EP3799624A1 - Portable electrochemical microscopy device, kits comprising same and uses thereof - Google Patents

Portable electrochemical microscopy device, kits comprising same and uses thereof

Info

Publication number
EP3799624A1
EP3799624A1 EP19748584.0A EP19748584A EP3799624A1 EP 3799624 A1 EP3799624 A1 EP 3799624A1 EP 19748584 A EP19748584 A EP 19748584A EP 3799624 A1 EP3799624 A1 EP 3799624A1
Authority
EP
European Patent Office
Prior art keywords
portable device
working probe
movable member
substrate
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19748584.0A
Other languages
German (de)
French (fr)
Inventor
Gaëlle CHARRIER
Aurélien DOUBLET
Guy Deniau
Renaud CORNUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Protec Industrie
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Protec Industrie
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protec Industrie, Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Protec Industrie
Publication of EP3799624A1 publication Critical patent/EP3799624A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/60SECM [Scanning Electro-Chemical Microscopy] or apparatus therefor, e.g. SECM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the invention relates to the field of analysis, characterization and localized modification of surfaces by electrochemistry.
  • the invention relates to a portable (or portable) electrochemical microscopy device which, while offering the same performance as the scanning electrochemical microscopy (or SECM "Scanning Electro-Chemical Microscopy") apparatus of the state of the art, overcomes the constraints imposed by these devices and, in particular, by the limited dimensions of their electrochemical cell and by the size of the electrical and / or mechanical elements with which these devices are provided to ensure and control the sweep.
  • SECM Scnning Electro-Chemical Microscopy
  • the invention also relates to kits comprising such a portable device as well as to the uses of this device and of these kits.
  • the invention finds application in all fields of use of SECM. However, it is of particular interest when it is desired to use this technique to study and / or locally modify the surface of large parts or of complex shapes, for example:
  • SECM is a local probe microscopy technique which offers the possibility of examining, imaging but also locally modifying the surface of a sample by electrochemistry using a probe which is a miniaturized electrode, called an ultramicroelectrode (or UME), and which sweeps this surface.
  • UME ultramicroelectrode
  • this apparatus referenced 1
  • this apparatus comprises:
  • an electrochemical cell 10 which is intended to be filled with an electrolytic solution 15 optionally comprising a salt (mineral or organic) allowing good conductivity and / or an electroactive species (electrooxidizing or electroreductive) or redox mediator, and in which are immersed , under operating conditions, the sample 11 to be analyzed, the EMU 12, a counter electrode 13 and optionally a reference electrode 14;
  • an electrolytic solution 15 optionally comprising a salt (mineral or organic) allowing good conductivity and / or an electroactive species (electrooxidizing or electroreductive) or redox mediator, and in which are immersed , under operating conditions, the sample 11 to be analyzed, the EMU 12, a counter electrode 13 and optionally a reference electrode 14;
  • potentiostat if a potential is intended to be applied to the single UME 12 under operating conditions or, as shown in FIG. 1, a bipotentiostat 16 if a potential is intended to be applied to both sample 11 and EMU 12 under operating conditions;
  • a computer system 17 for acquiring and processing data that is to say currents measured at the EMU 12 while the latter scans the surface of the sample 11, which will in particular depend on the distance separating the EMU 12 from the surface of the sample 11 and the characteristics of this surface.
  • SECM equipment therefore presents two constraints: the first is related to the fact that they only allow work on samples whose dimensions are imposed by the dimensions of the electrochemical cell, which makes it impossible to use SECM for study the surface of large or complex parts except to destroy these parts to take samples or to work on control samples, supposed to be representative of these parts but which are not the parts themselves; the second is linked to the size of the system making it possible to position the EMU relative to the sample and to control this positioning.
  • Another object of the invention is to provide a portable device for electrochemical microscopy, the design, manufacturing and maintenance costs of which are compatible with use on an industrial scale.
  • the invention which is based on the adaptation of an electrochemical cell in the form of a stylus, the electrolyte being applied locally to a surface of the substrate to be analyzed by bringing one end of the stylus into contact. with the surface to be analyzed.
  • the electrolyte used as a medium between the working probe and the surface of the substrate to be analyzed is supplied locally at this surface.
  • the device thus formed always makes it possible to analyze a plurality of points on the surface of the substrate by a displacement of the device on each of these points.
  • a first object of the invention consists of a portable electrochemical microscopy device, which comprises:
  • a body having a gripping surface for a user and a bearing surface adapted to bear against a surface of a substrate to be analyzed
  • an electrolytic chamber formed in the body, arranged to receive an electrolyte, the electrolyte chamber having an opening at the bearing surface, and
  • the gripping surface arranged on the body is preferably arranged to allow a grip by a user. It is for example in the form of a cylindrical surface with circular section. The diameter can be between 0.5 cm (centimeter) and 10 cm, so that the device can be held with one hand, for example in the manner of a stylus.
  • the gripping surface can also be in the form of a surface, cylindrical or non-cylindrical, of polygonal section, for example square or hexagonal. It can also be profiled to form a handle.
  • the bearing surface arranged on the body is preferably arranged to be able to match the surface of the substrate to be analyzed.
  • the support surface can be curved or flat. It can fit into an area between 0.2 cm 2 (square centimeters) and 100 cm 2 .
  • the electrolytic chamber is preferably arranged so as to be able to contain an electrolyte for the duration of a measurement or of a sequence of measurements.
  • it advantageously has walls which are impervious to the electrolyte.
  • the volume of the electrolytic chamber is for example between 0.04 cm 3 (cubic centimeter) and 400 cm 3 .
  • it is between 0.5 cm 3 and 2 cm 3 .
  • the portable device is preferably arranged in such a way that, during use, the bearing surface being in contact with the substrate, the electrolyte is contained in the delimited volume, on the one hand, by the electrolytic chamber and, on the other hand, by the substrate, and is both in contact with the substrate and with the distal end of the working probe.
  • the working probe typically consists of an electrode comprising a glass capillary and a conductive wire sealed in the capillary.
  • the conducting wire is for example made of gold, platinum or carbon fiber.
  • the working probe may have a cylindrical shape.
  • the working probe is arranged so that its longitudinal axis is perpendicular to a plane passing through the bearing surface of the body. For a curved bearing surface, a plane passing through this surface is defined as being a plane passing through at least one point of the bearing surface.
  • the diameter of the working probe can be between 10 miti (micrometers) and 100 miti. Of preferably, it is between 20 miti and 50 miti. In general, the diameter of the probe is determined according to the desired measurement resolution.
  • the working probe is advantageously arranged so that its distal end is located at a predetermined distance from a plane passing through the bearing surface of the body.
  • the predetermined distance is for example between 0 pm and 200 microns, between 5 pm and 200 pm or between 5 pm and 150 pm.
  • the working probe is fixed to the body, so that its distal end is fixed relative to a plane passing through the bearing surface. The distance between the distal end of the working probe and the substrate is then constant.
  • the portable device further comprises a positioning device arranged to allow movement of the working probe relative to the bearing surface.
  • the positioning device is arranged to allow movement along an axis of translation perpendicular to a plane passing through the bearing surface. The positioning device then makes it possible to place the working probe at a desired distance from the substrate. The distance between the working probe and the substrate corresponds substantially to the distance between the working probe and the plane passing through the bearing surface of the body.
  • the positioning device may in particular comprise a movable member and a drive mechanism.
  • the movable member is arranged to carry the working probe and to be able to be moved relative to the body. It can in particular be arranged so that it can be moved in translation relative to the body along an axis of translation.
  • the drive mechanism is arranged to move the movable member relative to the body.
  • the body of the portable device comprises a guide housing, the guide housing and the movable member being arranged so that the movable member is guided in translation relative to the body.
  • the guide housing and the movable member have, for example, complementary cylindrical shapes.
  • the drive mechanism may in particular comprise an electromechanical actuator such as a piezoelectric motor or a stepping motor. Such actuators generate relatively small amplitude displacements and allow positioning of the working probe with a resolution of the order of a few times.
  • the drive mechanism may also include a manual actuator.
  • it may include a micrometric screw.
  • a micrometric screw has a reference surface and a movable surface and is arranged to allow a modification of a distance separating the reference surface from the movable surface.
  • the reference surface is arranged to be secured to the body and the movable surface is arranged to be secured to the movable member.
  • the mobile member comprises a housing for receiving the working probe and a fixing member.
  • the receiving housing is arranged to receive a proximal end of the working probe and the fixing member is arranged to fix the working probe to the movable member.
  • the movable member can be arranged to fix the working probe at its proximal end.
  • the reception housing comprises a cylindrical orifice of revolution of diameter greater than the diameter of the working probe and the fixing member comprises a screw arranged so as to be able to press the working probe on a surface of the '' cylindrical orifice.
  • the reception housing comprises a first cylindrical orifice of revolution and a second cylindrical orifice of revolution.
  • the two holes are concentric.
  • the first orifice opens on the one hand into the electrolytic chamber and on the other hand into the second orifice.
  • the first orifice has a diameter greater than a body of the working probe and less than a diameter of the protuberance.
  • the second orifice opens out and has a diameter greater than the diameter of the protuberance. It thus forms a recess intended to accommodate the protuberance.
  • the fixing member can then consist of a plug of elastomeric material, the dimensions of which are arranged so as to be able to block the second orifice and prevent the withdrawal of the working probe.
  • the positioning device may further include a temporary coupling mechanism for reversibly coupling the movable member to the drive mechanism.
  • the temporary coupling mechanism comprises a permanent magnet, the permanent magnet being secured to the movable member or the drive mechanism and arranged so that it can be coupled with a metallic element secured to the moving mechanism or organ.
  • the coupling mechanism can include several permanent magnets.
  • the temporary coupling mechanism comprises a set of male-female parts capable of coupling by elastic deformation, one of the parts being secured to the movable member and the other piece being secured to the drive mechanism.
  • the portable device further comprises at least one additional working probe, each additional working probe having a distal end disposed in the electrolytic chamber.
  • the portable device can in particular comprise two, three or four additional working probes, that is to say three, four or five working probes.
  • the working probes can be of the same type as the working probe described above. They can in particular be identical to each other.
  • the probes can be arranged so that their distal ends are all located at the same distance from a plane passing through the bearing surface. They then make it possible to multiply the measurement points without moving the portable device.
  • the probes can be arranged to be aligned along an axis, so as to form a circle or a star.
  • At least two working probes can be arranged so that their distal ends are situated at distinct distances from the plane passing through the bearing surface.
  • the portable device comprises a mobile member able to be moved by a drive mechanism
  • the additional working probes are advantageously mounted on the mobile member, so that all the working probes follow the same movement.
  • the portable device also comprises a so-called normalization probe.
  • This probe which is of the same type as the working probe (s), is arranged so that its distal end is located at an infinite distance from the plane passing through the bearing surface. The distance is for example considered to be infinite when it is greater than or equal to 7 times the size of the conductive wire sealed in the capillary.
  • the normalization probe makes it possible to determine an infinite current, that is to say a current passing through a working probe when it is located at an infinite distance from the substrate.
  • the normalization probe can be fixed relative to the body of the portable device.
  • the portable device may further include a counter electrode and possibly a reference electrode. These electrodes are arranged so that their distal ends are arranged in the electrolytic chamber. According to a first alternative embodiment, the counter electrode and, where appropriate, the reference electrode are fixed relative to the body, so that their distal end is fixed relative to a plane passing through the bearing surface of the body. According to a second alternative embodiment, the counter-electrode and, where appropriate, the reference electrode move with the working probe or probes relative to the bearing surface. These electrodes are for example mounted on the movable member of the positioning device.
  • an exterior surface of the body of the portable device forms a cylinder of revolution.
  • the gripping surface is then formed by the entire outer surface of the body, the body being in the form of a stylus.
  • the body comprises a cylindrical section and a frustoconical section.
  • the cylindrical section has an outer surface forming a cylinder of revolution and the frustoconical section has an outer surface forming a truncated cone flaring between a first base, integral with the cylindrical section, and a second base forming the bearing surface.
  • the first base preferably has a diameter equal to the diameter of the cylindrical section.
  • the gripping surface can be formed by the outer surface of the cylindrical section and / or the outer surface of the frustoconical section. This embodiment has the advantage of having a bearing surface relatively large for better stability of the device, while retaining a gripping surface whose dimensions are adapted to a grip by a user.
  • the body comprises an electrolyte injection orifice extending between an external surface of the body and the electrolytic chamber.
  • This electrolyte injection orifice makes it possible to supply the electrolyte necessary for the measurement while the portable device is in the operational position, the bearing surface being in contact with the substrate.
  • the body may include a non-return valve disposed in the electrolyte injection orifice or a plug capable of obstructing this orifice.
  • the body may include a wire passage opening arranged to be able to pass one or more connection wires between the working probe and the outside of the body.
  • the opening for passage of wires can be arranged between an external surface of the body and the guide housing.
  • the invention also relates to kits comprising a portable device as previously described.
  • the kit includes the device filled with an electrolyte and a user manual.
  • the kit comprises the device, a container, for example of the hermetically closed bottle type, containing an electrolyte and a user manual.
  • the electrolyte can be in a liquid form or in the form of a gel.
  • an aqueous or organic solution comprising at least one compound capable of ionizing in solution, for example a mineral or organic salt, and optionally at least one redox mediator, or an ionic liquid optionally comprising at least one redox mediator.
  • a gel obtained by adding a gelling agent of the gelatin, pectin, agar-agar, alginate, gum arabic, gum xanthan, carrageenan type. or the like, to an aqueous or organic solution as defined above or to an ionic liquid as defined above.
  • the salt can in particular be a metal salt and, in particular, an alkali metal such as sodium chloride or potassium chloride.
  • the redox mediator can be chosen from all the electro active species whose use has been proposed in SECM according to the use for which the device is intended.
  • it can also be inorganic in nature such as ruthenium hexaamine [Ru (NH3) e] 3 + / 2 + or ferri / ferrocyanide [Fe (CN) 6 ] 3 / 4_ , organometallic in nature such as ferrocene [FcCp 2 ] + / 0 and decamethylferrocene Meio [FcCp2] + / 0 only organic in nature such as dopamine or 1,2-naphthoquinone.
  • Ru (NH3) e] 3 + / 2 + or ferri / ferrocyanide [Fe (CN) 6 ] 3 / 4_ organometallic in nature such as ferrocene [FcCp 2 ] + / 0 and decamethylferrocene Meio [FcCp2] + / 0 only
  • the invention also relates to the use of a device or a kit as defined above to analyze, characterize and / or locally modify a surface.
  • FIG. 1 already commented on, schematically illustrates a typical example of a SECM apparatus of the state of the art.
  • FIG. 2 represents, in a longitudinal section view, a first embodiment of a portable electrochemical microscopy device of the invention.
  • FIG. 3 represents, in a perspective view, a second embodiment of a portable electrochemical microscopy device of the invention.
  • FIG. 4A represents, in a longitudinal section view, a third embodiment of a portable electrochemical microscopy device of the invention.
  • Figures 4B and 4C show, in a perspective view and in a longitudinal sectional view, respectively, a body of the portable device of Figure 4A.
  • Figure 4D shows, in a perspective view, a movable member of the portable device of Figure 4A.
  • FIG. 4E represents, in a front view, a micrometric screw of the portable device of FIG. 4A.
  • FIG. 5 illustrates the voltammogram as obtained by subjecting a portable electrochemical microscopy device of the invention to a cyclic voltammetry test, away from any substrate, and in which this device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the intensity, denoted I and expressed in nA (nanoamps), of the current measured at the EMU of the device, while the abscissa axis at potential, denoted E and expressed in V (volts) compared to the potential of the reference electrode, applied to this UME.
  • FIG. 6 illustrates the evolution of the normalized current, noted I N , as a function of time, noted t and expressed in s (seconds), as obtained in a test consisting in successively placing the tip of the EMU of a portable electrochemical microscopy device of the invention to infinity ( ⁇ ) of an insulating substrate then in contact with the surface of this substrate and in which this device contains a liquid electrolyte.
  • FIG. 7 illustrates the approach curve as obtained in a test consisting in gradually approaching, over a period of 40 s, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at the infinity ( ⁇ ) of an insulating substrate, of this substrate until this point is located at 10 1 ⁇ 2 of the surface of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
  • Figure 8 illustrates the distance curve as obtained in a test consisting in progressively moving away, over a period of 40 s, the tip of the EMU from a portable electrochemical microscopy device of the invention, initially located at 10 m from the surface of an insulating substrate, from this substrate until this point is located at infinity ( ⁇ ) of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
  • FIG. 9 illustrates the approach curves (left curve) and distance (right curve) curves as obtained in a test consisting in approaching, by successive steps of 10 miti, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at infinity ( ⁇ ) of an insulating substrate, from the surface of this substrate until this point is located at 10 m half of this surface, then away , also in successive steps of 10 ⁇ m, the tip of the EMU from the surface of the substrate until this tip is at infinity ( ⁇ ) of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
  • FIG. 10 illustrates the values of the normalized current, noted I N , as a function of time, noted t and expressed in s, as obtained in a test consisting in presetting the tip of the UME of a portable electrochemical microscopy device of the invention so that this point is located at a predetermined distance, denoted D, of 10 miti, 30 miti, 40 miti, 50 miti, 60 miti or 100 miti from the surface of an insulating substrate when this device is applied on this surface, and in which the device contains a liquid electrolyte;
  • the triangles (D) correspond to the values obtained directly above a first point on the surface of the substrate;
  • the crosses (x) correspond to the values obtained plumb with a second point on the surface of the substrate while the circles (o) correspond to the values obtained plumb with a third point on the surface of the substrate.
  • FIG. 11 illustrates the values of the normalized current, denoted I N , as obtained in a test consisting in presetting the tip of the EMU of a portable electrochemical microscopy device of the invention so that this tip is located a distance of 50 ⁇ m from the surface of an insulating substrate when this device is applied to this surface, and in which the device contains a liquid electrolyte; in this figure, the crosses (x) correspond to the values obtained vertically from five points, denoted P, different from the surface of the substrate.
  • Figure 12 is a figure similar to Figure 6 but for a conductive substrate.
  • FIG. 13 illustrates the approach curve as obtained in a test consisting in approaching, in successive steps of 10 ⁇ m, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at l 'infinity ( ⁇ ) of a conductive substrate, from the surface of this substrate until this point is located at 10 half of this surface, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N, while the abscissa axis corresponds to time, noted t and expressed in s.
  • Figure 14 is a figure similar to Figure 5 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
  • Figure 15 is a figure similar to that of Figure 6 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
  • Figure 16 is a figure similar to that of Figure 12 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
  • insulator means “electrical insulator” while the term “conductor” means “electrical conductor”.
  • FIG. 2 represents, in a longitudinal section view, a first embodiment of a portable electrochemical microscopy device of the invention.
  • the portable device 20 comprises a body 21, an electrolytic chamber 22 formed in the body 21 and a working probe 23.
  • the body 21 has an outer surface forming a cylinder of revolution. This outer surface constitutes a gripping surface 21A for a user.
  • the outside diameter of the body 21 can be between 0.5 cm and 10 cm. It is for example equal to 2 cm.
  • the length of the body 21 can be between 3 cm and 20 cm. It is for example equal to 6 cm.
  • the electrolytic chamber 22 is formed in the body 21 and opens onto the surface of one of the longitudinal ends of the body 21, called the lower end. The remaining surface of this end forms a bearing surface 21B for the portable device 20.
  • the electrolytic chamber 22 for example forms a cylinder of revolution whose longitudinal axis coincides with the longitudinal axis of the body 21.
  • the surface of support 21B is then annular.
  • the electrolytic chamber 22 has for example a diameter equal to 1 cm and a height equal to 0.5 cm.
  • the body 21 also comprises a housing for receiving the working probe 211 and a wire passage opening 212.
  • the reception housing 211 opens, on the one hand, into the electrolytic chamber 22 and, on the other hand , in the wire passage opening 212. It is designed to accommodate the working probe 23.
  • the dimensions of the receiving housing 211 are adapted to those of the working probe 23. They allow for example an adjustment with play.
  • the wire passage opening 212 is formed in the body 21 so as to open onto the surface of the upper end of the body 21, that is to say the longitudinal end opposite the end on which is formed the electrolytic chamber 22.
  • the wire passage opening 212 is arranged to allow the passage of a connection wire 24 from the proximal end 231 of the working probe towards the outside of the body 21.
  • the working probe 23 is arranged so that its end distal 232 is disposed in the electrolytic chamber 22. It is further arranged so that its distal end 232 is located at a predetermined distance from a plane passing through the bearing surface 21B. This distance, called the working distance, is for example between 0 pm and 200 pm.
  • the working probe 23 typically has the shape of a cylinder of revolution.
  • the working probe 23 is fixed relative to the body 21.
  • the fixing is for example ensured by gluing.
  • the probe 23 consists for example of an electrode comprising a glass capillary and a conducting wire inserted in the capillary. This type of electrode is commonly called "ultramicroelectrode" or "UME”.
  • the portable device 20 can be used in the following manner.
  • An electrolyte is placed in the electrolytic chamber 22.
  • the electrolyte can be present in liquid form or in the form of a gel.
  • the gel form has the advantage of being more easily maintained in the electrolytic chamber 22.
  • the body 21 is then taken in hand by a user via its gripping surface 21A and manipulated so that its bearing surface 21B comes resting on a surface of a substrate to be analyzed.
  • the electrolyte present in the electrolytic chamber 22 is then in contact both with the distal end 232 of the probe and with the substrate.
  • electrochemical microscopy measurements can be carried out in a conventional manner.
  • a set of measurements can be made by manually moving the portable device 20 over the surface of the substrate.
  • a difference with the conventional SECM is that the substrate sample to be analyzed is not fully immersed in an electrolyte bath.
  • FIG. 3 represents, in a perspective view, a second embodiment of a portable electrochemical microscopy device of the invention.
  • the portable device 30 comprises, similarly to the portable device 20 described with reference to FIG. 2, a body 31, an electrolytic chamber 32 formed in the body 31 and a working probe, not shown.
  • the portable device 30 differs from the portable device 20 described above in that the body 31 has a cylindrical section 311 and a frustoconical section 312.
  • the cylindrical section 311 has an outer surface forming a cylinder of revolution and the frustoconical section 312 has a surface outer forming a truncated cone.
  • the outer surface of these two sections constitutes a gripping surface 31A.
  • the truncated cone flares along the longitudinal axis of the cylindrical section 311 between a first base secured to the cylindrical section 311 and a second base forming a bearing surface 31B.
  • the electrolytic chamber 32 is formed in the frustoconical section 312 and opens at the bearing surface 31B.
  • a housing for the working probe 313 is formed in the frustoconical section 312 and a wire passage opening 314 is formed in the cylindrical section 311.
  • the electrolytic chamber 32 and the housing d reception of the working probe 313 could be partly formed in the cylindrical section 311.
  • the opening for passage of wires 314 could be partly formed in the frustoconical section 312.
  • the working probe is fixed relative to the body of the device, so that its distal end is located at a constant distance from the plane formed by the bearing surface, and therefore from the substrate .
  • the portable electrochemical microscopy device can be arranged so that the distance between the distal end of the working probe and the plane formed by the bearing surface can be modified.
  • FIGS. 4A, 4B, 4C, 4D and 4E represent a third embodiment of a portable electrochemical microscopy device of the invention.
  • FIG. 4A represents elements of the portable device in a longitudinal section view
  • FIGS. 4B and 4C represent a body of the portable device in a perspective view and in a longitudinal section view, respectively
  • FIG. 4D represents a movable member of the portable device in a perspective view
  • FIG. 4E represents a micrometric screw in a front view.
  • the portable device 40 comprises a body 41, an electrolytic chamber 42 formed in the body 41, a working probe 43 and a positioning device 44.
  • the working probe 43 has a proximal end 431, a distal end 432 and a body of probe 433 extending between the proximal end 431 and the distal end 432.
  • a protuberance is formed at the level of the proximal end 431.
  • the positioning device 44 comprises a movable member 441 and a micrometric screw 442.
  • the micrometric screw 442 comprises a screw body 4421, an adjustment wheel 4422 and a pusher 4423.
  • the screw body 4421 has in particular a so-called reference surface 442A and the pusher 4423 a so-called measurement surface 442B. In known manner, a rotation of the adjustment wheel 4422 relative to the screw body 4421 causes a translation of the pusher 4423 relative to the screw body 4421.
  • a graduation scale 4424 disposed at the interface between the screw body 4421 and the adjustment wheel 4422 makes it possible to determine a variation in the distance between the reference surface 442A and the measurement surface 442B.
  • the body 41 of the portable device 40 has an outer surface forming a cylinder of revolution and constituting a gripping surface 41A for a user. It comprises a guide housing 411 formed at a first longitudinal end, called the upper end, and arranged to receive the movable member 441 and guide it in translation along its longitudinal axis.
  • the guide housing 411 generally has a cylindrical shape of revolution and comprises a tongue 4111 extending along the longitudinal axis of the body 41.
  • the movable member 441 has a shape complementary to the guide housing 411.
  • the movable member 441 is mounted in sliding connection in the guide housing 411.
  • the body 41 further comprises a probe passage orifice 412 arranged to allow the passage of the working probe between the guide housing 411 and the electrolytic chamber 42.
  • the electrolytic chamber 42 is formed at a second longitudinal end of the body 41, called the lower end. It defines an annular surface constituting a bearing surface 41B for the portable device 40.
  • the body 41 also includes an internal shoulder 413 arranged to come into contact with the reference surface 442A of the micrometric screw 442, an injection orifice electrolyte 414 and a wire passage opening 415.
  • the electrolyte injection orifice 414 extends between the external surface 41A of the body and the electrolytic chamber 42. It makes it possible to inject, for example into the using a syringe, an electrolyte in the electrolytic chamber 42.
  • the wire passage opening 415 forms a groove passing through the wall of the body 41 between the guide housing 411 and the outer surface 41A. It makes it possible to pass a connection wire connected to the working probe 43.
  • the movable member 441 comprises a reception housing 4412 arranged to receive the working probe 43.
  • the reception housing 4412 is formed by a first orifice 44121 arranged to receive the protuberance formed on the proximal end 431 and a second orifice 44122 arranged to allow the passage of the probe body 433.
  • the movable member 441 further comprises a plug 4413, visible in FIG. 4A, preferably made of material elastomer, arranged to fit with a tight fit into the first orifice 44111 and maintain the working probe 43 in position in the movable member 441.
  • the movable member 441 further comprises an internal shoulder 4414 arranged to come into contact with the measurement surface 442B of the micrometric screw 442. Magnets 4415 are mounted on the internal shoulder 4414 and allow a temporary coupling between the micrometric screw 442 and the movable member 441.
  • the movable member 441 further comprises a wire passage opening 4416 forming a groove extending between the first orifice 44121 of the reception housing 4412 and an outer surface of the movable member 441.
  • the wire passage opening 4416 is arranged to coincide with the wire passage opening 415 of the body 41 and allow the wire to pass through. connection connected to the working probe 43.
  • the portable device 40 can be used in the following manner.
  • the body 41 is taken in hand by a user via its gripping surface 41A and manipulated so that its bearing surface 41B comes to bear on a surface of a substrate to be analyzed.
  • an electrolyte can be injected into the electrolytic chamber 42 via the electrolyte injection orifice 414.
  • the electrolyte then fulfills its role of medium between the distal end 432 of the probe and the substrate. Electrochemical microscopy measurements can thus be carried out in a conventional manner.
  • the portable device 40 is suitable for use with an electrolyte both in liquid form and in the form of a gel.
  • the body of the portable device has an outer surface forming a cylinder of revolution and possibly a truncated cone.
  • the invention is not limited to these exemplary embodiments and the body can have any surface capable of constituting a gripping surface for a user, and in particular for a hand of this user.
  • the latter is advantageously associated with a portable potentiostat such as a bipotentiostat PG580R from Uniscan Instruments, a potentiostat - galvanostat PG581 from BioLogic Science Instruments or a pStat bipotentiostat 200 or Dropsens pStat 8000 multichannel from Metrohm.
  • a portable potentiostat such as a bipotentiostat PG580R from Uniscan Instruments, a potentiostat - galvanostat PG581 from BioLogic Science Instruments or a pStat bipotentiostat 200 or Dropsens pStat 8000 multichannel from Metrohm.
  • FIGS. 2, 3 and 4A to 4E The ability of a device as illustrated in FIGS. 2, 3 and 4A to 4E to allow the analysis and characterization of surfaces by electrochemical microscopy is validated by a series of experimental tests which are carried out, on the one hand, with a liquid electrolyte and, on the other hand, with an electrolytic gel, and this, on an insulating substrate and on a conductive substrate.
  • the device used measures 8.5 cm high and 2 cm in diameter and includes:
  • UME made up of a platinum wire 12 cm long and 50 miti in diameter in a glass capillary
  • the device is connected to a Unipan Instruments PG580R bipotentiostat, which is itself linked to an acquisition unit (LEIS M370 TM software from Uniscan Instruments) and data processing (Origin TM).
  • acquisition unit LIS M370 TM software from Uniscan Instruments
  • Origin TM data processing
  • the tip of the EMU of the device is considered at infinity of a substrate when this tip is located at a distance at least equal to at least 7 times the size of the conductive wire sealed in the capillary;
  • a normalized current corresponds to the ratio between the current measured at the EMU of the device at an instant t of an experimental test and the current measured at the EMU of the device when the tip of the latter is at infinity of a substrate.
  • the volume of liquid electrolyte present in the device is 0.8 mL.
  • the device is first of all subjected to a cyclic voltammetry by applying to the UME a continuous variation of potential ranging from 0 V to 0.5 V vs Au, at a speed of 0.05 V / s, and by measuring the current passing through the EMU, this being placed at a distance from any substrate.
  • the voltammogram thus obtained, which is illustrated in FIG. 5, makes it possible to verify that the redox mediator present in the electrolyte is indeed capable of passing from a reduced state to an oxidized state and vice versa under the effect of variations in an electrical potential imposed on the UME of the device and that this UME is well able to translate these changes of state into variations of a measurable current. It also makes it possible to determine the potential to be applied to the UME in the SECM tests below to ensure oxidation of the redox mediator, namely 0.5 V vs Au.
  • the device is then subjected to a series of SECM tests, hereinafter tests 1 to 8, in which the potential applied to the EMU is therefore 0.5 V vs Au, while the substrates are left to the OCP. (of “Open Circuit Potential”), that is to say that no potential is applied to them.
  • This test consists of applying the lower end of the device to the surface of a glass substrate and successively placing, using the micrometric screw, the tip of the EMU of this device at the infinity of this substrate and then at contact of the surface of this substrate, while measuring the current at the EMU of the device.
  • FIG. 6 shows a drastic reduction in the normalized current I N obtained when the tip of the latter comes into contact with the surface of the glass substrate.
  • This test consists in applying the lower end of the device to the surface of a glass substrate and gradually approaching, using the micrometric screw and over a period of 40 s, the tip of the EMU of this device, initially located at infinity of the substrate, from the surface of this substrate until this point is located at 10 m half of this surface, while measuring the current at the EMU of the device.
  • the results are illustrated in Figure 7 in the form of a so-called approach curve. This curve shows a gradual decrease in the normalized current I N obtained as the tip of the EMU approaches the surface of the glass substrate and then a stabilization of this current when the tip of the EMU is located at 10 miti from the surface of the substrate.
  • This test which is a reverse test of test 2 above, consists in progressively moving the tip of the EMU of the device away from the surface of the glass substrate, using the micrometric screw and over a period of 40 s, which is located 10 to half of this surface at the end of test 2, until this point is located at infinity of the substrate, while measuring the current at the EMU of the device.
  • This test consists in applying the lower end of the device to the surface of a glass substrate, to approach, by means of the micrometric screw and in successive steps of 10 times, the tip of the EMU of this device, initially located to the infinity of the substrate, from the surface of this substrate until this point is located 10 miti from this surface, then to move away, also by means of the micrometric screw and in successive steps of 10 miti, the point of the EMU of the surface of the substrate until this point is located at infinity of the substrate, while measuring the current at the EMU of the device.
  • This test consists in applying the lower end of the device to the surface of a glass substrate after having preset, by means of the micrometric screw, the tip of the EMU of this device of the invention so that this tip located at a distance of 10 miti, 30 miti, 40 miti, 50 miti, 60 miti or 100 miti from the surface of the substrate, while measuring the current at the EMU of the device.
  • This test is carried out vertically at three different points on the surface of the substrate.
  • FIG. 10 shows that, for each of the distances separating the tip of the EMU from the surface of the substrate, the normalized current values I N obtained are identical or almost identical for the three different points of the substrate.
  • this test consists in applying the lower end of the device to the surface of a glass substrate after having preset, by means of the micrometric screw, the tip of the EMU of this device. invention so that this tip is located at a distance of 50 ⁇ m from the surface of the substrate, while measuring the current at the EMU of the device.
  • This test is carried out vertically at five different points on the surface of the substrate.
  • FIG. 11 which confirms the reproducibility of the measurements carried out with the device on a homogeneous surface and which shows that it is it is possible to check the homogeneity or, on the contrary, the heterogeneity of the surface of a substrate by presetting the position of the tip of the EMU of the device and by simply moving this device manually over the surface of the substrate.
  • This test is a test similar to test 1 but for a gold substrate.
  • Figure 12 shows a drastic increase in the normalized current IN obtained when the tip of the EMU of the device comes into contact with the surface of the substrate, characteristic of the positive “feedback” that we observe When a redox mediator reacts with an electrically conductive surface.
  • This test consists of applying the lower end of the device to the surface of a gold substrate and approaching, by means of the micrometric screw and in successive steps of 10 times, the tip of the EMU of this device, initially located at the infinity of the substrate, from the surface of this substrate until this point is located at 10 1 ⁇ 2 of this surface, while measuring the current at the EMU of the device.
  • an aqueous gel obtained by adding xanthan gum (200 mg) to 50 ml of an aqueous solution comprising 100 mmol / L of potassium chloride (KCI) and, as redox mediator, 100 mmol / L of ferrocyanide ions potassium [Fe (CN) 6 ] 4 , supplied in the form of potassium ferrocyanide K 4 Fe (CN) 6 , as electrolyte;
  • the volume of electrolytic gel present in the device is 0.8 mL.
  • the device is subjected to a cyclic voltammetry by applying to the UME a continuous variation of potential ranging from 0 V to 0.6 V vs Au, at a speed of 0.05 V / s, and by measuring the current passing through the EMU, this being placed at a distance from any substrate.
  • the voltammogram obtained which is illustrated in FIG. 14, makes it possible to verify that the redox mediator present in the electrolyte is indeed able to pass from a reduced state to an oxidized state and vice versa under the effect of variations. of an electrical potential imposed on the UME of the device and that this UME is well suited to translate these changes of state into variations of a measurable current, and to determine the potential to be applied to the UME in the SECM tests below to ensure oxidation of the redox mediator, namely 0.5 V vs Au.
  • the device is then subjected to a series of SECM tests, hereinafter tests 9 and 10, in which the potential applied to the EMU is therefore 0.5 V vs Au, while the substrates are left to the OCP. .
  • This test is a test similar to test 1 above.
  • FIG. 15 which, like FIG. 6, shows a drastic reduction in the normalized current IN obtained when the tip of the latter comes into contact with the surface of the glass substrate, characteristic of a Negative feedback.
  • This test is a test similar to test 7 above.
  • FIG. 16 which, like FIG. 12, shows a drastic increase in the normalized current IN obtained when the tip of the latter comes into contact with the surface of the gold substrate, characteristic of a Positive feedback.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to the field of localised surface analysis, characterisation and modification by electrochemistry. It particularly relates to a portable electrochemical microscopy device, to kits comprising such a portable device, and to uses of the portable device and kits. According to the invention, the portable device comprises: a body (41) having a gripping surface (41A) for a user and a bearing surface (41B) that can be applied to a surface of a substrate to be analysed; an electrolytic chamber (42) formed in the body and arranged so as to receive an electrolyte, the electrolytic chamber comprising an opening leading to the bearing surface; and a working probe (43) having a distal end (432) arranged in the electrolytic chamber.

Description

DISPOSITIF PORTABLE DE MICROSCOPIE ÉLECTROCHIMIQUE, KITS LE COMPRENANT ET  PORTABLE ELECTROCHEMICAL MICROSCOPY DEVICE, KITS COMPRISING SAME AND
LEURS UTILISATIONS  THEIR USES
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
L'invention se rapporte au domaine de l'analyse, de la caractérisation et de la modification localisée de surfaces par électrochimie. The invention relates to the field of analysis, characterization and localized modification of surfaces by electrochemistry.
Plus spécifiquement, l'invention se rapporte à un dispositif portable (ou portatif) de microscopie électrochimique qui, tout en offrant les mêmes performances que les appareillages de microscopie électrochimique à balayage (ou SECM de « Scanning Electro- Chemical Microscopy ») de l'état de la technique, permet de s'affranchir des contraintes imposées par ces appareillages et, en particulier, par les dimensions limitées de leur cellule électrochimique et par l'encombrement des éléments électriques et/ou mécaniques dont sont munis ces appareils pour assurer et contrôler le balayage.  More specifically, the invention relates to a portable (or portable) electrochemical microscopy device which, while offering the same performance as the scanning electrochemical microscopy (or SECM "Scanning Electro-Chemical Microscopy") apparatus of the state of the art, overcomes the constraints imposed by these devices and, in particular, by the limited dimensions of their electrochemical cell and by the size of the electrical and / or mechanical elements with which these devices are provided to ensure and control the sweep.
L'invention se rapporte également à des kits comprenant un tel dispositif portable ainsi qu'aux utilisations de ce dispositif et de ces kits.  The invention also relates to kits comprising such a portable device as well as to the uses of this device and of these kits.
L'invention trouve application dans tous les domaines d'utilisation de la SECM . Toutefois, elle présente un intérêt tout particulier lorsque l'on souhaite utiliser cette technique pour étudier et/ou modifier localement la surface de pièces de grandes dimensions ou de formes complexes, par exemple :  The invention finds application in all fields of use of SECM. However, it is of particular interest when it is desired to use this technique to study and / or locally modify the surface of large parts or of complex shapes, for example:
- pour détecter des défauts de fabrication, tels qu'une hétérogénéité du revêtement (isolant, semi-conducteur ou conducteur), que comportent ces pièces ;  - to detect manufacturing defects, such as heterogeneity of the coating (insulator, semiconductor or conductor) that these parts contain;
- pour détecter une porosité localisée de la surface de pièces ou du revêtement qu'elles comportent ;  - to detect a localized porosity of the surface of parts or of the coating which they comprise;
- pour détecter une corrosion localisée de pièces qui sont protégées de la corrosion soit naturellement, par formation d'une couche mince d'oxyde passivante comme dans le cas de pièces en titane ou en acier, soit par un revêtement anticorrosion susceptible de s'altérer ; ou - pour microstructurer la surface de pièces, par exemple par des dépôts localisés d'un métal ou d'un polymère, ou par une gravure localisée de cette surface. - to detect localized corrosion of parts which are protected from corrosion either naturally, by the formation of a thin layer of passivating oxide as in the case of titanium or steel parts, or by an anticorrosion coating liable to deteriorate ; or - To microstructure the surface of parts, for example by localized deposits of a metal or a polymer, or by localized etching of this surface.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE PRIOR STATE OF THE ART
La SECM est une technique de microscopie à sonde locale qui offre la possibilité d'examiner, d'imager mais aussi de modifier localement la surface d'un échantillon par électrochimie au moyen d'une sonde qui est une électrode miniaturisée, dite ultramicroélectrode (ou UME), et qui balaye cette surface. SECM is a local probe microscopy technique which offers the possibility of examining, imaging but also locally modifying the surface of a sample by electrochemistry using a probe which is a miniaturized electrode, called an ultramicroelectrode (or UME), and which sweeps this surface.
Cette technique, qui a été inventée à la fin des années 1980 par le Professeur Allen J. Bard et son équipe, constitue une avancée majeure de l'électrochimie, rendue possible grâce à, d'une part, la miniaturisation des électrodes et, d'autre part, la possibilité de mesurer de très faibles courants.  This technique, which was invented in the late 1980s by Professor Allen J. Bard and his team, constitutes a major advance in electrochemistry, made possible thanks, on the one hand, to the miniaturization of electrodes and, d on the other hand, the possibility of measuring very low currents.
Elle fait l'objet d'une attention toute particulière de la part de la communauté scientifique car elle est considérée comme un outil extrêmement performant et offre tout un panel d'applications dans des domaines aussi variés que la biologie pour la caractérisation de cellules vivantes, l'électrochimie moléculaire pour la détermination de mécanismes réactionnels complexes ou l'étude de cinétiques rapides, en science des matériaux pour la mise au point de nouveaux catalyseurs ou encore pour étudier la dégradation ou la corrosion de matériaux.  It is the subject of very special attention on the part of the scientific community because it is considered as an extremely powerful tool and offers a whole range of applications in fields as varied as biology for the characterization of living cells, molecular electrochemistry for the determination of complex reaction mechanisms or the study of rapid kinetics, in materials science for the development of new catalysts or to study the degradation or corrosion of materials.
À ce jour, la SECM est mise en œuvre avec des appareillages dont un exemple typique est illustré schématiquement sur la figure 1. Comme le montre cette figure, cet appareillage, référencé 1, comprend :  To date, the SECM has been implemented with apparatus, a typical example of which is illustrated diagrammatically in FIG. 1. As this figure shows, this apparatus, referenced 1, comprises:
- une cellule électrochimique 10 qui est prévue pour être remplie d'une solution électrolytique 15 comprenant éventuellement un sel (minéral ou organique) permettant une bonne conductivité et/ou une espèce électroactive (électrooxydante ou électroréductrice) ou médiateur redox, et dans laquelle sont plongés, en conditions opératoires, l'échantillon 11 à analyser, l'UME 12, une contre-électrode 13 et éventuellement une électrode de référence 14 ;  an electrochemical cell 10 which is intended to be filled with an electrolytic solution 15 optionally comprising a salt (mineral or organic) allowing good conductivity and / or an electroactive species (electrooxidizing or electroreductive) or redox mediator, and in which are immersed , under operating conditions, the sample 11 to be analyzed, the EMU 12, a counter electrode 13 and optionally a reference electrode 14;
- un potentiostat si un potentiel est destiné à être appliqué à la seule UME 12 en conditions opératoires ou, comme montré sur la figure 1, un bipotentiostat 16 si un potentiel est destiné à être appliqué à la fois à l'échantillon 11 et à l'UME 12 en conditions opératoires ; - a potentiostat if a potential is intended to be applied to the single UME 12 under operating conditions or, as shown in FIG. 1, a bipotentiostat 16 if a potential is intended to be applied to both sample 11 and EMU 12 under operating conditions;
- un système de positionnement permettant de positionner l'UME 12 relativement à l'échantillon 11 à analyser et de contrôler ce positionnement ; et  a positioning system making it possible to position the EMU 12 relative to the sample 11 to be analyzed and to control this positioning; and
- un système informatique 17 d'acquisition et de traitement des données, c'est-à-dire des courants mesurés à l'UME 12 pendant que celle-ci balaye la surface de l'échantillon 11, lesquels vont notamment dépendre de la distance séparant l'UME 12 de la surface de l'échantillon 11 et des caractéristiques de cette surface.  a computer system 17 for acquiring and processing data, that is to say currents measured at the EMU 12 while the latter scans the surface of the sample 11, which will in particular depend on the distance separating the EMU 12 from the surface of the sample 11 and the characteristics of this surface.
Pour le positionnement relatif de l'UME 12 et de l'échantillon 11 à analyser, deux types de système existent, à savoir :  For the relative positioning of the EMU 12 and of the sample 11 to be analyzed, two types of system exist, namely:
- un système, qui est celui illustré sur la figure 1, dans lequel la cellule électrochimique 10 repose sur une platine mobile 18 apte à se déplacer dans les directions x et y, et c'est l'UME 12 qui est mise en mouvement dans la direction z, c'est-à- dire dans une direction perpendiculaire à la surface de l'échantillon 11, au moyen d'un bras 19 motorisé ; et  - A system, which is that illustrated in FIG. 1, in which the electrochemical cell 10 rests on a mobile plate 18 able to move in the directions x and y, and it is the EMU 12 which is set in motion in the direction z, that is to say in a direction perpendicular to the surface of the sample 11, by means of a motorized arm 19; and
- un système dans lequel la cellule électrochimique 10 est fixe et c'est l'UME 12 qui est mise en mouvement dans les trois directions x, y et z, également au moyen de bras motorisés.  - A system in which the electrochemical cell 10 is fixed and it is the EMU 12 which is set in motion in the three directions x, y and z, also by means of motorized arms.
Les appareillages de SECM présentent donc deux contraintes : la première est liée au fait qu'ils ne permettent de travailler que sur des échantillons dont les dimensions sont imposées par les dimensions de la cellule électrochimique, ce qui rend impossible l'utilisation de la SECM pour étudier la surface de pièces de grandes dimensions ou de formes complexes sauf à détruire ces pièces pour en prélever des échantillons ou à travailler sur des échantillons témoins, censés être représentatifs de ces pièces mais qui ne sont pas les pièces elles-mêmes ; la deuxième est liée à l'encombrement du système permettant de positionner l'UME relativement à l'échantillon et de contrôler ce positionnement.  SECM equipment therefore presents two constraints: the first is related to the fact that they only allow work on samples whose dimensions are imposed by the dimensions of the electrochemical cell, which makes it impossible to use SECM for study the surface of large or complex parts except to destroy these parts to take samples or to work on control samples, supposed to be representative of these parts but which are not the parts themselves; the second is linked to the size of the system making it possible to position the EMU relative to the sample and to control this positioning.
Ceci explique pourquoi la SECM reste à ce jour une technique de laboratoires d'organismes de recherche académique ou industrielle. Les Inventeurs se sont donc fixé pour but de fournir un dispositif de microscopie électrochimique qui, tout en offrant les mêmes possibilités d'application et en fournissant les mêmes informations électrochimiques que les appareillages de SECM de l'état de la technique, permette de s'affranchir des contraintes imposées par ces appareillages. This explains why the SECM remains to this day a laboratory technique of academic or industrial research organizations. The inventors have therefore set themselves the goal of providing an electrochemical microscopy device which, while offering the same possibilities of application and providing the same electrochemical information as the SECM apparatuses of the state of the art, makes it possible to overcome the constraints imposed by these devices.
En particulier, ils se sont fixé pour but de fournir un dispositif de microscopie électrochimique qui soit portable et permette d'étudier ou de modifier la surface de pièces sur le lieu de leur fabrication ou de leur utilisation. Un autre but de l'invention est de fournir un dispositif portable de microscopie électrochimique dont les coûts de conception, de fabrication et de maintenance sont compatibles avec une utilisation à échelle industrielle.  In particular, they set themselves the goal of providing an electrochemical microscopy device which is portable and allows the study or modification of the surface of parts at the place of their manufacture or of their use. Another object of the invention is to provide a portable device for electrochemical microscopy, the design, manufacturing and maintenance costs of which are compatible with use on an industrial scale.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
Ces différents buts sont atteints par l'invention qui repose sur l'adaptation d'une cellule électrochimique sous forme d'un stylet, l'électrolyte étant appliqué localement sur une surface du substrat à analyser par mise en contact d'une extrémité du stylet avec la surface à analyser. Ainsi, il n'est plus nécessaire de plonger l'ensemble du substrat dans une solution électrolytique ; l'électrolyte utilisé comme médium entre la sonde de travail et la surface du substrat à analyser est apporté localement au niveau de cette surface. Le dispositif ainsi formé permet toujours d'analyser une pluralité de points sur la surface du substrat par un déplacement du dispositif sur chacun de ces points. These various aims are achieved by the invention which is based on the adaptation of an electrochemical cell in the form of a stylus, the electrolyte being applied locally to a surface of the substrate to be analyzed by bringing one end of the stylus into contact. with the surface to be analyzed. Thus, it is no longer necessary to immerse the entire substrate in an electrolytic solution; the electrolyte used as a medium between the working probe and the surface of the substrate to be analyzed is supplied locally at this surface. The device thus formed always makes it possible to analyze a plurality of points on the surface of the substrate by a displacement of the device on each of these points.
Plus précisément, un premier objet de l'invention consiste en un dispositif portable de microscopie électrochimique, qui comprend :  More specifically, a first object of the invention consists of a portable electrochemical microscopy device, which comprises:
un corps présentant une surface de préhension pour un utilisateur et une surface d'appui apte à venir en appui sur une surface d'un substrat à analyser, a body having a gripping surface for a user and a bearing surface adapted to bear against a surface of a substrate to be analyzed,
une chambre électrolytique formée dans le corps, agencée pour recevoir un électrolyte, la chambre électrolytique comportant une ouverture débouchant au niveau de la surface d'appui, et an electrolytic chamber formed in the body, arranged to receive an electrolyte, the electrolyte chamber having an opening at the bearing surface, and
une sonde de travail présentant une extrémité distale disposée dans la chambre électrolytique. La surface de préhension aménagée sur le corps est de préférence agencée pour permettre une prise en main par un utilisateur. Elle se présente par exemple sous la forme d'une surface cylindrique à section circulaire. Le diamètre peut être compris entre 0,5 cm (centimètre) et 10 cm, de manière à ce que le dispositif puisse être tenu d'une seule main, par exemple à la manière d'un stylet. La surface de préhension peut également se présenter sous forme d'une surface, cylindrique ou non cylindrique, à section polygonale, par exemple carrée ou hexagonale. Elle peut encore être profilée pour former une poignée. a working probe having a distal end disposed in the electrolytic chamber. The gripping surface arranged on the body is preferably arranged to allow a grip by a user. It is for example in the form of a cylindrical surface with circular section. The diameter can be between 0.5 cm (centimeter) and 10 cm, so that the device can be held with one hand, for example in the manner of a stylus. The gripping surface can also be in the form of a surface, cylindrical or non-cylindrical, of polygonal section, for example square or hexagonal. It can also be profiled to form a handle.
La surface d'appui aménagée sur le corps est de préférence agencée pour pouvoir épouser la surface du substrat à analyser. La surface d'appui peut être courbe ou plane. Elle peut s'inscrire dans une surface comprise entre 0,2 cm2 (centimètres carrés) et 100 cm2. The bearing surface arranged on the body is preferably arranged to be able to match the surface of the substrate to be analyzed. The support surface can be curved or flat. It can fit into an area between 0.2 cm 2 (square centimeters) and 100 cm 2 .
La chambre électrolytique est de préférence agencée pour pouvoir contenir un électrolyte pendant la durée d'une mesure ou d'une séquence de mesures. Ainsi, elle présente avantageusement des parois étanches à l'électrolyte. Le volume de la chambre électrolytique est par exemple compris entre 0,04 cm3 (centimètre cube) et 400 cm3. Avantageusement, il est compris entre 0,5 cm3 et 2 cm3. The electrolytic chamber is preferably arranged so as to be able to contain an electrolyte for the duration of a measurement or of a sequence of measurements. Thus, it advantageously has walls which are impervious to the electrolyte. The volume of the electrolytic chamber is for example between 0.04 cm 3 (cubic centimeter) and 400 cm 3 . Advantageously, it is between 0.5 cm 3 and 2 cm 3 .
De manière générale, le dispositif portable est de préférence agencé de manière à ce que, en cours d'utilisation, la surface d'appui étant en contact avec le substrat, l'électrolyte soit contenu dans le volume délimité, d'une part, par la chambre électrolytique et, d'autre part, par le substrat, et soit à la fois en contact avec le substrat et avec l'extrémité distale de la sonde de travail.  In general, the portable device is preferably arranged in such a way that, during use, the bearing surface being in contact with the substrate, the electrolyte is contained in the delimited volume, on the one hand, by the electrolytic chamber and, on the other hand, by the substrate, and is both in contact with the substrate and with the distal end of the working probe.
La sonde de travail consiste typiquement en une électrode comportant un capillaire en verre et un fil conducteur scellé dans le capillaire. Le fil conducteur est par exemple en or, en platine ou en fibre de carbone. La sonde de travail peut présenter une forme cylindrique. De préférence, la sonde de travail est agencée de manière à ce que son axe longitudinal soit perpendiculaire à un plan passant par la surface d'appui du corps. Pour une surface d'appui courbe, un plan passant par cette surface est défini comme étant un plan passant par au moins un point de la surface d'appui. Le diamètre de la sonde de travail peut être compris entre 10 miti (micromètres) et 100 miti. De préférence, il est compris entre 20 miti et 50 miti. De manière générale, le diamètre de la sonde est déterminé en fonction de la résolution de mesure souhaitée. Par ailleurs, la sonde de travail est avantageusement agencée de sorte que son extrémité distale soit située à une distance prédéterminée d'un plan passant par la surface d'appui du corps. La distance prédéterminée est par exemple comprise entre 0 pm et 200 miti, entre 5 pm et 200 pm ou entre 5 pm et 150 pm. The working probe typically consists of an electrode comprising a glass capillary and a conductive wire sealed in the capillary. The conducting wire is for example made of gold, platinum or carbon fiber. The working probe may have a cylindrical shape. Preferably, the working probe is arranged so that its longitudinal axis is perpendicular to a plane passing through the bearing surface of the body. For a curved bearing surface, a plane passing through this surface is defined as being a plane passing through at least one point of the bearing surface. The diameter of the working probe can be between 10 miti (micrometers) and 100 miti. Of preferably, it is between 20 miti and 50 miti. In general, the diameter of the probe is determined according to the desired measurement resolution. Furthermore, the working probe is advantageously arranged so that its distal end is located at a predetermined distance from a plane passing through the bearing surface of the body. The predetermined distance is for example between 0 pm and 200 microns, between 5 pm and 200 pm or between 5 pm and 150 pm.
Selon une première variante de réalisation, la sonde de travail est fixée au corps, de sorte que son extrémité distale est fixe par rapport à un plan passant par la surface d'appui. La distance séparant l'extrémité distale de la sonde de travail du substrat est alors constante.  According to a first alternative embodiment, the working probe is fixed to the body, so that its distal end is fixed relative to a plane passing through the bearing surface. The distance between the distal end of the working probe and the substrate is then constant.
Selon une deuxième variante de réalisation, le dispositif portable comprend, en outre, un dispositif de positionnement agencé pour permettre un déplacement de la sonde de travail relativement à la surface d'appui. Avantageusement, le dispositif de positionnement est agencé pour permettre un déplacement selon un axe de translation perpendiculaire à un plan passant par la surface d'appui. Le dispositif de positionnement permet alors de placer la sonde de travail à une distance souhaitée du substrat. La distance entre la sonde de travail et le substrat correspond sensiblement à la distance entre la sonde de travail et le plan passant par la surface d'appui du corps.  According to a second alternative embodiment, the portable device further comprises a positioning device arranged to allow movement of the working probe relative to the bearing surface. Advantageously, the positioning device is arranged to allow movement along an axis of translation perpendicular to a plane passing through the bearing surface. The positioning device then makes it possible to place the working probe at a desired distance from the substrate. The distance between the working probe and the substrate corresponds substantially to the distance between the working probe and the plane passing through the bearing surface of the body.
Le dispositif de positionnement peut notamment comporter un organe mobile et un mécanisme d'entraînement. L'organe mobile est agencé pour porter la sonde de travail et pour pouvoir être déplacé relativement au corps. Il peut notamment être agencé pour pouvoir être déplacé en translation par rapport au corps selon un axe de translation. Le mécanisme d'entraînement est agencé pour déplacer l'organe mobile par rapport au corps.  The positioning device may in particular comprise a movable member and a drive mechanism. The movable member is arranged to carry the working probe and to be able to be moved relative to the body. It can in particular be arranged so that it can be moved in translation relative to the body along an axis of translation. The drive mechanism is arranged to move the movable member relative to the body.
Selon une forme particulière de réalisation, le corps du dispositif portable comporte un logement de guidage, le logement de guidage et l'organe mobile étant agencés pour que l'organe mobile soit guidé en translation par rapport au corps. Le logement de guidage et l'organe mobile présentent par exemple des formes cylindriques complémentaires. Le mécanisme d'entraînement peut notamment comporter un actionneur électromécanique tel qu'un moteur piézoélectrique ou un moteur pas à pas. De tels actionneurs engendrent des déplacements d'amplitude relativement faible et permettent un positionnement de la sonde de travail avec une résolution de l'ordre de quelques miti. According to a particular embodiment, the body of the portable device comprises a guide housing, the guide housing and the movable member being arranged so that the movable member is guided in translation relative to the body. The guide housing and the movable member have, for example, complementary cylindrical shapes. The drive mechanism may in particular comprise an electromechanical actuator such as a piezoelectric motor or a stepping motor. Such actuators generate relatively small amplitude displacements and allow positioning of the working probe with a resolution of the order of a few times.
Le mécanisme d'entraînement peut aussi comporter un actionneur manuel. En particulier, il peut comporter une vis micrométrique. Une vis micrométrique présente une surface de référence et une surface mobile et est agencée pour permettre une modification d'une distance séparant la surface de référence de la surface mobile. La surface de référence est agencée pour être solidaire du corps et la surface mobile est agencée pour être solidaire de l'organe mobile.  The drive mechanism may also include a manual actuator. In particular, it may include a micrometric screw. A micrometric screw has a reference surface and a movable surface and is arranged to allow a modification of a distance separating the reference surface from the movable surface. The reference surface is arranged to be secured to the body and the movable surface is arranged to be secured to the movable member.
Dans une forme particulière de réalisation, l'organe mobile comporte un logement d'accueil de la sonde de travail et un organe de fixation. Le logement d'accueil est agencé pour recevoir une extrémité proximale de la sonde de travail et l'organe de fixation est agencé pour fixer la sonde de travail à l'organe mobile. En particulier, l'organe mobile peut être agencé pour fixer la sonde de travail au niveau de son extrémité proximale. Dans un premier exemple de réalisation, le logement d'accueil comporte un orifice cylindrique de révolution de diamètre supérieur au diamètre de la sonde de travail et l'organe de fixation comporte une vis agencée pour pouvoir plaquer la sonde de travail sur une surface de l'orifice cylindrique. Dans un deuxième exemple de réalisation, adapté à une sonde de travail dont l'extrémité proximale présente une protubérance, le logement d'accueil comporte un premier orifice cylindrique de révolution et un deuxième orifice cylindrique de révolution. Les deux orifices sont concentriques. Le premier orifice débouche d'une part dans la chambre électrolytique et d'autre part dans le deuxième orifice. Le premier orifice présente un diamètre supérieur à un corps de la sonde de travail et inférieur à un diamètre de la protubérance. Le deuxième orifice est débouchant et présente un diamètre supérieur au diamètre de la protubérance. Il forme ainsi un chambrage destiné à accueillir la protubérance. L'organe de fixation peut alors consister en un bouchon en matériau élastomère dont les dimensions sont agencées pour pouvoir boucher le deuxième orifice et empêcher le retrait de la sonde de travail. Le dispositif de positionnement peut comporter, en outre, un mécanisme d'accouplement temporaire pour accoupler de manière réversible l'organe mobile au mécanisme d'entraînement. Dans un premier exemple de réalisation, le mécanisme d'accouplement temporaire comporte un aimant permanent, l'aimant permanent étant solidaire de l'organe mobile ou du mécanisme d'entraînement et agencé de manière à pouvoir s'accoupler avec un élément métallique solidaire du mécanisme ou de l'organe mobile. Le mécanisme d'accouplement peut comporter plusieurs aimants permanents. Dans un deuxième exemple de réalisation, le mécanisme d'accouplement temporaire comporte un ensemble de pièces male-femelle aptes à s'accoupler par déformation élastique, l'une des pièces étant solidaire de l'organe mobile et l'autre pièce étant solidaire du mécanisme d'entraînement. In a particular embodiment, the mobile member comprises a housing for receiving the working probe and a fixing member. The receiving housing is arranged to receive a proximal end of the working probe and the fixing member is arranged to fix the working probe to the movable member. In particular, the movable member can be arranged to fix the working probe at its proximal end. In a first exemplary embodiment, the reception housing comprises a cylindrical orifice of revolution of diameter greater than the diameter of the working probe and the fixing member comprises a screw arranged so as to be able to press the working probe on a surface of the '' cylindrical orifice. In a second embodiment, adapted to a working probe, the proximal end of which has a protuberance, the reception housing comprises a first cylindrical orifice of revolution and a second cylindrical orifice of revolution. The two holes are concentric. The first orifice opens on the one hand into the electrolytic chamber and on the other hand into the second orifice. The first orifice has a diameter greater than a body of the working probe and less than a diameter of the protuberance. The second orifice opens out and has a diameter greater than the diameter of the protuberance. It thus forms a recess intended to accommodate the protuberance. The fixing member can then consist of a plug of elastomeric material, the dimensions of which are arranged so as to be able to block the second orifice and prevent the withdrawal of the working probe. The positioning device may further include a temporary coupling mechanism for reversibly coupling the movable member to the drive mechanism. In a first embodiment, the temporary coupling mechanism comprises a permanent magnet, the permanent magnet being secured to the movable member or the drive mechanism and arranged so that it can be coupled with a metallic element secured to the moving mechanism or organ. The coupling mechanism can include several permanent magnets. In a second embodiment, the temporary coupling mechanism comprises a set of male-female parts capable of coupling by elastic deformation, one of the parts being secured to the movable member and the other piece being secured to the drive mechanism.
Selon une forme particulière de réalisation, le dispositif portable comporte, en outre, au moins une sonde de travail additionnelle, chaque sonde de travail additionnelle présentant une extrémité distale disposée dans la chambre électrolytique. Le dispositif portable peut notamment comporter deux, trois ou quatre sondes de travail additionnelles, soit trois, quatre ou cinq sondes de travail. Les sondes de travail peuvent être du même type que la sonde de travail décrite précédemment. Elles peuvent en particulier être identiques entre elles. Les sondes peuvent être agencées de manière à ce leurs extrémités distales soient toutes situées à une même distance par rapport à un plan passant par la surface d'appui. Elles permettent alors de multiplier les points de mesure sans déplacer le dispositif portable. Les sondes peuvent être agencées de manière à être alignées le long d'un axe, de manière à former un cercle ou une étoile. Dans une variante de réalisation, au moins deux sondes de travail peuvent être agencées de manière à ce que leurs extrémités distales soient situées à des distances distinctes par rapport au plan passant par la surface d'appui. Lorsque le dispositif portable comporte un organe mobile apte à être déplacé par un mécanisme d'entraînement, les sondes de travail additionnelles sont avantageusement montées sur l'organe mobile, de manière à ce que toutes les sondes de travail suivent le même déplacement.  According to a particular embodiment, the portable device further comprises at least one additional working probe, each additional working probe having a distal end disposed in the electrolytic chamber. The portable device can in particular comprise two, three or four additional working probes, that is to say three, four or five working probes. The working probes can be of the same type as the working probe described above. They can in particular be identical to each other. The probes can be arranged so that their distal ends are all located at the same distance from a plane passing through the bearing surface. They then make it possible to multiply the measurement points without moving the portable device. The probes can be arranged to be aligned along an axis, so as to form a circle or a star. In an alternative embodiment, at least two working probes can be arranged so that their distal ends are situated at distinct distances from the plane passing through the bearing surface. When the portable device comprises a mobile member able to be moved by a drive mechanism, the additional working probes are advantageously mounted on the mobile member, so that all the working probes follow the same movement.
Selon une autre forme particulière de réalisation, compatible avec la précédente, le dispositif portable comporte en outre une sonde dite de normalisation. Cette sonde, qui est du même type que la ou les sondes de travail, est agencée de manière à ce que son extrémité distale soit située à une distance infinie du plan passant par la surface d'appui. La distance est par exemple considérée comme infinie lorsqu'elle est supérieure ou égale à 7 fois la taille du fil conducteur scellé dans le capillaire. La sonde de normalisation permet de déterminer un courant infini, c'est-à-dire un courant traversant une sonde de travail lorsqu'elle est située à une distance infinie du substrat. La sonde de normalisation peut être fixe par rapport au corps du dispositif portable. According to another particular embodiment, compatible with the previous one, the portable device also comprises a so-called normalization probe. This probe, which is of the same type as the working probe (s), is arranged so that its distal end is located at an infinite distance from the plane passing through the bearing surface. The distance is for example considered to be infinite when it is greater than or equal to 7 times the size of the conductive wire sealed in the capillary. The normalization probe makes it possible to determine an infinite current, that is to say a current passing through a working probe when it is located at an infinite distance from the substrate. The normalization probe can be fixed relative to the body of the portable device.
Le dispositif portable peut comporter, en outre, une contre-électrode et éventuellement une électrode de référence. Ces électrodes sont agencées de manière à ce que leurs extrémités distales soient disposées dans la chambre électrolytique. Selon une première variante de réalisation, la contre-électrode et, le cas échéant, l'électrode de référence sont fixes par rapport au corps, de sorte que leur extrémité distale est fixe par rapport à un plan passant par la surface d'appui du corps. Selon une deuxième variante de réalisation, la contre-électrode et, le cas échéant, l'électrode de référence se déplacent avec la ou les sondes de travail relativement à la surface d'appui. Ces électrodes sont par exemple montées sur l'organe mobile du dispositif de positionnement.  The portable device may further include a counter electrode and possibly a reference electrode. These electrodes are arranged so that their distal ends are arranged in the electrolytic chamber. According to a first alternative embodiment, the counter electrode and, where appropriate, the reference electrode are fixed relative to the body, so that their distal end is fixed relative to a plane passing through the bearing surface of the body. According to a second alternative embodiment, the counter-electrode and, where appropriate, the reference electrode move with the working probe or probes relative to the bearing surface. These electrodes are for example mounted on the movable member of the positioning device.
Dans un premier mode de réalisation, une surface extérieure du corps du dispositif portable forme un cylindre de révolution. La surface de préhension est alors formée par l'ensemble de la surface extérieure du corps, le corps se présentant sous forme d'un stylet.  In a first embodiment, an exterior surface of the body of the portable device forms a cylinder of revolution. The gripping surface is then formed by the entire outer surface of the body, the body being in the form of a stylus.
Dans un deuxième mode de réalisation, le corps comporte un tronçon cylindrique et un tronçon tronconique. Le tronçon cylindrique présente une surface extérieure formant un cylindre de révolution et le tronçon tronconique présente une surface extérieure formant un tronc de cône s'évasant entre une première base, solidaire du tronçon cylindrique, et une deuxième base formant la surface d'appui. La première base présente de préférence un diamètre égal au diamètre du tronçon cylindrique. Dans ce mode de réalisation, la surface de préhension peut être formée par la surface extérieure du tronçon cylindrique et/ou la surface extérieure du tronçon tronconique. Ce mode de réalisation présente l'avantage de pouvoir disposer d'une surface d'appui relativement grande pour une meilleure stabilité du dispositif, tout en conservant une surface de préhension dont les dimensions sont adaptées à une prise en main par un utilisateur. In a second embodiment, the body comprises a cylindrical section and a frustoconical section. The cylindrical section has an outer surface forming a cylinder of revolution and the frustoconical section has an outer surface forming a truncated cone flaring between a first base, integral with the cylindrical section, and a second base forming the bearing surface. The first base preferably has a diameter equal to the diameter of the cylindrical section. In this embodiment, the gripping surface can be formed by the outer surface of the cylindrical section and / or the outer surface of the frustoconical section. This embodiment has the advantage of having a bearing surface relatively large for better stability of the device, while retaining a gripping surface whose dimensions are adapted to a grip by a user.
Selon une forme particulière de réalisation, le corps comporte un orifice d'injection d'électrolyte s'étendant entre une surface externe du corps et la chambre électrolytique. Cet orifice d'injection d'électrolyte permet d'apporter l'électrolyte nécessaire à la mesure alors que le dispositif portable est en position opérationnelle, la surface d'appui étant en contact avec le substrat. Le corps peut comporter un clapet antiretour disposé dans l'orifice d'injection d'électrolyte ou un bouchon apte à obstruer cet orifice.  According to a particular embodiment, the body comprises an electrolyte injection orifice extending between an external surface of the body and the electrolytic chamber. This electrolyte injection orifice makes it possible to supply the electrolyte necessary for the measurement while the portable device is in the operational position, the bearing surface being in contact with the substrate. The body may include a non-return valve disposed in the electrolyte injection orifice or a plug capable of obstructing this orifice.
Par ailleurs, le corps peut comporter une ouverture de passage de fils agencée pour pouvoir faire passer un ou plusieurs fils de connexion entre la sonde de travail et l'extérieur du corps. En particulier, lorsque le corps du dispositif portable comporte un logement de guidage permettant le guidage en translation d'un organe mobile, l'ouverture de passage de fils peut être agencée entre une surface extérieure du corps et le logement de guidage.  Furthermore, the body may include a wire passage opening arranged to be able to pass one or more connection wires between the working probe and the outside of the body. In particular, when the body of the portable device comprises a guide housing allowing the translational guidance of a movable member, the opening for passage of wires can be arranged between an external surface of the body and the guide housing.
L'invention a aussi pour objet des kits comprenant un dispositif portable tel que précédemment décrit.  The invention also relates to kits comprising a portable device as previously described.
Dans un premier mode de réalisation, le kit comprend le dispositif rempli d'un électrolyte et une notice d'utilisation.  In a first embodiment, the kit includes the device filled with an electrolyte and a user manual.
Dans un autre mode de réalisation, le kit comprend le dispositif, un récipient, par exemple du type flacon hermétiquement fermé, contenant un électrolyte et une notice d'utilisation.  In another embodiment, the kit comprises the device, a container, for example of the hermetically closed bottle type, containing an electrolyte and a user manual.
Conformément à l'invention, l'électrolyte peut se présenter sous une forme liquide ou sous la forme d'un gel.  According to the invention, the electrolyte can be in a liquid form or in the form of a gel.
Lorsqu'il se présente sous une forme liquide, alors il s'agit avantageusement soit d'une solution aqueuse ou organique comprenant au moins un composé capable de s'ioniser en solution, par exemple un sel minéral ou organique, et éventuellement au moins un médiateur redox, soit d'un liquide ionique comprenant éventuellement au moins un médiateur redox. Lorsqu'il se présente sous la forme d'un gel, alors il s'agit avantageusement d'un gel obtenu par addition d'un agent gélifiant du type gélatine, pectine, agar-agar, alginate, gomme arabique, gomme xanthane, carraghénane ou analogue, à une solution aqueuse ou organique telle que définie ci-dessus ou à un liquide ionique tel que défini ci-dessus. When it is in a liquid form, then it is advantageously either an aqueous or organic solution comprising at least one compound capable of ionizing in solution, for example a mineral or organic salt, and optionally at least one redox mediator, or an ionic liquid optionally comprising at least one redox mediator. When it is in the form of a gel, then it is advantageously a gel obtained by adding a gelling agent of the gelatin, pectin, agar-agar, alginate, gum arabic, gum xanthan, carrageenan type. or the like, to an aqueous or organic solution as defined above or to an ionic liquid as defined above.
Le sel peut notamment être un sel métallique et, en particulier, un métal alcalin tel que le chlorure de sodium ou le chlorure de potassium.  The salt can in particular be a metal salt and, in particular, an alkali metal such as sodium chloride or potassium chloride.
Quant au médiateur redox, il peut être choisi parmi toutes les espèces électro actives dont l'utilisation a été proposée en SECM en fonction de l'usage auquel est destiné le dispositif. Ainsi, il peut aussi bien être de nature inorganique comme l'hexaamine de ruthénium [Ru(NH3)e]3+/2+ ou le ferri/ferrocyanure [Fe(CN)6]3 /4_, de nature organométallique comme le ferrocène [FcCp2]+/0 et le décaméthylferrocène Meio[FcCp2]+/0 que de nature organique comme la dopamine ou la 1,2-naphtoquinone. As for the redox mediator, it can be chosen from all the electro active species whose use has been proposed in SECM according to the use for which the device is intended. Thus, it can also be inorganic in nature such as ruthenium hexaamine [Ru (NH3) e] 3 + / 2 + or ferri / ferrocyanide [Fe (CN) 6 ] 3 / 4_ , organometallic in nature such as ferrocene [FcCp 2 ] + / 0 and decamethylferrocene Meio [FcCp2] + / 0 only organic in nature such as dopamine or 1,2-naphthoquinone.
L'invention a encore pour objet l'utilisation d'un dispositif ou d'un kit tel que précédemment défini pour analyser, caractériser et/ou modifier localement une surface.  The invention also relates to the use of a device or a kit as defined above to analyze, characterize and / or locally modify a surface.
D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture du complément de description qui suit, qui se réfère aux figures jointes en annexe et qui se rapporte à des exemples de réalisation du dispositif de l'invention ainsi qu'à des tests expérimentaux ayant permis de valider ce dispositif portable.  Other advantages and characteristics of the invention will appear on reading the additional description which follows, which refers to the appended figures and which relates to exemplary embodiments of the device of the invention as well as to tests experiments that validated this portable device.
Il va de soi que ces exemples ne sont donnés qu'à titre d'illustrations de l'objet de l'invention et ne constituent en aucun cas une limitation de cet objet.  It goes without saying that these examples are given only by way of illustrations of the subject of the invention and in no way constitute a limitation of this object.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
La figure 1, déjà commentée, illustre schématiquement un exemple typique d'un appareillage de SECM de l'état de la technique. FIG. 1, already commented on, schematically illustrates a typical example of a SECM apparatus of the state of the art.
La figure 2 représente, dans une vue en coupe longitudinale, un premier exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention.  FIG. 2 represents, in a longitudinal section view, a first embodiment of a portable electrochemical microscopy device of the invention.
La figure 3 représente, dans une vue en perspective, un deuxième exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention. La figure 4A représente, dans une vue en coupe longitudinale, un troisième exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention. FIG. 3 represents, in a perspective view, a second embodiment of a portable electrochemical microscopy device of the invention. FIG. 4A represents, in a longitudinal section view, a third embodiment of a portable electrochemical microscopy device of the invention.
Les figures 4B et 4C représentent, dans une vue en perspective et dans une vue en coupe longitudinale, respectivement, un corps du dispositif portable de la figure 4A.  Figures 4B and 4C show, in a perspective view and in a longitudinal sectional view, respectively, a body of the portable device of Figure 4A.
La figure 4D représente, dans une vue en perspective, un organe mobile du dispositif portable de la figure 4A.  Figure 4D shows, in a perspective view, a movable member of the portable device of Figure 4A.
La figure 4E représente, dans une vue de face, une vis micrométrique du dispositif portable de la figure 4A.  FIG. 4E represents, in a front view, a micrometric screw of the portable device of FIG. 4A.
La figure 5 illustre le voltampérogramme tel qu'obtenu en soumettant un dispositif portable de microscopie électrochimique de l'invention à un test de voltampérométrie cyclique, à distance de tout substrat, et dans lequel ce dispositif contient un électrolyte liquide ; sur cette figure, l'axe des ordonnées correspond à l'intensité, notée I et exprimée en nA (nanoampères), du courant mesuré à l'UME du dispositif, tandis que l'axe des abscisses au potentiel, noté E et exprimé en V (volts) par rapport au potentiel de l'électrode de référence, appliqué à cette UME.  FIG. 5 illustrates the voltammogram as obtained by subjecting a portable electrochemical microscopy device of the invention to a cyclic voltammetry test, away from any substrate, and in which this device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the intensity, denoted I and expressed in nA (nanoamps), of the current measured at the EMU of the device, while the abscissa axis at potential, denoted E and expressed in V (volts) compared to the potential of the reference electrode, applied to this UME.
La figure 6 illustre l'évolution du courant normalisé, noté IN, en fonction du temps, noté t et exprimé en s (secondes), telle qu'obtenue dans un test consistant à successivement placer la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention à l'infini (¥) d'un substrat isolant puis au contact de la surface de ce substrat et dans lequel ce dispositif contient un électrolyte liquide. FIG. 6 illustrates the evolution of the normalized current, noted I N , as a function of time, noted t and expressed in s (seconds), as obtained in a test consisting in successively placing the tip of the EMU of a portable electrochemical microscopy device of the invention to infinity (¥) of an insulating substrate then in contact with the surface of this substrate and in which this device contains a liquid electrolyte.
La figure 7 illustre la courbe d'approche telle qu'obtenue dans un test consistant à approcher progressivement, sur une période de 40 s, la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention, initialement située à l'infini (¥) d'un substrat isolant, de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de la surface du substrat, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, l'axe des ordonnées correspond au courant normalisé, noté IN, tandis que l'axe des abscisses correspond au temps, noté t et exprimé en s. FIG. 7 illustrates the approach curve as obtained in a test consisting in gradually approaching, over a period of 40 s, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at the infinity (¥) of an insulating substrate, of this substrate until this point is located at 10 ½ of the surface of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
La figure 8 illustre la courbe d'éloignement telle qu'obtenue dans un test consistant à éloigner progressivement, sur une période de 40 s, la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention, initialement située à 10 miti de la surface d'un substrat isolant, de ce substrat jusqu'à ce que cette pointe se situe à l'infini (¥) du substrat, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, l'axe des ordonnées correspond au courant normalisé, noté I N, tandis que l'axe des abscisses correspond au temps, noté t et exprimé en s. Figure 8 illustrates the distance curve as obtained in a test consisting in progressively moving away, over a period of 40 s, the tip of the EMU from a portable electrochemical microscopy device of the invention, initially located at 10 m from the surface of an insulating substrate, from this substrate until this point is located at infinity (¥) of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
La figure 9 illustre les courbes d'approche (courbe de gauche) et d'éloignement (courbe de droite) telles qu'obtenues dans un test consistant à approcher, par paliers successifs de 10 miti, la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention, initialement située à l'infini (¥) d'un substrat isolant, de la surface de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de cette surface, puis à éloigner, également par paliers successifs de 10 miti, la pointe de l'UME de la surface du substrat jusqu'à ce que cette pointe se situe à l'infini (¥) du substrat, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, l'axe des ordonnées correspond au courant normalisé, noté IN, tandis que l'axe des abscisses correspond au temps, noté t et exprimé en s. FIG. 9 illustrates the approach curves (left curve) and distance (right curve) curves as obtained in a test consisting in approaching, by successive steps of 10 miti, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at infinity (¥) of an insulating substrate, from the surface of this substrate until this point is located at 10 m half of this surface, then away , also in successive steps of 10 μm, the tip of the EMU from the surface of the substrate until this tip is at infinity (¥) of the substrate, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N , while the abscissa axis corresponds to time, noted t and expressed in s.
La figure 10 illustre les valeurs du courant normalisé, noté IN, en fonction du temps, noté t et exprimé en s, telles qu'obtenues dans un test consistant à prérégler la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention de sorte que cette pointe se situe à une distance prédéterminée, notée D, de 10 miti, 30 miti, 40 miti, 50 miti, 60 miti ou 100 miti de la surface d'un substrat isolant lorsque ce dispositif est appliqué sur cette surface, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, les triangles (D) correspondent aux valeurs obtenues à l'aplomb d'un premier point de la surface du substrat ; les croix (x) correspondent aux valeurs obtenues à l'aplomb d'un deuxième point de la surface du substrat tandis que les cercles (o) correspondent aux valeurs obtenues à l'aplomb d'un troisième point de la surface du substrat. FIG. 10 illustrates the values of the normalized current, noted I N , as a function of time, noted t and expressed in s, as obtained in a test consisting in presetting the tip of the UME of a portable electrochemical microscopy device of the invention so that this point is located at a predetermined distance, denoted D, of 10 miti, 30 miti, 40 miti, 50 miti, 60 miti or 100 miti from the surface of an insulating substrate when this device is applied on this surface, and in which the device contains a liquid electrolyte; in this figure, the triangles (D) correspond to the values obtained directly above a first point on the surface of the substrate; the crosses (x) correspond to the values obtained plumb with a second point on the surface of the substrate while the circles (o) correspond to the values obtained plumb with a third point on the surface of the substrate.
La figure 11 illustre les valeurs du courant normalisé, noté IN, telles qu'obtenues dans un test consistant à prérégler la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention de sorte que cette pointe se situe à une distance de 50 miti de la surface d'un substrat isolant lorsque ce dispositif est appliqué sur cette surface, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, les croix (x) correspondent aux valeurs obtenues à l'aplomb de cinq points, notés P, différents d la surface du substrat. FIG. 11 illustrates the values of the normalized current, denoted I N , as obtained in a test consisting in presetting the tip of the EMU of a portable electrochemical microscopy device of the invention so that this tip is located a distance of 50 μm from the surface of an insulating substrate when this device is applied to this surface, and in which the device contains a liquid electrolyte; in this figure, the crosses (x) correspond to the values obtained vertically from five points, denoted P, different from the surface of the substrate.
La figure 12 est une figure analogue à la figure 6 mais pour un substrat conducteur.  Figure 12 is a figure similar to Figure 6 but for a conductive substrate.
La figure 13 illustre la courbe d'approche telle qu'obtenue dans un test consistant à approcher, par paliers successifs de 10 miti, la pointe de l'UME d'un dispositif portable de microscopie électrochimique de l'invention, initialement située à l'infini (¥) d'un substrat conducteur, de la surface de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de cette surface, et dans lequel le dispositif contient un électrolyte liquide ; sur cette figure, l'axe des ordonnées correspond au courant normalisé, noté I N, tandis que l'axe des abscisses correspond au temps, noté t et exprimé en s.  FIG. 13 illustrates the approach curve as obtained in a test consisting in approaching, in successive steps of 10 μm, the tip of the EMU of a portable electrochemical microscopy device of the invention, initially located at l 'infinity (¥) of a conductive substrate, from the surface of this substrate until this point is located at 10 half of this surface, and in which the device contains a liquid electrolyte; in this figure, the ordinate axis corresponds to the normalized current, noted I N, while the abscissa axis corresponds to time, noted t and expressed in s.
La figure 14 est une figure analogue à la figure 5 mais pour un dispositif portable de microscopie électrochimique de l'invention contenant un gel électrolytique.  Figure 14 is a figure similar to Figure 5 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
La figure 15 est une figure analogue à celle de la figure 6 mais pour un dispositif portable de microscopie électrochimique de l'invention contenant un gel électrolytique.  Figure 15 is a figure similar to that of Figure 6 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
La figure 16 est une figure analogue à celle de la figure 12 mais pour un dispositif portable de microscopie électrochimique de l'invention contenant un gel électrolytique.  Figure 16 is a figure similar to that of Figure 12 but for a portable electrochemical microscopy device of the invention containing an electrolytic gel.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Dans ce qui précède et ce qui suit, le terme « isolant » signifie « isolant électrique » tandis que le terme « conducteur » signifie « conducteur électrique ». In what precedes and what follows, the term “insulator” means “electrical insulator” while the term “conductor” means “electrical conductor”.
I - Dispositif de l'invention : I - Device of the invention:
La figure 2 représente, dans une vue en coupe longitudinale, un premier exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention. Le dispositif portable 20 comporte un corps 21, une chambre électrolytique 22 formée dans le corps 21 et une sonde de travail 23. Le corps 21 présente une surface extérieure formant un cylindre de révolution. Cette surface extérieure constitue une surface de préhension 21A pour un utilisateur. Le diamètre extérieur du corps 21 peut être compris entre 0,5 cm et 10 cm. Il est par exemple égal à 2 cm. La longueur du corps 21 peut être comprise entre 3 cm et 20 cm. Elle est par exemple égale à 6 cm. La chambre électrolytique 22 est formée dans le corps 21 et débouche sur la surface de l'une des extrémités longitudinales du corps 21, appelée extrémité inférieure. La surface restante de cette extrémité forme une surface d'appui 21B pour le dispositif portable 20. La chambre électrolytique 22 forme par exemple un cylindre de révolution dont l'axe longitudinal est confondu avec l'axe longitudinal du corps 21. La surface d'appui 21B est alors annulaire. La chambre électrolytique 22 présente par exemple un diamètre égal à l cm et une hauteur égale à 0,5 cm. Le corps 21 comporte par ailleurs un logement d'accueil de la sonde de travail 211 et une ouverture de passage de fils 212. Le logement d'accueil 211 débouche, d'une part, dans la chambre électrolytique 22 et, d'autre part, dans l'ouverture de passage de fils 212. Il est prévu pour accueillir la sonde de travail 23. Les dimensions du logement d'accueil 211 sont adaptées à celles de la sonde de travail 23. Elles permettent par exemple un ajustement avec jeu. L'ouverture de passage de fils 212 est formée dans le corps 21 de manière à déboucher sur la surface de l'extrémité supérieure du corps 21, c'est-à-dire l'extrémité longitudinale opposée à l'extrémité sur laquelle est formée la chambre électrolytique 22. L'ouverture de passage de fils 212 est agencée pour permettre le passage d'un fil de connexion 24 depuis l'extrémité proximale 231 de la sonde de travail vers l'extérieur du corps 21. La sonde de travail 23 est agencée de manière à ce que son extrémité distale 232 soit disposée dans la chambre électrolytique 22. Elle est de plus agencée de manière à ce que son extrémité distale 232 soit située à une distance prédéterminée d'un plan passant par la surface d'appui 21B. Cette distance, appelée distance de travail, est par exemple comprise entre 0 pm et 200 pm. La sonde de travail 23 présente typiquement une forme de cylindre de révolution. Son extrémité distale 232 peut être plane ou former une pointe. La sonde de travail 23 est fixée par rapport au corps 21. La fixation est par exemple assurée par collage. La sonde 23 consiste par exemple en une électrode comportant un capillaire en verre et un fil conducteur inséré dans le capillaire. Ce type d'électrode est communément appelé « ultramicroélectrode » ou « UME ». FIG. 2 represents, in a longitudinal section view, a first embodiment of a portable electrochemical microscopy device of the invention. The portable device 20 comprises a body 21, an electrolytic chamber 22 formed in the body 21 and a working probe 23. The body 21 has an outer surface forming a cylinder of revolution. This outer surface constitutes a gripping surface 21A for a user. The outside diameter of the body 21 can be between 0.5 cm and 10 cm. It is for example equal to 2 cm. The length of the body 21 can be between 3 cm and 20 cm. It is for example equal to 6 cm. The electrolytic chamber 22 is formed in the body 21 and opens onto the surface of one of the longitudinal ends of the body 21, called the lower end. The remaining surface of this end forms a bearing surface 21B for the portable device 20. The electrolytic chamber 22 for example forms a cylinder of revolution whose longitudinal axis coincides with the longitudinal axis of the body 21. The surface of support 21B is then annular. The electrolytic chamber 22 has for example a diameter equal to 1 cm and a height equal to 0.5 cm. The body 21 also comprises a housing for receiving the working probe 211 and a wire passage opening 212. The reception housing 211 opens, on the one hand, into the electrolytic chamber 22 and, on the other hand , in the wire passage opening 212. It is designed to accommodate the working probe 23. The dimensions of the receiving housing 211 are adapted to those of the working probe 23. They allow for example an adjustment with play. The wire passage opening 212 is formed in the body 21 so as to open onto the surface of the upper end of the body 21, that is to say the longitudinal end opposite the end on which is formed the electrolytic chamber 22. The wire passage opening 212 is arranged to allow the passage of a connection wire 24 from the proximal end 231 of the working probe towards the outside of the body 21. The working probe 23 is arranged so that its end distal 232 is disposed in the electrolytic chamber 22. It is further arranged so that its distal end 232 is located at a predetermined distance from a plane passing through the bearing surface 21B. This distance, called the working distance, is for example between 0 pm and 200 pm. The working probe 23 typically has the shape of a cylinder of revolution. Its distal end 232 can be flat or form a point. The working probe 23 is fixed relative to the body 21. The fixing is for example ensured by gluing. The probe 23 consists for example of an electrode comprising a glass capillary and a conducting wire inserted in the capillary. This type of electrode is commonly called "ultramicroelectrode" or "UME".
Le dispositif portable 20 est susceptible d'être utilisé de la manière suivante. Un électrolyte est disposé dans la chambre électrolytique 22. L'électrolyte peut se présenter sous une forme liquide ou sous forme d'un gel. La forme gel présente l'avantage d'être maintenue plus facilement dans la chambre électrolytique 22. Le corps 21 est ensuite pris en main par un utilisateur via sa surface de préhension 21A et manipulé de manière à ce que sa surface d'appui 21B vienne en appui sur une surface d'un substrat à analyser. L'électrolyte présent dans la chambre électrolytique 22 est alors au contact à la fois avec l'extrémité distale 232 de la sonde et avec le substrat. Dans cette configuration, des mesures de microscopie électrochimique peuvent être réalisées de manière conventionnelle. En particulier, un ensemble de mesures peut être réalisé en déplaçant manuellement le dispositif portable 20 sur la surface du substrat. Une différence avec la SECM conventionnelle tient en ce que l'échantillon de substrat à analyser n'est pas entièrement plongé dans un bain d'électrolyte. The portable device 20 can be used in the following manner. An electrolyte is placed in the electrolytic chamber 22. The electrolyte can be present in liquid form or in the form of a gel. The gel form has the advantage of being more easily maintained in the electrolytic chamber 22. The body 21 is then taken in hand by a user via its gripping surface 21A and manipulated so that its bearing surface 21B comes resting on a surface of a substrate to be analyzed. The electrolyte present in the electrolytic chamber 22 is then in contact both with the distal end 232 of the probe and with the substrate. In this configuration, electrochemical microscopy measurements can be carried out in a conventional manner. In particular, a set of measurements can be made by manually moving the portable device 20 over the surface of the substrate. A difference with the conventional SECM is that the substrate sample to be analyzed is not fully immersed in an electrolyte bath.
La figure 3 représente, dans une vue en perspective, un deuxième exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention. Le dispositif portable 30 comporte, de manière similaire au dispositif portable 20 décrit en référence à la figure 2, un corps 31, une chambre électrolytique 32 formée dans le corps 31 et une sonde de travail, non représentée. Le dispositif portable 30 se distingue du dispositif portable 20 décrit précédemment en ce que le corps 31 comporte un tronçon cylindrique 311 et un tronçon tronconique 312. Le tronçon cylindrique 311 présente une surface extérieure formant un cylindre de révolution et le tronçon tronconique 312 présente une surface extérieure formant un tronc de cône. La surface extérieure de ces deux tronçons constitue une surface de préhension 31A. Le tronc de cône s'évase le long de l'axe longitudinal du tronçon cylindrique 311 entre une première base solidaire du tronçon cylindrique 311 et une deuxième base formant une surface d'appui 31B. La chambre électrolytique 32 est formée dans le tronçon tronconique 312 et débouche au niveau de la surface d'appui 31B. Un logement d'accueil de la sonde de travail 313 est formé dans le tronçon tronconique 312 et une ouverture de passage de fils 314 est formée dans le tronçon cylindrique 311. Dans d'autres exemples de réalisation, la chambre électrolytique 32 et le logement d'accueil de la sonde de travail 313 pourraient être en partie formés dans le tronçon cylindrique 311. De même, l'ouverture de passage de fils 314 pourrait être en partie formée dans le tronçon tronconique 312. Dans les exemples de réalisation des figures 2 et 3, la sonde de travail est fixée par rapport au corps du dispositif, de sorte que son extrémité distale se situe à une distance constante du plan formé par la surface d'appui, et donc du substrat. Néanmoins, le dispositif portable de microscopie électrochimique peut être agencé de manière à ce que la distance entre l'extrémité distale de la sonde de travail et le plan formé par la surface d'appui puisse être modifiée. FIG. 3 represents, in a perspective view, a second embodiment of a portable electrochemical microscopy device of the invention. The portable device 30 comprises, similarly to the portable device 20 described with reference to FIG. 2, a body 31, an electrolytic chamber 32 formed in the body 31 and a working probe, not shown. The portable device 30 differs from the portable device 20 described above in that the body 31 has a cylindrical section 311 and a frustoconical section 312. The cylindrical section 311 has an outer surface forming a cylinder of revolution and the frustoconical section 312 has a surface outer forming a truncated cone. The outer surface of these two sections constitutes a gripping surface 31A. The truncated cone flares along the longitudinal axis of the cylindrical section 311 between a first base secured to the cylindrical section 311 and a second base forming a bearing surface 31B. The electrolytic chamber 32 is formed in the frustoconical section 312 and opens at the bearing surface 31B. A housing for the working probe 313 is formed in the frustoconical section 312 and a wire passage opening 314 is formed in the cylindrical section 311. In other embodiments, the electrolytic chamber 32 and the housing d reception of the working probe 313 could be partly formed in the cylindrical section 311. Likewise, the opening for passage of wires 314 could be partly formed in the frustoconical section 312. In the exemplary embodiments of FIGS. 2 and 3, the working probe is fixed relative to the body of the device, so that its distal end is located at a constant distance from the plane formed by the bearing surface, and therefore from the substrate . However, the portable electrochemical microscopy device can be arranged so that the distance between the distal end of the working probe and the plane formed by the bearing surface can be modified.
Les figures 4A, 4B, 4C, 4D et 4E représentent un troisième exemple de réalisation d'un dispositif portable de microscopie électrochimique de l'invention. La figure 4A représente des éléments du dispositif portable dans une vue en coupe longitudinale, les figures 4B et 4C représentent un corps du dispositif portable dans une vue en perspective et dans une vue en coupe longitudinale, respectivement, la figure 4D représente un organe mobile du dispositif portable dans une vue en perspective et la figure 4E représente une vis micrométrique dans une vue de face. Le dispositif portable 40 comporte un corps 41, une chambre électrolytique 42 formée dans le corps 41, une sonde de travail 43 et un dispositif de positionnement 44. La sonde de travail 43 comporte une extrémité proximale 431, une extrémité distale 432 et un corps de sonde 433 s'étendant entre l'extrémité proximale 431 et l'extrémité distale 432. Une protubérance est formée au niveau de l'extrémité proximale 431. Le dispositif de positionnement 44 comporte un organe mobile 441 et une vis micrométrique 442. La vis micrométrique 442 comporte un corps de vis 4421, une molette de réglage 4422 et un poussoir 4423. Le corps de vis 4421 présente notamment une surface dite de référence 442A et le poussoir 4423 une surface dite de mesure 442B. De manière connue, une rotation de la molette de réglage 4422 par rapport au corps de vis 4421 entraîne une translation du poussoir 4423 par rapport au corps de vis 4421. Une échelle de graduation 4424 disposée à l'interface entre le corps de vis 4421 et la molette de réglage 4422 permet de déterminer une variation de la distance entre la surface de référence 442A et la surface de mesure 442B. Le corps 41 du dispositif portable 40 présente une surface extérieure formant un cylindre de révolution et constituant une surface de préhension 41A pour un utilisateur. Il comporte un logement de guidage 411 formé à une première extrémité longitudinale, appelée extrémité supérieure, et agencé pour recevoir l'organe mobile 441 et le guider en translation selon son axe longitudinal. Le logement de guidage 411 présente globalement une forme cylindrique de révolution et comporte une languette 4111 s'étendant selon l'axe longitudinal du corps 41. L'organe mobile 441 présente une forme complémentaire au logement de guidage 411. En particulier, il comporte une rainure 4411 dans laquelle la rainure 4111 peut venir s'insérer. Ainsi, l'organe mobile 441 est monté en liaison glissière dans le logement de guidage 411. Le corps 41 comporte en outre un orifice de passage de sonde 412 agencé pour permettre le passage de la sonde de travail entre le logement de guidage 411 et la chambre électrolytique 42. La chambre électrolytique 42 est formée à une deuxième extrémité longitudinale du corps 41, appelée extrémité inférieure. Elle définit une surface annulaire constituant une surface d'appui 41B pour le dispositif portable 40. Le corps 41 comporte par ailleurs un épaulement interne 413 agencé pour venir en contact avec la surface de référence 442A de la vis micrométrique 442, un orifice d'injection d'électrolyte 414 et une ouverture de passage de fils 415. L'orifice d'injection d'électrolyte 414 s'étend entre la surface extérieure 41A du corps et la chambre électrolytique 42. Il permet d'injecter, par exemple à l'aide d'une seringue, un électrolyte dans la chambre électrolytique 42. L'ouverture de passage de fils 415 forme une rainure traversant la paroi du corps 41 entre le logement de guidage 411 et la surface extérieure 41A. Elle permet de faire passer un fil de connexion relié à la sonde de travail 43. L'organe mobile 441 comporte un logement d'accueil 4412 agencé pour recevoir la sonde de travail 43. Le logement d'accueil 4412 est formé par un premier orifice 44121 agencé pour recevoir la protubérance formée sur l'extrémité proximale 431 et un deuxième orifice 44122 agencé permettre le passage du corps de sonde 433. L'organe mobile 441 comporte en outre un bouchon 4413, visible sur la figure 4A, de préférence en matériau élastomère, agencé pour s'insérer avec un ajustement serré dans le premier orifice 44111 et maintenir la sonde de travail 43 en position dans l'organe mobile 441. L'organe mobile 441 comporte en outre un épaulement interne 4414 agencé pour venir en contact avec la surface de mesure 442B de la vis micrométrique 442. Des aimants 4415 sont montés sur l'épaulement interne 4414 et permettent un accouplement temporaire entre la vis micrométrique 442 et l'organe mobile 441. L'organe mobile 441 comporte de plus une ouverture de passage de fils 4416 formant une rainure s'étendant entre le premier orifice 44121 du logement d'accueil 4412 et une surface extérieure de l'organe mobile 441. L'ouverture de passage de fils 4416 est agencée pour coïncider avec l'ouverture de passage de fils 415 du corps 41 et permettre de faire passer le fil de connexion relié à la sonde de travail 43. FIGS. 4A, 4B, 4C, 4D and 4E represent a third embodiment of a portable electrochemical microscopy device of the invention. FIG. 4A represents elements of the portable device in a longitudinal section view, FIGS. 4B and 4C represent a body of the portable device in a perspective view and in a longitudinal section view, respectively, FIG. 4D represents a movable member of the portable device in a perspective view and FIG. 4E represents a micrometric screw in a front view. The portable device 40 comprises a body 41, an electrolytic chamber 42 formed in the body 41, a working probe 43 and a positioning device 44. The working probe 43 has a proximal end 431, a distal end 432 and a body of probe 433 extending between the proximal end 431 and the distal end 432. A protuberance is formed at the level of the proximal end 431. The positioning device 44 comprises a movable member 441 and a micrometric screw 442. The micrometric screw 442 comprises a screw body 4421, an adjustment wheel 4422 and a pusher 4423. The screw body 4421 has in particular a so-called reference surface 442A and the pusher 4423 a so-called measurement surface 442B. In known manner, a rotation of the adjustment wheel 4422 relative to the screw body 4421 causes a translation of the pusher 4423 relative to the screw body 4421. A graduation scale 4424 disposed at the interface between the screw body 4421 and the adjustment wheel 4422 makes it possible to determine a variation in the distance between the reference surface 442A and the measurement surface 442B. The body 41 of the portable device 40 has an outer surface forming a cylinder of revolution and constituting a gripping surface 41A for a user. It comprises a guide housing 411 formed at a first longitudinal end, called the upper end, and arranged to receive the movable member 441 and guide it in translation along its longitudinal axis. The guide housing 411 generally has a cylindrical shape of revolution and comprises a tongue 4111 extending along the longitudinal axis of the body 41. The movable member 441 has a shape complementary to the guide housing 411. In particular, it has a groove 4411 in which groove 4111 can be inserted. Thus, the movable member 441 is mounted in sliding connection in the guide housing 411. The body 41 further comprises a probe passage orifice 412 arranged to allow the passage of the working probe between the guide housing 411 and the electrolytic chamber 42. The electrolytic chamber 42 is formed at a second longitudinal end of the body 41, called the lower end. It defines an annular surface constituting a bearing surface 41B for the portable device 40. The body 41 also includes an internal shoulder 413 arranged to come into contact with the reference surface 442A of the micrometric screw 442, an injection orifice electrolyte 414 and a wire passage opening 415. The electrolyte injection orifice 414 extends between the external surface 41A of the body and the electrolytic chamber 42. It makes it possible to inject, for example into the using a syringe, an electrolyte in the electrolytic chamber 42. The wire passage opening 415 forms a groove passing through the wall of the body 41 between the guide housing 411 and the outer surface 41A. It makes it possible to pass a connection wire connected to the working probe 43. The movable member 441 comprises a reception housing 4412 arranged to receive the working probe 43. The reception housing 4412 is formed by a first orifice 44121 arranged to receive the protuberance formed on the proximal end 431 and a second orifice 44122 arranged to allow the passage of the probe body 433. The movable member 441 further comprises a plug 4413, visible in FIG. 4A, preferably made of material elastomer, arranged to fit with a tight fit into the first orifice 44111 and maintain the working probe 43 in position in the movable member 441. The movable member 441 further comprises an internal shoulder 4414 arranged to come into contact with the measurement surface 442B of the micrometric screw 442. Magnets 4415 are mounted on the internal shoulder 4414 and allow a temporary coupling between the micrometric screw 442 and the movable member 441. The movable member 441 further comprises a wire passage opening 4416 forming a groove extending between the first orifice 44121 of the reception housing 4412 and an outer surface of the movable member 441. The wire passage opening 4416 is arranged to coincide with the wire passage opening 415 of the body 41 and allow the wire to pass through. connection connected to the working probe 43.
Le dispositif portable 40 est susceptible d'être utilisé de la manière suivante. Le corps 41 est pris en main par un utilisateur via sa surface de préhension 41A et manipulé de manière à ce que sa surface d'appui 41B vienne en appui sur une surface d'un substrat à analyser. Dans cette configuration, un électrolyte peut être injecté dans la chambre électrolytique 42 par l'intermédiaire de l'orifice d'injection d'électrolyte 414. L'électrolyte assure alors son rôle de médium entre l'extrémité distale 432 de la sonde et le substrat. Des mesures de microscopie électrochimique peuvent ainsi être réalisées de manière conventionnelle. Il est à noter que le dispositif portable 40 est adapté à une utilisation avec un électrolyte aussi bien sous forme liquide que sous la forme d'un gel.  The portable device 40 can be used in the following manner. The body 41 is taken in hand by a user via its gripping surface 41A and manipulated so that its bearing surface 41B comes to bear on a surface of a substrate to be analyzed. In this configuration, an electrolyte can be injected into the electrolytic chamber 42 via the electrolyte injection orifice 414. The electrolyte then fulfills its role of medium between the distal end 432 of the probe and the substrate. Electrochemical microscopy measurements can thus be carried out in a conventional manner. It should be noted that the portable device 40 is suitable for use with an electrolyte both in liquid form and in the form of a gel.
Dans les différents exemples de réalisation de dispositif portable de microscopie électrochimique décrits ci-dessus, le corps du dispositif portable présente une surface extérieure formant un cylindre de révolution et éventuellement un tronc de cône. Bien entendu, l'invention ne se limite pas à ces exemples de réalisation et le corps peut présenter toute surface susceptible de constituer une surface de préhension pour un utilisateur, et en particulier pour une main de cet utilisateur.  In the various embodiments of a portable electrochemical microscopy device described above, the body of the portable device has an outer surface forming a cylinder of revolution and possibly a truncated cone. Of course, the invention is not limited to these exemplary embodiments and the body can have any surface capable of constituting a gripping surface for a user, and in particular for a hand of this user.
Dans le but de donner un caractère entièrement portatif au dispositif portable selon l'invention, ce dernier est avantageusement associé à un potentiostat portable tel qu'un bipotentiostat PG580R d'Uniscan Instruments, un potentiostat - galvanostat PG581 de BioLogic Science Instruments ou un bipotentiostat pStat 200 ou multivoies Dropsens pStat 8000 de Metrohm.  In order to give a completely portable character to the portable device according to the invention, the latter is advantageously associated with a portable potentiostat such as a bipotentiostat PG580R from Uniscan Instruments, a potentiostat - galvanostat PG581 from BioLogic Science Instruments or a pStat bipotentiostat 200 or Dropsens pStat 8000 multichannel from Metrohm.
Il - Validation expérimentale du dispositif de l'invention : II - Experimental validation of the device of the invention:
L'aptitude d'un dispositif tel qu'illustré sur les figures 2, 3 et 4A à 4E à permettre l'analyse et la caractérisation de surfaces par microscopie électrochimique est validée par une série de tests expérimentaux que l'on réalise, d'une part, avec un électrolyte liquide et, d'autre part, avec un gel électrolytique, et ce, sur un substrat isolant et sur un substrat conducteur. Dans ces tests, le dispositif utilisé mesure 8,5 cm de haut et 2 cm de diamètre et comprend : The ability of a device as illustrated in FIGS. 2, 3 and 4A to 4E to allow the analysis and characterization of surfaces by electrochemical microscopy is validated by a series of experimental tests which are carried out, on the one hand, with a liquid electrolyte and, on the other hand, with an electrolytic gel, and this, on an insulating substrate and on a conductive substrate. In these tests, the device used measures 8.5 cm high and 2 cm in diameter and includes:
- une UME constituée d'un fil de platine de 12 cm de long et de 50 miti de diamètre dans un capillaire en verre ; et  - a UME made up of a platinum wire 12 cm long and 50 miti in diameter in a glass capillary; and
- deux fils d'or comme électrode de référence et contre-électrode.  - two gold wires as reference electrode and counter electrode.
Le dispositif est relié à un bipotentiostat PG580R d'Uniscan Instruments, lequel est lui-même relié à une unité d'acquisition (logiciel LEIS M370™ d'Uniscan Instruments) et de traitement des données (Origin™).  The device is connected to a Unipan Instruments PG580R bipotentiostat, which is itself linked to an acquisition unit (LEIS M370 ™ software from Uniscan Instruments) and data processing (Origin ™).
Par ailleurs :  Otherwise :
- la pointe de l'UME du dispositif est considérée à l'infini d'un substrat lorsque cette pointe est située à une distance au moins égale à minimum 7 fois la taille du fil conducteur scellé dans le capillaire ; et  - the tip of the EMU of the device is considered at infinity of a substrate when this tip is located at a distance at least equal to at least 7 times the size of the conductive wire sealed in the capillary; and
- un courant normalisé, noté I N et sans unité, correspond au rapport entre le courant mesuré à l'UME du dispositif à un instant t d'un test expérimental et le courant mesuré à l'UME du dispositif lorsque la pointe de celle-ci est à l'infini d'un substrat.  - a normalized current, denoted IN and without unit, corresponds to the ratio between the current measured at the EMU of the device at an instant t of an experimental test and the current measured at the EMU of the device when the tip of the latter is at infinity of a substrate.
11.1 - Tests avec un électrolyte liquide : 11.1 - Tests with a liquid electrolyte:
Dans ce qui suit, on utilise :  In what follows, we use:
- une solution aqueuse comprenant 100 mmol/L de chlorure de potassium (KCI) et, en tant que médiateur redox, 50 mmol/L d'ions ferrocyanure de potassium [Fe(CN)e]4 , apportés sous la forme de ferrocyanure de potassium K4[Fe(CN)6], comme électrolyte liquide ; an aqueous solution comprising 100 mmol / L of potassium chloride (KCI) and, as redox mediator, 50 mmol / L of potassium ferrocyanide ions [Fe (CN) e] 4 , supplied in the form of ferrocyanide of potassium K 4 [Fe (CN) 6 ], as a liquid electrolyte;
- un substrat en verre comme substrat isolant ; et  - a glass substrate as an insulating substrate; and
- un substrat en or comme substrat conducteur.  - a gold substrate as a conductive substrate.
Le volume d'électrolyte liquide présent dans le dispositif est de 0,8 mL.  The volume of liquid electrolyte present in the device is 0.8 mL.
On soumet tout d'abord le dispositif à une voltampérométrie cyclique en appliquant à l'UME une variation continue de potentiel allant de 0 V à 0,5 V vs Au, à une vitesse de 0,05 V/s, et en mesurant le courant traversant l'UME, celle-ci étant placée à distance de tout substrat. Le voltampérogramme ainsi obtenu, qui est illustré sur la figure 5, permet de vérifier que le médiateur redox présent dans l'électrolyte est bien apte à passer d'un état réduit à un état oxydé et vice versa sous l'effet de variations d'un potentiel électrique imposé à l'UME du dispositif et que cette UME est bien apte à traduire ces changements d'état en variations d'un courant mesurable. Il permet aussi de déterminer le potentiel à appliquer à l'UME dans les tests de SECM ci-après pour assurer une oxydation du médiateur redox, à savoir 0,5 V vs Au. The device is first of all subjected to a cyclic voltammetry by applying to the UME a continuous variation of potential ranging from 0 V to 0.5 V vs Au, at a speed of 0.05 V / s, and by measuring the current passing through the EMU, this being placed at a distance from any substrate. The voltammogram thus obtained, which is illustrated in FIG. 5, makes it possible to verify that the redox mediator present in the electrolyte is indeed capable of passing from a reduced state to an oxidized state and vice versa under the effect of variations in an electrical potential imposed on the UME of the device and that this UME is well able to translate these changes of state into variations of a measurable current. It also makes it possible to determine the potential to be applied to the UME in the SECM tests below to ensure oxidation of the redox mediator, namely 0.5 V vs Au.
On soumet ensuite le dispositif à une série de tests de SECM, ci-après tests 1 à 8, dans lesquels le potentiel appliqué à l'UME est donc de 0,5 V vs Au, tandis que les substrats sont laissés à l'OCP (de « Open Circuit Potential »), c'est-à-dire qu'aucun potentiel ne leur est appliqué.  The device is then subjected to a series of SECM tests, hereinafter tests 1 to 8, in which the potential applied to the EMU is therefore 0.5 V vs Au, while the substrates are left to the OCP. (of “Open Circuit Potential”), that is to say that no potential is applied to them.
Test 1 : Test 1:
Ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en verre et à placer successivement, au moyen de la vis micrométrique, la pointe de l'UME de ce dispositif à l'infini de ce substrat puis au contact de la surface de ce substrat, tout en mesurant le courant à l'UME du dispositif.  This test consists of applying the lower end of the device to the surface of a glass substrate and successively placing, using the micrometric screw, the tip of the EMU of this device at the infinity of this substrate and then at contact of the surface of this substrate, while measuring the current at the EMU of the device.
Les résultats sont illustrés sur la figure 6 qui montre une diminution drastique du courant normalisé I N obtenu lorsque la pointe de celle-ci entre en contact avec la surface du substrat en verre.  The results are illustrated in FIG. 6 which shows a drastic reduction in the normalized current I N obtained when the tip of the latter comes into contact with the surface of the glass substrate.
Ces résultats, qui sont caractéristiques du « feedback » négatif que l'on observe en l'absence de réaction entre un médiateur redox et une surface isolante, sont conformes à ceux qui seraient obtenus dans les mêmes conditions opératoires avec un appareillage de SECM de l'état de la technique.  These results, which are characteristic of the negative “feedback” which is observed in the absence of reaction between a redox mediator and an insulating surface, are consistent with those which would be obtained under the same operating conditions with a SECM apparatus of 1 'state of the art.
Test 2 : Test 2:
Ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en verre et à approcher progressivement, au moyen de la vis micrométrique et sur une période de 40 s, la pointe de l'UME de ce dispositif, initialement située à l'infini du substrat, de la surface de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de cette surface, tout en mesurant le courant à l'UME du dispositif. Les résultats sont illustrés sur la figure 7 sous la forme de ce que l'on appelle une courbe d'approche. Cette courbe montre une diminution progressive du courant normalisé IN obtenu au fur et à mesure que la pointe de l'UME se rapproche de la surface du substrat en verre puis une stabilisation de ce courant lorsque la pointe de l'UME se situe à 10 miti de la surface du substrat. This test consists in applying the lower end of the device to the surface of a glass substrate and gradually approaching, using the micrometric screw and over a period of 40 s, the tip of the EMU of this device, initially located at infinity of the substrate, from the surface of this substrate until this point is located at 10 m half of this surface, while measuring the current at the EMU of the device. The results are illustrated in Figure 7 in the form of a so-called approach curve. This curve shows a gradual decrease in the normalized current I N obtained as the tip of the EMU approaches the surface of the glass substrate and then a stabilization of this current when the tip of the EMU is located at 10 miti from the surface of the substrate.
Là également, ces résultats sont conformes à ceux qui seraient obtenus dans les mêmes conditions opératoires avec un appareillage de SECM de l'état de la technique.  Here too, these results are consistent with those which would be obtained under the same operating conditions with a SECM apparatus of the prior art.
Test 3 : Test 3:
Ce test, qui est un test inverse du test 2 ci-avant, consiste à éloigner progressivement, au moyen de la vis micrométrique et sur une période de 40 s, de la surface du substrat en verre la pointe de l'UME du dispositif, qui se situe à 10 miti de cette surface à l'issue du test 2, jusqu'à ce que cette pointe se situe à l'infini du substrat, tout en mesurant le courant à l'UME du dispositif.  This test, which is a reverse test of test 2 above, consists in progressively moving the tip of the EMU of the device away from the surface of the glass substrate, using the micrometric screw and over a period of 40 s, which is located 10 to half of this surface at the end of test 2, until this point is located at infinity of the substrate, while measuring the current at the EMU of the device.
Les résultats sont illustrés sur la figure 8 sous la forme de ce que l'on appelle une courbe d'éloignement. Cette courbe montre une augmentation progressive du courant normalisé IN obtenu au fur et à mesure que la pointe de l'UME s'éloigne du substrat puis une stabilisation de ce courant lorsque la pointe de l'UME se situe à l'infini du substrat. The results are illustrated in Figure 8 in the form of a so-called distance curve. This curve shows a gradual increase in the normalized current I N obtained as the tip of the EMU moves away from the substrate, then a stabilization of this current when the tip of the EMU is at infinity of the substrate. .
Là aussi, ces résultats sont conformes à ceux qui seraient obtenus dans les mêmes conditions opératoires avec un appareillage de SECM de l'état de la technique.  Again, these results are consistent with those which would be obtained under the same operating conditions with a SECM apparatus of the prior art.
Test 4 : Test 4:
Ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en verre, à approcher, au moyen de la vis micrométrique et par paliers successifs de 10 miti, la pointe de l'UME de ce dispositif, initialement située à l'infini du substrat, de la surface de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de cette surface, puis à éloigner, également au moyen de la vis micrométrique et par paliers successifs de 10 miti, la pointe de l'UME de la surface du substrat jusqu'à ce que cette pointe se situe à l'infini du substrat, tout en mesurant le courant à l'UME du dispositif.  This test consists in applying the lower end of the device to the surface of a glass substrate, to approach, by means of the micrometric screw and in successive steps of 10 times, the tip of the EMU of this device, initially located to the infinity of the substrate, from the surface of this substrate until this point is located 10 miti from this surface, then to move away, also by means of the micrometric screw and in successive steps of 10 miti, the point of the EMU of the surface of the substrate until this point is located at infinity of the substrate, while measuring the current at the EMU of the device.
Sont ainsi obtenues les courbes d'approche et d'éloignement illustrées sur la figure 9. Ces courbes montrent que, pour chacun des paliers, c'est-à-dire pour une même distance séparant la pointe de l'UME de la surface du substrat, la valeur du courant normalisé obtenue lorsque la pointe de l'UME est approchée du substrat est sensiblement la même que celle obtenue lorsque cette pointe est éloignée de la surface du substrat. The approach and distance curves illustrated in FIG. 9 are thus obtained. These curves show that, for each of the landings, that is to say for the same distance separating the tip of the EMU from the surface of the substrate, the value of the normalized current obtained when the tip of the EMU is approached to the substrate is substantially the same as that obtained when this tip is distant from the surface of the substrate.
Test 5 : Test 5:
Ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en verre après avoir préréglé, au moyen de la vis micrométrique, la pointe de l'UME de ce dispositif de l'invention de sorte que cette pointe se situe à une distance de 10 miti, 30 miti, 40 miti, 50 miti, 60 miti ou de 100 miti de la surface du substrat, tout en mesurant le courant à l'UME du dispositif.  This test consists in applying the lower end of the device to the surface of a glass substrate after having preset, by means of the micrometric screw, the tip of the EMU of this device of the invention so that this tip located at a distance of 10 miti, 30 miti, 40 miti, 50 miti, 60 miti or 100 miti from the surface of the substrate, while measuring the current at the EMU of the device.
Ce test est effectué à l'aplomb de trois points différents de la surface du substrat.  This test is carried out vertically at three different points on the surface of the substrate.
Les résultats sont illustrés sur la figure 10 qui montre que, pour chacune des distances séparant la pointe de l'UME de la surface du substrat, les valeurs de courant normalisé I N obtenues sont identiques ou quasi identiques pour les trois points différents du substrat.  The results are illustrated in FIG. 10 which shows that, for each of the distances separating the tip of the EMU from the surface of the substrate, the normalized current values I N obtained are identical or almost identical for the three different points of the substrate.
Ils mettent en évidence, d'une part, la reproductibilité des mesures réalisées avec le dispositif sur une surface homogène et, d'autre part, la possibilité de positionner l'UME de ce dispositif à une distance prédéterminée d'un substrat de manière parfaitement contrôlée.  They highlight, on the one hand, the reproducibility of the measurements carried out with the device on a homogeneous surface and, on the other hand, the possibility of positioning the EMU of this device at a predetermined distance from a substrate in a perfectly controlled.
Test 6 : Test 6:
En liaison avec le test 5, ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en verre après avoir préréglé, au moyen de la vis micrométrique, la pointe de l'UME de ce dispositif de l'invention de sorte que cette pointe se situe à une distance de 50 miti de la surface du substrat, tout en mesurant le courant à l'UME du dispositif.  In connection with test 5, this test consists in applying the lower end of the device to the surface of a glass substrate after having preset, by means of the micrometric screw, the tip of the EMU of this device. invention so that this tip is located at a distance of 50 μm from the surface of the substrate, while measuring the current at the EMU of the device.
Ce test est effectué à l'aplomb de cinq points différents de la surface du substrat. This test is carried out vertically at five different points on the surface of the substrate.
Les résultats sont illustrés sur la figure 11 qui confirme la reproductibilité des mesures réalisées avec le dispositif sur une surface homogène et qui montre qu'il est possible de vérifier l'homogénéité ou, au contraire, l'hétérogénéité de la surface d'un substrat en préréglant la position de la pointe de l'UME du dispositif et en déplaçant simplement ce dispositif manuellement sur la surface du substrat. The results are illustrated in FIG. 11 which confirms the reproducibility of the measurements carried out with the device on a homogeneous surface and which shows that it is it is possible to check the homogeneity or, on the contrary, the heterogeneity of the surface of a substrate by presetting the position of the tip of the EMU of the device and by simply moving this device manually over the surface of the substrate.
Test 7 : Test 7:
Ce test, dont les résultats sont illustrés sur la figure 12, est un test analogue au test 1 mais pour un substrat en or.  This test, the results of which are illustrated in FIG. 12, is a test similar to test 1 but for a gold substrate.
Comme attendu et en conformité avec ce qui serait obtenu avec un appareillage de SECM de l'état de la technique, la figure 12 montre une augmentation drastique du courant normalisé I N obtenu lorsque la pointe de l'UME du dispositif entre en contact avec la surface du substrat, caractéristique du « feedback » positif que l'on observe Lorsqu'un médiateur redox réagit avec une surface électroconductrice.  As expected and in accordance with what would be obtained with a SECM apparatus of the state of the art, Figure 12 shows a drastic increase in the normalized current IN obtained when the tip of the EMU of the device comes into contact with the surface of the substrate, characteristic of the positive “feedback” that we observe When a redox mediator reacts with an electrically conductive surface.
Test 8 : Test 8:
Ce test consiste à appliquer l'extrémité inférieure du dispositif sur la surface d'un substrat en or et à approcher, au moyen de la vis micrométrique et par paliers successifs de 10 miti, la pointe de l'UME de ce dispositif, initialement située à l'infini du substrat, de la surface de ce substrat jusqu'à ce que cette pointe se situe à 10 miti de cette surface, tout en mesurant le courant à l'UME du dispositif.  This test consists of applying the lower end of the device to the surface of a gold substrate and approaching, by means of the micrometric screw and in successive steps of 10 times, the tip of the EMU of this device, initially located at the infinity of the substrate, from the surface of this substrate until this point is located at 10 ½ of this surface, while measuring the current at the EMU of the device.
Est ainsi obtenue la courbe d'approche illustrée sur la figure 13, qui est conforme à celle qui serait obtenue avec un appareillage de SECM de l'état de la technique.  The approach curve illustrated in FIG. 13 is thus obtained, which conforms to that which would be obtained with a SECM apparatus of the state of the art.
11.2 - Tests avec un gel électrolytique : 11.2 - Tests with an electrolytic gel:
Dans ce qui suit, on utilise :  In what follows, we use:
- un gel aqueux obtenu par addition de gomme xanthane (200 mg) à 50 mL d'une solution aqueuse comprenant 100 mmol/L de chlorure de potassium (KCI) et, en tant que médiateur redox, 100 mmol/L d'ions ferrocyanure de potassium [Fe(CN)6]4 , apportés sous la forme de ferrocyanure de potassium K4Fe(CN)6, comme électrolyte ; an aqueous gel obtained by adding xanthan gum (200 mg) to 50 ml of an aqueous solution comprising 100 mmol / L of potassium chloride (KCI) and, as redox mediator, 100 mmol / L of ferrocyanide ions potassium [Fe (CN) 6 ] 4 , supplied in the form of potassium ferrocyanide K 4 Fe (CN) 6 , as electrolyte;
- un substrat en verre comme substrat isolant ; et  - a glass substrate as an insulating substrate; and
- un substrat en or comme substrat conducteur.  - a gold substrate as a conductive substrate.
Le volume de gel électrolytique présent dans le dispositif est de 0,8 mL. On soumet tout d'abord le dispositif à une voltampérométrie cyclique en appliquant à l'UME une variation continue de potentiel allant de 0 V à 0,6 V vs Au, à une vitesse de 0,05 V/s, et en mesurant le courant traversant l'UME, celle-ci étant placée à distance de tout substrat. The volume of electrolytic gel present in the device is 0.8 mL. First of all, the device is subjected to a cyclic voltammetry by applying to the UME a continuous variation of potential ranging from 0 V to 0.6 V vs Au, at a speed of 0.05 V / s, and by measuring the current passing through the EMU, this being placed at a distance from any substrate.
Là également, le voltampérogramme obtenu, qui est illustré sur la figure 14, permet de vérifier que le médiateur redox présent dans l'électrolyte est bien apte à passer d'un état réduit à un état oxydé et vice versa sous l'effet de variations d'un potentiel électrique imposé à l'UME du dispositif et que cette UME est bien apte à traduire ces changements d'état en variations d'un courant mesurable, et de déterminer le potentiel à appliquer à l'UME dans les tests de SECM ci-après pour assurer une oxydation du médiateur redox, à savoir 0,5 V vs Au.  Here also, the voltammogram obtained, which is illustrated in FIG. 14, makes it possible to verify that the redox mediator present in the electrolyte is indeed able to pass from a reduced state to an oxidized state and vice versa under the effect of variations. of an electrical potential imposed on the UME of the device and that this UME is well suited to translate these changes of state into variations of a measurable current, and to determine the potential to be applied to the UME in the SECM tests below to ensure oxidation of the redox mediator, namely 0.5 V vs Au.
On soumet ensuite le dispositif à une série de tests de SECM, ci-après tests 9 et 10, dans lesquels le potentiel appliqué à l'UME est donc de 0,5 V vs Au, tandis que les substrats sont laissés à l'OCP.  The device is then subjected to a series of SECM tests, hereinafter tests 9 and 10, in which the potential applied to the EMU is therefore 0.5 V vs Au, while the substrates are left to the OCP. .
Test 9 : Test 9:
Ce test est un test analogue au test 1 ci-avant.  This test is a test similar to test 1 above.
Les résultats sont illustrés sur la figure 15 qui, à l'instar de la figure 6, montre une diminution drastique du courant normalisé I N obtenu lorsque la pointe de celle-ci entre en contact avec la surface du substrat en verre, caractéristique d'un « feedback » négatif.  The results are illustrated in FIG. 15 which, like FIG. 6, shows a drastic reduction in the normalized current IN obtained when the tip of the latter comes into contact with the surface of the glass substrate, characteristic of a Negative feedback.
Test 10 : Test 10:
Ce test est un test analogue au test 7 ci-avant.  This test is a test similar to test 7 above.
Les résultats sont illustrés sur la figure 16 qui, à l'instar de la figure 12, montre une augmentation drastique du courant normalisé I N obtenu lorsque la pointe de celle-ci entre en contact avec la surface du substrat en or, caractéristique d'un « feedback » positif.  The results are illustrated in FIG. 16 which, like FIG. 12, shows a drastic increase in the normalized current IN obtained when the tip of the latter comes into contact with the surface of the gold substrate, characteristic of a Positive feedback.

Claims

REVENDICATIONS
1. Dispositif portable de microscopie électrochimique, qui comprend :1. Portable electrochemical microscopy device, which includes:
un corps (21, 31, 41) présentant une surface de préhension (21A, 31A, 41A) pour un utilisateur et une surface d'appui (21B, 31B, 41B) apte à venir en appui sur une surface d'un substrat à analyser, a body (21, 31, 41) having a gripping surface (21A, 31A, 41A) for a user and a support surface (21B, 31B, 41B) able to bear against a surface of a substrate to analyze,
une chambre électrolytique (22, 32, 42) formée dans le corps, agencée pour recevoir un électrolyte, la chambre électrolytique comportant une ouverture débouchant au niveau de la surface d'appui, et an electrolytic chamber (22, 32, 42) formed in the body, arranged to receive an electrolyte, the electrolyte chamber having an opening at the bearing surface, and
une sonde de travail (23, 43) présentant une extrémité distale (232, 432) disposée dans la chambre électrolytique, la sonde de travail (23, 43) étant agencée de sorte que l'extrémité distale (232, 423) soit située à une distance prédéterminée d'un plan passant par la surface d'appui (21B, 31B, 41B). a working probe (23, 43) having a distal end (232, 432) disposed in the electrolytic chamber, the working probe (23, 43) being arranged so that the distal end (232, 423) is located at a predetermined distance from a plane passing through the bearing surface (21B, 31B, 41B).
2. Dispositif portable selon la revendication 1, dans lequel la sonde de travail (23, 43) est fixée au corps (21, 31, 41), de sorte que son extrémité distale est fixe par rapport à un plan passant par la surface d'appui (21B, 31B, 41B). 2. Portable device according to claim 1, wherein the working probe (23, 43) is fixed to the body (21, 31, 41), so that its distal end is fixed relative to a plane passing through the surface d '' support (21B, 31B, 41B).
3. Dispositif portable selon la revendication 1 comprenant, en outre, un dispositif de positionnement (44) agencé pour permettre un déplacement de la sonde de travail (43) relativement à la surface d'appui (41B). 3. Portable device according to claim 1 further comprising a positioning device (44) arranged to allow movement of the working probe (43) relative to the bearing surface (41B).
4. Dispositif portable selon la revendication 3, dans lequel le dispositif de positionnement (44) comporte un organe mobile (441) et un mécanisme d'entraînement (442), l'organe mobile étant agencé pour porter la sonde de travail (43) et pour pouvoir être déplacé en translation par rapport au corps (41) selon un axe de translation, le mécanisme d'entraînement (442) étant agencé pour déplacer l'organe mobile (441) par rapport au corps (41). 4. Portable device according to claim 3, wherein the positioning device (44) comprises a movable member (441) and a drive mechanism (442), the movable member being arranged to carry the working probe (43) and to be able to be moved in translation relative to the body (41) along a translation axis, the drive mechanism (442) being arranged to move the movable member (441) relative to the body (41).
5. Dispositif portable selon la revendication 4, dans lequel le corps (41) comporte un logement de guidage (411), le logement de guidage et l'organe mobile (441) étant agencés pour que l'organe mobile soit guidé en translation par rapport au corps. 5. Portable device according to claim 4, wherein the body (41) comprises a guide housing (411), the guide housing and the movable member (441) being arranged so that the movable member is guided in translation by relationship to the body.
6. Dispositif portable selon l'une des revendications 4 et 5, dans lequel le mécanisme d'entraînement comporte une vis micrométrique (442) présentant une surface de référence (442A) et une surface mobile (442B), la vis micrométrique étant agencée pour permettre une modification d'une distance séparant la surface de référence de la surface mobile, la surface de référence étant agencée pour être solidaire du corps (41) et la surface mobile étant agencée pour être solidaire de l'organe mobile (441). 6. Portable device according to one of claims 4 and 5, wherein the drive mechanism comprises a micrometric screw (442) having a reference surface (442A) and a movable surface (442B), the micrometric screw being arranged for allowing a modification of a distance separating the reference surface from the movable surface, the reference surface being arranged to be secured to the body (41) and the movable surface being arranged to be secured to the movable member (441).
7. Dispositif portable selon l'une des revendications 4 à 6, dans lequel l'organe mobile (441) comporte un logement d'accueil (4412) de la sonde de travail (43) et un organe de fixation (4413), le logement d'accueil étant agencé pour recevoir une extrémité proximale (431) de la sonde de travail (43) et l'organe de fixation (4413) étant agencé pour fixer la sonde de travail (43) à l'organe mobile (441). 7. Portable device according to one of claims 4 to 6, wherein the movable member (441) comprises a receiving housing (4412) of the working probe (43) and a fixing member (4413), the receiving housing being arranged to receive a proximal end (431) of the working probe (43) and the fixing member (4413) being arranged to fix the working probe (43) to the movable member (441) .
8. Dispositif portable selon l'une des revendications 4 à 7, dans lequel le dispositif de positionnement (44) comporte en outre un mécanisme d'accouplement temporaire (4415) agencé pour accoupler de manière réversible l'organe mobile (441) au mécanisme d'entraînement (442). 8. Portable device according to one of claims 4 to 7, wherein the positioning device (44) further comprises a temporary coupling mechanism (4415) arranged to reversibly couple the movable member (441) to the mechanism drive (442).
9. Dispositif portable selon l'une des revendications précédentes, comportant en outre au moins une sonde de travail additionnelle, chaque sonde de travail additionnelle présentant une extrémité distale disposée dans la chambre électrolytique (42). 9. Portable device according to one of the preceding claims, further comprising at least one additional working probe, each additional working probe having a distal end disposed in the electrolytic chamber (42).
10. Dispositif portable selon l'une des revendications précédentes, dans lequel le corps (31) comporte un tronçon cylindrique (311) et un tronçon tronconique (312), le tronçon cylindrique présentant une surface extérieure formant un cylindre de révolution et le tronçon tronconique présentant une surface extérieure formant un tronc de cône s'évasant entre une première base, solidaire du tronçon cylindrique, et une deuxième base formant la surface d'appui (31B). 10. Portable device according to one of the preceding claims, in which the body (31) comprises a cylindrical section (311) and a frustoconical section (312), the cylindrical section having an outer surface forming a cylinder of revolution and the frustoconical section having an outer surface forming a truncated cone flaring between a first base, integral with the cylindrical section, and a second base forming the bearing surface (31B).
11. Dispositif portable selon l'une des revendications précédentes, dans lequel le corps (41) comporte un orifice d'injection d'électrolyte (414) s'étendant entre une surface externe du corps (41A) et la chambre électrolytique (42). 11. Portable device according to one of the preceding claims, in which the body (41) comprises an electrolyte injection orifice (414) extending between an external surface of the body (41A) and the electrolytic chamber (42) .
12. Kit de microscopie électrochimique, qui comprend un dispositif portable (20, 30, 40) selon l'une quelconque des revendications 1 à 11, rempli d'un électrolyte, et une notice d'utilisation. 12. Electrochemical microscopy kit, which comprises a portable device (20, 30, 40) according to any one of claims 1 to 11, filled with an electrolyte, and an instruction manual.
13. Kit de microscopie électrochimique, qui comprend un dispositif portable (20, 30, 40) selon l'une quelconque des revendications 1 à 11, un récipient contenant un électrolyte et une notice d'utilisation. 13. Electrochemical microscopy kit, which comprises a portable device (20, 30, 40) according to any one of claims 1 to 11, a container containing an electrolyte and a user manual.
14. Dispositif portable selon l'une des revendications 1 à 11 ou kit selon l'une des revendications 12 et 13, dans lequel l'électrolyte comporte un agent gélifiant. 14. Portable device according to one of claims 1 to 11 or kit according to one of claims 12 and 13, wherein the electrolyte comprises a gelling agent.
15. Utilisation d'un dispositif portable selon l'une quelconque des revendications 1 à 11 ou d'un kit selon l'une quelconque des revendications 12 et 13, pour analyser, caractériser et/ou modifier localement une surface. 15. Use of a portable device according to any one of claims 1 to 11 or of a kit according to any one of claims 12 and 13, to analyze, characterize and / or locally modify a surface.
EP19748584.0A 2018-07-09 2019-07-05 Portable electrochemical microscopy device, kits comprising same and uses thereof Pending EP3799624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856295A FR3083618B1 (en) 2018-07-09 2018-07-09 PORTABLE ELECTROCHEMICAL MICROSCOPY DEVICE, KITS INCLUDING IT AND THEIR USES
PCT/FR2019/051681 WO2020012097A1 (en) 2018-07-09 2019-07-05 Portable electrochemical microscopy device, kits comprising same and uses thereof

Publications (1)

Publication Number Publication Date
EP3799624A1 true EP3799624A1 (en) 2021-04-07

Family

ID=65685425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19748584.0A Pending EP3799624A1 (en) 2018-07-09 2019-07-05 Portable electrochemical microscopy device, kits comprising same and uses thereof

Country Status (8)

Country Link
US (1) US11808784B2 (en)
EP (1) EP3799624A1 (en)
JP (1) JP7465420B2 (en)
BR (1) BR112021000291A2 (en)
CA (1) CA3105898A1 (en)
FR (1) FR3083618B1 (en)
MX (1) MX2021000232A (en)
WO (1) WO2020012097A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108179B1 (en) 2020-03-12 2022-03-11 Commissariat Energie Atomique use of scanning electrochemical microscopy as a predictive technique for a salt spray corrosion test

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843757B1 (en) 2002-08-26 2005-04-29 Commissariat Energie Atomique PROCESS FOR FILLING A SURFACE WITH AN ORGANIC FILM
US7444856B2 (en) 2004-09-23 2008-11-04 The Board Of Trustees Of The Leland Stanford Junior University Sensors for electrochemical, electrical or topographical analysis
FR2910006B1 (en) 2006-12-19 2009-03-06 Commissariat Energie Atomique PROCESS FOR PREPARING AN ORGANIC FILM ON THE SURFACE OF A SOLID SUPPORT UNDER NON-ELECTROCHEMICAL CONDITIONS, SOLID CARRIER THUS OBTAINED AND PREPARATION KIT
US8099793B2 (en) * 2006-12-21 2012-01-17 Park Systems Corp. Scanning probe microscope with automatic probe replacement function
GB0820817D0 (en) * 2008-11-13 2008-12-24 Wireless Biodevices Ltd Electrode, electrochemical sensor and apparatus, and methods for operating the same
FR2943930B1 (en) 2009-04-02 2011-09-30 Commissariat Energie Atomique METHOD FOR MODIFYING THE SURFACE ENERGY OF A SOLID
JP5467473B2 (en) 2009-04-30 2014-04-09 国立大学法人東北大学 Scanning electrochemical ion conductance microscope, its probe, and method of manufacturing the probe.
GB201006364D0 (en) * 2010-04-16 2010-06-02 Univ Warwick Intermittent control scanning electrochemical microscopy
GB201013436D0 (en) * 2010-08-11 2010-09-22 Univ Warwick Electrochemical measurements and functional imaging
US20130314093A1 (en) 2012-05-22 2013-11-28 First Solar, Inc. Method and system employing a solution contact for measurement
EP2880432A4 (en) * 2012-08-05 2016-03-02 Univ Ramot Placeable sensor and method of using same
FR3017743B1 (en) * 2014-02-17 2017-10-20 Centre Nat Rech Scient ELECTROCHEMICAL DEVICE AND APPARATUS AND METHODS USING SUCH APPARATUS
FR3024801A1 (en) 2014-08-08 2016-02-12 Commissariat Energie Atomique POSITIVE ELECTRODE MATERIAL BASED ON SPECIFIC CARBON MATERIAL FUNCTIONALIZED BY SPECIFIC ORGANIC COMPOUNDS
US9797857B2 (en) 2015-02-19 2017-10-24 Palo Alto Research Center Incorporated Systems for electrochemical sorting of metals and alloys
FR3034686B1 (en) 2015-04-13 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR GRAFTING A COLORED INDICATOR ON A SOLID MEDIUM AND KIT FOR IMPLEMENTING IT

Also Published As

Publication number Publication date
MX2021000232A (en) 2021-07-15
CA3105898A1 (en) 2020-01-16
FR3083618A1 (en) 2020-01-10
BR112021000291A2 (en) 2021-04-06
JP2021524594A (en) 2021-09-13
WO2020012097A1 (en) 2020-01-16
JP7465420B2 (en) 2024-04-11
US11808784B2 (en) 2023-11-07
FR3083618B1 (en) 2021-03-12
US20210156884A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
Watkins et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions
Arrigan Nanoelectrodes, nanoelectrode arrays and their applications
US5650061A (en) Large amplitude sinusoidal voltammetry
Hutton et al. Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode
Bond Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review
Mirkin et al. Scanning electrochemical microscopy in the 21st century. Update 1: five years after
Singhal et al. Sinusoidal voltammetry for the analysis of carbohydrates at copper electrodes
Norouzi et al. Fast monitoring of nano‐molar level of gentamycin by fast Fourier transform continuous cyclic voltammetry in flowing solution
US9851325B2 (en) Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection
Fortin et al. Nucleosides and ODN electrochemical detection onto boron doped diamond electrodes
Liu et al. Electrochemical probing through a redox capacitor to acquire chemical information on biothiols
Rodgers et al. Nanopipet voltammetry of common ions across the liquid− liquid interface. Theory and limitations in kinetic analysis of nanoelectrode voltammograms
Shahrokhian et al. Gold Electrode Modified with Self‐Assembled Monolayer of Cysteamine‐Functionalized MWCNT and Its Application in Simultaneous Determination of Dopamine and Uric Acid
WO2020012097A1 (en) Portable electrochemical microscopy device, kits comprising same and uses thereof
Guerrette et al. Voltammetric behavior of gold nanotrench electrodes
Pigani et al. PEDOT‐Modified Microelectrodes. Preparation, Characterisation and Analytical Performances
Pedrosa et al. FIA determination of paracetamol in pharmaceutical drugs by using gold electrodes modified with a 3‐mercaptopropionic acid monolayer
Choi et al. Fabrication of a needle-type pH sensor by selective electrodeposition
Zarei et al. Electrochemical determination of riboflavin by an ionic liquid modified carbon paste electrode as a sensitive sensor
WO2011064265A1 (en) Electrochemical device for determining antioxidant properties of the skin
Friebel et al. On the existence of ordered organic adlayers at the Cu (111)/electrolyte interface
WO2006108759A1 (en) Method for voltametric electrochemical analysis and implementing device therefor
Singh et al. 1 Nanoelectrochemistry: Fundamentals and Applications in Biology and Medicine
De Wael et al. Electrochemical deposition of 5, 10, 15, 20-tetrakis-(4-sulphonatophenyl) porphyrin and its Co (II) derivative at a gold microelectrode array
WO2024002988A1 (en) Microfluidic electrochemical device for measuring a volume flow rate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230109