EP3814783A1 - Circuit imprimé intégrant un pont diviseur de courant - Google Patents

Circuit imprimé intégrant un pont diviseur de courant

Info

Publication number
EP3814783A1
EP3814783A1 EP19734372.6A EP19734372A EP3814783A1 EP 3814783 A1 EP3814783 A1 EP 3814783A1 EP 19734372 A EP19734372 A EP 19734372A EP 3814783 A1 EP3814783 A1 EP 3814783A1
Authority
EP
European Patent Office
Prior art keywords
printed circuit
current
track
digital
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19734372.6A
Other languages
German (de)
English (en)
Inventor
Patrice CHETANNEAU
François Guillot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Safran Electronics and Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics and Defense SAS filed Critical Safran Electronics and Defense SAS
Publication of EP3814783A1 publication Critical patent/EP3814783A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the invention relates to the field of printed circuits incorporating a current divider bridge.
  • a flow valve current sensor uses the property of a magnetic material forming a magnetic core to saturate from a certain level of magnetic excitation.
  • the slope of the transfer function between the magnetic field H and the magnetic induction B decreases greatly from a so-called saturation value of the magnetic core.
  • the saturation value, in FIG. 1, corresponds to the DH and DB intervals,
  • a rectangular signal generator 2 applies a rectangular excitation voltage Vex across the terminals of a winding excitation 3 wound around a magnetic core 4.
  • the excitation current Iex flowing in the excitation winding 3 is measured by a measurement module 5.
  • a peak detector 6, connected to the measurement module 5, provides two pieces of information: the saturation level and the difference of the peak currents of the excitation current Iex. The saturation level makes it possible to control the amplitude of the excitation voltage Vex.
  • Flow valve current sensors are privileged in a number of applications. This is particularly the case for the measurement of a current flowing in a breaking device of the SSPC type (for “Solid State Controller”) intended for user equipment. or for the measurement of a current flowing in an energy conversion device of PEM type (for “Power Electronic Module”) connected to a phase of a motor.
  • the demagnetization current which makes it possible to compensate for the magnetic flux produced in the magnetic core 4 by the current to be measured Im, must also be very large.
  • the value of the demagnetization current must be equal to that of the current to be measured Im divided by the transformation ratio of the transformer having for primary winding the conductor on which the current to be measured Im flows and for secondary winding the demagnetization winding 8.
  • the number of turns of the demagnetization winding 8 is limited by its size and by the resulting inductance. The higher the inductance, the more the speed of change of the demagnetization current will be limited, and therefore the more the bandwidth of the flow sensor current sensor 1 with flow valve 1 will be limited. Thus, increasing the number of turns of the demagnetization winding 8 is not a relevant solution.
  • the object of the invention is to solve the problem which has just been mentioned,
  • a printed circuit comprising a first track, a second track and at least one insulating layer extending between the first track and the second track, the printed circuit further comprising a first set passing through at least a first metallized hole and a second set passing through at least a second metallized hole, each first metallized hole and each second metallized hole connecting the first track and the second track extending through the insulating layer, the first through assembly and the second through assembly respectively forming a first branch and a second branch of a current divider bridge.
  • the electrical characteristics of the first metallized hole and of the second metallized hole are perfectly reproducible.
  • the relationship between the resistance of the first branch and the resistance of the second branch of the current divider bridge is known very precisely.
  • the current divider bridge therefore makes it possible, for example, to reduce a main current which it is desired to measure, and thus to obtain a reduced current to be measured whose relationship with the main current is perfectly known.
  • the main current is therefore estimated from a measurement of a reduced current to be measured,
  • a flow valve current sensor is also proposed comprising a printed circuit such as that which has just been described.
  • FIG. 1 represents the curve of a transfer function between a magnetic field and a magnetic induction
  • Figure 2 shows an existing flow valve current sensor
  • FIG. 4 represents a new current sensor with flow valve
  • FIG. 5 represents a current divider bridge integrated in a printed circuit according to the invention and used to measure a current to be measured;
  • Figure 6 is a sectional view of the printed circuit according to the invention in which the current divider bridge is integrated;
  • Figure 7 is a view similar to that of Figure 6, but from above.
  • a current sensor with a flow valve 10 is here used to measure a current to be measured Im which flows on a conductor 11.
  • the flow valve current sensor 10 comprises a transformer 12 comprising a magnetic core 13, a primary winding and a secondary winding.
  • the primary winding is the conductor 11
  • the magnetic core 13 extends around the conductor 11.
  • the secondary winding is a measurement winding 14 wound around the magnetic core 13.
  • the flow valve current sensor 10 comprises a plurality of electronic components forming a digital part 15 and an analog part 16.
  • the digital part 15 includes a digital processing component which is in this case an FPGA but which could be a different component: microcontroller, processor, ASIC, etc.
  • the flow valve current sensor 10 further comprises an acquisition circuit 17.
  • the acquisition circuit 17 belongs to the analog part 16.
  • the acquisition circuit 17 is connected to the measurement winding 14.
  • the acquisition circuit 17 comprises a high-pass filter 19 and an analog-to-digital converter 20 connected to an output of the high-pass filter 19.
  • the analog to digital converter 20 could of course have different characteristics.
  • the acquisition circuit 17 acquires an analog measurement voltage Ve at the terminals of the measurement winding 14.
  • the measurement voltage Ve is applied to the input of the high-pass filter 19.
  • the resulting voltage is applied to the input of the analog-to-digital converter 20 which produces a digital measurement signal S.
  • the flow valve current sensor 10 includes a high frequency generator 22.
  • the high frequency generator 22 is integrated in the FPGA (one could replace the term "integrated" with one of the following terms: programmed, implemented, implemented, etc.)
  • the high frequency generator 22 produces a digital reference signal of frequency f0, a digital reference signal of frequency 2. f0 and a digital reference signal of frequency 3. f0.
  • the digital reference signal of frequency f0 is here of the form:
  • the digital reference signal of frequency 2. f0 is here of the form:
  • the digital reference signal of frequency 3. f0 is here of the form:
  • the fluxgate current sensor 10 further comprises an excitation circuit 23.
  • the excitation circuit 23 is implemented in the FPGA.
  • the excitation circuit 23 is connected to the high frequency generator 22.
  • the excitation circuit 23 includes a raw excitation circuit 24 and an excitation servo circuit 25.
  • the raw excitation circuit 24 receives the digital reference signal of frequency f0 and the digital reference signal of frequency 3. f0 and produces from these signals a digital partial excitation signal of frequency f0 and an excitation signal. partial digital frequency 3. f0.
  • the digital partial excitation signal of frequency f0 is here of the form:
  • f0 The digital partial excitation signal of frequency 3. f0 is here of the form:
  • the raw excitation circuit 24 adds the digital partial excitation signal of frequency f0 and the digital partial excitation signal of frequency 3. f0 to generate a raw digital excitation signal.
  • the excitation servo circuit 25 is linked to the high frequency generator 22.
  • the excitation servo circuit 25 receives the digital reference signal of frequency 3. f0 and produces from the digital reference frequency signal 3. f0 a digital demodulation signal of frequency 3. f0.
  • the digital demodulation signal of frequency 3. f0 is here of the form:
  • the excitation servo circuit 25 comprises a first multiplier 27, a second multiplier 23, an integrator 29 and a first amplifier 30.
  • the first amplifier 30 is connected to an output of
  • the first multiplier 27 multiplies the digital measurement signal Sm by the digital demodulation signal of frequency 3. f0. The resulting signal is applied to the input of the integrator 29.
  • 1 integrator 29 play the role of a first synchronous demodulator.
  • the first amplifier 30 then produces a digital error signal.
  • the second multiplier 28 multiplies the raw digital excitation signal Seb by the digital error signal to obtain a digital excitation signal.
  • the digital excitation signal is of the form:
  • the flow valve current sensor 10 further comprises a demagnetization servo circuit 32.
  • the demagnetization servo circuit 32 is integrated in the FPGA.
  • the demagnetization servo circuit 32 is connected to the high frequency generator 22.
  • the demagnetization servo circuit 32 receives the digital reference signal of frequency 2. f0 and produces from the digital reference signal of frequency 2. f0 a digital demodulation signal of frequency 2. f0.
  • f0 The digital demodulation signal of frequency 2.
  • the demagnetization servo circuit 32 includes a third multiplier 33, a low-pass filter 34 and a second amplifier 35.
  • the second amplifier 35 is connected to an output of the low-pass filter 34.
  • the third multiplier 33 multiplies the digital measurement signal Sm by the digital demodulation signal of frequency 2. f0. The resulting signal is applied at the input of the low-pass filter 34.
  • the second amplifier 35 then produces a digital image signal of the current to be measured Im, which is also a digital demagnetization signal Sdm.
  • the third multiplier 33 and the low-pass filter 34 play the role of a second synchronous demodulator.
  • the flow valve current sensor 10 further comprises an adder 36.
  • the adder 36 is implemented in the FPGA.
  • the summator 36 sums the digital excitation signal Se and the digital demagnetization signal Sdm to obtain a digital injection signal Si.
  • the flow valve current sensor 10 further comprises an injection circuit 37.
  • the injection circuit 37 belongs to the analog part 16.
  • the injection circuit 37 is connected to the summator 36 and to the measurement winding 14.
  • the injection circuit 37 includes a digital analog converter 38.
  • the digital to analog converter 38 could of course have different characteristics.
  • the analog-digital converter 38 acquires the digital injection signal Si, produces an analog excitation current Ic from the digital injection signal Si, and injects the excitation current Ic into the measurement winding 14.
  • the excitation circuit 23 generates a digital excitation signal Se, which is transformed into an excitation current le and injected into the measurement winding 14.
  • the measurement voltage Ve is acquired and then digitized to produce a digital measurement signal Sm.
  • a digital image signal of the current to be measured Im is obtained. This if digital image is used to estimate the current to be measured Im.
  • the digital image signal is also a digital magnetization signal Sdm which compensates for the magnetic flux produced by the current to be measured Im.
  • the digital demagnetization signal Sdm and the digital excitation signal Se are easily added.
  • the excitation current therefore allows it both to excite the magnetic core 13 and to demagnetize the magnetic core 13.
  • the demagnetization current is therefore integrated into the excitation current le.
  • the saturation of the magnetic core 13 causes an asymmetry of the measurement voltage Ve, said measurement voltage Ve being constituted by the sum of a component of frequency fO in sin (coOt), corresponding to the fundamental, and of a component of frequency 2. f0 in cos (2o0t), corresponding to the harmonic component of order 2.
  • the amplitude of the excitation signal by digital tiel of frequency f0 and that of the digital partial excitation signal of frequency 3. f0 are adjusted to obtain an excitation current le whose frequency component 3. f0 (or third order harmonic component) is in phase with the frequency component fO (or fundamental).
  • the ratio of the amplitude of the harmonic component of order 1 and the amplitude of the harmonic component of order 3 of the measurement voltage Ve changes until annu- lation of the harmonic component of order 3, then until phase inversion of the harmonic component of order 3.
  • the operating point corresponding to the cancellation of the harmonic component of order 3 of the measurement voltage Ve is therefore an optimal operating point of the flow sensor current sensor 10. This optimal operating point corresponds to the elbow 9 of the transfer function curve of FIG. 1.
  • the digital error signal allows to control the excitation current le.
  • the control consists in controlling the excitation current le to cancel the harmonic component of order 3 of the measurement voltage Ve.
  • the flow valve current sensor 10 thus operates continuously at the optimum operating point. In this way, a maximum gain is obtained for the asymmetries introduced by the current to be measured im and detectable on the measurement voltage Ve. It is noted that this servo-control by synchronous demodulation of the harmonic component of order 3 is not very sensitive to external electromagnetic disturbances, because all the signals of frequency different from the frequency 3. f0 generate products of intermodulation whose components are filtered by the low-pass filter 34 connected at the output of the third multiplier 33. It is also noted that this enslavement does not need to be very rapid, since the variations originating from external parameters (temperature, aging) are relatively slow.
  • the measurement winding 14 is used both to excite the magnetic core 13, to control this excitation, to measure the current to be measured Im, and to compensate for the magnetic flux produced in the magnetic core 13 by the current to be measured Im (demagnetization).
  • the pooling of these functions on a single measurement winding 14 makes it possible to simplify, reduce the cost and the mass, and facilitate the manufacture of the flow sensor current sensor 10,
  • the measurement processing chain is mainly digital: a single FPGA makes it possible to implement a large part of this processing chain,
  • the digitization of the processing chain increases its reliability and robustness (especially in temperature), reduces its cost, facilitates its manufacture and improves its industrial reproducibility.
  • the improved regulation of the operating point thanks to demodulation by the first synchronous demodulator also makes it possible to obtain better immunity to noise.
  • synchronous demodulators makes it possible to operate at high frequency, which allows a significant bandwidth of the current to be measured Im while retaining very good immunity to external electromagnetic disturbances.
  • the sensitivity of the flow sensor current sensor 10 is constant in the temperature range.
  • the accuracy of the flow valve current sensor 10 is therefore good in a large temperature range.
  • the flow valve current sensor 10 measures a current to be measured Im which flows on a conductor 11.
  • the demagnetization current which makes it possible to compensate for the magnetic flux produced in the magnetic core 13 by the current to be measured Im, must also be very large.
  • the value of the demagnetization current must be equal to that of the current to be measured divided by the transformation ratio of the transformer 12, associated with the characteristics of the primary winding and of the secondary winding.
  • the number of turns of the measurement winding 14 is limited by its size and by the resulting inductance.
  • the higher the inductance the more the speed of change of the demagnetization current (from the digital demagnetization signal Sdm) will be limited, and therefore the more the bandwidth of the current sensor with flow valve 10 will be limited.
  • increasing the number of turns of the secondary winding is not an effective solution.
  • a current divider bridge is implemented so as to reduce the value of the current to be measured.
  • the current sensor with flow valve 10 comprises a printed circuit according to the invention 40 on which are mounted in particular the plurality of electronic components forming the digital part 15 and the analog part 16.
  • the printed circuit according to the invention 40 here comprises a first conductive layer 41, a second conductive layer 42 and an insulating layer 43.
  • the first conductive layer 41 and the second conductive layer 42 each extend here on an opposite face of the printed circuit 40.
  • the first conductive layer 41 comprises a first track 44 and the second conductive layer 42 comprises a second track 45.
  • the insulating layer 43 therefore extends between the first track 44 and the second track 45.
  • the printed circuit 40 further comprises a first through assembly of at least a first metallized hole 47 and a second through assembly of at least a second metallized hole 48.
  • the first through assembly comprises several first metallized holes 47 and the second through assembly comprises several second metallized holes 48.
  • the first metallized holes 47 and the second metallized holes 48 here all have the same first diameter.
  • a “metallic hole” could also be called a "via”.
  • the "metallized hole” can be produced by any type of process.
  • the "metallized hole” can in particular be made conductive by depositing a metallic material or any type of conductive material.
  • the "metallized hole” can also be made conductive by inserting a metal tube or rivet, or any type of conductor.
  • Each first metallized hole 47 and each second metallized hole 48 connect the first track 44 and the second track 45 extending through the insulating layer 43.
  • the first set crossing and the second seeming to cross respectively form a first branch 51 and a second branch 52 of a current divider bridge 53.
  • the current to be measured Im is in reality here not a main current Ip whose value we want to know, but the current to be measured Im comes from a division of the main current Ip and is used to estimate the value of the main current Ip.
  • the main current Ip flows in the first track 44, in the first branch 51 and the second branch 52 of the current divider bridge 53, and in the second track 45.
  • the conductor 11 mentioned above, on which the current to be measured flows is the second through assembly (or the second branch 52).
  • the main current Ip is equal to 10A.
  • the number of first metallized holes 47 of the first through assembly is nine times greater than that of second metallized holes 48 of the second through assembly.
  • the second resistance of the second branch 52 is therefore nine times higher than the first resistance of the first branch 51.
  • the current to be measured Im, flowing in the second branch 52 of the current divider bridge 53, is equal to IA, while the current flowing in the first branch 51 of the current divider bridge 53 is equal to 9A.
  • the first resistance of the first branch 51 and the second resistance of the second branch 52 are poorly known but their relationship is known very precisely thanks to this reproducibility.
  • the first crossing assembly and the second seemingly crossing assembly are therefore equivalent to two shunt resistors with perfectly controlled ratios. We therefore know very precisely the relationship between the current to be measured Im and the main current Ip. Measuring the current to be measured I makes it possible to very precisely estimate the main current Ip, while reducing it to reduce the demagnetization current required.
  • the current to be measured Im is measured by means of the transformer 12 which was mentioned earlier.
  • the transformer 12 includes the printed circuit 40 or, more exactly, a portion of the printed circuit 40, because the printed circuit also carries the digital part 15 and the analog part 16.
  • the second through assembly which has just been described is also called here "primary through assembly".
  • the second metallized holes 48 are
  • the printed circuit 40 further comprises a third through assembly comprising at least a third metallized hole 56 extending through the insulating layer 43, and a fourth through assembly comprising at least a fourth metallized hole 57 extending through the insulating layer 43.
  • the third through assembly comprises several third metallized holes 56 and the fourth through assembly includes several fourth metallized holes 57.
  • the third metallized holes 56 and the fourth metallized holes 57 all have the same second dia meter which, for a reason of space, is less than the first diameter of the first metallized holes 47 and of the second metallized holes 48.
  • the number of three metallized holes 56 is equal to the number of fourth metallized holes 57.
  • the third crossing set and the fourth crossing through it form a set called here “secondary crossing set”.
  • the third metallized holes 56 form at least one, in this case several "first secondary metallized holes” 56
  • the fourth metallized holes 57 form at least one, in this case several "second secondary metallized holes” 57.
  • the transformer 12 further comprises the magnetic core 13.
  • the magnetic core 13 extends in a thickness of the printed circuit 40.
  • the magnetic core 13 has the shape of a tube with rectangular outer and lower sections. It is noted that the magnetic core 13 could obviously have a different shape.
  • the magnetic core 13 comprises a portion of primary core 60 and a portion of secondary core 61.
  • the primary through assembly extends inside the magnetic core 13, near the primary core portion 60.
  • the primary through assembly thus forms a portion of a primary winding of the transformer 12, the said primary winding comprising here a single turn.
  • the first secondary metallized holes 56 extend inside the magnetic core 13, near the portion of secondary core 61.
  • the second secondary metallized holes 57 extend outside the magnetic core 13, near the secondary core portion 61.
  • first secondary metallized holes 56 and the second secondary metallized holes 57 are interconnected by conductive elements 65 (for example, but not necessarily, tracks) which extend over the first conductive layer 41 and over the second conductive layer 42. Only two conductive elements 65 are shown in FIG. 7.
  • the third crossing assembly thus forms a first portion of the secondary winding of the transformer.
  • the fourth through assembly thus forms a second portion of the secondary winding of the transformer.
  • the secondary through assembly therefore forms a portion of the secondary winding of the transformer 12.
  • the secondary winding comprises a plurality of turns, each turn comprising a first secondary metallized hole 56, a second secondary metallized hole 57 and a conductive element 65.
  • the secondary winding of the transformer 12 is the measurement winding 14 mentioned earlier.
  • the printed circuit 40 includes a first layer of "prepreg” (for "prepreg") and a second layer of "prepreg".
  • prepreg for "prepreg”
  • prepreg second layer of "prepreg”.
  • the first prepreg layer and the second prepreg layer are not polymerized.
  • the magnetic core 13 comprises a mixture of a magnetic powder and a resin constituting a binder of the magnetic powder.
  • the magnetic powder is formed from a crystal structure, in this case yttrium garnet and iron (YjFeisOj ⁇ ) ⁇
  • the resin is an epoxy resin.
  • the magnetic core 13 is deposited on the first prepreg layer by screen printing.
  • the magnetic core 13 is covered by the second layer of prepreg.
  • the printed circuit 40 is then passed through an oven.
  • the printed circuit 40 is then drilled to produce the metallized holes which have been described.
  • the magnetic powder is deposited on a first layer of prepreg. Then, a laser beam is used to agglomerate the layer of magnetic powder on predefined areas so as to form the magnetic core 13.
  • the magnetic core 13 is then covered by the second layer of prepreg layer.
  • the manufacture of the magnetic core 13 by laser sintering seems more efficient. Indeed, in the case of manufacture by screen printing, it is found that, in the mixture of magnetic powder and resin, there are as many gaps as there are particles of magnetic powder. These air gaps decrease the performance of the magnetic core 13. In the case of laser sintering, the particles of the magnetic powder are fused, which avoids creating said air gaps.
  • the flow valve current sensor has a digital part and an analog part, and that the analog digital converter and the digital analog converter belong to the analog part.
  • these components are digital components, and even that they are directly integrated in the FPGA (or in a microcontroller or other digital component), so that they would then belong to the digital part.
  • first conductive layer comprising the first track and the second conductive layer comprising the second track extend here cune on an opposite face of the printed circuit.
  • first conductive layer and the second conductive layer could be internal layers of the printed circuit, separated by one or more insulating layers.
  • crossing assemblies each comprising one or more metallized holes.
  • the metalized holes here pass through the same insulating layer.
  • the metallized holes could pass through several insulating layers, or even one or more insulating layers and one or more conductive layers.
  • Separate crossing assemblies could also cross stacks of separate layers.
  • the secondary through assembly comprises at least one first secondary metallized hole and at least one second secondary metallized hole which extend on either side of a portion of the secondary core of the magnetic core.
  • the primary through assembly includes at least one first primary metallized hole and at least one second primary metallized hole which extend on either side of a primary core portion of the magnetic core. .
  • the two configurations can also coexist.
  • the printed circuit according to the invention and the current divider bridge can be used in any type of application requiring a current divider bridge: the invention is in no way limited to current sensors with flow valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

Circuit imprimé comportant une première piste (44), une deuxième piste (45) et au moins une couche isolante (43) s'étendant entre la première piste et la deuxième piste, le circuit imprimé comportant de plus un premier ensemble traversant d'au moins un premier trou métallisé (47) et un deuxième ensemble traversant d'au moins un deuxième trou métallisé (48), chaque premier trou métallisé et chaque deuxième trou métallisé reliant la première piste et la deuxième piste en s'étendant au travers de la couche isolante, le premier ensemble traversant et le deuxième ensemble traversant formant respectivement une première branche et une deuxième branche d'un pont diviseur de courant.

Description

CIRCUIT IMPRIME INTEGRANT UN PONT DIVISEUR DE
COURANT
L'invention concerne le domaine des circuits imprimés intégrant un pont diviseur de courant.
ARRIERE PLAN DE L' INVENTION
Un capteur de courant à vanne de flux utilise la propriété d'un matériau magnétique formant un noyau ma gnétique de se saturer à partir d'un certain niveau d'excitation magnétique. En référence à la figure 1, pour un champ magnétique H croissant, la pente de la fonction de transfert entre le champ magnétique H et l'induction magnétique B diminue grandement à partir d'une valeur dite de saturation du noyau magnétique. La valeur de saturation, sur la figure 1, correspond aux intervalles DH et DB,
En référence aux figures 2 et 3, dans un capteur de courant à vanne de flux classique 1 destiné à mesurer un courant Im circulant sur un conducteur, un générateur de signaux rectangulaires 2 applique une tension d'excitation rectangulaire Vex aux bornes d'un enroulement d'excitation 3 enroulé autour d'un noyau magnétique 4. Le courant d'excitation Iex circulant dans l'enroulement d'excitation 3 est mesuré par un module de mesure 5. Un détecteur de crêtes 6, relié au module de mesure 5, fournit deux informations : le niveau de satu ration et la différence des courants de crête du courant d'excitation Iex. Le niveau de saturation permet d'asservir l'amplitude de la tension d'excitation Vex. La différence des courants de crête du courant d'excitation Iex permet d'estimer le courant à mesurer Im et d' asservir, via un convertisseur de tension en courant 7, l'amplitude d'un courant de démagnétisation qui circule dans un enroulement de démagnétisation 8 et qui permet de compenser le flux magnétique produit dans le noyau magné tique 4 par le courant à mesurer Im. Les capteurs de courant à vanne de flux sont privi légiés dans un certain nombre d'applications. C'est notamment le cas pour la mesure d'un courant circulant dans un organe de coupure de type SSPC (pour « Solid State Po- wer Controller ») à destination d'un équipement utilisateur,. ou bien pour la mesure d'un courant circulant dans un organe de conversion d'énergie de type PEM (pour « Power Electronic Module ») relié à une phase d'un moteur.
Lorsque le courant à mesurer Im est important, une difficulté majeure se présente.
Le courant de démagnétisation, qui permet de compenser le flux magnétique produit dans le noyau magnétique 4 par le courant à mesurer Im, doit être lui aussi très important. La valeur du courant de démagnétisation doit être égale à celle du courant à mesurer Im divisé par le rapport de transformation du transformateur ayant pour enroulement primaire le conducteur sur lequel circule le courant à mesurer Im et pour enroulement secondaire l'enroulement de démagnétisation 8.
Or, le nombre de spires de l'enroulement de démagné tisation 8 est limité par son encombrement et par l'inductance résultante. Plus l'inductance est élevée, plus la vitesse de changement du courant de démagnétisa tion sera limitée, et donc plus la bande passante du cap- teur de capteur de courant à vanne de flux 1 sera limitée. Ainsi, augmenter le nombre de spires de l'enroulement de démagnétisation 8 ne constitue pas une solution pertinente.
Augmenter directement le courant de démagnétisation généré ne constitue pas non plus une solution pertinente. En effet, cette augmentation implique de produire une tension de démagnétisation très importante, ce qui est complexe à réaliser avec des composants standards.
OBJET DE L'INVENTION L'invention a pour objet de résoudre le problème qui vient d'être évoqué,
RESUME DE L'INVENTION
En vue de la réalisation de ce but, on propose un circuit imprimé comportant une première piste, une deu xième piste et au moins une couche isolante s'étendant entre la première piste et la deuxième piste, le circuit imprimé comportant de plus un premier ensemble traversant d'au moins un premier trou métallisé et un deuxième en- semble traversant d'au moins un deuxième trou métallisé, chaque premier trou métallisé et chaque deuxième trou mé tallisé reliant la première piste et la deuxième piste en s'étendant au travers de la couche isolante, le premier ensemble traversant et le deuxième ensemble traversant formant respectivement une première branche et une deu xième branche d'un pont diviseur de courant.
Dans un circuit imprimé tel que le circuit imprimé selon l'invention, les caractéristiques électriques du premier trou métallisé et du deuxième trou métallisé sont parfaitement reproductibles. Ainsi, le rapport entre la résistance de la première branche et la résistance de la deuxième branche du pont diviseur de courant est connu très précisément.
Le pont diviseur de courant permet donc par exemple de réduire un courant principal que l'on souhaite mesu rer, et d'obtenir ainsi un courant à mesurer réduit dont le rapport avec le courant principal est parfaitement connu. On estime donc le courant principal à partir d'une mesure d'un courant à mesurer réduit,
Ainsi, en intégrant le pont diviseur de courant dans un capteur de courant à vanne de flux, on réduit le courant à mesurer et on réduit par conséquent le courant de démagnétisation nécessaire pour compenser le flux magné tique produit dans le noyau magnétique du capteur de cou rant à vanne de flux par ledit courant à mesurer. On propose aussi un capteur de courant à vanne de flux comportant un circuit imprimé tel que celui qui vient d'être décrit.
L'invention sera mieux comprise à la lumière de la description qui suif d'un mode de mise en œuvre particulier non limitatif de l'invention.
BREVE DESCRIPTION DES DESSINS
Il sera fait référence aux dessins annexés, parmi lesquels ;
- 1a figure 1 représente la courbe d'une fonction de transfert entre un champ magnétique et une Induction magnétique ;
la figure 2 représente un capteur de courant à vanne de flux existant ;
- la figure 3 représente la courbe d'une tension d' excitation et la courbe d' un courant d' excitation qui excitent un noyau magnétique du capteur de courant à vanne de flux existant ;
la figure 4 représente un nouveau capteur de courant à vanne de flux ;
la figure 5 représente un pont diviseur de cou rant intégré dans un circuit imprimé selon l'invention et utilisé pour mesurer un courant à mesurer ;
la figure 6 est une vue en coupe du circuit im- primé selon l'invention dans lequel est intégré le pont diviseur de courant ;
la figure 7 est une vue analogue à celle de la figure 6, mais de dessus.
DESCRIPTION DETAILLEE DE L'INVENTION
En référence à la figure 4, un capteur de courant à vanne de flux 10 est ici utilisé pour mesurer un courant à mesurer Im qui circule sur un conducteur 11.
Le capteur de courant à vanne de flux 10 comporte un transformateur 12 comprenant un noyau magnétique 13, un enroulement primaire et un enroulement secondaire. L'enroulement primaire est le conducteur 11, Le noyau magnétique 13 s'étend autour du conducteur 11. L'enroulement secondaire est un enroulement de mesure 14 enroulé autour du noyau magnétique 13.
Le capteur de courant à vanne de flux 10 comporte une pluralité de composants électroniques formant une partie numérique 15 et une partie analogique 16.
La partie numérique 15 comporte un composant de traitement numérique qui est en l'occurrence un FPGA mais qui pourrait être un composant différent : microcontrôleur, processeur, ASIC, etc.
Le capteur de courant à vanne de flux 10 comprend de plus un circuit d'acquisition 17. Le circuit d'acquisition 17 appartient à la partie analogique 16.
Le circuit d'acquisition 17 est relié à l'enroulement de mesure 14.
Le circuit d'acquisition 17 comprend un filtre passe-haut 19 et un convertisseur analogique numérique 20 connecté à une sortie du filtre passe-haut 19.
Le convertisseur analogique numérique 20 est ici un convertisseur 12 bits dont le fonctionnement est cadencé à une fréquence Fech. Ici Fech = 100MHz. Le convertisseur analogique numérique 20 pourrait bien sûr présenter des caractéristiques différentes.
Le circuit d'acquisition 17 acquiert une tension de mesure analogique Ve aux bornes de l'enroulement de mesure 14. La tension de mesure Ve est appliquée en entrée du filtre passe-haut 19.
La tension résultante est appliquée en entrée du convertisseur analogique numérique 20 qui produit un signal de mesure numérique S .
Le capteur de courant à vanne de flux 10 comprend un générateur haute fréquence 22. Le générateur haute fréquence 22 est intégré dans le FPGA (on pourrait remplacer le terme « intégré » par l ' un des termes suivants : programmé, implémenté, mis en œuvre, etc.)
Le générateur haute fréquence 22 produit un signal de référence numérique de fréquence f0, un signal de référence numérique de fréquence 2. f0 et un signal de référence numérique de fréquence 3. f0.
Le signal de référence numérique de fréquence f0 est ici de la forme :
Sir = sin (wOt ) .
Le signal de référence numérique de fréquence 2. f0 est ici de la forme :
S2r = cos (2. coût ) .
Le signal de référence numérique de fréquence 3. f0 est ici de la forme :
S3r = sin (3. eût) .
Le capteur de courant à vanne de flux 10 comprend de plus un circuit dr excitation 23. Le circuit d' excitation 23 est implémenté dans le FPGA.
Le circuit d' excitation 23 est relié au générateur haute fréquence 22.
Le circuit d' excitation 23 comporte un circuit d' excitation brute 24 et un circuit d' asservissement d' excitation 25.
Le circuit d' excitation brute 24 reçoit le signal de référence numérique de fréquence f0 et le signal de référence numérique de fréquence 3. f0 et produit à partir de ces signaux un signal d' excitation partiel numérique de fréquence fO et un signal d' excitation partiel numérique de fréquence 3. f0.
Le signal d' excitation partiel numérique de fréquence f0 est ici de la forme :
Slp = kl . sin (cOt ) .
Le signal d' excitation partiel numérique de fréquence 3. f0 est ici de la forme :
S3p = k2. sin ( 3. coOt ) . Le circuit d' excitation brute 24 additionne le signal d'excitation partiel numérique de fréquence fO et le signal d'excitation partiel numérique de fréquence 3. f0 pour générer un signal d'excitation numérique brut. Le signal d' excitation numérique brut est de la forme : Seb = Slp + S3p = kl.sin(cûOt) + k2. sin (3o0t) .
Le circuit d'asservissement d'excitation 25 est re lié au générateur haute fréquence 22.
Le circuit d' asservissement d'excitation 25 reçoit le signal de référence numérique de fréquence 3. f0 et produit à partir du signal de référence numérique de fré quence 3. f0 un signal de démodulation numérique de fré quence 3. f0.
Le signal de démodulation numérique de fréquence 3. f0 est ici de la forme :
S3d = k3. sin (3.coOt) .
Le circuit d' asservissement d' excitation 25 comporte un premier multiplieur 27, un deuxième multiplieur 23, un intégrateur 29 et un premier amplificateur 30. Le premier amplificateur 30 est connecté à une sortie de
1' intégrateur 29.
Le premier multiplieur 27 multiplie le signal de mesure numérique Sm par le signal de démodulation numé ique de fréquence 3. f0. Le signal résultant est appliqué en entrée de l' intégrateur 29.
On note que le premier multiplieur 27 et
1' intégrateur 29 jouent le rôle d'un premier démodulateur synchrone .
Le premier amplificateur 30 produit alors un signal d'erreur numérique . Le deuxième multiplieur 28 multiplie le signal d' excitation numérique brut Seb par le signal d' erreur numérique pour obtenir un signal d' excitation numérique . Le signal d' excitation numérique est de la forme :
Se = kO . ( kl . sin {mOt ) + k2. sin ( 3cOt ) ) . Le capteur de courant à vanne de flux 10 comprend de plus un circuit d'asservissement de démagnétisation 32. Le circuit d'asservissement de démagnétisation 32 est intégré dans le FPGA.
Le circuit d'asservissement de démagnétisation 32 est relié au générateur haute fréquence 22.
Le circuit d'asservissement de démagnétisation 32 reçoit le signal de réference numérique de fréquence 2. f0 et produit à partir du signal de référence numérique de fréquence 2. f0 un signal de démodulation numérique de fréquence 2. f0.
Le signal de démodulation numérique de fréquence 2. f0 est ici de la forme :
S2d = k4. cos (2. mOt ) .
Le circuit d'asservissement de démagnétisation 32 comporte un troisième multiplieur 33, un filtre passe-bas 34 et un deuxième amplificateur 35. Le deuxième amplifi cateur 35 est connecté à une sortie du filtre passe-bas 34.
Le troisième multiplieur 33 multiplie le signal de mesure numérique Sm par le signal de démodulation numé rique de fréquence 2. f0. Le signal résultant est appliqué en entrée du filtre passe-bas 34. Le deuxième amplifica teur 35 produit alors un signal image numérique du cou- rant à mesurer Im, qui est aussi un signal de démagnéti sation numérique Sdm. Le signal image numérique, ou si gnal de démagnétisation numérique Sdm, est de la forme Sdm = k . Im.
On note que le troisième multiplieur 33 et le filtre passe-bas 34 jouent le rôle d'un deuxième démodulateur synchrone .
Le capteur de courant à vanne de flux 10 comprend de plus un sommateur 36. Le sommateur 36 est implémenté dans le FPGA.
Le sommateur 36 somme le signal d'excitation numé- rique Se et le signal de démagnétisation numérique Sdm pour obtenir un signal d' injection numérique Si.
On a :
Si = kO . (kl . sin (coOt ) + k2. sin ( 3coOt ) ) + klm.
Le capteur de courant à vanne de flux 10 comporte en outre un circuit d'injection 37. Le circuit d'injection 37 appartient à la partie analogique 16.
Le circuit d'injection 37 est relié au sommateur 36 et à l'enroulement de mesure 14.
Le circuit d'injection 37 comprend un convertisseur numérique analogique 38.
Le convertisseur numérique analogique 38 est ici un convertisseur 12 bits dont le fonctionnement est cadencé à la fréquence Fech ( Fech = 100MHz) . Le convertisseur nu- mérique analogique 38 pourrait bien sûr présenter des caractéristiques différentes.
Le convertisseur numérique analogique 38 acquiert le signal d'injection numérique Si, produit un courant d'excitation analogique le à partir du signal d'injection numérique Si, et injecte le courant d'excitation le dans l'enroulement de mesure 14.
On décrit maintenant le fonctionnement du capteur de courant à vanne de flux 10.
Le circuit d'excitation 23 génère un signal d'excitation numérique Se, qui est transformé en un cou rant d'excitation le et injecté dans l'enroulement de me sure 14.
La tension de mesure Ve est acquise puis numérisée pour produire un signal de mesure numérique Sm.
En sortie du deuxième amplificateur 35, on obtient un signal image numérique du courant à mesurer Im. Ce si gnal image numérique est utilisé pour estimer le courant à mesurer Im.
Le signal image numérique est aussi un signal de dé magnétisation numérique Sdm qui permet de compenser le flux magnétique produit par le courant à mesurer Im.
Grâce au sommateur 36 et par mise en parallèle, on additionne facilement le signal de démagnétisation numérique Sdm et le signal d'excitation numérique Se. te cou- rant d'excitation le permet donc à la fois d'exciter le noyau magnétique 13 et de démagnétiser le noyau magné tique 13. Le courant de démagnétisation est donc intégré dans le courant d'excitation le.
La saturation du noyau magnétique 13 provoque une dissymétrie de la tension de mesure Ve, ladite tension de mesure Ve étant constituée par la somme d'une composante de fréquence fO en sin(coOt), correspondant à la fondamen tale, et d'une composante de fréquence 2. f0 en cos (2o0t ) , correspondant à la composante harmonique d'ordre 2.
On note que l'amplitude du signal d'excitation par tiel numérique de fréquence f0 et celle du signal d'excitation partiel numérique de fréquence 3. f0 sont ré glées pour obtenir un courant d'excitation le dont la composante de fréquence 3. f0 (ou composante harmonique d'ordre 3) est en phase avec la composante de fréquence fO (ou fondamentale) .
ta composante harmonique d'ordre 3 de la tension de mesure Ve, obtenue après démodulation synchrone via le premier démodulateur synchrone, est positive. En cas de saturation du noyau magnétique 13, la composante harmo nique d'ordre 3 est atténuée plus fortement que la fondamentale et la composante harmonique d'ordre 3 après démo dulation synchrone devient négative, car l'harmonique d'ordre 3 passe en opposition de phase avec la fondamen- taie.
Ainsi, lorsque le courant d'excitation le est tel que le noyau magnétique 13 se rapproche de la saturation, le rapport de l'amplitude de la composante harmonique d'ordre 1 et de l'amplitude de la composante harmonique d'ordre 3 de la tension de mesure Ve évolue jusqu'à annu- lation de la composante harmonique d'ordre 3, puis jusqu'à inversion de phase de la composante harmonique d'ordre 3. Le point de fonctionnement correspondant à l'annulation de la composante harmonique d'ordre 3 de la tension de mesure Ve est donc un point de fonctionnement optimal du capteur de courant à vanne de flux 10. Ce point de fonctionnement optimal correspond au coude 9 de la courbe de fonction de transfert de la figure 1.
En sortie du premier amplificateur 30, on obtient un signal d'erreur numérique.
Le signal d'erreur numérique permet d'asservir le courant d'excitation le. L'asservissement consiste à con trôler le courant d'excitation le pour annuler la compo sante harmonique d'ordre 3 de la tension de mesure Ve. Le capteur de courant à vanne de flux 10 fonctionne ainsi en permanence sur le point de fonctionnement optimal. On ob tient de la sorte un gain maximal des dissymétries intro duites par le courant à mesurer ïm et détectables sur la tension de mesure Ve. On note que cet asservissement par démodulation synchrone de la composante harmonique d'ordre 3 est peu sensible aux perturbations électromagnétiques externes, car tous les signaux de fréquence différente de la fréquence 3. f0 génèrent des produits d'intermodulation dont les composantes sont filtrées par le filtre passe-bas 34 connecté en sortie du troisième multiplieur 33. On note par ailleurs que cet asservisse ment n'a pas besoin d'être très rapide, car les varia tions provenant de paramètres extérieurs (température, vieillissement) sont relativement lentes.
Ainsi, l'enroulement de mesure 14 est utilisé à la fois pour exciter le noyau magnétique 13, pour contrôler cette excitation, pour mesurer le courant à mesurer Im, et pour compenser le flux magnétique produit dans le noyau magnétique 13 par le courant à mesurer Im (démagné tisation) . La mutualisation de ces fonctions sur un seul enrou lement de mesure 14 permet de simplifier, de réduire le coût et la masse, et de faciliter la fabrication du capteur de courant à vanne de flux 10,
On note par ailleurs que la chaîne de traitement de la mesure est principalement numérique : un unique FPGA permet de mettre en œuvre une grande partie de cette chaîne de traitement,
La numérisation de la chaîne de traitement augmente la fiabilité et la robustesse de celle-ci (notamment en température) , réduit son coût, facilite sa fabrication et améliore sa reproductibilité industrielle.
L' amélioration de la régulation du point de fonc tionnement grâce à la démodulation par le premier démodu- lateur synchrone permet par ailleurs d'obtenir une meil leure immunité aux bruits.
De plus, l'utilisation des démodulateurs synchrones permet de fonctionner à haute fréquence, ce qui autorise une bande passante importante du courant à mesurer Im tout en conservant une très bonne immunité aux perturba tions électromagnétiques externes.
Comme la mesure se fait toujours dans le point de fonctionnement optimal correspondant au coude 9 de satu ration, la sensibilité du capteur de courant à vanne de flux 10 est constante dans la plage de température. La précision du capteur de courant à vanne de flux 10 est donc bonne dans une plage importante de température.
Comme on l'a indiqué plus tôt, le capteur de courant à vanne de flux 10 mesure un courant à mesurer Im qui circule sur un conducteur 11.
Cette situation ne soulève pas de difficulté particulière lorsque le courant à mesurer Im est faible {infé rieur à IA par exemple) .
Cependant, lorsque le courant à mesurer est impor tant, une difficulté majeure se présente. Le courant de démagnétisation, qui permet de compenser le flux magnétique produit dans le noyau magnétique 13 par le courant à mesurer Im, doit être lui aussi très important. La valeur du courant de démagnétisation doit être égale à celle du courant à mesurer divisé par le rapport de transformation du transformateur 12, associé aux caractéristiques de l'enroulement primaire et de l'enroulement secondaire.
Or, le nombre de spires de l'enroulement de mesure 14 est limité par son encombrement et par l'inductance résultante. Plus l'inductance est élevée, plus la vitesse de changement du courant de démagnétisation (issue du si gnal de démagnétisation numérique Sdm) sera limitée, et donc plus la bande passante du capteur de courant à vanne de flux 10 sera limitée. Ainsi, augmenter le nombre de spires de l'enroulement secondaire n'est pas une solution efficace .
Augmenter le courant de démagnétisation n'est pas non plus une solution efficace. En effet, cela implique de générer une tension de démagnétisation très importante sous un courant de démagnétisation important, ce qui est complexe à réaliser avec des composants standards.
On note que ce problème n'est pas propre au capteur de courant à vanne de flux 10 qui vient d'être décrit, mais concerne tout les capteurs de courant à vanne de flux (et notamment ceux qui comportent un enroulement dé dié à la démagnétisation) .
Pour résoudre cette difficulté, on met en œuvre un pont diviseur de courant de manière à réduire la valeur du courant à mesurer.
En référence aux figures 5 à 7, le capteur de cou rant à vanne de flux 10 comprend un circuit imprimé selon l'invention 40 sur lequel sont notamment montés la plura lité de composants électroniques formant la partie numérique 15 et la partie analogique 16. Le circuit imprimé selon l'invention 40 comprend ici une première couche conductrice 41, une deuxième couche conductrice 42 et une couche isolante 43. La première couche conductrice 41 et la deuxième couche conductrice 42 s'étendent ici chacune sur une face opposée du circuit imprimé 40.
La première couche conductrice 41 comprend une pre mière piste 44 et la deuxième couche conductrice 42 comprend une deuxième piste 45. La couche isolante 43 s'étend donc entre la première piste 44 et la deuxième piste 45.
Le circuit imprimé 40 comporte de plus un premier ensemble traversant d' au moins un premier trou métallisé 47 et un deuxième ensemble traversant d'au moins un deu- xième trou métallisé 48. Ici, en l'occurrence, le premier ensemble traversant comprend plusieurs premiers trous métallisés 47 et le deuxième ensemble traversant comprend plusieurs deuxièmes trous métallisés 48. Les premiers trous métallisés 47 et les deuxièmes trous métallisés 48 ont ici tous un même premier diamètre.
Un « trou métallisé » pourrait aussi être appelé un « via ». Le « trou métallisé » peut être réalisé par tout type de procédé. Le « trou métallisé » peut en particu lier être rendu conducteur par dépôt d'un matériau métal- lique ou de tout type de matériau conducteur. Le « trou métallisé » peut aussi être rendu conducteur par insertion d'un tube ou d'un rivet métallique, ou de tout type de conducteur .
Chaque premier trou métallisé 47 et chaque deuxième trou métallisé 48 relient la première piste 44 et la deuxième piste 45 en s'étendant au travers de la couche isolante 43.
Le premier ensemble traversant et le deuxième en semble traversant forment respectivement une première branche 51 et une deuxième branche 52 d'un pont diviseur de courant 53.
Ainsi, le courant à mesurer Im est en réalité ici non pas un courant principal Ip dont on veut connaître la valeur, mais le courant à mesurer Im est issu d' une division du courant principal Ip et est utilisé pour estimer la valeur du courant principal Ip . Le courant principal Ip circule dans la première piste 44, dans la première branche 51 et la deuxième branche 52 du pont diviseur de courant 53, et dans la deuxième piste 45.
On voit bien ici que le conducteur 11 évoqué plus haut, sur lequel circule le courant à mesurer, est le deuxième ensemble traversant {ou la deuxième branche 52).
Ici, le courant principal Ip est égal à 10A.
Le nombre de premiers trous métallisés 47 du premier ensemble traversant est neuf fois plus important que ce lui de deuxièmes trous métallisés 48 du deuxième ensemble traversant. La deuxième résistance de la deuxième branche 52 est donc neuf fois plus élevée que la première résis- tance de la première branche 51.
Le courant à mesurer Im, circulant dans la deuxième branche 52 du pont diviseur de courant 53, est égal à IA, alors que le courant circulant dans la première branche 51 du pont diviseur de courant 53 est égal à 9A.
On met ici à profit les propriétés de reproductibi lité des caractéristiques électriques de plusieurs trous métallisés de même diamètre et adjacents sur le même circuit imprimé 40.
La première résistance de la première branche 51 et la deuxième résistance de la deuxième branche 52 sont mal connues mais leur rapport, lui, est connu de manière très précise grâce à cette reproductibilité.
Le premier ensemble traversant et le deuxième en semble traversant sont donc équivalents à deux résis tances shunt de rapport parfaitement maîtrisé. On connaît donc de manière très précise le rapport entre le courant à mesurer Im et le courant principal Ip . Mesurer le courant à mesurer I permet d'estimer très précisément le courant principal Ip, tout en réduisant celui-ci pour réduire le courant de démagnétisation re quis .
Le courant à mesurer Im est mesuré grâce au trans formateur 12 qui a été évoqué plus tôt.
Le transformateur 12 comporte le circuit imprimé 40 ou, plus exactement, une portion du circuit imprimé 40, car le circuit imprimé porte aussi la partie numérique 15 et la partie analogique 16.
Le deuxième ensemble traversant qui vient d'être dé crit est aussi appelé ici « ensemble traversant pri- maire ». Les deuxièmes trous métallisés 48 sont des
« trous métallisés primaires ».
Le circuit imprimé 40 comporte de plus un troisième ensemble traversant comportant au moins un troisième trou métallisé 56 s'étendant au travers de la couche isolante 43, et un quatrième ensemble traversant comportant au moins un quatrième trou métallisé 57 s'étendant au travers de la couche isolante 43. Ici, en l'occurrence, le troisième ensemble traversant comprend plusieurs troi sièmes trous métallisés 56 et le quatrième ensemble tra- versant comprend plusieurs quatrièmes trous métallisés 57. Les troisièmes trous métallisés 56 et les quatrièmes trous métallisés 57 ont ici tous un même deuxième dia mètre qui, pour une raison d'encombrement, est inférieur au premier diamètre des premiers trous métallisés 47 et des deuxièmes trous métallisés 48. Le nombre de troi sièmes trous métallisés 56 est égal au nombre de quatrièmes trous métallisés 57.
Le troisième ensemble traversant et le quatrième en semble traversant forment un ensemble appelé ici « en- semble traversant secondaire ». Dans l'ensemble traver- sant secondaire, les troisièmes trous métallisés 56 forment au moins un, en l'occurrence plusieurs « premiers trous métallisés secondaires » 56, et les quatrièmes trous métallisés 57 forment au moins un, en l'occurrence plusieurs « deuxièmes trous métallisés secondaires » 57.
Le transformateur 12 comporte de plus le noyau ma gnétique 13. Le noyau magnétique 13 s'étend dans une épaisseur du circuit imprimé 40.
Le noyau magnétique 13 présente la forme d'un tube de sections extérieure et inférieure rectangulaires. On note que le noyau magnétique 13 pourrait bien évidemment présenter une forme différente. Le noyau magnétique 13 comporte une portion de noyau primaire 60 et une portion de noyau secondaire 61.
L'ensemble traversant primaire s'étend à l'intérieur du noyau magnétique 13, à proximité de la portion de noyau primaire 60.
L'ensemble traversant primaire forme ainsi une por tion d'un enroulement primaire du transformateur 12, le- dit enroulement primaire comportant ici une seule spire.
Les premiers trous métallisés secondaires 56 s'étendent à l'intérieur du noyau magnétique 13, à proxi mité de la portion de noyau secondaire 61. Les deuxièmes trous métallisés secondaires 57 s'étendent à l'extérieur du noyau magnétique 13, à proximité de la portion de noyau secondaire 61.
On voit que les premiers trous métallisés secon daires 56 et les deuxièmes trous métallisés secondaires 57 sont reliés entre eux par des éléments conducteurs 65 (par exemple, mais pas nécessairement, des pistes) qui s'étendent sur la première couche conductrice 41 et sur la deuxième couche conductrice 42. Seuls deux éléments conducteurs 65 sont représentés sur la figure 7.
Le troisième ensemble traversant forme ainsi une première portion de l'enroulement secondaire du transfor- mateur 12, Le quatrième ensemble traversant forme ainsi une deuxième portion de l'enroulement secondaire du transformateur. L'ensemble traversant secondaire forme donc une portion de l'enroulement secondaire du transfor- mateur 12.
L'enroulement secondaire comporte une pluralité de spires, chaque spire comprenant un premier trou métallisé secondaire 56, un deuxième trou métallisé secondaire 57 et un élément conducteur 65.
Comme on l'aura compris, l'enroulement secondaire du transformateur 12 est l'enroulement de mesure 14 évoqué plus tôt.
On décrit maintenant la fabrication du circuit imprimé 40 et du noyau magnétique 13 qui s'étend dans une épaisseur du circuit imprimé 40.
Le circuit imprimé 40 comprend une première couche de « prépreg » (pour « préimprégné » ) et une deuxième couche de « prépreg ». La première couche de prépreg et la deuxième couche de prépreg ne sont pas polymérisées .
Le noyau magnétique 13 comporte un mélange d'une poudre magnétique et d'une résine constituant un liant de la poudre magnétique.
La poudre magnétique est formée d'une structure cristalline, en l'occurrence de grenat d'yttrium et de fer (YjFeisOj^) ·
La résine est une résine époxy.
Le noyau magnétique 13 est déposé sur la première couche de prépreg par sérigraphie.
Puis, le noyau magnétique 13 est recouvert par la deuxième couche de prépreg.
Le circuit imprimé 40 est ensuite passé dans un four .
On perce alors le circuit imprimé 40 pour réaliser les trous métallisés qui ont été décrits . Alternativement, il est possible fabriquer le noyau magnétique 13 en utilisant une technologie de fabrication additive par frittage laser.
La poudre magnétique est déposée sur une première couche de prépreg. Puis, un faisceau laser est utilisé pour agglomérer la couche de poudre magnétique sur des zones prédéfinies de manière à former le noyau magnétique 13.
Le noyau magnétique 13 est alors recouvert par la deuxième couche couche de prépreg.
La fabrication du noyau magnétique 13 par frittage laser semble plus efficace. En effet, dans le cas de la fabrication par sérigraphie, on constate que, dans le mélange de poudre magnétique et de résine, on trouve autant d' entrefers que de particules de poudre magnétique. Ces entrefers diminuent les performances du noyau magnétique 13. Dans le cas du frittage laser, les particules de la poudre magnétique sont fusionnées, ce qui évite de créer lesdits entrefers.
Bien entendu, l' invention n'est pas limitée au mode de réalisation décrit mais englobe toute variante entrant dans le champ de l 'Invention telle que définie par les revendications .
On a indiqué que le capteur de courant à vanne de flux comporte une partie numérique et une partie analogique, et que le convertisseur analogique numérique et le convertisseur numérique analogique appartiennent à la partie analogique. Bien sûr, on pourrait considérer que ces composants sont des composants numériques, et même qu' ils sont directement intégrés dans le FPGA (ou dans un microcontrôleur ou autre composant numérique) , de sorte qu'ils appartiendraient alors à la partie numérique.
On a indiqué ici que la première couche conductrice comprenant la première piste et la deuxième couche con ductrice comprenant la deuxième piste s'étendent ici cha- cune sur une face opposée du circuit imprimé. Bien sûr, la première couche conductrice et la deuxième couche con ductrice pourraient être des couches internes du circuit imprimé, séparées par une ou plusieurs couches isolantes.
On a aussi décrit des ensembles traversant compre nant chacun un ou des trous métallisés. Les trous métal lisés traversent ici une même couche isolante. Bien sûr, les trous métallisés pourraient traverser plusieurs couches isolantes, voir même une ou des couches isolantes et une ou des couches conductrices. Des ensembles traver sant distincts pourraient aussi traverser des piles de couches distinctes.
On a indiqué ici que l'ensemble traversant secon daire comprend au moins un premier trou métallisé secon- daire et au moins un deuxième trou métallisé secondaire qui s'étendent de part et d'autre d'une portion de noyau secondaire du noyau magnétique. Bien sûr, il est possible aussi que l'ensemble traversant primaire comprenne au moins un premier trou métallisé primaire et au moins un deuxième trou métallisé primaire qui s'étendent de part et d'autre d'une portion de noyau primaire du noyau ma gnétique. Les deux configurations peuvent aussi coexis ter .
Bien sûr, le circuit imprimé selon l'invention et le pont diviseur de courant peuvent être utilisés dans tout type d'application requérant un pont diviseur de courant : l'invention n'est aucunement limitée aux capteurs de courant à vanne de flux.

Claims

REVENDICATIONS
1. Circuit imprimé comportant une première piste (44), une deuxième piste (45) et au moins une couche iso lante (43) s' étendant entre la première piste et la deu xième piste, le circuit imprimé comportant de plus un premier ensemble traversant d' au moins un premier trou métallisé (47) et un deuxième ensemble traversant d' au moins un deuxième trou métallisé (48), chaque premier trou métallisé et chaque deuxième trou métallisé reliant la première piste et la deuxième piste en s'étendant au travers de la couche isolante, le premier ensemble tra versant et le deuxième ensemble traversant formant res pectivement une première branche (51) et une deuxième branche (52) d'un pont diviseur de courant (53).
2. Circuit imprimé selon la revendication 1, dans lequel la première piste et la deuxième piste s'étendent chacune sur une face opposée du circuit impri mé (40) .
3. Circuit imprimé selon l'une des revendications précédentes, dans lequel le ou les premiers trous métallisés (47) et le ou les deuxièmes trous métallisés (48) ont un même premier diamètre.
4. Circuit imprimé selon l'une des revendica tions précédentes, comportant en outre des moyens de me sure agencés pour mesurer un courant à mesurer (Im) cir culant dans la deuxième branche (52), les moyens de mesure étant utilisés pour estimer un courant principal (Ip) circulant dans la première piste (44) et la deuxième piste (45) à partir du courant à mesurer.
5. Circuit imprimé selon la revendication 4, dans lequel les moyens de mesure comprennent un transfor mateur (12), le deuxième ensemble traversant formant une portion d'un enroulement primaire du transformateur (12).
6. Circuit imprimé selon la revendication 5, comportant de plus un troisième ensemble traversant d'au moins un troisième trou métallisé (56) s'étendant au travers de la couche isolante (43) , le troisième ensemble traversant formant une première portion d'un enroulement secondaire du transformateur.
7. Circuit imprimé selon la revendication 6, comportant de plus un quatrième ensemble traversant d' au moins un quatrième trou métallisé (57) s'étendant au travers de la couche isolante (43) , le quatrième ensemble traversant formant une deuxième portion de 17 enroulement secondaire du transformateur.
8. Circuit imprimé selon la revendication 7, dans lequel le ou les troisièmes trous métallisés et le ou les quatrièmes trous métallisés ont un même deuxième diamètre inférieur au premier diamètre.
9. Circuit imprimé selon l'une des revendications 5 à 8, dans lequel le transformateur comporte un noyau magnétique (13) qui s'étend dans une épaisseur du circuit imprimé (40) .
10. Circuit imprimé selon les revendications 7 et
9, dans lequel le noyau magnétique comprend une portion de noyau secondaire (61) qui s'étend entre le troisième ensemble traversant et le quatrième ensemble traversant.
11. Capteur de courant à vanne de flux comportant un circuit imprimé selon l'une des revendications précé dentes .
EP19734372.6A 2018-06-27 2019-06-26 Circuit imprimé intégrant un pont diviseur de courant Pending EP3814783A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855757A FR3083320B1 (fr) 2018-06-27 2018-06-27 Circuit imprime integrant un pont diviseur de courant
PCT/EP2019/067098 WO2020002484A1 (fr) 2018-06-27 2019-06-26 Circuit imprimé intégrant un pont diviseur de courant

Publications (1)

Publication Number Publication Date
EP3814783A1 true EP3814783A1 (fr) 2021-05-05

Family

ID=65031298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19734372.6A Pending EP3814783A1 (fr) 2018-06-27 2019-06-26 Circuit imprimé intégrant un pont diviseur de courant

Country Status (5)

Country Link
US (1) US11579173B2 (fr)
EP (1) EP3814783A1 (fr)
CN (1) CN112368583A (fr)
FR (1) FR3083320B1 (fr)
WO (1) WO2020002484A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083321B1 (fr) * 2018-06-27 2021-03-05 Safran Electronics & Defense Capteur de courant a vanne de flux
FR3083365B1 (fr) * 2018-06-27 2020-07-17 Safran Electronics & Defense Transformateur comportant un circuit imprime
EP3699605B1 (fr) * 2019-02-20 2022-04-06 Samsung SDI Co., Ltd. Unité de gestion de batterie dotée d'un capteur de courant de flux intégré à une carte de circuit imprimé

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558188B1 (en) * 2000-06-22 2003-05-06 Hewlett Packard Development Company, L.P. Impedance controlled electrical connector assembly
DE102008018885A1 (de) * 2008-04-14 2009-10-22 Sew-Eurodrive Gmbh & Co. Kg Leiterplatte, Verfahren zur Bestimmung eines Stromraumzeigers, Umrichter, Leiterplatte und Baureihe von Umrichtern
JP5284194B2 (ja) * 2008-08-07 2013-09-11 キヤノン株式会社 プリント配線板およびプリント回路板
CN201444565U (zh) * 2009-01-05 2010-04-28 于江涛 用小电流互感器检测大电流的电子控制装置
US20130009655A1 (en) * 2011-03-01 2013-01-10 Sendyne Corporation Current sensor
FR2979790B1 (fr) * 2011-09-07 2013-10-11 Commissariat Energie Atomique Capteur de courant
JP5815353B2 (ja) * 2011-09-28 2015-11-17 株式会社フジクラ コイル配線素子およびコイル配線素子の製造方法
US9468090B2 (en) * 2012-10-29 2016-10-11 Cisco Technology, Inc. Current redistribution in a printed circuit board
US9140735B2 (en) * 2013-05-03 2015-09-22 Infineon Technologies Ag Integration of current measurement in wiring structure of an electronic circuit
GB2525692B (en) * 2014-04-30 2018-08-22 Megger Instruments Ltd Differential current transformer
FR3033977B1 (fr) * 2015-03-20 2018-08-17 Thales Procede de fabrication d'un circuit imprime et circuits imprimes correspondants
CN206411180U (zh) * 2016-10-20 2017-08-15 森达因公司 相对于第一测量点和第二测量点来测量电流的设备
CN106546790A (zh) * 2016-11-25 2017-03-29 云南电网有限责任公司电力科学研究院 一种差分结构电阻分压器
CN106855584A (zh) * 2016-12-09 2017-06-16 德阳市库伦电气有限公司 一种使用电流互感器测量电流的方法
CN108205077A (zh) * 2016-12-16 2018-06-26 联合汽车电子有限公司 电流检测装置、电流检测系统及电流检测方法
CN207181502U (zh) * 2017-09-25 2018-04-03 山东联合电力技术有限公司 一种基于并联电阻分流原理的电流互感器
FR3083365B1 (fr) * 2018-06-27 2020-07-17 Safran Electronics & Defense Transformateur comportant un circuit imprime
KR102602873B1 (ko) * 2021-02-17 2023-11-16 스마트전자 주식회사 전류 센싱 장치

Also Published As

Publication number Publication date
FR3083320B1 (fr) 2022-11-11
WO2020002484A1 (fr) 2020-01-02
US11579173B2 (en) 2023-02-14
US20210141002A1 (en) 2021-05-13
FR3083320A1 (fr) 2020-01-03
CN112368583A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
EP3814782B1 (fr) Capteur de courant a vanne de flux
EP3815117A1 (fr) Transformateur de mesure comportant un circuit imprime
EP3814783A1 (fr) Circuit imprimé intégrant un pont diviseur de courant
WO1998048287A1 (fr) Dispositif de mesure, a large bande passante, de l'intensite du courant electrique dans un conducteur
FR2744806A1 (fr) Detecteur de champ magnetique et procede de detection
WO2005091316A1 (fr) Composants supraconducteurs en couches minces a inductance accordable procede de realisation et dispositifs incluant de tels composants
EP3555642A1 (fr) Capteur de courant a vanne de flux
EP0317497B1 (fr) Détecteur de position
EP1844499B1 (fr) Utilisation de composants supraconducteurs en couches minces comme inductance variable, dispositifs incluant de tels composants, et procede de commande associe
EP1217707B1 (fr) Dispositif de détermination du courant primaire d'un transformateur de courant comportant des moyens de correction de saturation
EP0078188A1 (fr) Dispositif hyperfréquence à large bande générateur des harmoniques d'ordre pair d'un signal incident, et utilisation d'un tel dispositif dans un système hyperfréquence
EP2830215B1 (fr) Preamplificateur de charge
FR2989171A1 (fr) Procede et dispositif de mesure d'un champ magnetique et de la temperature d'un transducteur magneto-resistif
EP3692415B1 (fr) Oscillateur radiofréquence et source et appareil associés
EP4127736A2 (fr) Capteur de courant a tres large bande passante
EP3077833A1 (fr) Analyseur de spectre analogique
FR3143129A1 (fr) Capteur magnétique de courant combinant deux voies de mesure
EP0083529A2 (fr) Ensemble d'amplification pour tensions de fortes excursions et source de tension comprenant un tel ensemble d'amplifications
EP4055395A1 (fr) Détecteur de courant, capteur, système et procédé associés
WO2024046946A1 (fr) Carte de circuit imprimé pour un capteur inductif de position, muni d'un moyen d'insensibilisation à un environnement métallique
EP0439448A1 (fr) Dispositif perfectionne de combinaison de deux signaux alternatifs de meme frequence
EP3143692A1 (fr) Circuit mélangeur à contenu harmonique compensable
FR2753020A1 (fr) Dispositif de commande de la phase d'un signal electrique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/28 20060101ALI20230310BHEP

Ipc: G01R 15/18 20060101AFI20230310BHEP

17Q First examination report despatched

Effective date: 20230327