EP3824183A1 - Precision, constant-flow reciprocating pump - Google Patents

Precision, constant-flow reciprocating pump

Info

Publication number
EP3824183A1
EP3824183A1 EP19842361.8A EP19842361A EP3824183A1 EP 3824183 A1 EP3824183 A1 EP 3824183A1 EP 19842361 A EP19842361 A EP 19842361A EP 3824183 A1 EP3824183 A1 EP 3824183A1
Authority
EP
European Patent Office
Prior art keywords
pump according
pistons
switching element
pump
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19842361.8A
Other languages
German (de)
French (fr)
Inventor
Florent Junod
Thierry Navarro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swissinnov Product SARL
Original Assignee
Swissinnov Product SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissinnov Product SARL filed Critical Swissinnov Product SARL
Publication of EP3824183A1 publication Critical patent/EP3824183A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/03Multi-cylinder machines or pumps characterised by number or arrangement of cylinders with cylinder axis arranged substantially tangentially to a circle centred on main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0003Piston machines or pumps characterised by having positively-driven valving the distribution member forming both the inlet and discharge distributor for one single pumping chamber
    • F04B7/0015Piston machines or pumps characterised by having positively-driven valving the distribution member forming both the inlet and discharge distributor for one single pumping chamber and having a slidable movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/003Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having a slidable movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0042Piston machines or pumps characterised by having positively-driven valving with specific kinematics of the distribution member
    • F04B7/0053Piston machines or pumps characterised by having positively-driven valving with specific kinematics of the distribution member for reciprocating distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0057Mechanical driving means therefor, e.g. cams
    • F04B7/0069Mechanical driving means therefor, e.g. cams for a sliding member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/047Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps

Definitions

  • the invention relates to a positive displacement pump consisting of two pistons for the precise and variable delivery of liquid, medicine, food, detergent, cosmetic, chemical compound or any other type of fluid, gel or gas.
  • the prior art is a positive displacement pump consisting of two pistons for the precise and variable delivery of liquid, medicine, food, detergent, cosmetic, chemical compound or any other type of fluid, gel or gas.
  • each piston is done by means of an axis guided by one or both ends of the axis traveling in a cam placed in the stator and optionally by another similar opposite cam in the cover.
  • This mechanism is integrated in the interchangeable fluid module or pump head, made of plastic for single use.
  • the main problem encountered by this system stems from the fact that the piston drive elements are integrated into the interchangeable fluid module, made of economical plastic, impacting the precision of the pump since the stroke of the pistons depends on the quality of the movement imparted. on the guide pins along the cam.
  • the wear of the plastic parts reduces the life of the pump head which in some cases even results in the rupture of the cam when heating due to the friction of the axes along the cam is prolonged.
  • the lateral supports of the cam can also deform or even break when the pressure in the pump increases, which limits the use of this type of pump for applications requiring pressures greater than a few bars.
  • the present invention relates to an efficient pump composed of a reduced number of parts at very low production cost for pumping and dosing liquids, viscous products or gases with variable flow without pulsation.
  • This invention solves the problems set out above, by controlling the movements of the pistons and of the valve switching element, preferably linearly and parallel to each other, by a single rotor positioned in a drive mechanism of the external pump. interchangeable fluid module. All movements of the drive mechanism are carried out by robust, precise standard guiding elements, ensuring reliable guiding of the pistons and capable of withstanding very high pressures in the pump. It is thus possible to produce a variable flow pump without pulsation, very precise, durable and suitable for applications requiring pressures greater than a few bars.
  • the production of the pump head is also more economical since the latter advantageously comprises a reduced number of elements in contact with the fluid, that is to say two preferably identical cylinder blocks, two preferentially identical pistons, a valve switching element and preferably seals.
  • the pumping principle consists in driving a rotor placed, in the pump mechanism, provided with a guide cam groove making it possible to move the pistons independently axially in the cylinder blocks by means of carriages.
  • This cam groove is composed of six segments: a drain start segment at a flow rate lower than the nominal pump flow rate a long drain segment at the nominal pump flow rate
  • the other chamber switches from the outlet port to the inlet port, then fills completely and switches from the inlet port to the outlet port.
  • the two chambers simultaneously expel towards the outlet port each at a reduced rate according to the two start and end drain segments, placed in opposition on the cam.
  • the sum of these two reduced flow rates is equivalent to the nominal flow rate of the pump so that the output flow rate always remains equivalent to the nominal flow rate, continuous, uninterrupted and without pulsation.
  • the rotor also includes an eccentric axis enabling the switching element of the valves to be moved, via a valve carriage, in synchronization with the pumping movements of the pistons.
  • Figure 1 is a view of the interchangeable fluid module.
  • Figure 2 is a bottom view of the interchangeable fluid module.
  • FIG. 3 is an overview of the pumping mechanism.
  • Figure 4 is an overview of the pumping mechanism with the interchangeable fluid module inserted.
  • Figure 5 is an exploded view of the interchangeable fluid module.
  • Figure 6 is a view of the valve switching element.
  • Figure 7 is a front view of the invention.
  • Figure 8 is a top view of the invention.
  • FIG. 9 is a sectional view along the line A- A of FIG. 7.
  • FIG. 10 is a sectional view along line C-C of FIG. 7.
  • FIG. 11 is a sectional view along the line B -B in FIG. 8.
  • FIG. 12 is a sectional view along the line E-E of FIG. 8.
  • FIG. 13 is a sectional view along line D-D of FIG. 8.
  • FIG. 14 is a sectional view along line F-F of FIG. 7.
  • FIG. 15 is a graph showing the linear displacements of the pistons as a function of the angular displacement of the superimposed rotor with a second graph representing the state of the valves as a function of the angle of the axis of the valves.
  • FIG. 16 is a view of the interchangeable fluid module produced by plastic injection.
  • FIG. 17 is an exploded view of the interchangeable fluid module produced by plastic injection.
  • Figure 18 is a front view of the interchangeable fluid module.
  • FIG. 19 is a sectional view along the line G-G of FIG. 18.
  • FIG. 20 is a sectional view along line I-I of FIG. 18.
  • FIG. 21 is a view of a variant of the fluid module interchangeable with the switching element of the cylindrical valves.
  • FIG. 22 is an exploded view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
  • FIG. 23 is a front view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
  • FIG. 24 is a sectional view along line D-D of FIG. 23.
  • FIG. 25 is a sectional view along the line A- A of FIG. 23.
  • FIG. 26 is a side view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
  • FIG. 27 is a sectional view along the line B -B in FIG. 26.
  • FIG. 28 is a sectional view along line C-C in FIG. 26.
  • FIG. 29 is a view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by the center.
  • Figure 30 is a view of a variant of the double cylinder block in one piece of the variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by the center.
  • FIG. 31 is a view of a variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by one side and the inlet and outlet ports of which are fixed to the cylinder blocks.
  • FIG. 32 is a side view of FIG. 31.
  • FIG. 33 is a sectional view along line B-B of Figure 32.
  • FIG. 34 is a perspective view of the switching element of the cylindrical valves of the variant of the interchangeable fluid module of FIG. 31.
  • the interchangeable fluid module (1) consists of two cylinder blocks (2,2 '), preferably identical, assembled in opposition to the assembly line (34) parallel to the axes displacement piston (35,35 ') and a valve switching element (4) positioned between the two cylinder blocks (2,2').
  • the cylinder blocks (2,2 ') include openings (70', 70 ”) on their rear face so as to form an opening (70), when joined, allowing access to the switching element valves (4) from the outside.
  • Each cylinder block (2.2 ’) each has an opening
  • the axis of rotation (97) of the rotor (14) is preferably located between the axes of movement of the pistons (35.35 ’) and equidistant from each of them.
  • the axis of rotation (97) of the rotor (14) is preferably perpendicular to the axes of movement of the pistons (35.35 ’) and parallel to the switching axis (7).
  • FIG 3 shows the pumping mechanism (5) coupled to a motor (30).
  • the pumping axes (6,6 ') and the switching axis (7) actuate the two pistons (3,3') and the valve switching element (4) of the interchangeable fluid module (1) respectively.
  • the pumping axes (6,6 ') are fixed on pumping carriages (15,15') guided by linear bearings (24, 24 ', 24 ”, 24'”).
  • Each carriage (15,15 ') is actuated simultaneously but independently of one another during the angular displacement of the rotor (14).
  • the switching axis (7) of the valves is fixed on the valve carriage (16) also guided by linear bearings (25, 25 ').
  • Figure 4 shows the pumping mechanism with the interchangeable fluid module (1) inserted.
  • the inlet port (8) is preferably located on the cylinder block (2), and the outlet port (9) on the cylinder block (2 ').
  • the two pistons (3,3 ') receive sealing elements, preferably O-rings (10, 10', 10 ”, 10 '”) and are inserted in the pumping chambers (11,11 ') opposite, preferably cylindrical, of the cylinder blocks (2,2') parallel and eccentric with respect to the axis of rotation (97) of the rotor (14).
  • the port (13) of the pumping chamber (11) communicates with the opening (71), and the port (13 ’) of the pumping chamber (11’) communicates with the opening (71 ’).
  • the inlet port (8) communicates with the valve inlet port (8 ’) and the outlet port (9) communicates with the valve outlet port (9’).
  • the inlet port (8) and the outlet port (9) are located between the pumping chambers (11.11 ’).
  • Each shape joint (12,12 ') preferably comprises three contours respectively (60,61,62) and (60', 61 ', 62') and of which these can be linked together during the molding of the shape joints ( 12.12 ') in single joints. It is also possible to make the shape joints (12,12 ') by the use of Orings joints not interconnected.
  • the shape seal (12) does not have the same geometry as the seal (12 ') in order to allow on the one hand the simultaneous opening of the ports (13,13') of the pumping chambers (11,11 ') to the outlet port (9) and the alternative opening of the ports (13,13 ') of the pumping chambers (11,11') to the inlet port (8).
  • the contours (60, 60 ') and (61, 6) respectively surround the inlet (50, 50 ') and outlet (51, 5) transfer chambers.
  • the shape seals (62, 62 ') provide sealing with the outside.
  • Figures 5 and 6 illustrate among other things the valve switching element (4) which preferably has the geometry of a rectangular block.
  • the port (22) allows the connection between the inlet transfer chambers (50,50 '), and the port 23 allows the connection between the outlet transfer chambers (51,51').
  • the inlet transfer chambers (50.50 ') are thus always connected to the inlet port (8).
  • the outlet transfer chambers (51, 51 ') are thus always connected to the outlet port (9).
  • the rotor (14) moves the valve switching element back and forth and thus connects the port (13) of the pumping chamber (11) with the inlet transfer chamber (50) for filling or with the outlet transfer chamber (51) for emptying, and the port (13 ') of the pumping chamber (11') with the inlet transfer chamber (50 ') for filling or with the outlet transfer chamber (51 ') for emptying. These connections are synchronized with the movement of the pistons.
  • the inlet transfer chamber (50) is preferably arranged to be on either side of the outlet transfer chamber (51).
  • the rotor (14) is coupled to the axis of the motor (30) and held by ball bearings (19,19 ') on the base (20) of the pumping mechanism (5).
  • a cam groove (36) placed axially in the rotor (14) makes it possible to move the pumping axes by rolling guide elements (2l, 2r, 2l ”, 2r”). , preferably ball bearings, inside the cam groove (36) and thus to exert a reciprocating linear movement on the pumping carriages (15,15 ') guided by linear guides (24, 24', 24 ”, 24 '”).
  • the movement of the valve carriage (16) is carried out with the linear guide elements (25,25 ').
  • Figure 11 shows the coupling of the pump axes (6.6 ’) in the pistons (3.3’) and the switching axis (7) in the valve switching element (4).
  • This sectional view also illustrates the ports around the valve switching element (4), i.e. the connection between the pumping chambers (11.11 ') with the ports (13.13') and the port. inlet (8) with the valve inlet port (8 '), and the outlet port (9) with the valve outlet port (9').
  • Figure 13 shows the profile of the cam groove (36) in the rotor (14).
  • the two pistons (3.3 ') perform their respective independent linear movement in opposition, i.e. 180 ° from each other, via the pumping axes (6.6'), along the profile of the cam groove (36).
  • This profile is broken down into 6 segments (26, 27, 28, 29, 30, 31) designed for clockwise rotation of the rotor (14).
  • the cam groove (36) can also be profiled for rotation of the rotor (14) counterclockwise.
  • the segment (26) corresponds to the initial emptying phase with reduced displacement of a piston, preferably corresponding to half of the nominal flow rate.
  • the segment (27) corresponds to the emptying phase at nominal displacement of a piston, corresponding to the nominal flow.
  • the segment (28) corresponds to the final phase of emptying with reduced displacement of a piston, preferably corresponding to half of the nominal flow rate.
  • the segment (29) corresponds to the switching phase of the valves which closes the connection between the port of a pumping chamber and the respective outlet transfer chamber and then links the transfer chamber inlet with the port of the pumping chamber, and without movement of the piston.
  • the segment (30) corresponds to the filling phase of a pumping chamber.
  • the segment (31) corresponds to the switching phase of the valves which closes the connection between the port of a pumping chamber and the respective inlet transfer chamber and then links the outlet transfer chamber with the port of the handling chamber. pumping, and without movement of the piston.
  • the segments (26, 27, 28) for emptying the chambers are dimensioned in order to produce a linear displacement of the pistons (3.3 ′) proportional to the angle of rotation of the rotor (14).
  • the segments (26) and (28) placed in opposition, make it possible to obtain a continuous linear flow rate, because the piston starting its emptying phase on the segment (26) simultaneously delivers with the piston ending its emptying phase on the segment ( 28).
  • the ball bearing (17), housed in the groove (33) of the valve carriage (16), allows the reciprocating linear displacement of the latter in order to effect the switching of the valves by driving the element of switching valves (4) placed between the cylinder blocks (2, 2 ') and connected to the valve carriage (16) via the switching axis (7).
  • Figure 15 shows two superimposed graphs illustrating the synchronization of the different pump operating sequences according to the movement of the two pistons along the segments of the cam (top graph) and the angular movement of the valve drive axis ( 18) producing the movement of the switching elements of the valves (4) as well as the states of the valves (bottom graph).
  • the vertical line (32) corresponds to the angular position of the pump in FIG. 12.
  • the curve of "chamber 1" relates to the pumping axis (6) corresponding to the pumping chamber (11) and the curves of the "Chamber 2" relates to the pumping axis (6 ') corresponding to the pumping chamber (11').
  • Pumping segments (26,27,28,29,30,31) of the cam groove (36) shown in FIG. 12 are indicated by braces on the curve of chamber 1, which are also valid for chamber 2.
  • the curve (100) corresponds to the cumulative displacement of the two pistons, on the portions during which the outlet valves are open for each of the chambers, as a function of the angular displacement of the rotor. It can be seen that this curve (100) is a continuous straight line without interruption corresponding to a continuous, uninterrupted and regular output flow from the pump.
  • the controlled displacements of the pistons (3,3 ′) and of the switching element of the valves (4) preferably take place alternately and parallel to each other while being synchronized with the angular displacement of the rotor (14).
  • the cam groove (36) can be dimensioned to produce any form of output and input flow signal.
  • Figures 16 to 20 show the version of the interchangeable fluid module (101) with parts produced by plastic injection.
  • the fixing between the cylinder blocks is ensured by clips (37, 37 ', 37 ”, 37'”).
  • Access to the pistons and pumping chambers is protected by the protective elements (38, 38 ') enabling the pumping chamber to be covered by one cylinder block with the other cylinder block and vice versa.
  • An arrow (39) fixed on the valve switching element identifies the inlet (8) and the outlet (9) of the pump.
  • FIG. 19 illustrates the inlet chamfers (40, 40 ') on the pistons (103,103') to allow the insertion of the pumping axes (6,6 ') whatever the position of the pistons (103,103').
  • FIG. 20 illustrates the inlet chamfers (41) around the opening (44) on the valve switching element (104) allowing the insertion of the switching pin (7) whatever its position.
  • the inlet (8) and outlet (9) ports can be placed on the front or sides of the cylinder blocks (2,2 ’, 102, 102’).
  • the valve seals (12,12 ') can be housed in the cylinder blocks (2, 2', 102, 102 '), in contact with the valve switching element (4, 104 )
  • the interchangeable fluid module (201) has a valve switching element (204) of preferably cylindrical section. This valve switching element (204) slides in a housing formed by two openings 271, 271 ’) preferably contiguous in the cylinder blocks (202, 202’) parallel to the pumping chambers (211, 211 ’).
  • the valve switching element (204) is preferably driven at its ends by preferably two opposite elements (not shown) fixed on the valve carriage (16).
  • the valves are switched by aligning the port (213) of the pumping chamber with the inlet (250) or outlet (251) transfer chambers, and the port (213 ') of the pumping with the inlet (250 ') or outlet (251') transfer chambers.
  • the port (213) of the pumping chamber (211) communicates with the opening (271), and the port (213 ') of the pumping chamber (211') communicates with the opening (271 ').
  • the peripheral sealing of the inlet (250, 250 ') and outlet (251, 251') transfer chambers is preferably ensured by O-rings (274, 274 ', 274 ”) and (275, 275', 275 ”).
  • a seal (280) located between and around the openings (271,271 ') provides internal sealing between the cylinder blocks (202,202').
  • the input communication port (222) of the valve switching element (204) communicates with the input transfer chambers (250, 250 ') and the input port (208) of the pump.
  • the output communication port (223) of the valve switching element (204) communicates with the output transfer chambers (251, 251 ') and the output port (209) of the pump.
  • the inlet port (208) and the outlet port (209) are located between the pumping chambers
  • FIG. 29 shows a variant of the interchangeable fluid module (201) having a valve switching element (204) of cylindrical section which is driven by the medium.
  • An opening (240) located between the cylinder blocks (220,220 ’) allows access to the valve switching element (204) through the drive element (not shown).
  • FIG. 30 shows a variant of the interchangeable fluid module (201) having a switching element for the valves (204) of cylindrical section where the cylinder blocks are made in one piece (230).
  • the inlet (308) and outlet (309) ports are placed on the cylinder blocks (302,302 ').
  • the inlet port (308) is preferably of wide section in order to be able to suck viscous fluids at high flow rate and is fixed to the end of the opening (371) of the block.
  • the outlet port (309) is preferably fixed on one face of the cylinder block (302) and perpendicular to the movement of the valve element (304).
  • the input communication port (322) of the valve switching element (304) communicates with the input transfer chambers (350, 350 ’) and the input port (308) of the pump.
  • the output communication port (323) of the valve switching element (304) communicates with the output transfer chambers (351, 351 ’) and the output port (309) of the pump.
  • the valve switching element (304) preferably comprises on one of its sides an opening (344) receiving the switching axis (7).
  • conduits preferably in connection with the inlet and outlet ports can be placed in the cylinder blocks and adapted so as to connect pressure measuring elements such as, for example, membranes or any other component reacting to the pressure variation.
  • valve element may be wholly or partly rounded so as to pivot or rotate during the movement of the pistons by means of the rotor (14).
  • the assembly of the cylinder blocks can preferably be carried out by clips, screws, conical shapes, by welding or recasting.
  • the sealing between the movable and fixed parts is preferably carried out using elastomers, O-rings, shaped seals, overmolded seals or any other sealing element.
  • the elements constituting the interchangeable fluid module (1,101, 201, 301) are preferably made of single-use plastic, preferably by injection or by machining.
  • the pump can be sterilized for the distribution of food, medicine or body fluids for example. The choice of materials is not limited to plastics, however.
  • the switching element of the valves can be in the form of a rotary disc, preferably axially and in direct engagement with the rotor.
  • the invention can be incorporated into devices intended for pumping chemical, pharmaceutical, petroleum or any other kind of fluid. It can also be integrated into medical devices intended to inject or suck fluids into / from the body. These devices can combine several pumps in parallel or in series with external elements such as valves, connectors or any other component allowing multiple fluid circuits to be produced.
  • the invention lends itself particularly well to an operation requiring the diffusion or the mixing of fluids under pressure and high pressure precisely. It can also be used in systems requiring dynamic flow control manually or automatically such as medical pumps / injectors and dosing / filling systems.
  • the pump can also be used as an air compressor and made of durable materials such as steel and ceramics for devices requiring intensive operation with a long service life.

Abstract

Disclosed is a pump comprising two pistons which are driven by a cam belonging to an external rotor and which are inserted into two cylinder blocks mounted parallel to each other in such a way as to form two opposite, parallel, eccentric pump chambers which have at least one inlet port through which liquid is drawn into the pump chambers during the fill stroke of the pistons, and then expelled from the pump chambers during the discharge stroke of the pistons to at least one outlet port, the outflow rate of which is constant and even.

Description

POMPE DE PRECISION ALTERNATIVE A DEBIT CONTINU  CONTINUOUS FLOW PRECISION PRECISION PUMP
L’invention concerne une pompe volumétrique constituée de deux pistons pour la distribution précise et à débit variable de liquide, de médicament, d’aliment, de détergent, de produit cosmétique, de composé chimique ou tout autre type de fluide, gel ou gaz. L’art antérieur The invention relates to a positive displacement pump consisting of two pistons for the precise and variable delivery of liquid, medicine, food, detergent, cosmetic, chemical compound or any other type of fluid, gel or gas. The prior art
Il existe différentes pompes avec came comme décrit dans le brevet PCT/IB2013/059393 dont le principe de fonctionnement consiste à entraîner un rotor contenant deux cylindres et pistons pour obtenir un débit sans pulsation There are different pumps with cam as described in patent PCT / IB2013 / 059393, the operating principle of which consists in driving a rotor containing two cylinders and pistons to obtain a flow without pulsation.
Dans le brevet PCT/IB2013/059393, l’entraînement de chaque piston se fait au moyen d’un axe guidé par une ou les deux extrémités de l’axe cheminant dans une came placée dans le stator et optionnellement par une autre came similaire opposée dans le couvercle. Ce mécanisme est intégré dans le module fluidique ou tête de pompe interchangeable, réalisé en plastique pour usage unique. In patent PCT / IB2013 / 059393, the drive of each piston is done by means of an axis guided by one or both ends of the axis traveling in a cam placed in the stator and optionally by another similar opposite cam in the cover. This mechanism is integrated in the interchangeable fluid module or pump head, made of plastic for single use.
Le problème principal rencontré par ce système provient du fait que les éléments d’entraînement des pistons sont intégrés au module fluidique interchangeable, réalisés en plastique économique, impactant la précision de la pompe étant donné que la course des pistons dépend de la qualité du mouvement imparti sur les axes de guidage le long de la came. L’usure des pièces plastique réduit la durée de vie de la tête de pompe qui dans certains cas aboutis même à la rupture de la came lorsque réchauffement provenant du frottement des axes le long de la came se prolonge. Les supports latéraux de la came peuvent également se déformer voir se rompre lorsque la pression dans la pompe augmente, ce qui limite l’usage de ce type de pompe pour des applications nécessitant des pressions supérieurs à quelques bars. Un autre désavantage, est que l’étanchéité entre le rotor et le stator se fait à l’aide d’un joint de forme circulaire qui subit un frottement circulaire unidirectionnel pendant le fonctionnement de la pompe, créant ainsi un échauffement localisé important sur le rotor qui peut rapidement se déformer et rendre la pompe inopérante. Description de l’invention The main problem encountered by this system stems from the fact that the piston drive elements are integrated into the interchangeable fluid module, made of economical plastic, impacting the precision of the pump since the stroke of the pistons depends on the quality of the movement imparted. on the guide pins along the cam. The wear of the plastic parts reduces the life of the pump head which in some cases even results in the rupture of the cam when heating due to the friction of the axes along the cam is prolonged. The lateral supports of the cam can also deform or even break when the pressure in the pump increases, which limits the use of this type of pump for applications requiring pressures greater than a few bars. Another disadvantage is that the seal between the rotor and the stator is made using a circular seal which undergoes unidirectional circular friction during the operation of the pump, thus creating significant localized heating on the rotor. which can quickly deform and make the pump inoperative. Description of the invention
La présente invention concerne une pompe performante composée d’un nombre réduit de pièces à très faible coût de production pour le pompage et le dosage de liquides, produits visqueux ou gaz à débit variable sans pulsation. The present invention relates to an efficient pump composed of a reduced number of parts at very low production cost for pumping and dosing liquids, viscous products or gases with variable flow without pulsation.
Cette invention résout les problèmes exposés précédemment, en pilotant les mouvements des pistons et de l’élément de commutation des valves, préférablement de manière linéaire et parallèlement les uns aux autres, par un rotor unique positionné dans un mécanisme d’entraînement de la pompe extérieur au module fluidique interchangeable. Tous les mouvements du mécanisme d’entraînement sont réalisés par des éléments standards de guidage robustes, et précis, assurant un guidage des pistons de manière fiable et pouvant supporter de très fortes pressions dans la pompe. Il est ainsi possible de réaliser une pompe à débit variable sans pulsation, très précise, durable et adaptée aux applications nécessitant des pressions supérieures à quelques bars. This invention solves the problems set out above, by controlling the movements of the pistons and of the valve switching element, preferably linearly and parallel to each other, by a single rotor positioned in a drive mechanism of the external pump. interchangeable fluid module. All movements of the drive mechanism are carried out by robust, precise standard guiding elements, ensuring reliable guiding of the pistons and capable of withstanding very high pressures in the pump. It is thus possible to produce a variable flow pump without pulsation, very precise, durable and suitable for applications requiring pressures greater than a few bars.
La production de la tête de pompe est également plus économique car cette dernière comprend avantageusement un nombre réduits d’éléments en contact avec le fluide, soit deux bloc-cylindres préférentiellement identiques, deux pistons préférentiellement identiques, un élément de commutations des valves et préférentiellement des joints d’étanchéité. Le principe de pompage consiste à entraîner un rotor placé, dans le mécanisme de la pompe, muni d’une rainure-came de guidage permettant de déplacer indépendamment les pistons axialement dans les bloc-cylindres par l’intermédiaire de chariots. Cette rainure-came est composé de six segments : un segment de démarrage de vidange à débit inférieur au débit nominal de la pompe un segment de vidange long au débit nominal de la pompe The production of the pump head is also more economical since the latter advantageously comprises a reduced number of elements in contact with the fluid, that is to say two preferably identical cylinder blocks, two preferentially identical pistons, a valve switching element and preferably seals. The pumping principle consists in driving a rotor placed, in the pump mechanism, provided with a guide cam groove making it possible to move the pistons independently axially in the cylinder blocks by means of carriages. This cam groove is composed of six segments: a drain start segment at a flow rate lower than the nominal pump flow rate a long drain segment at the nominal pump flow rate
un segment de fin de vidange à débit inférieur au débit nominal de la pompe  a drain end segment at a flow rate lower than the nominal pump flow rate
un segment de commutation des valves commutant entre le port de sortie puis le port d’entrée sur la chambre de pompage  a valve switching segment switching between the outlet port and then the inlet port on the pumping chamber
un segment de remplissage  a filling segment
un segment de commutation des valves commutant entre le port d’entrée puis le port de sortie sur la chambre de pompage  a valve switching segment switching between the inlet port and then the outlet port on the pumping chamber
Durant la phase de vidange d’une chambre au débit nominal de la pompe, l’autre chambre commute du port de sortie vers port d’entrée, puis se remplit complètement et commute du port d’entrée vers le port de sortie. D’autre part les deux chambres expulsent simultanément vers le port de sortie chacun à un débit réduit selon les deux segments de vidange de démarrage et de fin, placés en opposition sur la came. La somme de ces deux débits réduits équivaut au débit nominal de la pompe de sorte que le débit en sortie reste toujours équivalent au débit nominal, continu, ininterrompu et sans pulsation. Le rotor comprend également un axe excentré permettant de déplacer l’élément de commutation des valves, par l’intermédiaire d’un chariot de valve, de manière synchronisée avec les mouvements de pompages des pistons. Description des dessins During the emptying phase of a chamber at the nominal flow rate of the pump, the other chamber switches from the outlet port to the inlet port, then fills completely and switches from the inlet port to the outlet port. On the other hand, the two chambers simultaneously expel towards the outlet port each at a reduced rate according to the two start and end drain segments, placed in opposition on the cam. The sum of these two reduced flow rates is equivalent to the nominal flow rate of the pump so that the output flow rate always remains equivalent to the nominal flow rate, continuous, uninterrupted and without pulsation. The rotor also includes an eccentric axis enabling the switching element of the valves to be moved, via a valve carriage, in synchronization with the pumping movements of the pistons. Description of the drawings
La présente invention sera mieux comprise à la lecture de la description des exemples donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : The present invention will be better understood on reading the description of the examples given, for information only and in no way limiting, with reference to the appended drawings in which:
La figure 1 est une vue du module fluidique interchangeable. Figure 1 is a view of the interchangeable fluid module.
La figure 2 est une vue de dessous du module fluidique interchangeable.  Figure 2 is a bottom view of the interchangeable fluid module.
La figure 3 est une vue d’ensemble du mécanisme de pompage.  Figure 3 is an overview of the pumping mechanism.
La figure 4 est une vue d’ensemble du mécanisme de pompage avec le module fluidique interchangeable inséré.  Figure 4 is an overview of the pumping mechanism with the interchangeable fluid module inserted.
La figure 5 est une vue éclatée du module fluidique interchangeable.  Figure 5 is an exploded view of the interchangeable fluid module.
La figure 6 est une vue de l’élément de commutation des valves.  Figure 6 is a view of the valve switching element.
La figure 7 est une vue de face de l’invention.  Figure 7 is a front view of the invention.
La figure 8 est une vue de dessus de l’invention.  Figure 8 is a top view of the invention.
La figure 9 est une vue en coupe selon la ligne A- A de la figure 7.  FIG. 9 is a sectional view along the line A- A of FIG. 7.
La figure 10 est une vue en coupe selon la ligne C-C de la figure 7.  FIG. 10 is a sectional view along line C-C of FIG. 7.
La figure 11 est une vue en coupe selon la ligne B -B de la figure 8.  FIG. 11 is a sectional view along the line B -B in FIG. 8.
La figure 12 est une vue en coupe selon la ligne E-E de la figure 8.  FIG. 12 is a sectional view along the line E-E of FIG. 8.
La figure 13 est une vue en coupe selon la ligne D-D de la figure 8.  FIG. 13 is a sectional view along line D-D of FIG. 8.
La figure 14 est une vue en coupe selon la ligne F-F de la figure 7.  FIG. 14 is a sectional view along line F-F of FIG. 7.
La figure 15 est un graphique montrant les déplacements linéaires des pistons en fonction du déplacement angulaire du rotor superposé avec un second graphique représentant l’état des valves en fonction de l’angle de l’axe des valves. La figure 16 est une vue du module fluidique interchangeable réalisé par injection plastique. FIG. 15 is a graph showing the linear displacements of the pistons as a function of the angular displacement of the superimposed rotor with a second graph representing the state of the valves as a function of the angle of the axis of the valves. FIG. 16 is a view of the interchangeable fluid module produced by plastic injection.
La figure 17 est une vue éclatée du module fluidique interchangeable réalisé par injection plastique.  FIG. 17 is an exploded view of the interchangeable fluid module produced by plastic injection.
La figure 18 est une vue de face du module fluidique interchangeable.  Figure 18 is a front view of the interchangeable fluid module.
La figure 19 est une vue en coupe selon la ligne G-G de la figure 18.  FIG. 19 is a sectional view along the line G-G of FIG. 18.
La figure 20 est une vue en coupe selon la ligne I-I de la figure 18.  FIG. 20 is a sectional view along line I-I of FIG. 18.
La figure 21 est une vue d’une variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique.  FIG. 21 is a view of a variant of the fluid module interchangeable with the switching element of the cylindrical valves.
La figure 22 est une vue éclatée de la variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique.  FIG. 22 is an exploded view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
La figure 23 est une vue de face de la variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique.  FIG. 23 is a front view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
La figure 24 est une vue en coupe selon la ligne D-D de la figure 23.  FIG. 24 is a sectional view along line D-D of FIG. 23.
La figure 25 est une vue en coupe selon la ligne A- A de la figure 23.  FIG. 25 is a sectional view along the line A- A of FIG. 23.
La figure 26 est une vue de côté de la variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique.  FIG. 26 is a side view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves.
La figure 27 est une vue en coupe selon la ligne B -B de la figure 26.  FIG. 27 is a sectional view along the line B -B in FIG. 26.
La figure 28 est une vue en coupe selon la ligne C-C de la figure 26.  FIG. 28 is a sectional view along line C-C in FIG. 26.
La figure 29 est une vue de la variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique entraîné par le centre.  FIG. 29 is a view of the variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by the center.
La figure 30 est une vue d’une variante du bloc de cylindre double en mono pièce de la variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique entraîné par le centre. La figure 31 est une vue d’une variante du module fluidique interchangeable avec l’élément de commutation des valves cylindrique entraîné par un côté et dont les ports d’entrée et sortie sont fixés sur les blocs-cylindres. Figure 30 is a view of a variant of the double cylinder block in one piece of the variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by the center. FIG. 31 is a view of a variant of the fluid module interchangeable with the switching element of the cylindrical valves driven by one side and the inlet and outlet ports of which are fixed to the cylinder blocks.
La figure 32 est une vue de profil de la figure 31.  FIG. 32 is a side view of FIG. 31.
- La figure 33 est une vue en coupe selon la ligne B-B de la figure 32.  - Figure 33 is a sectional view along line B-B of Figure 32.
La figure 34 est une vue en perspective de l’élément de commutation des valves cylindrique de la variante du module fluidique interchangeable de la figure 31.  FIG. 34 is a perspective view of the switching element of the cylindrical valves of the variant of the interchangeable fluid module of FIG. 31.
Selon les figures 1 à 5 et 11 et 13, le module fluidique interchangeable (1) se compose de deux bloc-cylindres (2,2’), préférentiellement identiques, assemblés en opposition avec la ligne d’assemblage (34) parallèle aux axes de déplacement des pistons (35,35’) et d’un élément de commutation des valves (4) positionné entre les deux bloc-cylindres (2,2’). Les bloc-cylindres (2,2’) comprennent des ouvertures (70’, 70”) sur leur face arrière de manière à former une ouverture (70), lorsqu’ils sont joints, permettant l’accès à l’élément de commutation des valves (4) depuis l’extérieur. Chaque bloc-cylindre (2,2’) comprend respectivement une ouvertureAccording to Figures 1 to 5 and 11 and 13, the interchangeable fluid module (1) consists of two cylinder blocks (2,2 '), preferably identical, assembled in opposition to the assembly line (34) parallel to the axes displacement piston (35,35 ') and a valve switching element (4) positioned between the two cylinder blocks (2,2'). The cylinder blocks (2,2 ') include openings (70', 70 ”) on their rear face so as to form an opening (70), when joined, allowing access to the switching element valves (4) from the outside. Each cylinder block (2.2 ’) each has an opening
(80,80’) sur sa face arrière de manière à permettre l’accès aux pistons (3,3’) depuis l’extérieur. L’axe de rotation (97) du rotor (14) est préférablement situé entre les axes de déplacement des pistons (35,35’) et équidistant de chacun d’entre eux. L’axe de rotation (97) du rotor (14) est préférablement perpendiculaire aux axes de déplacement des pistons (35,35’) et parallèle à l’axe de commutation (7). (80.80 ’) on its back so as to allow access to the pistons (3.3’) from the outside. The axis of rotation (97) of the rotor (14) is preferably located between the axes of movement of the pistons (35.35 ’) and equidistant from each of them. The axis of rotation (97) of the rotor (14) is preferably perpendicular to the axes of movement of the pistons (35.35 ’) and parallel to the switching axis (7).
La figure 3 montre le mécanisme de pompage (5) couplé à un moteur (30). Les axes de pompage (6,6’) et l’axe de commutation (7) actionnent linéairement respectivement les deux pistons (3,3’) et l’élément de commutation des valves (4) du module fluidique interchangeable (1). Sur la figure 12, les axes de pompage (6,6’) sont fixés sur des chariots de pompage (15,15’) guidés par des roulements linéaires (24, 24’, 24”, 24’”). Chaque chariot (15,15’) est actionné de manière simultanée mais indépendante l’un de l’autre lors du déplacement angulaire du rotor (14). L’axe de commutation (7) des valves est fixé sur le chariot des valves (16) également guidé pas des roulements linéaires (25, 25’). La figure 4 montre le mécanisme de pompage avec le module fluidique interchangeable (1) inséré. Le port d’entrée (8) se situe préférablement sur le bloc- cylindre (2), et le port de sortie (9) sur le bloc-cylindre (2’). Figure 3 shows the pumping mechanism (5) coupled to a motor (30). The pumping axes (6,6 ') and the switching axis (7) actuate the two pistons (3,3') and the valve switching element (4) of the interchangeable fluid module (1) respectively. On the face 12, the pumping axes (6,6 ') are fixed on pumping carriages (15,15') guided by linear bearings (24, 24 ', 24 ”, 24'”). Each carriage (15,15 ') is actuated simultaneously but independently of one another during the angular displacement of the rotor (14). The switching axis (7) of the valves is fixed on the valve carriage (16) also guided by linear bearings (25, 25 '). Figure 4 shows the pumping mechanism with the interchangeable fluid module (1) inserted. The inlet port (8) is preferably located on the cylinder block (2), and the outlet port (9) on the cylinder block (2 ').
Selon les figures 5, 6, 11 et 13, les deux pistons (3,3’) reçoivent des éléments d’étanchéité, préférentiellement des O-rings (10, 10’, 10”, 10’”) et sont insérés dans les chambres de pompage (11,11’) opposées, préférentiellement cylindriques, des bloc-cylindres (2,2’) parallèles et excentriques par rapport à l’axe de rotation (97) du rotor (14). Le port (13) de la chambre de pompage (11) communique avec l’ouverture (71), et le port (13’) de la chambre de pompage (11’) communique avec l’ouverture (71’). Le port d’entrée (8) communique avec le port d’entrée des valves (8’) et le port de sortie (9) communique avec le port de sortie des valves (9’). Le port d’entrée (8) et le port de sortie (9) sont placés entre les chambres de pompage (11,11’). According to Figures 5, 6, 11 and 13, the two pistons (3,3 ') receive sealing elements, preferably O-rings (10, 10', 10 ”, 10 '”) and are inserted in the pumping chambers (11,11 ') opposite, preferably cylindrical, of the cylinder blocks (2,2') parallel and eccentric with respect to the axis of rotation (97) of the rotor (14). The port (13) of the pumping chamber (11) communicates with the opening (71), and the port (13 ’) of the pumping chamber (11’) communicates with the opening (71 ’). The inlet port (8) communicates with the valve inlet port (8 ’) and the outlet port (9) communicates with the valve outlet port (9’). The inlet port (8) and the outlet port (9) are located between the pumping chambers (11.11 ’).
Les joints de valve (12,12’) sont insérés de chaque côté de l’élément de commutation des valves (4). Chaque joint de forme (12,12’) comprend préférablement trois contours respectivement (60,61,62) et (60’, 61’, 62’) et dont celles-ci peuvent liées entre elles lors du moulage des joints de forme (12,12’) en mono-joints. Il est également possible de réaliser les joints de forme (12,12’) par l’utilisation de joints Orings non reliés entre eux. Le joint de forme (12) n’a pas la même géométrie que le joint (12’) afin de permettre d’une part l’ouverture simultanée des ports (13,13’) des chambres de pompage (11,11’) vers le port de sortie (9) et l’ouverture alternative des ports (13,13’) des chambre de pompage (11,11’) vers le port d’entrée (8). Les contours (60, 60’) et (61, 6 ) entourent respectivement les chambres de transfert d’entrée (50, 50’) et de sortie (51, 5 ). Les joints de forme (62, 62’) assurent l’étanchéité avec l’extérieur. Les figures 5 et 6 illustrent entre autre l’élément de commutation des valves (4) qui a préférablement la géométrie d’un bloc rectangulaire. Le port (22) permet la liaison entre les chambres de transfert d’entrée (50,50’), et le port 23 permet la liaison entre les chambres de transfert de sortie (51,51’). Les chambres de transfert d’entrée (50,50’) sont ainsi toujours en liaison avec le port d’entrée (8). Les chambres de transfert de sortie (51,51’) sont ainsi toujours en liaison avec le port de sortie (9). The valve seals (12,12 ') are inserted on each side of the valve switching element (4). Each shape joint (12,12 ') preferably comprises three contours respectively (60,61,62) and (60', 61 ', 62') and of which these can be linked together during the molding of the shape joints ( 12.12 ') in single joints. It is also possible to make the shape joints (12,12 ') by the use of Orings joints not interconnected. The shape seal (12) does not have the same geometry as the seal (12 ') in order to allow on the one hand the simultaneous opening of the ports (13,13') of the pumping chambers (11,11 ') to the outlet port (9) and the alternative opening of the ports (13,13 ') of the pumping chambers (11,11') to the inlet port (8). The contours (60, 60 ') and (61, 6) respectively surround the inlet (50, 50 ') and outlet (51, 5) transfer chambers. The shape seals (62, 62 ') provide sealing with the outside. Figures 5 and 6 illustrate among other things the valve switching element (4) which preferably has the geometry of a rectangular block. The port (22) allows the connection between the inlet transfer chambers (50,50 '), and the port 23 allows the connection between the outlet transfer chambers (51,51'). The inlet transfer chambers (50.50 ') are thus always connected to the inlet port (8). The outlet transfer chambers (51, 51 ') are thus always connected to the outlet port (9).
Le rotor (14) déplace, en mouvement de va et vient, l’élément de commutation des valves et met ainsi en liaison le port (13) de la chambre de pompage (11) avec la chambre de transfert d’entrée (50) pour le remplissage ou avec la chambre de transfert de sortie (51) pour la vidange, et le port (13’) de la chambre de pompage (11’) avec la chambre de transfert d’entrée (50’) pour le remplissage ou avec la chambre de transfert de sortie (51’) pour la vidange. Ces liaisons sont synchronisées avec le mouvement des pistons. La chambre de transfert d’entrée (50) est préférablement disposée de manière à être de part et d’autre de la chambre de transfert de sortie (51). The rotor (14) moves the valve switching element back and forth and thus connects the port (13) of the pumping chamber (11) with the inlet transfer chamber (50) for filling or with the outlet transfer chamber (51) for emptying, and the port (13 ') of the pumping chamber (11') with the inlet transfer chamber (50 ') for filling or with the outlet transfer chamber (51 ') for emptying. These connections are synchronized with the movement of the pistons. The inlet transfer chamber (50) is preferably arranged to be on either side of the outlet transfer chamber (51).
Selon les figures 3, 9 et 12, le rotor (14) est couplé sur l’axe du moteur (30) et maintenu par des roulements à bille (19,19’) sur la l’embase (20) du mécanisme de pompage (5). Un élément de guidage (17), préférentiellement un roulement à bille, placé sur l’axe d’entraînement des valves (18) monté excentriquement sur le rotor (14), et logé dans une rainure (33), exerce un entraînement linéaire alternatif du chariot des valves (16) guidé par des roulements linéairesAccording to Figures 3, 9 and 12, the rotor (14) is coupled to the axis of the motor (30) and held by ball bearings (19,19 ') on the base (20) of the pumping mechanism (5). A guide element (17), preferably a ball bearing, placed on the valve drive axis (18) mounted eccentrically on the rotor (14), and housed in a groove (33), exerts an alternating linear drive. of the valve carriage (16) guided by linear bearings
(25,25’). Selon les figures 9, 10 et 12 une rainure-came (36) placée axialement dans le rotor (14), permet de déplacer les axes de pompages par le roulage d’éléments de guidage (2l,2r,2l”,2r”), préférentiellement des roulements à billes, à l’intérieur de la rainure-came (36) et ainsi d’exercer un mouvement linéaire alternatif sur les chariots de pompage (15,15’) guidés par des guidages linéaires (24, 24’, 24”, 24’”). Le mouvement du chariot des valves (16) est conduit avec les éléments de guidage linéaire (25,25’). (25.25 '). According to FIGS. 9, 10 and 12, a cam groove (36) placed axially in the rotor (14) makes it possible to move the pumping axes by rolling guide elements (2l, 2r, 2l ”, 2r”). , preferably ball bearings, inside the cam groove (36) and thus to exert a reciprocating linear movement on the pumping carriages (15,15 ') guided by linear guides (24, 24', 24 ”, 24 '”). The movement of the valve carriage (16) is carried out with the linear guide elements (25,25 ').
La figure 11 montre l’accouplement des axes de pompage (6,6’) dans les pistons (3,3’) et l’axe de commutation (7) dans l’élément de commutation des valves (4). Cette vue en coupe permet également d’illustrer les ports autour de l’élément de commutations des valves (4), soit la liaison entre les chambres de pompage (11,11’) avec les ports (13,13’) et le port d’entrée (8) avec le port d’entrée de valve (8’), et le port de sortie (9) avec le port de sortie des valves (9’). Figure 11 shows the coupling of the pump axes (6.6 ’) in the pistons (3.3’) and the switching axis (7) in the valve switching element (4). This sectional view also illustrates the ports around the valve switching element (4), i.e. the connection between the pumping chambers (11.11 ') with the ports (13.13') and the port. inlet (8) with the valve inlet port (8 '), and the outlet port (9) with the valve outlet port (9').
La figure 13 montre le profil de la rainure-came (36) dans le rotor (14). Les deux pistons (3,3’) effectuent leur déplacement linéaire respectif et indépendant en opposition, soit à 180° l’un de l’autre, par l’intermédiaire des axes de pompage (6,6’), le long du profil de la rainure-came (36). Ce profil se décompose en 6 segments (26, 27, 28, 29, 30, 31) dessinés pour une rotation horaire du rotor (14). La rainure-came (36) peut également être profilée pour une rotation du rotor (14) dans le sens antihoraire. Le segment (26) correspond à la phase initiale de vidange à déplacement réduit d’un piston, correspondant préférentiellement à la moitié du débit nominal. Le segment (27) correspond à la phase de vidange à déplacement nominal d’un piston, correspondant au débit nominal. Le segment (28) correspond à la phase finale de vidange à déplacement réduit d’un piston, correspondant préférentiellement à la moitié du débit nominal. Le segment (29) correspond à la phase de commutation des valves qui ferme la liaison entre le port d’une chambre de pompage et la chambre de transfert de sortie respective puis lie la chambre de transfert d’entrée avec le port de la chambre de pompage, et sans mouvement du piston. Le segment (30) correspond à la phase de remplissage d’une chambre de pompage. Le segment (31) correspond à la phase de commutation des valves qui ferme la liaison entre le port d’une chambre de pompage et la chambre de transfert d’entrée respective puis lie la chambre de transfert de sortie avec le port de la chambre de pompage, et sans mouvement du piston. Les segments (26,27,28) pour la vidange des chambres sont dimensionnées afin de réaliser un déplacement linéaire des pistons (3,3’) proportionnellement à l’angle de rotation du rotor (14). Les segments (26) et (28) placés en opposition, permettent d’obtenir un débit linéaire continu, car le piston débutant sa phase de vidange sur le segment (26) délivre simultanément avec le piston terminant sa phase de vidange sur le segment (28). Figure 13 shows the profile of the cam groove (36) in the rotor (14). The two pistons (3.3 ') perform their respective independent linear movement in opposition, i.e. 180 ° from each other, via the pumping axes (6.6'), along the profile of the cam groove (36). This profile is broken down into 6 segments (26, 27, 28, 29, 30, 31) designed for clockwise rotation of the rotor (14). The cam groove (36) can also be profiled for rotation of the rotor (14) counterclockwise. The segment (26) corresponds to the initial emptying phase with reduced displacement of a piston, preferably corresponding to half of the nominal flow rate. The segment (27) corresponds to the emptying phase at nominal displacement of a piston, corresponding to the nominal flow. The segment (28) corresponds to the final phase of emptying with reduced displacement of a piston, preferably corresponding to half of the nominal flow rate. The segment (29) corresponds to the switching phase of the valves which closes the connection between the port of a pumping chamber and the respective outlet transfer chamber and then links the transfer chamber inlet with the port of the pumping chamber, and without movement of the piston. The segment (30) corresponds to the filling phase of a pumping chamber. The segment (31) corresponds to the switching phase of the valves which closes the connection between the port of a pumping chamber and the respective inlet transfer chamber and then links the outlet transfer chamber with the port of the handling chamber. pumping, and without movement of the piston. The segments (26, 27, 28) for emptying the chambers are dimensioned in order to produce a linear displacement of the pistons (3.3 ′) proportional to the angle of rotation of the rotor (14). The segments (26) and (28) placed in opposition, make it possible to obtain a continuous linear flow rate, because the piston starting its emptying phase on the segment (26) simultaneously delivers with the piston ending its emptying phase on the segment ( 28).
Selon la figure 14, le roulement à bille (17), logé dans la rainure (33) du chariot des valves (16), permet le déplacement linéaire alternatif de ce dernier afin de réaliser la commutation des valves en entraînant de l’élément de commutation des valves (4) placé entre les bloc-cylindres (2, 2’) et relié au chariot des valves (16) par l’intermédiaire de l’axe de commutation (7). La figure 15 montre deux graphes superposés illustrant la synchronisation des différentes séquences de fonctionnement de la pompe selon le déplacement des deux pistons le long des segments de la came (graphe du haut) et le déplacement angulaire de l’axe d’entraînement des valves (18) produisant le mouvement de l’éléments de commutations des valves (4) ainsi que les états des valves (graphe du bas). La ligne verticale (32) correspond à la position angulaire de la pompe à la figure 12. Le courbe de la « chambre 1 » concerne l’axe de pompage (6) correspondant à la chambre de pompage (11) et la courbes de la « chambre 2 » concerne l’axe de pompage (6’) correspondant à la chambre de pompage (11’). Les segments de pompage (26,27,28,29,30,31) de la rainure-came (36) représentés sur la figure 12 sont indiqués par des accolades sur la courbe de la chambre 1, lesquels sont également valables pour la chambre 2. According to Figure 14, the ball bearing (17), housed in the groove (33) of the valve carriage (16), allows the reciprocating linear displacement of the latter in order to effect the switching of the valves by driving the element of switching valves (4) placed between the cylinder blocks (2, 2 ') and connected to the valve carriage (16) via the switching axis (7). Figure 15 shows two superimposed graphs illustrating the synchronization of the different pump operating sequences according to the movement of the two pistons along the segments of the cam (top graph) and the angular movement of the valve drive axis ( 18) producing the movement of the switching elements of the valves (4) as well as the states of the valves (bottom graph). The vertical line (32) corresponds to the angular position of the pump in FIG. 12. The curve of "chamber 1" relates to the pumping axis (6) corresponding to the pumping chamber (11) and the curves of the "Chamber 2" relates to the pumping axis (6 ') corresponding to the pumping chamber (11'). Pumping segments (26,27,28,29,30,31) of the cam groove (36) shown in FIG. 12 are indicated by braces on the curve of chamber 1, which are also valid for chamber 2.
La courbe (100) correspond au déplacement cumulé des deux pistons, sur les portions durant lesquels les valves de sorties sont ouvertes pour chacune des chambres, en fonction du déplacement angulaire du rotor. On constate que cette courbe (100) est une droite continue sans interruption correspondant à un débit de sortie de la pompe continu, ininterrompu et régulier. The curve (100) corresponds to the cumulative displacement of the two pistons, on the portions during which the outlet valves are open for each of the chambers, as a function of the angular displacement of the rotor. It can be seen that this curve (100) is a continuous straight line without interruption corresponding to a continuous, uninterrupted and regular output flow from the pump.
Sur le graphe du bas, la commutation des valves est indiquée en fonction des segments de pompage des chambres 1 et 2. In the lower graph, the switching of the valves is indicated according to the pumping segments of chambers 1 and 2.
Selon les descriptions précédentes, les déplacements contrôlés des pistons (3,3’) et de l’élément de commutation des valves (4) se font préférablement de manière alternative et parallèlement les uns aux autres tout en étant synchronisés avec le déplacement angulaire du rotor (14). According to the preceding descriptions, the controlled displacements of the pistons (3,3 ′) and of the switching element of the valves (4) preferably take place alternately and parallel to each other while being synchronized with the angular displacement of the rotor (14).
La rainure-came (36) peut être dimensionnée pour réaliser toute forme de signal de débit en sortie et en entrée. The cam groove (36) can be dimensioned to produce any form of output and input flow signal.
Les figures 16 à 20 montrent la version du module fluidique interchangeable (101) avec des pièces réalisées par injection plastique. La fixation entre les bloc-cylindres est assurée par des clips (37, 37’, 37”, 37’”). L’accès aux pistons et chambres de pompage est protégé par les éléments de protection (38,38’) permettant de recouvrir la chambre de pompage d’un bloc- cylindre par l’autre bloc-cylindre et réciproquement. Une flèche (39) fixée sur l’élément de commutation des valves permet d’identifier l’entrée (8) et la sortie (9) de la pompe. L’insertion et l’orientation des pistons (103,103’) dans les chambres de pompage (11,11’) est assuré par les ergots de positionnement angulaire (42,42’) logés respectivement dans les rainures (43,43’) situées sur les bloc-cylindres (102,102’). La figure 19 illustre les chanfreins d’entrée (40, 40’) sur les pistons (103,103’) pour permettre l’insertion des axes de pompage (6,6’) quelques soit la position des pistons (103,103’). Figures 16 to 20 show the version of the interchangeable fluid module (101) with parts produced by plastic injection. The fixing between the cylinder blocks is ensured by clips (37, 37 ', 37 ”, 37'”). Access to the pistons and pumping chambers is protected by the protective elements (38, 38 ') enabling the pumping chamber to be covered by one cylinder block with the other cylinder block and vice versa. An arrow (39) fixed on the valve switching element identifies the inlet (8) and the outlet (9) of the pump. The insertion and orientation of the pistons (103,103 ') in the pumping chambers (11,11') is ensured by the angular positioning pins (42,42 ') housed respectively in the grooves (43,43') located on the cylinder blocks (102,102 '). Figure 19 illustrates the inlet chamfers (40, 40 ') on the pistons (103,103') to allow the insertion of the pumping axes (6,6 ') whatever the position of the pistons (103,103').
La figure 20 illustre les chanfreins d’entrée (41) autour de l’ouverture (44) sur l’élément de commutation des valves (104) permettant l’insertion de l’axe de commutation (7) quelques soit sa position. FIG. 20 illustrates the inlet chamfers (41) around the opening (44) on the valve switching element (104) allowing the insertion of the switching pin (7) whatever its position.
Les ports d’entrée (8) et de sortie (9) peuvent être placés sur le devant ou les côtés des bloc- cylindres (2,2’, 102, 102’). Dans une variante non illustrée, les joints de valves (12,12’) peuvent être logés dans les bloc-cylindres (2, 2’, 102, 102’), en contact avec l’élément de commutation des valves (4, 104) Dans la variante illustrée sur les figures 21 à 30, le module fluidique interchangeable (201) possède un élément de commutation des valves (204) de section préférablement cylindrique. Cet élément de commutation des valves (204) coulisse dans un logement formé par deux ouvertures 271, 271’) préférablement contiguës dans les bloc-cylindres (202, 202’) parallèle aux chambres de pompage (211, 211’). L’élément de commutation des valves (204) est entraîné préférablement à ses extrémités par préférablement deux éléments (non illustrés) opposés fixés sur le chariot des valves (16). The inlet (8) and outlet (9) ports can be placed on the front or sides of the cylinder blocks (2,2 ’, 102, 102’). In a variant not illustrated, the valve seals (12,12 ') can be housed in the cylinder blocks (2, 2', 102, 102 '), in contact with the valve switching element (4, 104 ) In the variant illustrated in FIGS. 21 to 30, the interchangeable fluid module (201) has a valve switching element (204) of preferably cylindrical section. This valve switching element (204) slides in a housing formed by two openings 271, 271 ’) preferably contiguous in the cylinder blocks (202, 202’) parallel to the pumping chambers (211, 211 ’). The valve switching element (204) is preferably driven at its ends by preferably two opposite elements (not shown) fixed on the valve carriage (16).
La commutation des valves s’effectue par l’alignement du port (213) de la chambre de pompage avec les chambres de transfert d’entrée (250) ou de sortie (251), et du port (213’) de la chambre de pompage avec les chambres de transfert d’entrée (250’) ou de sortie (251’). Le port (213) de la chambre de pompage (211) communique avec l’ouverture (271), et le port (213’) de la chambre de pompage (211’) communique avec l’ouverture (271’). L’étanchéité périphérique des chambres de transfert d’entrée (250, 250’) et de sortie (251, 251’) est préférablement assurée par des O-rings (274, 274’, 274”) et (275, 275’, 275”). Un joint (280) situé entre et autour des ouvertures (271,271’) assure l’étanchéité interne entre les bloc-cylindres (202,202’). Le port de communication d’entrée (222) de l’élément de commutation des valves (204) communique avec les chambres de transfert d’entrée (250, 250’) et le port d’entrée (208) de la pompe. Le port de communication de sortie (223) de l’élément de commutation des valves (204) communique avec les chambres de transfert de sortie (251, 251’) et le port de sortie (209) de la pompe. Le port d’entrée (208) et le port de sortie (209) sont placés entre les chambres de pompageThe valves are switched by aligning the port (213) of the pumping chamber with the inlet (250) or outlet (251) transfer chambers, and the port (213 ') of the pumping with the inlet (250 ') or outlet (251') transfer chambers. The port (213) of the pumping chamber (211) communicates with the opening (271), and the port (213 ') of the pumping chamber (211') communicates with the opening (271 '). The peripheral sealing of the inlet (250, 250 ') and outlet (251, 251') transfer chambers is preferably ensured by O-rings (274, 274 ', 274 ”) and (275, 275', 275 ”). A seal (280) located between and around the openings (271,271 ') provides internal sealing between the cylinder blocks (202,202'). The input communication port (222) of the valve switching element (204) communicates with the input transfer chambers (250, 250 ') and the input port (208) of the pump. The output communication port (223) of the valve switching element (204) communicates with the output transfer chambers (251, 251 ') and the output port (209) of the pump. The inlet port (208) and the outlet port (209) are located between the pumping chambers
(211,211’). (211,211 ’).
La figure 29 représente une variante du module fluidique interchangeable (201) possédant un élément de commutation des valves (204) de section cylindrique qui est entraîné par le milieu. Une ouverture (240) située entre les bloc-cylindres (220,220’) permet l’accès à l’élément de commutation des valves (204) par l’élément d’entraînement (non illustré). FIG. 29 shows a variant of the interchangeable fluid module (201) having a valve switching element (204) of cylindrical section which is driven by the medium. An opening (240) located between the cylinder blocks (220,220 ’) allows access to the valve switching element (204) through the drive element (not shown).
La figure 30 représente une variante du module fluidique interchangeable (201) possédant un élément de commutation des valves (204) de section cylindrique ou les bloc-cylindres sont réalisés en une seule pièce (230). FIG. 30 shows a variant of the interchangeable fluid module (201) having a switching element for the valves (204) of cylindrical section where the cylinder blocks are made in one piece (230).
Selon les figures 31 à 34, les ports d’entrée (308) et de sortie (309) sont placés sur les blocs- cylindres (302,302’). Le port d’entrée (308) est préférablement de section large afin de pouvoir aspirer des fluides visqueux à fort débit et est fixé à l’extrémité de l’ouverture (371) du bloc- cylindre (302’). Le port de sortie (309) est fixé préférablement sur une face du bloc-cylindre (302) et perpendiculairement au mouvement de l’élément de valve (304). According to Figures 31 to 34, the inlet (308) and outlet (309) ports are placed on the cylinder blocks (302,302 '). The inlet port (308) is preferably of wide section in order to be able to suck viscous fluids at high flow rate and is fixed to the end of the opening (371) of the block. cylinder (302 '). The outlet port (309) is preferably fixed on one face of the cylinder block (302) and perpendicular to the movement of the valve element (304).
Le port de communication d’entrée (322) de l’élément de commutation des valves (304) communique avec les chambres de transfert d’entrée (350, 350’) et le port d’entrée (308) de la pompe. Le port de communication de sortie (323) de l’élément de commutation des valves (304) communique avec les chambres de transfert de sortie (351, 351’) et le port de sortie (309) de la pompe. The input communication port (322) of the valve switching element (304) communicates with the input transfer chambers (350, 350 ’) and the input port (308) of the pump. The output communication port (323) of the valve switching element (304) communicates with the output transfer chambers (351, 351 ’) and the output port (309) of the pump.
L’élément de commutation des valves (304) comprend préférablement sur l’un de ses côtés une ouverture (344) recevant l’axe de commutation (7). Dans une variante non illustrée, des conduits préférablement en liaison avec les ports d’entrée et sortie peuvent être placés dans les bloc-cylindres et adaptés de manière à relier des éléments de mesure de pression comme par exemple des membranes ou tout autre composant réagissant au variation de pression. The valve switching element (304) preferably comprises on one of its sides an opening (344) receiving the switching axis (7). In a variant not illustrated, conduits preferably in connection with the inlet and outlet ports can be placed in the cylinder blocks and adapted so as to connect pressure measuring elements such as, for example, membranes or any other component reacting to the pressure variation.
Dans une variante non illustrée, l’élément de valve peut être tout ou partie arrondi de manière à pivoter ou tourner durant le mouvement des pistons au moyen du rotor (14). In a variant not illustrated, the valve element may be wholly or partly rounded so as to pivot or rotate during the movement of the pistons by means of the rotor (14).
L’assemblage des bloc-cylindres peut être effectué préférentiellement par des clips, vis, formes coniques, par soudure ou refonte. The assembly of the cylinder blocks can preferably be carried out by clips, screws, conical shapes, by welding or recasting.
L’étanchéité entre les parties mobiles et fixes est préférablement réalisée grâce à des élastomères, O-rings, joints de forme, joints surmoulés ou tout autre élément d’étanchéité. Toutefois, il est possible de réaliser la pompe sans joints d’étanchéité préférentiellement par ajustement entre pièces. Les éléments constituant le module fluidique interchangeable (1,101, 201, 301) sont préférablement réalisés en plastique à usage unique, préférentiellement par injection ou par usinage. La pompe peut être stérilisée pour la distribution d’aliment, médicament ou liquides corporelles par exemple. Le choix des matériaux n’est cependant pas limité aux plastiques. Dans une variante non illustrée, l’élément de commutation des valves peut être sous forme d’un disque rotatif, préférentiellement axialement et en prise directe avec le rotor. The sealing between the movable and fixed parts is preferably carried out using elastomers, O-rings, shaped seals, overmolded seals or any other sealing element. However, it is possible to produce the pump preferably without seals by adjustment between parts. The elements constituting the interchangeable fluid module (1,101, 201, 301) are preferably made of single-use plastic, preferably by injection or by machining. The pump can be sterilized for the distribution of food, medicine or body fluids for example. The choice of materials is not limited to plastics, however. In a variant not illustrated, the switching element of the valves can be in the form of a rotary disc, preferably axially and in direct engagement with the rotor.
L’invention peut être intégrée dans des appareils destinés au pompage de produit chimique, pharmaceutique, pétrolier ou de toute autre sorte de fluide. Elle peut également être intégrée dans les dispositifs médicaux destinés à injecter ou aspirer des fluides dans le/du corps. Ces dispositifs peuvent combiner plusieurs pompes en parallèle ou en série avec des éléments externes tels que des valves, connecteurs ou tout autre composant permettant de réaliser des circuits fluidiques multiples. L’invention se prête particulièrement bien à une exploitation nécessitant la diffusion ou le mélange de fluides sous pression et haute pression de manière précise. Elle peut également être utilisée dans des systèmes nécessitant un contrôle dynamique du débit de manière manuelle ou automatique tel que les pompes/injecteurs médicaux et systèmes de dosage/remplissage. The invention can be incorporated into devices intended for pumping chemical, pharmaceutical, petroleum or any other kind of fluid. It can also be integrated into medical devices intended to inject or suck fluids into / from the body. These devices can combine several pumps in parallel or in series with external elements such as valves, connectors or any other component allowing multiple fluid circuits to be produced. The invention lends itself particularly well to an operation requiring the diffusion or the mixing of fluids under pressure and high pressure precisely. It can also be used in systems requiring dynamic flow control manually or automatically such as medical pumps / injectors and dosing / filling systems.
La pompe peut également servir de compresseur d’air et être réalisée en matériaux durables comme par exemple l’acier et la céramique pour des dispositifs nécessitant une exploitation intensive à longue durée de vie. The pump can also be used as an air compressor and made of durable materials such as steel and ceramics for devices requiring intensive operation with a long service life.
Bien que l’invention soit décrite selon un mode de réalisation, il existe d’autres variantes qui ne sont pas présentées. La portée de l’invention n’est donc pas limitée à ce mode de réalisation décrit précédemment. Although the invention is described according to an embodiment, there are other variants which are not presented. The scope of the invention is therefore not limited to this embodiment described above.

Claims

Revendications  Claims
1. Une pompe avec module fluidique interchangeable (1) comprenant au moins deux pistons (3,3’) placés dans deux chambres de pompages (11,11’) opposées situées respectivement dans deux bloc-cylindres (2, 2’, 202, 202’, 302, 302’) maintenus entre eux parallèlement aux axes de déplacement des pistons (35,35’) et ayant au moins un port d’entrée (8,208,308) par lequel le fluide est aspiré dans les chambres de pompage (11, 11’, 211, 211’, 311, 311’) lors du mouvement de remplissage des pistons, puis expulsé des chambres de pompage lors du mouvement de vidange des pistons vers au moins un port de sortie (9,209, 309) caractérisée par un élément de commutation des valves (4,204,304) comprenant des chambres de transfert l’entrée (50, 50’, 250, 250’, 350, 350’) et de sortie1. A pump with interchangeable fluid module (1) comprising at least two pistons (3.3 ') placed in two opposite pumping chambers (11.11') located respectively in two cylinder blocks (2, 2 ', 202, 202 ', 302, 302') held together parallel to the axes of movement of the pistons (35.35 ') and having at least one inlet port (8,208,308) through which the fluid is sucked into the pumping chambers (11, 11 ', 211, 211', 311, 311 ') during the piston filling movement, then expelled from the pumping chambers during the piston emptying movement towards at least one outlet port (9,209, 309) characterized by an element switching valves (4,204,304) including inlet (50, 50 ', 250, 250', 350, 350 ') and outlet transfer chambers
(51,51’, 251,251’, 351,351’) de la pompe communiquant au moyen des ports de communication d’entrée (22,222,322) et de sortie (23,223,323) situés dans l’élément de commutation des valves (4,204,304). (51.51 ’, 251.251’, 351.351 ’) of the communicating pump by means of the input (22,222,322) and output (23,223,323) communication ports located in the valve switching element (4,204,304).
2. Pompe selon la revendication 1, dont l’élément de commutation des valves (4) est placé entre les bloc-cylindres (2, 2’, 202, 202’) parallèlement aux pistons (3,3’). 2. Pump according to claim 1, in which the valve switching element (4) is placed between the cylinder blocks (2, 2 ’, 202, 202’) parallel to the pistons (3,3 ’).
3. Pompe selon la revendication 1, dont l’axe de déplacement linéaire de l’élément de commutation des valves (4,204,304) est parallèle aux pistons (3,3’). 3. Pump according to claim 1, the axis of linear displacement of the valve switching element (4,204,304) is parallel to the pistons (3,3 ’).
4. Pompe selon la revendication 1, dont les ports d’entrée (8,208,308) et de sortie (9,209, 309) sont situés entre des chambres de pompage (11, 11’, 211, 211’, 311, 311’). 4. Pump according to claim 1, whose inlet (8,208,308) and outlet (9,209, 309) ports are located between pumping chambers (11, 11 ', 211, 211', 311, 311 ').
5. Pompe selon la revendication 1, dont le débit en sortie est préférablement continu sans pulsation. 5. Pump according to claim 1, the output flow is preferably continuous without pulsation.
6. Pompe selon la revendication 1, dont le rotor (14) comprend une rainure-came (36) actionnant déplacement des pistons (3,3’). 6. Pump according to claim 1, the rotor (14) of which comprises a cam groove (36) actuating displacement of the pistons (3.3 ’).
7. Pompe selon la revendication 6, dont le profil de la rainure-came (36) est composé de six segments. 7. Pump according to claim 6, the profile of the cam groove (36) is composed of six segments.
8. Pompe selon la revendication 1, dont le déplacement linéaire des pistons (3,3’) est indépendant l’un de l’autre. 8. Pump according to claim 1, in which the linear displacement of the pistons (3.3 ’) is independent of one another.
9. Pompe selon la revendication 1, dont les pièces du module fluidique interchangeable (1) sont en plastique et jetables. 9. Pump according to claim 1, the parts of the interchangeable fluid module (1) are plastic and disposable.
10. Pompe selon la revendication 1, dont la somme des débits réduits des segments de démarrage de vidange (26) et de fin de vidange (28) correspond au débit nominal du segment de vidange (27). 10. Pump according to claim 1, the sum of the reduced flow rates of the drain start segments (26) and end of drain (28) corresponds to the nominal flow rate of the drain segment (27).
11. Pompe selon la revendication 1, dont le mécanisme d’entraînement des pistons (3,3’) et de l’élément de commutation des valves (4,204,304) est extérieur au module fluide interchangeable (1). 11. Pump according to claim 1, in which the mechanism for driving the pistons (3,3 ′) and the valve switching element (4,204,304) is external to the interchangeable fluid module (1).
12. Pompe selon la revendication 1, dont les deux chambres de pompage (11, 1 G, 211,211’, 311,311’) expulsent simultanément vers le port de sortie (9,209,309) sur un segment de la rainure-came (36) du rotor (14). 13. Pompe selon la revendication 1, dont l’étanchéité entre les parties mobiles et fixes du module fluidique interchangeable (1) est réalisée avec au moins un élastomère. 12. Pump according to claim 1, in which the two pumping chambers (11, 1 G, 211,211 ', 311,311') simultaneously expel towards the outlet port (9,209,309) on a segment of the cam groove (36) of the rotor ( 14). 13. Pump according to claim 1, the sealing between the movable and fixed parts of the interchangeable fluid module (1) is carried out with at least one elastomer.
14. Pompe selon la revendication 1, dont l’élément de commutation des valves (204,304) est cylindrique. 14. Pump according to claim 1, the valve switching element (204,304) is cylindrical.
15. Pompe selon la revendication 1, dont le port d’entrée (208, 308) et/ou le port de sortie (209, 309) sont placés sur l’élément de commutation des valves (204, 304). 15. Pump according to claim 1, in which the inlet port (208, 308) and / or the outlet port (209, 309) are placed on the valve switching element (204, 304).
16. Pompe selon la revendication 1, dont le port d’entrée (8) et/ou le port de sortie (9, 309) sont placés sur les bloc-cylindres (2, 2’, 302). 16. Pump according to claim 1, in which the inlet port (8) and / or the outlet port (9, 309) are placed on the cylinder blocks (2, 2 ’, 302).
17. Pompe selon la revendication 1, dont les bloc-cylindres sont réalisés en une seule pièce17. Pump according to claim 1, whose cylinder blocks are made in one piece
(230). (230).
EP19842361.8A 2018-10-14 2019-10-10 Precision, constant-flow reciprocating pump Pending EP3824183A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IB2018057954 2018-10-14
EP2019062117 2019-05-12
PCT/EP2019/077495 WO2020078825A1 (en) 2018-10-14 2019-10-10 Precision, constant-flow reciprocating pump

Publications (1)

Publication Number Publication Date
EP3824183A1 true EP3824183A1 (en) 2021-05-26

Family

ID=69187742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19842361.8A Pending EP3824183A1 (en) 2018-10-14 2019-10-10 Precision, constant-flow reciprocating pump

Country Status (9)

Country Link
US (1) US11867162B2 (en)
EP (1) EP3824183A1 (en)
JP (1) JP2022502591A (en)
KR (1) KR20210075100A (en)
CN (1) CN112840124B (en)
AU (1) AU2019360341A1 (en)
BR (1) BR112021006246A2 (en)
CA (1) CA3115604A1 (en)
WO (1) WO2020078825A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR572925A (en) 1923-01-27 1924-06-16 Suction and pressure pump with constant flow
FR2721662A1 (en) 1994-06-28 1995-12-29 Sedepro Positive displacement pump.
US7278836B2 (en) 2002-10-01 2007-10-09 Hammonds Technical Services, Inc. Metering pump
WO2010049765A1 (en) * 2008-10-30 2010-05-06 Swissinnov Product Sarl A volumetric pump and its driving mechanism
NO334755B1 (en) * 2008-12-08 2014-05-19 Gjerdrum As Ing Pump or compressor drive device
AU2013264969A1 (en) * 2012-05-23 2014-12-11 Swissinnov Product Sarl Pulsation-free positive displacement rotary pump
CN104717991B (en) 2012-10-16 2018-05-01 斯维斯诺弗产品责任有限公司 Fluid delivery system and method
US20170234307A1 (en) * 2014-03-02 2017-08-17 Swissinnov Product Sarl Volumetric pump with bleed mechanism

Also Published As

Publication number Publication date
WO2020078825A1 (en) 2020-04-23
KR20210075100A (en) 2021-06-22
BR112021006246A2 (en) 2021-07-06
JP2022502591A (en) 2022-01-11
CN112840124B (en) 2023-06-16
US20210293226A1 (en) 2021-09-23
AU2019360341A1 (en) 2021-04-29
CN112840124A (en) 2021-05-25
US11867162B2 (en) 2024-01-09
CA3115604A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
CA2919004C (en) Rotary-oscillating subassembly and rotary-oscillating volumetric pumping device for volumetrically pumping a fluid
EP0632732B1 (en) Liquid drug infusion pump
JP5085333B2 (en) Metering pump with reciprocating and rotating piston
EP3025056B1 (en) Reciprocating and rotating sub-group for pumping a fluid and reciprocating and rotating pump device
JP6114405B2 (en) Pumps and injection valves for liquid chromatography
JP5977429B2 (en) Piston pump and device for supplying and measuring medical fluid by piston pump
CA2637364C (en) Hydraulic machine, in particular hydraulic motor, and metering device comprising such a motor
EP2852760B1 (en) Pulsation free volumetric pump
KR20110083695A (en) A volumetric pump and its driving mechanism
US9713672B2 (en) Medical injection systems and pumps
EP0017552B1 (en) Pump with pistons and cylinders in axial arrangement
EP3824183A1 (en) Precision, constant-flow reciprocating pump
WO2020208618A1 (en) Positive displacement pump with single-axis drive mechanism
WO2014207532A1 (en) Positive-displacement micropump
EP3623618B1 (en) Pump with to-and-fro system with rack and pinion and use of such a pump
AU673071B2 (en) Filling, fluid-transporting and pumping device
WO2021156574A1 (en) Oscillatory-rotary liquid dispensing device with spring, and associated method
WO2015132645A1 (en) Volumetric pump with bleed mechanism
BE1026404B1 (en) Pneumatic pinch valve
EP2422087A1 (en) Positive-displacement pump including a pressure absorber
FR2677081A1 (en) Mechanical device for pumps intended to provide a delivery of a fluid at a high or very high pressure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230421