, par exemple lors du transport entre l'atelier où la composition est appliquée et l'atelier de trempe. Cela est particulièrement appréciable lorsque les deux ateliers ne sont pas situés dans la même usine, mais même dans le cas contraire, la feuille de verre passe généralement sur des convoyeurs susceptibles d'endommager la couche temporaire. La résine et le solvant sont éliminés au plus tard lors de l'étape de trempe. Les résines et solvants classiquement utilisés dans les compositions d'émaux se sont révélés bien adaptés.The resin also makes it possible to form a temporary layer which has both sufficient adhesion to the glass sheet and good mechanical properties. A certain mechanical strength is in fact beneficial in order to prevent this temporary layer from being damaged before the quenching step, for example during transport between the workshop where the composition is applied and the quenching workshop. This is particularly appreciable when the two workshops are not located in the same factory, but even otherwise the glass sheet generally passes on conveyors which can damage the temporary layer. The resin and the solvent are removed during the quenching stage at the latest. The resins and solvents conventionally used in enamel compositions have proven to be well suited.

L'étape d'application est de préférence réalisée par sérigraphie. La sérigraphie comprend le dépôt, notamment à l'aide d'un racle, d'un liquide pâteux sur la feuille de verre au travers de mailles d'un écran de sérigraphie. Les mailles de l'écran sont obturées dans la partie correspondant aux zones de la feuille de verre que l'on ne veut pas revêtir, de sorte que la pâte ne peut passer au travers de l'écran que dans les zones à imprimer, selon un motif prédéfini. Le motif à imprimer correspond ici au négatif du motif réfléchissant final.The application step is preferably carried out by screen printing. Screen printing involves the deposition, in particular using a doctor blade, of a pasty liquid on the glass sheet through the mesh of a screen printing screen. The meshes of the screen are closed in the corresponding part to the areas of the glass sheet that we do not want to coat, so that the paste can only pass through the screen in the areas to be printed, according to a predefined pattern. The pattern to be printed here corresponds to the negative of the final reflective pattern.

L'étape d'application peut être réalisée par d'autres techniques, par exemple par pulvérisation, au rouleau ou au rideau, en utilisant un masque afin de ne procéder à l'application que dans les zones d'application. Une application au rouleau est également envisageable même en l'absence de masque lorsque le décor est suffisamment simple, comme par exemple une zone périphérique, pour la réalisation d'une marie-louise. D'autres techniques possibles d'application sont les procédés d'impression numérique, notamment par jet d'encre.The application step can be carried out by other techniques, for example by spraying, roller or curtain, using a mask in order to carry out the application only in the application areas. Roller application is also possible even in the absence of a mask when the decor is sufficiently simple, such as a peripheral area, for the creation of a marie-louise. Other possible application techniques are digital printing processes, in particular by inkjet.

L'étape d'application est de préférence suivie d'une étape de séchage. Le séchage permet le cas échéant d'éliminer au moins une partie du solvant et/ou de réticuler au moins partiellement la résine. La température de séchage est typiquement comprise entre 100 et 250°C, notamment entre 120 et 200°C. Un séchage mettant en œuvre un rayonnement infrarouge est par exemple adapté.The application step is preferably followed by a drying step. Drying makes it possible, where appropriate, to eliminate at least part of the solvent and/or to at least partially crosslink the resin. The drying temperature is typically between 100 and 250°C, in particular between 120 and 200°C. Drying using infrared radiation is for example suitable.

Lors de l'étape de trempe, la feuille de verre est soumise à une température de préférence d'au moins 600°C, notamment d'au moins 620°C et/ou d'au plus 750°C, notamment d'au plus 725°C ou d'au plus 700°C. La feuille de verre est ensuite soumise à un refroidissement rapide, par exemple au moyen de buses d'air.During the tempering step, the glass sheet is subjected to a temperature preferably of at least 600°C, in particular at least 620°C and/or at most 750°C, in particular at least 620°C. plus 725°C or at most 700°C. The glass sheet is then subjected to rapid cooling, for example by means of air nozzles.

De préférence, le procédé comprend en outre, après l'étape de trempe, une étape de nettoyage. Après la trempe subsiste en effet un dépôt sous forme de gel, lequel est aisément enlevé par exemple par aspersion d'eau ou immersion dans l'eau.Preferably, the method further comprises, after the quenching step, a cleaning step. After quenching, a deposit in the form of gel remains, which is easily removed, for example by spraying with water or immersion in water.

Dans le miroir obtenu, la réflexion lumineuse des zones réfléchissantes, du côté du revêtement réfléchissant, est de préférence d'au moins 25%, notamment d'au moins 40%, voire d'au moins 50%. La réflexion lumineuse est généralement d'au plus 90%. Il s'agit de préférence d'une réflexion spéculaire et non d'une réflexion diffuse. La réflexion lumineuse des zones non-réfléchissantes correspond à celle du verre nu ; elle est donc de préférence de l'ordre de 6 à 10%, notamment autour de 8%. La transmission lumineuse des zones non-réfléchissantes est de préférence d'au moins 80%, notamment 85%, voire 89%, et généralement d'au plus 92%. La transmission lumineuse des zones réfléchissantes est de préférence d'au plus 70%, notamment d'au plus 30% ou 25%, voire d'au plus 20% ou 15%, ou même d'au plus 10%. Elle est typiquement d'au moins 1% ou d'au moins 5%. On peut en particulier distinguer des revêtements très réfléchissants, ayant une réflexion lumineuse entre 40% et 90%, notamment entre 50% et 80%, ainsi qu'une transmission lumineuse entre 1 et 25%, notamment entre 2 et 20%, voire entre 3 et 15%, et des revêtements moyennement réfléchissants, ayant une réflexion lumineuse entre 25% et 35% ainsi qu'une transmission lumineuse entre 40 et 70%. Ces derniers confèrent un effet miroir dans certaines conditions d'illumination.In the mirror obtained, the light reflection of the reflective zones, on the side of the reflective coating, is preferably at least 25%, in particular at least 40%, or even at least 50%. The light reflection is generally not more than 90%. This is preferably a specular reflection and not a diffuse reflection. The light reflection of non-reflecting areas corresponds to that of bare glass; it is therefore preferably of the order of 6 to 10%, in particular around 8%. The light transmission of the non-reflecting zones is preferably at least 80%, in particular 85%, even 89%, and generally at most 92%. The light transmission of the reflective zones is preferably at most 70%, in particular at most 30% or 25%, or even at most 20% or 15%, or even at most 10%. It is typically at least 1% or at least 5%. We can in particular distinguish very reflective coatings, having a light reflection between 40% and 90%, in particular between 50% and 80%, as well as a light transmission between 1 and 25%, in particular between 2 and 20%, or even between 3 and 15%, and medium reflective coatings, having a light reflection between 25% and 35% as well as a light transmission between 40 and 70%. The latter give a mirror effect in certain lighting conditions.

Les zones réfléchissantes occupent de préférence de 10 à 90% de la surface de la feuille de verre, notamment de 20 à 80%.The reflective zones preferably occupy from 10 to 90% of the surface of the glass sheet, in particular from 20 to 80%.

Le motif formé par les zones réfléchissantes et/ou les zones non-réfléchissantes peut être quelconque car aucune limitation technologique ne se pose. Il peut s'agir par exemple d'un motif géométrique, périodique ou non, de la reproduction d'une image, d'un logo etc...The pattern formed by the reflective zones and/or the non-reflective zones can be arbitrary because no technological limitation arises. It may for example be a geometric pattern, periodic or not, the reproduction of an image, a logo, etc.

Le miroir peut être utilisé dans de nombreuses applications, tant en intérieur qu'en extérieur : cloisons et portes intérieures, parois de douche et pare-bains, agencement de magasins, salons et showroom, parements de façade, parties d'appareils électroménagers comme par exemple des portes de four etc.The mirror can be used in many applications, both indoors and outdoors: interior partitions and doors, shower screens and bathroom screens, shop fittings, lounges and showrooms, facade cladding, parts of household appliances such as example oven doors etc.

Une porte de four peut ainsi comprendre, comme paroi la plus proche de l'utilisateur, un miroir décoratif selon l'invention, comprenant par exemple une zone réfléchissante sous forme d'un cadre périphérique, présentant un aspect métallique, et une partie non-réfléchissante centrale permettant à l'utilisateur de visualiser l'intérieur du four.An oven door can thus comprise, as the wall closest to the user, a decorative mirror according to the invention, comprising for example a reflective zone in the form of a peripheral frame, having a metallic appearance, and a non-reflective part. central reflective allowing the user to view the interior of the oven.

Les exemples qui suivent illustrent l'invention de manière non-limitative.The examples which follow illustrate the invention in a non-limiting manner.

Exemple 1Example 1

Une feuille de verre clair silico-sodocalcique a été obtenue en découpant un substrat de verre revêtu au préalable par pulvérisation cathodique d'un empilement réfléchissant, commercialisé sous la référence SGG Mirastar.A sheet of clear soda-lime-silica glass was obtained by cutting a glass substrate previously coated by cathode sputtering with a reflective stack, marketed under the reference SGG Mirastar.

L'empilement réfléchissant utilisé consiste en la succession, à partir du verre, d'une première couche de nitrure de silicium, d'une couche de chrome, puis d'une deuxième couche de nitrure de silicium.The reflective stack used consists of the succession, from the glass, of a first layer of silicon nitride, a layer of chromium, then a second layer of silicon nitride.

Sur cette feuille de verre revêtue a été appliquée par sérigraphie une composition comprenant du phosphate de sodium ainsi qu'une résine, selon des motifs géométriques décoratifs. L'application a permis d'obtenir une couche temporaire ayant une épaisseur humide (avant séchage) d'environ 25 µm.On this coated glass sheet a composition comprising sodium phosphate and a resin was applied by screen printing, in decorative geometric patterns. The application made it possible to obtain a temporary layer having a wet thickness (before drying) of approximately 25 µm.

La feuille de verre ainsi revêtue a ensuite été soumise à un traitement de trempe thermique impliquant un chauffage vers 650-680°C pendant 180 secondes dans un four de trempe.The glass sheet thus coated was then subjected to a thermal tempering treatment involving heating to around 650-680°C for 180 seconds in a tempering furnace.

Après trempe, les zones d'application du sel de phosphate étaient recouvertes d'un gel qui a pu être retiré par simple passage d'un chiffon humide. Dans ces zones, le revêtement réfléchissant a totalement disparu, faisant apparaître le verre nu, donc transparent. Dans les zones adjacentes en revanche, qui n'avaient pas été recouvertes du sel de phosphate, le revêtement réfléchissant est resté présent.After soaking, the areas where the phosphate salt was applied were covered with a gel which could be removed by simply wiping with a damp cloth. In these areas, the reflective coating has completely disappeared, making the glass appear bare, and therefore transparent. In the adjacent areas, however, which had not been covered with the phosphate salt, the reflective coating remained present.

Le miroir obtenu présente donc des zones réfléchissantes et des zones non-réfléchissantes formant des motifs, la séparation entre les zones étant en outre très nette. La réflexion lumineuse côté revêtement des zones réfléchissantes est de 60%, et la transmission lumineuse de 3%.The mirror obtained therefore has reflective zones and non-reflective zones forming patterns, the separation between the zones also being very clear. The light reflection on the coating side of the reflective areas is 60%, and the light transmission is 3%.

Exemple 2Example 2

L'exemple 2 ne se distingue de l'exemple 1 que par la nature de l'empilement réfléchissant, ici l'empilement commercialisé par la Demanderesse sous la référence SGG Cool-Lite ST108. Cet empilement consiste en la succession, à partir d'un substrat de verre clair, d'une première couche de nitrure de silicium, d'une couche de niobium, puis d'une deuxième couche de nitrure de silicium.Example 2 only differs from Example 1 by the nature of the reflective stack, here the stack marketed by the Applicant under the reference SGG Cool-Lite ST108. This stack consists of the succession, from a clear glass substrate, of a first layer of silicon nitride, of a layer of niobium, then of a second layer of silicon nitride.

Des résultats de même nature que ceux de l'exemple 1 ont été obtenus. La réflexion lumineuse côté revêtement des zones réfléchissantes est de 44%, et la transmission lumineuse de 9%.Results of the same nature as those of Example 1 were obtained. The light reflection on the coating side of the reflective zones is 44%, and the light transmission is 9%.

Exemple 3Example 3

L'exemple 3 se distingue également de l'exemple 1 par la nature de l'empilement réfléchissant, en l'occurrence l'empilement commercialisé par la Demanderesse sous la référence Cool-Lite ST Bright Silver.Example 3 also differs from example 1 by the nature of the reflective stack, in this case the stack marketed by the Applicant under the reference Cool-Lite ST Bright Silver.

Dans cet exemple, le revêtement réfléchissant est un empilement alternant des couches minces diélectriques à haut indice de réfraction et des couches minces diélectriques à bas indice de réfraction. Plus précisément cet empilement comprend une couche d'oxyde de titane (à haut indice), puis une couche de silice (à bas indice) et enfin une couche à base d'oxyde de titane (à haut indice).In this example, the reflective coating is a stack alternating thin dielectric layers with a high refractive index and thin dielectric layers with a low refractive index. More precisely, this stack comprises a layer of titanium oxide (high index), then a layer of silica (low index) and finally a layer based on titanium oxide (high index).

Des résultats de même nature que ceux de l'exemple 1 ont été obtenus. La réflexion lumineuse côté revêtement des zones réfléchissantes est de 31%, et la transmission lumineuse de 67%.Results of the same nature as those of Example 1 were obtained. The light reflection on the coating side of the reflective areas is 31%, and the light transmission is 67%.

Claims (16)

  1. A process for obtaining a decorative mirror comprising reflective regions forming a pattern and non-reflective regions, said process comprising the following steps:
    - providing a sheet of soda-lime-silica glass coated with a reflective coating on the entirety of one of the faces thereof, then
    - a step of applying a composition comprising a phosphate salt to said reflective coating, solely in application regions, said application regions being intended to become the non-reflective regions, then
    - a step of tempering said glass sheet, in which said glass sheet is subjected to a temperature of at least 550°C, causing the reflective coating to dissolve in the application regions so as to form said non-reflective regions in which the glass sheet is not coated.
  2. The process as claimed in claim 1, wherein the reflective coating comprises at least one functional layer that is a metal layer or a layer of a metal nitride.
  3. The process as claimed in claim 2, wherein the metal layer is based on chromium or niobium.
  4. The process as claimed in claim 2, wherein the layer of a metal nitride is a layer of niobium nitride.
  5. The process as claimed in one of claims 2 to 4, wherein the reflective coating is a stack of thin layers, in which stack the or each, in particular metal, functional layer is flanked by two protective layers made of oxides, nitrides or oxynitrides, in particular of silicon or aluminum.
  6. The process as claimed in claim 1, wherein the reflective coating is an alternating stack of thin high-refractive-index dielectric layers and of thin low-refractive-index dielectric layers.
  7. The process as claimed in one of the preceding claims, wherein the reflective coating is deposited by cathode sputtering.
  8. The process as claimed in one of the preceding claims, wherein the phosphate salt is an ammonium phosphate or an alkali-metal phosphate, and in particular a sodium phosphate.
  9. The process as claimed in one of the preceding claims, wherein the composition comprising the phosphate salt comprises an, in particular organic, solvent and a resin.
  10. The process as claimed in one of the preceding claims, wherein the applying step is carried out by screen-printing.
  11. The process as claimed in one of the preceding claims, furthermore comprising, after the tempering step, a cleaning step.
  12. A decorative mirror comprising reflective regions forming a pattern and non-reflective regions, said mirror being capable of being obtained using the process as claimed in one of the preceding claims, said mirror comprising a sheet of soda-lime-silica glass that is not coated in said non-reflective regions and that is coated with a reflective coating in said reflective regions.
  13. The decorative mirror as claimed in the preceding claim, such that the light reflectance of the reflective regions, on the side of the reflective coating, is at least 25%.
  14. The decorative mirror as claimed in the preceding claim, such that the light reflectance in the reflective regions, on the side of the reflective coating, is at least 40%, and in particular 50%.
  15. A partition, interior door, shower screen, bath screen, store fixture or fitting, salon fixture or fitting, room fixture or fitting, showroom fixture or fitting, facade cladding or part of an electrical appliance, especially an oven door, comprising a decorative mirror as claimed in one of claims 12 to 14.
  16. An intermediate product intended to form a decorative mirror comprising reflective regions forming a pattern and non-reflective regions, said intermediate product comprising a sheet of soda-lime-silica glass coated on the entirety of one of the faces thereof with a reflective coating, said reflective coating being coated in certain regions with a composition comprising a phosphate salt.
EP19736765.9A 2018-07-26 2019-07-12 Method for obtaining a decorative mirror Active EP3826972B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856944A FR3084352B1 (en) 2018-07-26 2018-07-26 PROCESS FOR OBTAINING A DECORATIVE MIRROR.
PCT/EP2019/068864 WO2020020671A1 (en) 2018-07-26 2019-07-12 Method for obtaining a decorative mirror

Publications (2)

Publication Number Publication Date
EP3826972A1 EP3826972A1 (en) 2021-06-02
EP3826972B1 true EP3826972B1 (en) 2024-03-27

Family

ID=65031510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19736765.9A Active EP3826972B1 (en) 2018-07-26 2019-07-12 Method for obtaining a decorative mirror

Country Status (4)

Country Link
US (1) US11899228B2 (en)
EP (1) EP3826972B1 (en)
FR (1) FR3084352B1 (en)
WO (1) WO2020020671A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114265B1 (en) * 2020-09-21 2023-03-24 Saint Gobain Process for obtaining laminated curved glazing
FR3118027B1 (en) * 2020-12-17 2023-08-18 Saint Gobain Process for obtaining laminated curved glazing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036021A (en) * 1933-12-23 1936-03-31 Cheney Frank Dexter Manufacture of ornamental coated glass articles
US3152948A (en) * 1959-08-10 1964-10-13 American Securit Co Ornamental mirrors and method of making same
GB2206129B (en) * 1987-06-23 1991-10-16 Glaverbel Decorative mirror and process of manufacturing same
DE4022745A1 (en) * 1990-07-18 1992-01-23 Hans Lang Gmbh & Co Kg Ing Mirror patterning - uses laser beam directed through glass pane to evaporate the reflection layer partially
US6086210A (en) * 1995-06-29 2000-07-11 Cardinal Ig Company Bendable mirrors and method of manufacture
FR2775280B1 (en) * 1998-02-23 2000-04-14 Saint Gobain Vitrage METHOD OF ETCHING A CONDUCTIVE LAYER
US6994910B2 (en) * 2003-01-09 2006-02-07 Guardian Industries Corp. Heat treatable coated article with niobium nitride IR reflecting layer
US20060077580A1 (en) 2004-10-07 2006-04-13 Guardian Industries Corp. First surface mirror with chromium nitride layer
DE102005032807A1 (en) * 2005-07-12 2007-01-18 Merck Patent Gmbh Combined etching and doping media for silicon dioxide layers and underlying silicon
US9758426B2 (en) 2011-06-29 2017-09-12 Vitro, S.A.B. De C.V. Reflective article having a sacrificial cathodic layer
US9594195B2 (en) * 2013-02-13 2017-03-14 Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique (CRVC) SaRL Dielectric mirror
CN105417965A (en) 2015-12-11 2016-03-23 潍坊玉晶玻璃科技有限公司 Preparation method of tempered silver mirror
FR3051789A1 (en) * 2016-05-25 2017-12-01 Saint Gobain MIRROR FOR WET ENVIRONMENT

Also Published As

Publication number Publication date
FR3084352B1 (en) 2023-04-28
WO2020020671A1 (en) 2020-01-30
US11899228B2 (en) 2024-02-13
EP3826972A1 (en) 2021-06-02
US20210165140A1 (en) 2021-06-03
FR3084352A1 (en) 2020-01-31

Similar Documents

Publication Publication Date Title
BE1020182A3 (en) GLAZING SUBSTRATE WITH INTERFERENTIAL COLORING FOR A PANEL.
FR3074167B1 (en) GLASS SHEET COATED WITH A STACK OF THIN LAYERS AND AN ENAMEL LAYER.
BE1020114A3 (en) PROCESS FOR PRODUCING DECORATED GLASS SHEET
LU88645A1 (en) Coated substrate and method of making the same
EP3826972B1 (en) Method for obtaining a decorative mirror
WO2007028913A1 (en) Glazing provided with a stack of thin films acting on the sunlight
WO2015145073A1 (en) Glazing provided with a thin-layer stack for solar protection
EP1347947A1 (en) Transparent substrate having a stack of thin metallic reflection layers
WO2019243755A1 (en) Glass sheet coated with a stack of thin layers and with an enamel layer
EP0962429B1 (en) Glazing coated with a stack of reflecting metallic layers
WO2012013787A2 (en) Glass substrate with interference colouration for a facing panel
FR2873791A1 (en) GLASS MATERIAL PLATE FOR DEVICE TYPE INSERT OF CHIMNEY OR STOVE.
EP3807224B1 (en) Glass substrate with the appearance of a textured metal
FR2508434A1 (en) SUSTAINABLE TYMPANS WITH CERAMIC ENAMEL
EP2803646B1 (en) Process for coating a substrate and for manufacturing a window
WO2021043954A1 (en) Glass sheet comprising an enamelled area and an underlayer
FR3108114A1 (en) glass sheet coated with a stack of thin layers and a layer of enamel
EP3814291A2 (en) Glazing comprising a stack of thin layers acting on solar radiation and a barrier layer
WO2024079021A1 (en) Glass sheet comprising an enamelled zone
EP4263454B1 (en) Method for obtaining curved laminated glazing
WO2023242040A1 (en) Method for obtaining curved laminated glazing

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230601

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20231018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019049015

Country of ref document: DE