EP3819492B1 - Pompe à huile monolithique à haute pression et à commande électrique pour moteur marin à faible vitesse - Google Patents

Pompe à huile monolithique à haute pression et à commande électrique pour moteur marin à faible vitesse Download PDF

Info

Publication number
EP3819492B1
EP3819492B1 EP20205958.0A EP20205958A EP3819492B1 EP 3819492 B1 EP3819492 B1 EP 3819492B1 EP 20205958 A EP20205958 A EP 20205958A EP 3819492 B1 EP3819492 B1 EP 3819492B1
Authority
EP
European Patent Office
Prior art keywords
oil
hole
plunger
spring seat
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20205958.0A
Other languages
German (de)
English (en)
Other versions
EP3819492A1 (fr
Inventor
Tianhua TU
Yuanwen XIE
Xuhong HOU
Chaolei ZHANG
Xiaoxue LIN
Ye Li
Yue Liu
Chao Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Hongjiang Machinery Co Ltd
Original Assignee
Chongqing Hongjiang Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Hongjiang Machinery Co Ltd filed Critical Chongqing Hongjiang Machinery Co Ltd
Publication of EP3819492A1 publication Critical patent/EP3819492A1/fr
Application granted granted Critical
Publication of EP3819492B1 publication Critical patent/EP3819492B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/025Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by a single piston
    • F02M59/027Unit-pumps, i.e. single piston and cylinder pump-units, e.g. for cooperating with a camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/464Inlet valves of the check valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil

Definitions

  • the present disclosure relates to the field of high-pressure oil pumps for marine low-speed engines, and in particular, to an electrically-controlled monolithic high-pressure oil pump for a marine low-speed engine.
  • the conventional proportional valve is generally in a non-cooled structure and cannot satisfy the high-temperature high-viscosity heavy oil usage environment of 750 Cst, therefore, the existing high-pressure oil pumps for low-speed engines are not installed with the proportional valve to improve their working efficiency; a sealing surface of the conventional monolithic high-pressure oil pumps for low-speed engines are mostly special-shaped, which is unfavorable for high-temperature high-pressure heavy oil sealing, has poor reliability, and has relatively high processing difficulty.
  • CN105888905 A discloses a combined type high-pressure common-rail pump for a single-cylinder diesel engine and an assembling method of the pump.
  • the present disclosure aims at providing an electrically-controlled monolithic high-pressure oil pump for a marine low-speed engine, so as to achieve the effects of improving the oil inlet throttle and the oil inlet pressure stability of the high-pressure oil pump.
  • the present disclosure provides an electrically-controlled monolithic high-pressure oil pump for a marine low-speed engine, including:
  • the plunger couple includes:
  • the lower spring seat assembly is disposed below the plunger couple, and the lower spring seat assembly includes:
  • a spherical hole is provided at a center of the counterbore, a third annular groove is provided on a lower end surface of the outer spring seat, and the spherical hole and the third annular groove communicate with each other through a lubricating oil inlet passage;
  • eight lubricating oil outlet passages are specifically provided, and the eight lubricating oil outlet passages respectively communicate with a bottom end surface of the outer spring seat.
  • the axial through hole provided inside the inner spring seat includes:
  • an outer peripheral surface of the inner spring seat and the hole wall of the second hole are each provided with a relief groove; and the upper end surface of the inner spring seat is provided with a weight-reduction annular groove.
  • the oil pump further includes:
  • the diameter of the concave spherical surface in the outer spring seat and the diameter of the convex spherical surface of the upper sphere are 20 to 100 times the diameter of the plunger.
  • the guide piston assembly includes:
  • an outer surface of the roller pin is provided as a cylindrical surface, a first waist-shaped groove and a second waist-shaped groove are provided at each of two positions on the cylindrical surface, and the first waist-shaped groove and the second waist-shaped groove are provided at a middle of the roller pin;
  • an outer surface of the guide piston is provided as a cylindrical surface, on which a circumferential oil groove, a partial circumferential oil groove, a first axial oil groove and a vertical groove are provided, wherein the vertical groove is provided in the circumferential oil groove, and the vertical groove communicates with the partial circumferential oil groove through the first axial oil groove;
  • the lubricating oil inlet passage includes a third radial oil passage disposed along a radial direction of the roller pin and an axial oil passage disposed along an axial direction of the roller pin, wherein the third radial oil passage is connected to the axial oil passage; and the axial oil passage is connected to the oil hole in the second waist-shaped groove.
  • the roller pin is provided with a DLC coating on the outer peripheral surface thereof;
  • a first chamfer is disposed at each of an upper-end-surface outer periphery and a lower-end-surface outer periphery of the guide piston and the circumferential annular groove;
  • the lubricating oil inlet passage includes a third radial oil passage disposed along a radial direction of the roller pin and an axial oil passage disposed along an axial direction of the roller pin, wherein the third radial oil passage is connected to the axial oil passage; and the axial oil passage is connected to the second oil hole in the second waist-shaped groove.
  • connection may be fixed connection, detachable connection, or integral connection; it may be mechanical connection, or also may be electrical connection; it may be direct connection, indirect connection via an intermediary, or internal communication between two elements or interaction between two elements.
  • first and second are merely for descriptive purpose, but should not be construed as indicating or implying importance in the relativity or suggesting the number of a related technical feature.
  • a feature defined with “first” or “second” may explicitly or implicitly mean that one or more such features are included.
  • “multiple (a plurality of)” means two or more, unless otherwise defined explicitly.
  • an electrically-controlled monolithic high-pressure oil pump for a marine low-speed engine including:
  • the oil inlet-outlet valve assembly 3 includes: an oil inlet valve assembly 31 and an oil outlet valve assembly 32.
  • the oil inlet valve assembly 31 includes: an oil inlet valve seat 311, an oil inlet valve 312 and an oil inlet valve spring 313.
  • the oil inlet valve 312 is mounted in the center hole of the oil inlet valve seat 311; the oil inlet valve spring 313 is restrained between the oil inlet valve 312 and a bore wall of the oil inlet valve seat 311; and the oil inlet valve 312 is configured to form a conical seal with the oil inlet valve seat 311 under the compression of the oil inlet valve spring 313.
  • the oil outlet valve assembly 32 includes: an oil outlet valve seat 321, an oil outlet valve 322, an oil outlet valve spring 323 and an oil outlet valve spring seat 324.
  • the oil outlet valve spring seat 324 is mounted on an upper end of the oil outlet valve seat 321; the oil outlet valve 322 is mounted in the center hole of the oil outlet valve seat 321; the oil outlet valve spring 323 is restrained between the oil outlet valve 322 and the oil outlet valve spring seat 324; and the oil outlet valve 322 is configured to form a conical seal with the oil outlet valve seat 321 under the compression of the oil outlet valve spring 323.
  • a high-pressure oil outlet chamber 33 is formed between the oil outlet valve seat 321 and the oil inlet valve seat 311.
  • a high-pressure oil chamber 41 is formed in the plunger couple 4, and the high-pressure oil chamber 41 communicates with the high-pressure oil outlet chamber 33 through a first oil hole 13 of the oil inlet valve on the oil inlet valve seat 311.
  • the electrically-controlled proportional valve 8 communicates with an oil inlet hole of the oil inlet valve seat 311 through the first oil hole 13 on the pump body 1, and the oil inlet hole of the oil inlet valve seat is configured to communicate with or be disconnected from the high-pressure oil chamber 41.
  • the oil inlet valve 312 When the plunger moves downwards, the oil inlet valve 312 is opened, matched conical surfaces of the oil inlet valve and the oil inlet valve seat are separated, and the oil inlet hole of the oil inlet valve seat can communicate with the high-pressure oil chamber 41 through a gap between the oil inlet valve seat and the oil inlet valve, an inclined hole of the oil inlet valve, the first oil hole of the oil inlet valve, a gap between the oil inlet valve seat and the oil outlet valve seat, and a vertical hole of the oil inlet valve seat.
  • the electrically-controlled proportional valve 8 is provided thereon with a cooling circulation oil passage configured to make cooling oil from a cooling oil passage of the pump body 1 return, after being injected into the cooling circulation oil passage, to the cooling oil passage of the pump body 1.
  • the center hole provided in the pump body 1 is a through hole penetrating both upper and lower end surfaces of the pump body 1.
  • the pump cover 2 is fixed to the upper end surface of the pump body 1, and a mounting hole opposite to the center hole of the pump body 1 is provided in a direction of the pump cover 2 facing the pump body 1, and the oil outlet valve seat 321 is mounted in the center hole of the pump body 1 and the mounting hole of the pump body 1.
  • the oil outlet valve assembly 32 is mounted above the oil inlet valve assembly 31, and above the pump cover 2, there is an oil passage communicating with the oil outlet valve assembly 32, and finally, the high-pressure heavy oil pumped out by the high-pressure oil pump is discharged through the oil passage on the pump cover 2.
  • the electrically-controlled proportional valve 8 as a hydraulic control device, has the effect of oil inlet throttling, and the electrically-controlled proportional valve 8 is mainly used for oil inlet regulation of light-weight oil (such as gasoline and light-weight diesel).
  • light-weight oil such as gasoline and light-weight diesel
  • the temperature of the heavy oil may be as high as 160 °C, which temperature has exceeded limit operating temperatures of electrically-controlled elements such as armature and coil of the existing electrically-controlled proportional valves 8.
  • the electrically-controlled proportional valve 8 is applied to adjust oil inlet of heavy oil, which can solve the technical problem that the temperature adjustment flexibility of the existing mechanical adjustment mode is not high.
  • a cooling circulation oil passage is provided inside the electrically-controlled proportional valve 8, so that the cooling oil flowing in the pump body 1 enters the electrically-controlled proportional valve 8, to cool the electrically-controlled elements in the electrically-controlled proportional valve 8 in a targeted manner, so that the temperature of electrically-controlled elements of the electrically-controlled proportional valve 8 is kept within a normal range.
  • the cooling circulation oil passage provided in the electrically-controlled proportional valve 8 should satisfy the following requirements: (1) the cooling circulation oil passage should be as close as possible to the electrically-controlled elements of the electrically-controlled proportional valve, such as coil and armature; and (2) the flow rate of the cooling oil introduced into the cooling circulation oil passage should be able to reduce the temperature of the electrically-controlled elements such as coil and armature to be within the operating temperature range.
  • simulation calculation and experiments need to be performed in advance on armatures of different models, to determine specific parameter information such as the spatial arrangement and size of the cooling circulation oil passage in each model. In the above, for the simulation calculation and experiments for armatures of different models, reference may be made to the method in the prior art, and details are not repeated herein.
  • the advantages of the above design lie in that the temperature of the armature and the coil of the electrically-controlled proportional valve 8 in the operating state is reduced by the cooling circulation oil passage provided in the electrically-controlled proportional valve 8, so that the electrically-controlled elements operate in the normal temperature range, thereby allowing the electrically-controlled proportional valve 8 to perform oil inlet throttling on the pump.
  • the disadvantage of mechanical adjustment of oil amount is overcome, the accuracy, flexibility and response speed of the adjustment of flow of supplied oil are improved, so as to further achieve more accurate matching between the pumped oil supply amount and the operating condition of the diesel engine, avoid degradation of performance caused by insufficient oil supply, also reduce excessive flow during operation, and further reduce the actual load of the pump.
  • the inlet valve 312 in an oil inlet phase, is configured to be opened under the effect of oil inlet pressure of the electrically-controlled proportional valve 8 and the thrust of the oil inlet valve spring, the oil outlet valve 322 is configured to be sealed with the oil outlet valve seat 321 under the effect of back pressure from the oil flow flowing out therethrough, the low-pressure heavy oil enters the high-pressure oil chamber 41 from the oil inlet hole of the electrically-controlled proportional valve 8, to start an oil inlet operation, and the oil inlet amount is controlled by adjusting the opening degree of the electrically-controlled proportional valve 8, so as to satisfy the requirements of different operating conditions of the high-pressure oil pump, wherein in the oil pumping phase: the guide piston assembly 7 moves upwards, the plunger 43 compresses heavy oil in the high-pressure oil chamber 41, then the pressure of the heavy oil gradually increases, and when the fuel pressure in the high-pressure oil chamber 41 is greater than the oil inlet pressure, the oil inlet valve 312 is closed, and as the high-pressure oil
  • FIG. 3 shows the structure of the plunger couple in the prior art, and as shown in FIG. 3 , the high-pressure common-rail heavy oil pump in the prior art adopts a mechanical design, the oil inlet passage 505 is provided on a plunger sleeve 600, the plunger 500 is slidably inserted into the plunger sleeve 600, and no oil inlet valve assembly is provided.
  • the oil inlet passage 505 is provided on a plunger sleeve 600
  • the plunger 500 is slidably inserted into the plunger sleeve 600
  • no oil inlet valve assembly is provided.
  • a part of the pressurized fuel will flow from the oil inlet passage 505 back to the low-pressure oil inlet passage, which in turn results in a large pressure change in the oil inlet passage 505, thus easily causing cavitation at relevant position on the oil inlet passage 505.
  • FIG. 4 shows cooperative relationship between the plunger coupling 4 and the pump body 1, and between the oil inlet valve seat 311 and an upper spring seat 9, and with reference to FIG. 4 , the plunger couple 4 includes:
  • An inner wall of the plunger sleeve 42 is provided with a first annular groove 421 and a second annular groove 422.
  • the pump body 1 is provided with a mixed oil outlet passage (not shown in the drawing) and a lubricating oil supply passage 12, wherein the mixed oil outlet passage communicates with the first annular groove 421 through a mixed oil passage 423 on the plunger sleeve 42, the mixed oil formed at the first annular groove 421 flows out to a waste oil tank (not shown in the drawing) through the mixed oil outlet passage and the mixed oil passage 423, and the lubricating oil supply passage 12 communicates with the second annular groove 422 through the lubricating oil passage 424 on the plunger sleeve 42.
  • a mixed oil outlet passage communicates with the first annular groove 421 through a mixed oil passage 423 on the plunger sleeve 42
  • the mixed oil formed at the first annular groove 421 flows out to a waste oil tank (not shown in the drawing) through the mixed oil outlet passage and the mixed oil passage 423
  • the lubricating oil supply passage 12 communicates with the second annular groove 422 through the lubricating
  • the first annular groove 421 is located above the second annular groove 422. It should be noted that "above” herein is defined based on the positional relationship in the drawing, but does not mean that the horizontal height of the first annular groove 421 must be greater than that of the second annular groove 422 in practical application.
  • the effects of the lubricating oil entering the second annular groove 422 include: 1. isolating the fuel entering into a gap between the plunger 43 and the plunger sleeve 42 from the high-pressure oil chamber 41 above the plunger 43, which can prevent the fuel from flowing into transmission components below the plunger 43, and prevent the fuel from invading the transmission components below the plunger 43 to contaminate the lubricating oil system of the whole engine; and 2.
  • the lubricating oil has higher cleanliness, and the lubricating oil contains an additive that improves friction, and can form a better lubricant film compared with lubrication with the heavy oil.
  • a small amount of lubricating oil in the second annular groove 422 of the plunger sleeve 42 of the plunger couple 4 can be used to completely prevent heavy oil leakage, and prevent the leaked heavy oil from corroding important components such as the plunger spring 5 below the plunger sleeve 42.
  • the high-pressure oil pump provided in the present disclosure can effectively reduce, by sealing the heavy oil with a small amount of lubricating oil, the vertical height of the guide piston 71 (the conventional heavy oil guide piston is provided with a relatively long heavy oil sealing section), further reduce the pump vertical height of the high-pressure oil pump, and reduce the overall weight of the high-pressure oil pump. It is tested that compared with the high-pressure oil pump of the low-speed engine in the prior art, the vertical height of the high-pressure oil pump provided in the present disclosure is reduced by 1/3.
  • the lower spring seat assembly 6 is disposed below the plunger couple 4, and the lower spring seat assembly 6 includes:
  • the spherical surface can automatically perform angle adjustment, so that contact surfaces of the upper sphere 62 and the outer spring seat 61 are kept in sufficient contact (the state of FIG. 5a is changed to the state of FIG. 5b , and in FIG. 5b , two contact surfaces of the upper sphere 62 and the plunger 43 are fitted/attached to each other), thus eliminating local contact, equalizing the overall force, and relieving the tendency of too large local stress. Meanwhile, the support force of the upper sphere 63 for the plunger 61 passes through the center of the spherical surface, then the bending moment of accessory is eliminated, further optimizing the dynamic characteristics, and improving the bearing capacity of the system.
  • the above spherical hole 612 is provided at the center of the counterbore 611, a third annular groove 613 is provided on a lower end surface of the outer spring seat 61, the spherical hole 612 and the third annular groove 613 communicate with each other through a lubricating oil inlet passage 614, the lubricating oil inlet passage 614 communicates with the piston oil passage on the guide piston 71, the lubricating oil forms a lubricant film at the convex spherical surface of the outer spring seat 61 through the lubricating oil inlet passage 614, then fretting corrosion and damage between the convex spherical surface of the upper sphere 62 and the concave spherical surface of the outer spring seat 61 can be effectively prevented; the spherical hole 612 provides the lubricating oil to the spherical surface for lubricating the spherical surface, the elast
  • an outer surface of the outer spring seat 61 is a conical surface, the conical surface is provided with a lubricating oil outlet passage 615, and the lubricating oil outlet passage 615 communicates with a lower end surface of the outer spring seat 61; the lubricating oil outlet passage 615 is arranged obliquely; the lubricating oil outlet passage may make upper and lower regions of the outer spring seat 61 communicate with each other, so that the lubricating oil above the outer spring seat 61 flows smoothly into the lower part, thereby preventing a lubricating oil chamber above the outer spring seat 61 from being filled up, and compressing the additional load caused by the lubricating oil.
  • the lubricating oil outlet passage 615 is provided on the outer conical surface of the outer spring seat 61, then the plunger spring 5 can be prevented from covering a flow area of the lubricating oil outlet passage 615, so that the flow area is not affected by the position of the plunger spring 5.
  • eight lubricating oil outlet passages 615 may be provided; the eight lubricating oil outlet passages 615 respectively communicates with the bottom end surface of the outer spring seat 61, so as to ensure that the lubricating oil in the upper space of the outer spring seat 61 can flow out smoothly, and the additional load caused by the accumulation of the lubricating oil is avoided; meanwhile, obliquely disposing the lubricating oil outlet passage 615 at the conical surface of the outer spring seat 61 also prevents accumulation caused by unsmooth flow of the lubricating oil due to the fact that the plunger spring 5 blocks the lubricating oil outlet passage 615. It should be noted that a person skilled in the art could adjust the number and diameter of the above lubricating oil outlet passage 615 according to the lubricating oil flow rate and space.
  • the upper sphere 62 is provided with a circumferential annular groove 621 in a circumferential direction.
  • a positioning screw 64 is mounted in the circumferential annular groove 621 after passing through a positioning screw hole 616 of the outer spring seat 61.
  • a distance between an upper surface and a lower surface of the circumferential annular groove 621 is greater than a cylindrical diameter of a portion of the positioning screw 64 located in the circumferential annular groove 621.
  • the upper sphere 62 and the outer spring seat 61 are connected by a positioning screw 64 with threads, the positioning screw 64 is fixed on the outer spring seat 61 by threads, a head of the positioning screw 64 is set as a cylindrical surface and is a positioning portion, and a corresponding circumferential annular groove 621 is provided on the upper sphere 62 for mounting a pin head.
  • the circumferential annular groove 621 on the upper sphere 62 may also be embodied as a circular hole.
  • the positioning screw 64 can approximately position the upper sphere 62 and the outer spring seat 61, and prevent the upper sphere 62 from falling out of the outer spring seat 61 during reciprocation when the plunger 43 and the upper ball 62 are separated from each other.
  • the axial through hole 631 provided inside the inner spring seat 63 includes:
  • the upper end surface of the lower cylindrical head 431 of the plunger 43 abuts against the upper end surface of the second hole 6312; and the hole wall of the second hole 6312 is fitted/attached to an annular surface of the lower cylindrical head 431 of the plunger 43.
  • the guide conical surface 6316 will automatically align the plunger 43 with the upper sphere 62, align the plunger 43 with the inner spring seat 63, and align the inner spring seat 63 with the upper sphere 62, thus preventing a large angular deviation and radial displacement between the plunger 43 and the inner spring seat 63, and between the inner spring seat 63 and the upper sphere 62, and further the system constituted by the above components also can be ensured to be in an appropriate position even during impact, so that the overall force on the system is equalized.
  • the inner spring seat 63 is relatively stationary (i.e. seized at an upper stop point of the plunger 43), and the outer spring seat 61 and the upper sphere 62 will strike against each other in a reciprocating manner.
  • the inner spring seat 63 and the plunger 43 may not be centered with the upper sphere 62 during striking, thus causing the upper sphere 62 to be locally stressed upon striking.
  • the inner spring seat 63 is provided with a guide conical surface 6316, which can improve the centering between the inner spring seat 63 and the plunger 43 and the upper sphere 62, and the inner spring seat 63 and the upper sphere 62 can be automatically aligned even during striking, thereby improving the tendency of uneven stress.
  • the upper sphere 62 and the third hole 6313 have a gap of greater than or equal to 1 mm therebetween, and optionally, an outer cylindrical surface of the upper sphere 62 and a hole wall of the third hole 6313 have a gap of 1 mm therebetween.
  • the outer spring seat 61 and the upper sphere 62 are in spherical fit and have a relatively large (millimeter-sized) gap, the outer spring seat and the upper sphere may slide relatively freely, so that in the operation process of the plunger, if there is an angle error between a lower end surface of the lower cylindrical head 431 of the plunger 43 and an upper end surface of the upper sphere 62, the upper sphere 62 will slide, when the plunger 43 moves downwards and strikes against the upper sphere 62, with respect to the outer spring seat 61 to automatically compensate for the angle error, and further, when the plunger 43 is subjected to an additional load, the lower end surface of the lower cylindrical head 431 of the plunger 43 and the upper end surface of the guide piston 71 are uniformly stressed, which can effectively prevent too large local stress.
  • the counterbore 611 and the upper sphere 62 have a gap of greater than or equal to 1 mm therebetween, and optionally, the outer cylindrical surface of the upper sphere 62 and the cylindrical surface of the counterbore 611 have a gap of 1 mm therebetween, that is, the upper sphere 62 and the inner spring seat 63 have a relatively large (1 mm) gap therebetween, and the positioning screw 64 and the upper sphere 62, the positioning screw 64 and the outer spring seat 61, and the upper sphere 62 and the inner spring seat 63 each have a relatively large (1 mm) gap therebetween, which ensures that the effective rotational freedom of the upper sphere 62 in the radial movement will not be restrained by the positioning screw 64, and the effective rotational freedom of the plunger 43 and the upper sphere 62 in the radial movement will not be restrained by the inner spring seat 63, then the plunger 43 is prevented from being subjected to a radial additional load.
  • the upper sphere 62 and the third hole 6313, and the counterbore 611 and the upper sphere 62 each have a millimeter-sized gap therebetween, which allows macroscopic angle error of the upper sphere 62 relative to the outer spring seat 61, so that the technical effects of preventing seizing of spherical surface, eliminating local contact, balancing overall stress, and relieving the tendency of too large local stress can be achieved.
  • an outer peripheral surface of the inner spring seat 63 and the hole wall of the second hole 6312 are each formed with a relief groove 6317; and the upper end surface of the inner spring seat 63 is provided with a weight-reduction annular groove 6318 that surrounds a central axis of the spring seat 63.
  • the electrically-controlled monolithic high-pressure oil pump for a marine low-speed engine provided in the present disclosure further includes:
  • the diameter of the concave spherical surface in the outer spring seat 61 and the diameter of the convex spherical surface of the upper sphere 62 each are 20 to 100 times the diameter of the plunger 43.
  • the parallelism error magnitude of a tail portion of the plunger 43 and the upper end surface of the guide piston 71 is relatively low, generally in the magnitude of 0.01 mm, and the requirement on the spherical angle adjusting capability is low, so that the small-angle spherical adjustment can also meet the angle adjustment requirement.
  • the concave spherical surface in the outer spring seat 61 and the convex spherical surface of the upper sphere 62 are relatively large, only a small part of the acting force of the two surfaces, when being pressed, is converted into tensile stress, and for metal materials, the compressive strength is generally higher than the tensile strength, and the compressive stress is not easy to cause fatigue, therefore, the proportion of the tensile stress can be reduced by selecting a large spherical surface, and further the bearing capacity and the fatigue strength of the material are improved.
  • the guide piston assembly 7 includes:
  • the hole wall of the second mounting hole 712 is provided with a boss 7121, and the boss 7121 is in contact with the thrust sheets 723, wherein one surface of the thrust sheet and the surface of the boss 7121 are movable relative to each other, and together form a bearing model.
  • the boss 7121 is uniformly provided with a plurality of first radial oil grooves 7122 along a radial direction, and length directions of the first radial oil grooves 7122 are in radial directions of the thrust sheets 723.
  • four first radial oil grooves 7122 may be provided.
  • All of the roller bushing 722, the thrust sheets 723 and the roller 721 use an interference fit, so as to reduce the moving surface, and increase the moving speed of the friction surface.
  • the coefficient of friction decreases as the speed of relative movement of the friction surface increases. Therefore, increase of the speed of relative movement can enhance the dynamic pressure lubrication effect, so that a thicker dynamic pressure lubricant film is formed on the corresponding friction surface to avoid solid contact, thereby reducing the coefficient of friction and wear.
  • the following effects can be obtained: (1) when flowing downwards from the communication hole 713, the lubricating oil above the guide piston 71 is uniformly distributed right at middle of and right above the second mounting hole of the roller 721, the lubricating oil is uniformly distributed on the bus bar of the roller 721, and the distribution of the lubricating oil on the surface of the roller 721 is not affected by the forward and reverse rotation (i.e. the lubricating oil can be uniformly distributed on the surface of the roller 721 no matter the roller 721 rotates forward or reversely); (2) the vertical force distribution of the guide piston 71 is improved, i.e.
  • the pressure of the plunger 43 is distributed to a thicker portion around the communication hole 713, so as to equalize the overall stress, reduce the maximum stress, and improve the reliability of the system bearing capacity.
  • the communication hole is provided around the center of the guide piston, and the center portion (i.e.
  • the annular groove 7211 is formed by processing after finishing the inner hole and an outer periphery of the roller 721.
  • the arrangement of the annular groove 7211 reduces stiffness at two ends of the roller 721, and when the surface of the roller 721 is subjected to radial pressure, the roller 721 near the annular groove 7211 can be automatically deformed, meanwhile, after the annular groove 7211 is processed, the outer periphery and the inner hole of the roller 721 automatically collapse, microscopic arc surfaces are formed at two ends of the inner hole and the outer periphery of the roller 721, then reducing the geometric stress concentration at two ends of the roller 721, and further, the surface of the roller 721 is subjected to a uniform force.
  • the geometric stress concentration herein refers to that when the surface of the roller 721 is stressed, the contact stresses at two ends of the bus bar of the roller 721 are obviously greater than the contact stress in the middle of the bus bar.
  • a groove wall of the annular groove 7211 is formed in an arc shape, which can effectively reduce the geometric stress concentration present on an outer cylindrical surface of the roller 721 and the side compression effect of the inner hole of the roller 721 during the rotation of the roller 721, so that the inner and outer working surface stresses of the roller assembly 72 are distributed uniformly, thereby reducing the probability of seizing between the roller assembly 72 and the roller pin 73.
  • the side compression effect described above specifically refers to a phenomenon that when the shaft cooperates with the hole, since there must be a certain angle error between the shaft and the hole during operation, that is, axes of the shaft and the hole are not parallel to each other, it in turn causes that the shaft and the hole are closer to each other at one side and farther from each other at the other side during operation, thereby resulting in that the closer sides are stressed greatly, and the farther sides are stressed less.
  • the boss 7121 forms a thrust bearing model with the corresponding friction surface (the end surface of the roller assembly 72). That is, the first radial oil groove 7122 is filled up with lubricating oil, and provides sufficient lubrication for the moving surface (the end surface of the roller assembly 72), a dynamic pressure lubricant film is formed on the end surface of the roller 721 by using the moving speed of the end surface of the roller 721, to separate the boss 7121 of the guide piston 71 from the end surface of the roller assembly 72, reduce wear, and reduce the coefficient of friction.
  • the first radial oil groove 7122 is provided on the boss 7121 of the guide piston 71.
  • the guide piston 71 does not rotate relatively, the high- and low-pressure lubricant film zones on the friction surface are distributed relatively stationary, and the axial direction of the roller assembly 72 thereby is relatively stationary. If the first radial oil groove is provided on a moving part (the end surface of the roller assembly 72), relative movement of the lubricant film distribution will be caused due to the relative movement of the first radial oil groove 7122 with respect to the guide piston 71, which in turn results in excessive additional axial vibrations of the roller 721 and reduces the overall dynamic performance of the roller assembly 72.
  • the roller 721 adopts the design of end grooving and deformation so as to reduce boundary stress; specifically, for the roller 721, during processing thereof, the outer periphery of the roller 721 and the inner hole of the roller 721 are ground first, then the annular grooves 7211 at two axial end surfaces are grooved and processed, and after the grooving process is completed, the bus bars of the outer periphery and the inner hole of the roller 721 are naturally deformed into an arc, which can effectively weaken the geometric stress concentration present on the outer cylindrical surface of the roller and the side compression effect of the inner hole of the roller 721 during rotation of the roller 721, so that the inner and outer working surface stresses of the roller assembly 72 are distributed uniformly, thus reducing the probability of seizing between the roller assembly 72 and the roller pin 73.
  • the manner of interference fit between the roller bushing 722 and the roller 721 increases the relative speed between the moving surface of the roller bushing 722 and the roller pin 73, and the end surface of the roller bushing 722 moves at a high speed to form an effective dynamic pressure lubricant film between the roller bushing and the roller pin 73, thereby improving the dynamic pressure lubricating effect, and reducing the probability of seizing between the roller bushing 722 and the roller pin 73;
  • the manner of interference fit adopted between the roller 721 and the thrust sheet 723 increases the relative speed between the moving surface of the thrust sheet 723 and the boss 7121, the end surface of the thrust sheet 723 moves at a high speed to form an effective dynamic pressure lubricant film between the thrust sheet and the boss 7121, thereby preventing the boss 7121 from being fitted/attached tightly to the thrust sheet 723, and avoiding excessive wear caused by insufficient oil supply on the end surface of the thrust sheet 723.
  • the formation of the dynamic pressure lubricant film can improve the dynamic pressure lubricating effect
  • the outer surface of the roller pin 73 is provided as a cylindrical surface, and a first waist-shaped groove 731 and a second waist-shaped groove 732 are provided at each of two positions on the cylindrical surface.
  • the first waist-shaped groove 731 and the second waist-shaped groove 732 are provided at a middle of the roller pin 73, wherein the second waist-shaped groove 732 is provided in the first waist-shaped groove 731 and recessed with respect to the first waist-shaped groove 731, and the first waist-shaped groove and the second waist-shaped groove together form a stepped shape;
  • the first waist-shaped groove 731 and the second waist-shaped groove 732 are both elongated, and there is a relatively large contact area between the lubricating oil in the first waist-shaped groove 731 and the second waist-shaped groove 732 with corresponding friction surfaces, and more lubricating oil is brought into the bearing surface to form the dynamic pressure lubricant film through full use of the moving speed of the corresponding moving surface, further forming
  • first waist-shaped groove 731 Two sides of the first waist-shaped groove 731 are arranged in a waist shape, to reduce the stress concentration brought about by the grooving on the surface of the roller pin 73.
  • the arrangement of the first waist-shaped groove 731 and the second waist-shaped groove 732 can increase the flow rate of surface lubricating oil.
  • a small-angle wedge groove with an angle ranging 5-10 ° is formed between the first waist-shaped groove 731 located at an outer layer and an outer surface of the roller bushing 722, and a second oil hole 73 is provided in each waist-shaped groove 732 located at an inner layer;
  • the two waist-shaped grooves have an included angle of 70-120 °(an actual value may be determined according to a simulation calculation result, and may be selected as 90 ° in an example) in a plane perpendicular to the axial direction of the roller pin, and are located right above a pressure-bearing region, so as to reduce the influence of providing the waist-shaped groove on the surface on the area of the pressure-bearing region under the condition of sufficiently supplying oil to the friction surface, and further result in a larger angle of the pressure-bearing region and a smaller average pressure of the lubricant film in the pressure-bearing region; the first waist-shaped groove 731 and the corresponding friction surface form a small-angle convergent wedge shape, to enhance the ex
  • an outer surface of the guide piston 71 is provided as a cylindrical surface, on which a circumferential oil groove 715, a partial circumferential oil groove 714, a first axial oil groove 716 and a vertical groove 717 are provided, the vertical groove 717 is provided in the circumferential oil groove 715, and the vertical groove 717 communicates with the partial circumferential oil groove 714 through the first axial oil groove 716; both upper and lower edges of the circumferential oil groove 715 are each provided with a chamfer of 1 ⁇ 10 ° with both upper and lower ends of the guide piston 71, and the chamfer forms a small-angle convergence wedge shape with the corresponding moving surface during movement, thus enhancing the extrusion effect during dynamic pressure lubrication.
  • the surface lubrication state of the guide piston 71 is improved, so that a thicker dynamic pressure lubricant film is established, the friction is reduced, and the probability of seizing is reduced.
  • the chamfer when the chamfer is too large (for example, 45 ° or 90 °), the chamfer cannot improve lubrication, but instead has a scraping effect on the corresponding friction surface, i.e. scrapes off the surface lubricating oil, and then reduces the lubricating effect.
  • the cylindrical surface of the guide piston 71 is further provided with an inclined hole 718, and two ends of the inclined hole 718 respectively communicates with the inner walls of the circumferential oil groove 715 and the second mounting hole 712.
  • the cylindrical surface is further provided with a second axial oil groove 719 communicating with the circumferential oil groove 715.
  • the cylindrical surface is further provided with a first straight hole 7100 and a second straight hole 7101 connected with each other, the first straight hole 7100 communicates with the first axial oil groove 716, and the second straight hole 7101 communicates with the first mounting hole 711; the first straight hole 7100 and the second straight hole 7101 supply lubricating oil to the lower spring seat assembly 6 inside the guide piston 71, thereby reducing the wear of the corresponding moving surface.
  • the roller pin 73 is provided on an outer peripheral surface thereof with a lubricating oil inlet passage 735, the lubricating oil inlet passage 735 is provided opposite to the inclined hole 718, and the lubricating oil inlet passage 735 communicates with the lubricating oil outlet passage.
  • the roller pin 73 is provided on the outer peripheral surface thereof with a DLC (Diamond-Like Carbon) coating; the DLC coating has the characteristics of high hardness, low coefficient of friction, wear resistance and high temperature resistance.
  • the friction pair formed by the DLC coating and the roller bushing 722 of a copper alloy bearing can still operate well, which can further reduce the probability of seizing between the roller pin 73 and the roller bushing 722.
  • roller bushing 722 is made of a copper alloy.
  • the thrust sheets 723 are each made of a copper alloy.
  • forced lubrication and dynamic pressure lubrication are adopted between the thrust sheets 723 and the boss 7121.
  • the forced lubrication is a lubrication method in which the pressure of the lubricating oil is forcibly increased by an external force so as to establish a lubricating film between contact surfaces of various components.
  • the dynamic pressure lubrication is a lubrication method in which a dynamic pressure lubricant film is formed by bringing the lubricating oil into the friction surface through the movement of the moving surface.
  • the parts are forcibly lubricated mainly by the pressure generated by the lubricating oil pump, and at a high speed, the parts are lubricated mainly by the dynamic pressure lubricant film generated by the movement of the parts.
  • the roller bushing 722 and the thrust sheets 723 are made of a bronze alloy, and due to the characteristics of low coefficient of friction, good wear resistance, self-lubrication property and impact resistance of the bronze alloy, the friction property shown when there is solid friction between the inner hole and the end surface of the roller assembly 72 and the corresponding moving surfaces is improved, thus the coefficient of friction is reduced, the impact resistance is improved, and the bearing capability is improved.
  • a first chamfer 7102 is disposed at an upper end surface outer periphery and a lower end surface outer periphery of the guide piston 71 and the circumferential annular groove 715.
  • the hole wall of the first mounting hole 711 is provided with a second chamfer 7110.
  • the hole wall of the second mounting hole 712 is provided with a fourth hole 7123.
  • a fifth hole 736 is provided on the outer peripheral surface of the roller pin 73;
  • a return spring 737 and a stop pin 738 are disposed in sequence in the fifth hole 736, and the stop pin 738 partially extends into the fourth hole 7123.
  • the fifth hole 736 is configured to mount the stop pin 738, make the roller pin 73 and the guide piston 71 relatively stationary, reduce the number of relative moving surfaces of the roller pin 73 and the roller 721, further increase the speed of the relative moving surfaces, and further enhance the dynamic pressure lubricating effect, of which the principle is the same as the interference fit between the roller and the bushing.
  • the roller bushing 722 and the thrust sheet 723 are firstly mounted on the roller 721 in a cold mounting manner; then the return spring 737 and the stop pin 738 are placed in sequence into the fifth hole 736 of the roller pin 73; next, the roller assembly 72 is placed at a lower portion of the guide piston 71, and the roller pin 73 sequentially passes through one side of the fourth hole 7123 at the lower end of the guide piston 71, the inner hole of the roller assembly 72 (specifically, the inner hole of the roller bushing), and the other side of the fourth hole 7123 at the lower end of the guide piston 71; then, the stop pin 738 is pressed with hand so that its height is lower than the second mounting hole 712, meanwhile, the roller pin 73 is pushed until the stop pin 738 is sprung into the fourth hole 7123 of the guide piston 71 under the action of the return spring 737.
  • the lubricating oil flowing out of the pump body 1 of an oil injection pump flows into the circumferential oil groove 715 through the second axial oil groove 719, then flows into the partial circumferential oil groove 714 through the vertical groove 717 and the first axial oil groove 716, thus realizing the lubrication between the guide piston 71 and the pump body 1 of the oil injection pump, and as there is a quite small gap between the guide piston 71 and the center hole of the pump body 1 cooperating with the guide piston, the lubricating oil entering the second axial oil groove 719 and the circumferential oil groove 715 of the guide piston 71 maintains a certain pressure, and a lubricating oil film may be formed between the outer periphery of the guide piston 71 and the center hole of the pump body 1; meanwhile, the lubricating oil in the second axial oil groove 719 partially flows into the lubricating oil inlet passage 735 through the inclined hole 718, so as to go deep into the inside of the roller pin 73, then flows
  • angles of the first chamfer 7102 and the second chamfer 7110 range 1 ⁇ 10 °, and when the guide piston 71 cooperates with the center hole on the pump body 1, a small-angle convergence wedge shape can be formed, thus enhancing the extrusion effect in the dynamic pressure lubrication, increasing the thickness of the lubricant film on the surface of the guide piston 71 during operation, and thereby reducing the probability of seizing between the guide piston 71 and the pump body 1.
  • the lubricating oil inlet passage 735 includes a third radial oil passage 7351 disposed along a radial direction of the roller pin 73 and an axial oil passage 7352 disposed along an axial direction of the roller pin 73, and the third radial oil passage 7351 is connected to the axial oil passage 7352; and the axial oil passage 7352 is connected to the second oil hole 733 in the second waist-shaped groove 732.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Claims (15)

  1. Pompe à huile monolithique à haute pression et à commande électrique pour un moteur marin à faible vitesse, comprenant :
    un corps de pompe (1), le corps de pompe (1) étant pourvu d'un trou central (10) dans une direction axiale ;
    un couvercle de pompe (2), le couvercle de pompe (2) étant monté sur une surface d'extrémité supérieure du corps de pompe (1) ;
    un ensemble de vanne d'entrée-sortie d'huile (3), un accouplement de plongeur (4), un ressort de plongeur (5), un ensemble de siège de ressort inférieur (6) et un ensemble de piston de guidage (7), qui sont tous assemblés dans le trou central du corps de pompe (1) ; et
    une vanne proportionnelle à commande électrique (8), la vanne proportionnelle à commande électrique (8) étant assemblée sur une surface latérale du corps de pompe (1),
    l'ensemble de vanne d'entrée-sortie d'huile (3) comprenant : un ensemble de vanne d'entrée d'huile (31) et un ensemble de vanne de sortie d'huile (32) ;
    l'ensemble de vanne d'entrée d'huile (31) comprenant : un siège de vanne d'entrée d'huile (311), une vanne d'entrée d'huile (312) et un ressort de vanne d'entrée d'huile (313) ;
    la vanne d'entrée d'huile (312) étant montée dans un trou central du siège de vanne d'entrée d'huile (311), le ressort de vanne d'entrée d'huile (313) étant retenu entre la vanne d'entrée d'huile (312) et une paroi d'alésage du siège de vanne d'entrée d'huile (311), et la vanne d'entrée d'huile (312) étant configurée pour former un joint conique avec le siège de vanne d'entrée d'huile (311) sous l'effet d'une compression du ressort de vanne d'entrée d'huile (313) ;
    l'ensemble de vanne de sortie d'huile (32) comprenant : un siège de vanne de sortie d'huile (321), une vanne de sortie d'huile (322), un ressort de vanne de sortie d'huile (323) et un siège de ressort de vanne de sortie d'huile (324) ;
    le siège de ressort de vanne de sortie d'huile (324) étant monté sur une extrémité supérieure du siège de vanne de sortie d'huile (321), la vanne de sortie d'huile (322) étant montée dans un trou central du siège de vanne de sortie d'huile (321), le ressort de vanne de sortie d'huile (323) étant retenu entre la vanne de sortie d'huile (322) et le siège de ressort de vanne de sortie d'huile (324), et la vanne de sortie d'huile (322) étant configurée pour former un joint conique avec le siège de vanne de sortie d'huile (321) sous l'effet d'une compression du ressort de vanne de sortie d'huile (323) ;
    une chambre de sortie d'huile à haute pression (33) étant formée entre le siège de vanne de sortie d'huile (321) et le siège de vanne d'entrée d'huile (311) ;
    une chambre à huile à haute pression (41) étant formée dans l'accouplement de plongeur (4), et la chambre d'huile à haute pression (41) communiquant avec la chambre de sortie d'huile à haute pression (33) à travers un premier trou d'huile (13) de la vanne d'entrée d'huile sur le siège de vanne d'entrée d'huile (311) ; et
    la vanne proportionnelle à commande électrique (8) communiquant avec un trou d'entrée d'huile du siège de vanne d'entrée d'huile (311) à travers le premier trou d'huile (13) sur le corps de pompe (1), et le trou d'entrée d'huile du siège de vanne d'entrée d'huile étant configuré pour communiquer avec la chambre d'huile à haute pression (41) ou être déconnecté de celle-ci ;
    caractérisée en ce que la vanne proportionnelle à commande électrique (8) est pourvue d'un passage d'huile de circulation de refroidissement sur celle-ci, de l'huile de refroidissement provenant d'un passage d'huile de refroidissement du corps de pompe (1), après avoir été injectée dans le passage d'huile de circulation de refroidissement, étant retournée dans le passage d'huile de refroidissement du corps de pompe (1).
  2. Pompe à huile selon la revendication 1, l'accouplement de plongeur (4) comprenant :
    un manchon de plongeur (42), le manchon de plongeur (42) étant disposé à une extrémité inférieure du siège de vanne d'entrée d'huile (311) ; et
    un plongeur (43), le plongeur (43) étant inséré de façon coulissante dans un trou central du manchon de plongeur (42), et la chambre à huile à haute pression (41) étant définie par le manchon de plongeur (42), le plongeur (43) et le siège de vanne d'entrée d'huile (311),
    une paroi intérieure du manchon de plongeur (42) étant pourvue d'une première rainure annulaire (421) et d'une deuxième rainure annulaire (422) ;
    le corps de pompe (1) étant pourvu d'un passage de sortie d'huile mélangée et d'un passage de distribution d'huile de lubrification (12), le passage de sortie d'huile mélangée communiquant avec la première rainure annulaire (421) à travers un passage d'huile mélangée (423) sur le manchon de plongeur (42), et le passage de distribution d'huile de lubrification (12) communiquant avec la deuxième rainure annulaire (422) à travers le passage d'huile de lubrification (424) sur le manchon de plongeur (42) ; et
    la première rainure annulaire (421) étant située au-dessus de la deuxième rainure annulaire (422).
  3. Pompe à huile selon la revendication 2, l'ensemble de siège de ressort inférieur (6) étant disposé au-dessous de l'accouplement de plongeur (4), et l'ensemble de siège de ressort inférieur (6) comprenant :
    un siège de ressort extérieur (61), le siège de ressort extérieur (61) étant dans l'ensemble d'une structure de type à bossage comportant une partie centrale épaisse et un côté extérieur mince, et une surface d'extrémité supérieure du siège de ressort extérieur (61) étant pourvue d'un lamage (611) comportant une surface sphérique concave ;
    une sphère supérieure (62), une portion inférieure de la sphère supérieure (62) étant montée dans le lamage (611), et une surface d'extrémité inférieure de la sphère supérieure (62) étant pourvue d'une surface sphérique convexe appariée à la surface sphérique concave ; et
    un siège de ressort intérieur (63), le siège de ressort intérieur (63) étant gainé sur une portion supérieure de la sphère supérieure (62), et le siège de ressort intérieur (63) comportant un trou traversant axial (631) pénétrant des surfaces d'extrémité supérieure et inférieure,
    une tête cylindrique inférieure (431) du plongeur (43) étant retenue dans le trou traversant axial (631), et une surface d'extrémité inférieure de la tête cylindrique inférieure (431) du plongeur (43) venant en butée contre une surface d'extrémité supérieure de la sphère supérieure (62).
  4. Pompe à huile selon la revendication 3, un trou sphérique (612) étant prévu à un centre du lamage (611), une troisième rainure annulaire (613) étant prévue sur une surface d'extrémité inférieure du siège de ressort extérieur (61), et le trou sphérique (612) et la troisième rainure annulaire (613) communiquant l'un avec l'autre à travers un passage d'entrée d'huile de lubrification (614) ;
    une surface extérieure du siège de ressort extérieur (61) étant une surface conique, la surface conique étant pourvue d'un passage de sortie d'huile de lubrification (615), et le passage de sortie d'huile de lubrification (615) communiquant avec une surface d'extrémité inférieure du siège de ressort extérieur (61), et le passage de sortie d'huile de lubrification (615) étant agencé obliquement ;
    la sphère supérieure (62) étant pourvue d'une rainure annulaire circonférentielle (621) dans une direction circonférentielle de celle-ci ;
    une vis de positionnement (64) étant positionnée dans la rainure annulaire circonférentielle (621) après son passage à travers un trou de vis de positionnement (616) du siège de ressort extérieur (61) ; et
    une distance entre une surface supérieure et une surface inférieure de la rainure annulaire circonférentielle (621) étant supérieure à un diamètre cylindrique d'une portion de la vis de positionnement (64) située dans la rainure annulaire circonférentielle (621).
  5. Pompe à huile selon la revendication 4, huit passages de sortie d'huile de lubrification (615) étant prévus, et les huit passages de sortie d'huile de lubrification (615) communiquant respectivement avec une surface d'extrémité inférieure du siège de ressort extérieur (61).
  6. Pompe à huile selon l'une quelconque des revendications 3 à 5, le trou traversant axial (631) prévu à l'intérieur du siège de ressort intérieur (63) comprenant un premier trou (6311), un deuxième trou (6312) et un troisième trou (6313) présentant respectivement des diamètres, un diamètre étant inférieur à un autre dans un ordre de haut en bas,
    un premier trou de guidage (6314) présentant un diamètre progressivement croissant étant prévu entre le deuxième trou (6312) et le troisième trou (6313) ;
    un côté du troisième trou (6313) faisant face à la sphère supérieure (62) étant pourvu d'un deuxième trou de guidage (6315) présentant un diamètre progressivement croissant ;
    des parois de trou du premier trou de guidage (6314) et du deuxième trou de guidage (6315) étant formées en tant que surfaces coniques de guidage (6316) ;
    une partie d'une portion supérieure de la sphère supérieure (62) pénétrant le deuxième trou de guidage (6315) étant située dans le troisième trou (6313) ;
    la sphère supérieure (62) et le troisième trou (6313) présentant un espacement entre eux qui est supérieur ou égal à 1 mm, et
    le lamage (611) et la sphère supérieure (62) présentant un espacement entre eux qui est supérieur ou égal à 1 mm.
  7. Pompe à huile selon la revendication 6, une surface périphérique extérieur du siège de ressort intérieur (63) et une paroi de trou du deuxième trou (6312) étant chacune pourvues d'une rainure de dégagement (6317) ; et une surface d'extrémité supérieure du siège de ressort intérieur (63) étant pourvue d'une rainure annulaire de réduction de poids (6318).
  8. Pompe à huile selon l'une quelconque des revendications 4 à 7, comprenant en outre :
    un siège de ressort supérieur (9), qui est gainé sur le manchon de plongeur (42), et situé à une extrémité supérieure du siège de ressort intérieur (63) ; et
    le ressort de plongeur (5) comprend :
    un premier ressort de plongeur (51), le premier ressort de plongeur (51) étant ajusté par pression entre le siège de ressort supérieur (9) et le siège de ressort extérieur (61), et
    un second ressort de plongeur (52), le second ressort de plongeur (52) étant ajusté par pression entre le siège de ressort supérieur (9) et le siège de ressort intérieur (63).
  9. Pompe à huile selon la revendication 8, un diamètre de la surface sphérique concave dans le siège de ressort extérieur (61) et un diamètre de la surface sphérique convexe de la sphère supérieure (62) étant respectivement de 20 à 100 fois un diamètre du plongeur (43).
  10. Pompe à huile selon l'une quelconque des revendications 1 à 9, l'ensemble de piston de guidage (7) comprenant :
    un piston de guidage (71), le piston de guidage étant pourvu d'un premier trou de montage (711) à une position centrale d'une surface d'extrémité supérieure de celui-ci, et d'un second trou de montage (712) sur une surface d'extrémité inférieure de celui-ci, le premier trou de montage (711) et le second trou de montage (712) communiquant l'un avec l'autre à travers un trou de communication (713), et l'ensemble de siège de ressort inférieur (6) étant monté dans le premier trou de montage (711) ;
    un ensemble de rouleau (72), comprenant un rouleau (721) monté dans le second trou de montage (712), une douille de rouleau (722) assemblée par interférence dans le rouleau (721), et une feuille de poussée (723) assemblée par interférence à deux extrémité axiale du rouleau (721), une rainure annulaire (7211) étant prévue dans une direction axiale du rouleau (721), et une liaison de transition d'arc circulaire étant formée entre un fond de rainure de la rainure annulaire (7211) et une surface d'extrémité axiale du rouleau (721) ; et
    un axe de rouleau (73), qui est assemblé avec débattement dans la douille de rouleau (722),
    une paroi de trou du second trou de montage (712) étant pourvue d'un bossage (7121), et le bossage (7121) étant en contact avec les feuilles de poussée (723) ; et
    le bossage (7121) étant uniformément pourvu d'une pluralité de premières rainures radiales d'huile (7122) dans une direction radiale, et des directions de longueur des premières rainures radiales d'huile (7122) étant dans des directions radiales de la feuille de poussée (723).
  11. Pompe à huile selon la revendication 10, une surface extérieure de l'axe de rouleau (73) étant prévue en tant qu'une surface cylindrique, et une première rainure en forme de taille (731) et une seconde rainure en forme de taille (732) étant prévues à chacune de deux positions sur la surface cylindrique, la première rainure en forme de taille (731) et la seconde rainure en forme de taille (732) étant prévues à un milieu de l'axe de rouleau (73) ;
    une rainure cunéiforme à petit angle avec un angle entre 5° et 20° étant formée entre la première rainure en forme de taille (731) et une surface extérieure de la douille de rouleau (722), et la seconde rainure en forme de taille (732) étant pourvue d'un second trou d'huile (733) à l'intérieur de celle-ci ; et
    deux seconds trous d'huile (733) aux deux positions communiquent l'un avec l'autre à travers un passage de sortie d'huile de lubrification, et les deux seconds trous d'huile (733) étant agencés à un angle de 70 à 120° l'un par rapport à l'autre.
  12. Pompe à huile selon la revendication 11, une surface extérieure du piston de guidage (71) étant prévue en tant qu'une surface cylindrique sur laquelle une rainure d'huile circonférentielle partielle (714), une rainure d'huile circonférentielle (715), une première rainure axiale d'huile (716) et une rainure verticale (717) sont prévues, la rainure verticale (717) étant prévue dans la rainure d'huile circonférentielle (715), et la rainure verticale (717) communiquant avec la rainure d'huile circonférentielle partielle (714) à travers la première rainure axiale d'huile (716) ;
    la surface cylindrique étant en outre pourvue d'un trou incliné (718), et deux extrémités du trou incliné (718) communiquant respectivement avec des parois intérieures de la rainure d'huile circonférentielle (715) et le second trou de montage (712) ;
    la surface cylindrique étant en outre pourvue d'une seconde rainure axiale d'huile (719) communiquant avec la rainure d'huile circonférentielle (715) ;
    la surface cylindrique étant en outre pourvue d'un premier trou droit (7100) et d'un second trou droit (7101) reliés l'un à l'autre, le premier trou droit (7100) communiquant avec la première rainure axiale d'huile (716), et le second trou droit (7101) communiquant avec le premier trou de montage (711) ; et
    l'axe de rouleau (13) étant pourvu, sur une surface périphérique extérieur de celui-ci, d'un passage d'entrée d'huile de lubrification (735), le passage d'entrée d'huile de lubrification (735) étant prévu à l'opposé du trou incliné (718), et le passage d'entrée d'huile de lubrification (735) communiquant avec le passage de sortie d'huile de lubrification.
  13. Pompe à huile selon la revendication 12, le passage d'entrée d'huile de lubrification (735) comprenant un troisième passage radial d'huile (7351) disposé dans une direction radiale de l'axe de rouleau (73) et un passage axial d'huile (7352) disposé dans une direction axiale de l'axe de rouleau (73), le troisième passage radial d'huile (7351) étant relié au passage axial d'huile (7352) ; et
    le passage axial d'huile (7352) étant relié au second trou d'huile (733) dans la seconde rainure en forme de taille (732).
  14. Pompe à huile selon l'une quelconque des revendications 10 à 13, une surface périphérique extérieure de l'axe de rouleau (73) étant pourvue d'un revêtement en carbone de type diamant (DLC) ;
    la douille de rouleau (722) étant constituée d'un alliage de cuivre ;
    les feuilles de poussée (723) étant chacune constituées d'un alliage de cuivre ;
    une lubrification forcée et une lubrification de pression dynamique étant utilisées entre l'axe de rouleau (723) et la douille de rouleau (722) ; et
    une lubrification forcée et une lubrification de pression dynamique étant utilisées entre les feuilles de poussée (723) et le bossage (7121).
  15. Pompe à huile selon la revendication 14, chacune parmi une périphérie extérieure de surface d'extrémité supérieure et une périphérie extérieure de surface d'extrémité inférieure du piston de guidage (71) et la rainure annulaire circonférentielle (715) étant chacune pourvue d'un premier chanfrein (7102) ;
    la paroi de trou du premier trou de montage (711) étant pourvue d'un second chanfrein (7110) ;
    la paroi de trou du second trou de montage (712) étant pourvue d'un quatrième trou (7123) ;
    un cinquième trou (736) étant prévu sur la surface périphérique extérieure de l'axe de rouleau (73) ; et
    un ressort de retour (737) et un axe de butée (738) étant disposés dans l'ordre dans le cinquième trou (736), et l'axe de butée (738) s'étendant partiellement dans le quatrième trou (7123).
EP20205958.0A 2019-11-08 2020-11-05 Pompe à huile monolithique à haute pression et à commande électrique pour moteur marin à faible vitesse Active EP3819492B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911088229.4A CN110645129A (zh) 2019-11-08 2019-11-08 一种船用低速机电控单体式高压油泵

Publications (2)

Publication Number Publication Date
EP3819492A1 EP3819492A1 (fr) 2021-05-12
EP3819492B1 true EP3819492B1 (fr) 2022-08-03

Family

ID=69014503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20205958.0A Active EP3819492B1 (fr) 2019-11-08 2020-11-05 Pompe à huile monolithique à haute pression et à commande électrique pour moteur marin à faible vitesse

Country Status (2)

Country Link
EP (1) EP3819492B1 (fr)
CN (1) CN110645129A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780470A (zh) * 2020-12-10 2021-05-11 重庆红江机械有限责任公司 一种用于船用高速柴油机的共轨式高压喷油泵

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040468A1 (de) * 2006-08-29 2008-03-06 Man Diesel Se Kolbenpumpe mit Ablagerungsschutz
US9188096B2 (en) * 2011-09-06 2015-11-17 Toyota Jidosha Kabushiki Kaisha Fuel pump and fuel supply system of internal combustion engine
CN105888905A (zh) * 2016-06-18 2016-08-24 常州博瑞油泵油嘴有限公司 一种单缸柴油机用复合式高压共轨泵及其装配方法

Also Published As

Publication number Publication date
CN110645129A (zh) 2020-01-03
EP3819492A1 (fr) 2021-05-12

Similar Documents

Publication Publication Date Title
EP3819493B1 (fr) Système de rail commun haute pression pour moteur à faible vitesse avec plusieurs fonctions de protection de sécurité
US6722864B2 (en) Fuel injection pump
CN104454231B (zh) 斯特林发动机
US9291132B2 (en) Fuel pump assembly
EP2959194B1 (fr) Paliers de tourillon basculant pour moteurs à deux temps
EP3819492B1 (fr) Pompe à huile monolithique à haute pression et à commande électrique pour moteur marin à faible vitesse
CN201786404U (zh) 具有润滑结构的挺杆部件
FI129983B (en) COMBINED MULTI-CYLINDER HIGH-PRESSURE OIL PUMP FOR SLOW-SPEED MARINE ENGINE
CN210919306U (zh) 一种船用低速机多缸组合式高压油泵
CN111148896B (zh) 高压泵
JP6132057B2 (ja) 内燃機関の複リンク式ピストン−クランク機構の潤滑構造
JP6036006B2 (ja) 内燃機関の複リンク式ピストン−クランク機構の潤滑構造
JP2019065853A (ja) 高圧ポンプ
JP6809520B2 (ja) 高圧ポンプ
US6368071B1 (en) High pressure fuel pump
US4082072A (en) Sealing in fuel injection pumps
CN210919305U (zh) 一种船用低速机电控单体式高压油泵
WO2003078822A1 (fr) Composants de pompe et procede
WO2019065998A1 (fr) Pompe à haute pression
GB2594544A (en) Multi-cylinder combined high-pressure oil pump of marine low-speed machine
CN111164299B (zh) 高压泵
CN210919253U (zh) 一种具有多重安保功能的低速机高压共轨系统
CN112780469A (zh) 一种柴油机喷油泵驱动装置
JP7180230B2 (ja) 高圧ポンプ
CN214007759U (zh) 曲轴润滑系统及发动机

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020004331

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1508928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020004331

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231120

Year of fee payment: 4

Ref country code: DE

Payment date: 20231120

Year of fee payment: 4

Ref country code: CH

Payment date: 20231202

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803