EP3798600B1 - Measuring device and method for measuring pressure - Google Patents

Measuring device and method for measuring pressure Download PDF

Info

Publication number
EP3798600B1
EP3798600B1 EP20194179.6A EP20194179A EP3798600B1 EP 3798600 B1 EP3798600 B1 EP 3798600B1 EP 20194179 A EP20194179 A EP 20194179A EP 3798600 B1 EP3798600 B1 EP 3798600B1
Authority
EP
European Patent Office
Prior art keywords
oscillation
pattern
pressure
wave
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20194179.6A
Other languages
German (de)
French (fr)
Other versions
EP3798600A1 (en
Inventor
Marcus Wetzel
Frederik NEDER
Alexander Hofmann
Florian Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metering GmbH
Original Assignee
Diehl Metering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metering GmbH filed Critical Diehl Metering GmbH
Publication of EP3798600A1 publication Critical patent/EP3798600A1/en
Application granted granted Critical
Publication of EP3798600B1 publication Critical patent/EP3798600B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/04Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by acoustic means

Definitions

  • the invention relates to a measuring device for determining a pressure in a measuring volume that holds a fluid or through which the fluid flows, according to the preamble of claim 1.
  • a method for determining the pressure of a fluid that does not require additional sensors when used in an ultrasonic flow meter is known from the publication DE 10 2017 005 207 A1 known.
  • a transit time of an ultrasonic wave from a transmitting to a receiving ultrasonic transducer is recorded for two different excitation frequencies.
  • the pressure in the fluid can be determined.
  • the transit time difference for waves with different excitation frequencies is determined and taken into account for both directions of propagation.
  • the object is achieved according to the invention by a measuring device according to claim 1 .
  • the vibration pattern can be at least a quasi-periodic vibration, with the length of the determined vibration period or a specific partial period, according to the invention the time between two successive zero crossings of the vibration, varying depending on the pressure occurring.
  • the measuring device can, under certain circumstances, be used without changing the sensors of a known flow meter by a relatively simple adjustment of the measuring electronics or .Software to be implemented.
  • the measurement volume can be delimited by at least one side wall, with the vibration converter and the further vibration converter being arranged on the same side wall or on different side walls of the measurement volume.
  • the side wall or side walls can be formed in particular by a measuring tube. This can be, for example, the measuring tube of a flow meter, with the flow meter For example, can determine the flow depending on a transit time of the wave between the vibration converter and the other vibration converter. In this case, no further sensors are required to additionally determine the pressure.
  • the vibration converter can couple the wave directly into the fluid or the vibration pattern can be transmitted directly through the fluid to the vibration converter or the further vibration converter.
  • the vibration converter can initially excite a vibration of the side wall of the measurement volume, in particular a guided wave, e.g. a Lamb wave, in the side wall, which in turn excites the wave in the fluid.
  • the wave initially stimulates a vibration of the side wall, in particular a guided wave in the side wall, when it hits the side wall, which vibration is then transmitted to the vibration converter or the further vibration converter in order to stimulate it to oscillate.
  • the output signals of the or the further vibration converter which relate to the vibration pattern, oscillate around a reference value, the time duration being determined as the time interval between two changes of sign of the difference between the output signal and the reference value.
  • the output signal can in particular be a voltage signal or a current signal.
  • the reference value can be zero, with which the duration is determined as the time interval between two sign changes of the output signal, ie between two zero crossings of the output signal.
  • the time duration is determined in such a way that the time duration is determined as the time interval between two consecutive changes of sign or zero crossings.
  • the duration of the positive or negative partial period can be used to determine the pressure.
  • a large number of approaches are known for detecting sign changes or zero crossings of output signals from oscillation converters or differences between these output signals and reference values. For example, corresponding Zero crossings or sign changes are detected using comparators that provide trigger signals for reading or resetting a counter for the time interval.
  • comparators and/or counters can be implemented as separate components, but can also be integrated, for example, in a microcontroller or the like. Alternatively, it would also be possible, for example, to sample the output signal by analog-to-digital conversion and to find the zero crossings or sign changes in the resulting digital data.
  • the pressure in the measurement volume and the resulting strain or deformation of a vibration converter can affect the duration in many ways depending on the specific design of the vibration converter and the arrangement on the measurement volume and depending on the excitation pattern used for the vibration converter.
  • a deformation or strain can lead to a non-linearity of the vibration pattern or the output signal with regard to the pressure fluctuations caused by the wave in the fluid.
  • an excitation pattern with sharp jumps for example with a phase or amplitude jump to mark a specific oscillation period
  • the transmission of corresponding pressure transients to the oscillation converter or the additional oscillation converter can result in somewhat different oscillation patterns and thus lead to different periods of time.
  • the control device can be set up to control the oscillation converter with a predefined excitation pattern that includes several oscillation cycles of an oscillation, in particular a sinusoidal oscillation, with a selected one of the oscillation cycles being marked by a phase change, in particular a phase jump.
  • the excitation pattern can be a periodic oscillation with, in particular, a fixed frequency, in particular apart from the phase change and/or an enveloping or window function for limiting the length of the excitation pattern.
  • the vibration pattern of the or the additional vibration transducer can essentially correspond to the excitation pattern with a certain time delay, which can result in particular from the propagation time of the wave in the fluid. Deviations can occur in particular in the area of the phase change due to the dispersion relation of the fluid or due to the transient behavior of the vibration converter or the additional vibration converter.
  • the marking of the selected oscillation cycle by a phase change can be used in particular to determine a propagation time of the wave from the oscillation converter along the propagation path back to the oscillation converter or to the further oscillation converter, which can be used, for example, to determine a flow through the measurement volume or a fluid property To detect, for example, a temperature of the fluid.
  • the selected oscillation cycle can be identified, for example, by the fact that the phase jump or phase change means that the selected oscillation cycle is longer or shorter than the other oscillation cycles, which, for example, as explained above, is determined by determining time intervals between zero crossings or sign changes of the output signal or the difference between the output signal and a reference value can be detected.
  • the predetermined partial pattern of the oscillation pattern can depend on the excitation pattern in the selected oscillation cycle.
  • the excitation pattern in the selected oscillation cycle can be transmitted via pressure fluctuations as a wave via the propagation path back to the oscillation converter or to the further oscillation converter, with at least part of these pressure fluctuations leading to the partial pattern of the oscillation pattern.
  • a window for the acquisition of measurement data can be selected such that the time at which the selected one of the oscillation cycles is received is within this time window, so that the measurement data relate to this selected oscillation cycle or at least part of this selected oscillation cycle, with the phase jump or phase change in particular lies within this measurement window or limits it.
  • one of the sign changes the time interval between which, as explained above, can specify the time period from which the pressure is determined, can be caused by the phase jump or the phase change.
  • the control device can be set up to determine a detection time at which the partial pattern is detected and to determine a flow rate or a flow volume of the fluid through the measurement volume as a function of the detection time.
  • the partial pattern can correspond to the selected oscillation cycle or a partial cycle of the selected oscillation cycle or, in particular, can begin or end with the phase change or the phase jump.
  • a change of sign or zero crossing of the output signal or the difference between the output signal and the reference value at the beginning or end of the selected oscillation cycle or at the time of the phase change or the phase jump can be used to determine a propagation time of the wave from the oscillation converter to the other oscillation converter to determine. If this is done for both directions of propagation, a flow rate can be determined from the transit time difference as usual, or a flow volume can be determined using the known measurement geometry of the measurement volume.
  • a zero crossing or sign change of the output signal or the difference between the output signal and the reference value is used abbreviated as zero crossing.
  • Two time counters can be reset at the point in time at which the phase change or the phase jump is output as part of the excitation pattern to the oscillation converter or at a point in time with a defined time position with respect to this point in time.
  • a first of these time counters can be read out and reset for each detected zero crossing or each detected zero crossing with a specific direction. The value read from the time counter then describes the duration of an oscillation cycle or the positive or negative half of an oscillation cycle.
  • the value of the second time counter can be read out, ie that time counter which is not reset at each zero crossing, in order to determine the propagation time of the wave to the oscillation converter or the further oscillation converter. As explained above, this can be used, for example, to determine a flow volume or the like based on a transit time difference between propagation directions. Since the value read from the first time counter, in particular when it is recorded for positive or negative halves of oscillation, is also related to the pressure, as explained above, the pressure can be determined from this value.
  • the duration of the selected oscillation cycle is at least approximately known, so that the duration of the recorded cycle or the value of the first time counter can be used to immediately recognize that the selected oscillation cycle or a partial oscillation thereof is currently being recorded would.
  • the value read from the first time counter correlates with the pressure.
  • a corresponding relationship can be determined, for example, by a calibration measurement for a specific measuring device or for a specific type of measuring device.
  • a corresponding relationship can be described using a look-up table, or a mathematical relationship between the pressure and the counter value can be determined, for example by means of a regression analysis of a number of measurements.
  • the measuring device can be a flow meter, in which case the control device can be set up to determine a transit time difference between a first transit time of the wave from the vibration converter to the further vibration converter and a further transit time of a further wave excited by the further vibration converter to the vibration converter and from the transit time difference the to determine flow.
  • the pressure measurement described above can be used particularly advantageously in a flow meter, since at least in the case of the type of transit time determination explained above, all the information required for determining the pressure is already available anyway.
  • a flow meter can thus be used in addition to pressure measurement, for example, with a pure software update and a corresponding calibration.
  • the pressure can be determined from precisely one time period of precisely one predetermined sub-pattern. In this way it can be achieved that the pressure determination cannot be disturbed or only insignificantly even in operating situations in which sudden changes in pressure or flow are to be expected due to the short measuring time.
  • the invention relates to a method for determining a pressure in a measuring volume receiving a fluid or through which the fluid flows.
  • the measuring device 1 shows a measuring device 1 for determining a pressure in a measuring volume 2 through which a fluid flows.
  • the fluid can in particular be a liquid, for example water, or a gas.
  • the measuring device 1 is a flow meter which is used to record a quantity of liquid flowing through the measuring volume 2 .
  • a transit time of a wave 6, which is excited by the vibration converter 4 is detected by a control device 10 along the propagation path 7 to the further vibration converter 5.
  • a flow rate is determined as a function of the transit time difference between this transit time and the transit time of a wave guided in the opposite direction, as is known in principle from the prior art.
  • the wave 6 is deflected by the reflectors 8, 9 in order to guide it along the propagation path 7.
  • the measuring device 1 makes use of the fact that by measuring a time duration of a predetermined partial pattern of this oscillation pattern as measurement data, as described below with reference to FIG 2 will be explained in more detail, a pressure in the measuring volume 2 can be determined.
  • a pressure measurement is particularly advantageous in a flow meter, ie the measuring device 1 shown, since existing sensors can be used and the pressure can be determined by simply adapting the data processing in the control device 10 . In principle, it would also be possible to carry out the pressure measurement described independently of a flow measurement.
  • 2 12 shows the time course of an excitation pattern 11 with which the oscillation converter 4 is controlled by the control device 10.
  • the excitation pattern 11 can be, for example, a voltage profile that is applied to a piezoelectric element used as a vibration converter 4 .
  • 3 oscillation cycles 12, 13, 14 of a sinusoidal oscillation are shown as an exemplary excitation pattern 11, a selected oscillation cycle 13 being marked by the fact that a phase change 15, in the example a phase jump, takes place within this oscillation cycle 13.
  • a phase jump of approximately 180° is shown here, although other phase changes could also be used.
  • more than three oscillation cycles are typically used and the amplitude of the oscillation cycles is modulated by an envelope or window function.
  • FIG. 12 also shows schematically an output signal 16 of the vibration converter 5 after the corresponding shaft 6 has entered the vibration converter 5.
  • the output signal 16 would actually be offset by the travel time of the wave 6 along the propagation path 7 to the excitation pattern 11 .
  • the initial pattern was 16 in 2 shifted to the left by this transit time, so that the excitation pattern 11 and the output signal 16 are shown in the same time interval.
  • the offset 17 of the output signal 16 is shown.
  • a vibration transducer 5 based on a piezoelectric element ultimately represents a pressure or force sensor, with its output signal 16 having a DC voltage component that corresponds to offset 17 and that depends on the pressure in measuring volume 2, and an AC voltage component that is caused by the incoming wave 6 is caused includes. Consequently the output signal 16 continues to oscillate around a reference value 18, for example 0 V, but this oscillation is asymmetrical due to the offset 17.
  • the control device 10 is set up to detect zero crossings or sign changes 19, 20 of the output signal 16 or the difference between the output signal 16 and the reference value 18, for example with the aid of a comparator which triggers the reading of a time counter. In this way, the durations 21 to 24 for different sub-patterns 25 to 28 of the output signal 16 or of the oscillation pattern 29 described by this can be determined. On the one hand, these time durations 21 to 24 can be used to identify the partial patterns 25, 26 that belong to the selected oscillation cycle 13, since their time durations 21, 22 differ significantly from the time durations 23, 24 of the partial patterns 27, 28 due to the phase jump 15.
  • the point in time at which the phase jump or phase change 15 reaches the further oscillation converter 5 can be clearly determined, with which the propagation time of the wave from the oscillation converter 4 to the further oscillation converter 5 can be determined with high accuracy.
  • This can be used, for example, to determine a transit time difference as explained above.
  • an increase in the offset 17 results in the time duration 21 for the sub-pattern 25 becoming longer and the time duration 22 for the sub-pattern 26 becoming shorter.
  • the length of time 21 or 22 or a combination of these lengths of time can thus be used to draw conclusions about the offset 17 and thus about the pressure in the measuring volume 2 .
  • a look-up table or a mathematical relationship between the duration 21 or 22 and the pressure can be defined, for example, by a previous calibration of the measuring device 1 or of a group of identical measuring devices 1 . If, as in the example shown, a sinusoidal oscillation is used for excitation, the change in the duration 21 to 24 is approximately linearly dependent on the offset 17 and thus, for example in the case of piezoelectric transducers, in particular also on the pressure.
  • the pressure in the measuring volume 2 can also lead to distortions in the output signal 16 or the oscillation pattern 29 or to a change in the transient behavior, in particular in the area of the phase change 15 .
  • These effects can make an additional contribution to changing the time durations 21, 22 with the pressure, so that the procedure described may can achieve higher accuracy in the pressure detection than would be possible solely with the previously explained detection of the offset 17 over the time periods 21, 22.
  • the advantage is also achieved that the pressure measurement can be carried out as part of a normal flow measurement and not only in idle phases when no flow measurement is taking place.
  • it is not necessary to detect specific values for the output signal 16, but it is sufficient to recognize the sign changes 19, 20 or zero crossings.
  • the procedure can thus be implemented easily and, in particular, conventional flow meters can be modified with little effort, for example by means of a pure software update, in order to carry out the method described.
  • the measurement data 33 shows measurement data 33 of an example measurement of the pressure based on a time duration of a specific received partial pattern or for the time interval between two sign changes of the difference of the output signal 16 and the reference value 18.
  • the lower X-axis 30 shows the number of the current measurement
  • the Y-axis 31 the value of a time counter, which is set at the beginning of the in 2 sub-pattern 26 shown is reset and read out at the end of which
  • the upper X-axis 32 shows pressure values that are set during a respective high-pressure interval 34 .
  • the measurement data 33 that is to say the respective durations 22 of the partial pattern 26, are a good measure of the pressure, with the duration 22 varying approximately linearly with the pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Description

Die Erfindung betrifft eine Messeinrichtung zur Ermittlung eines Drucks in einem ein Fluid aufnehmenden oder von dem Fluid durchströmten Messvolumen nach der Präambel des Anspruchs 1.The invention relates to a measuring device for determining a pressure in a measuring volume that holds a fluid or through which the fluid flows, according to the preamble of claim 1.

In vielen Anwendungsfällen kann es gewünscht sein, einen Druck eines Fluids zu erfassen. Daher ist es prinzipiell bekannt, Durchflusszähler durch eine zusätzliche Sensorik zur Druckmessung zu erweitern. Eine Verwendung separater Sensoren zur Druckmessung erhöht jedoch die Komplexität des Durchflusszählers und somit auch die Kosten und unter Umständen den Bauraumverbrauch.In many applications it may be desirable to detect a pressure of a fluid. It is therefore known in principle to expand flow meters with additional sensors for pressure measurement. However, using separate sensors for pressure measurement increases the complexity of the flow meter and thus also the costs and, under certain circumstances, the space required.

Ein Verfahren zur Bestimmung des Drucks eines Fluids, das bei einer Nutzung in einem Ultraschalldurchflusszähler keine zusätzlichen Sensoren benötigt, ist aus der Druckschrift DE 10 2017 005 207 A1 bekannt. Hierbei wird eine Laufzeit einer Ultraschallwelle von einem sendenden zu einem empfangenden Ultraschallwandler für zwei unterschiedliche Anregungsfrequenzen erfasst. In Abhängigkeit der Differenz dieser Laufzeiten kann der Druck im Fluid ermittelt werden. Vorzugsweise wird der Laufzeitunterschied für Wellen mit unterschiedlicher Anregungsfrequenz für beide Ausbreitungsrichtungen ermittelt und berücksichtigt. Da in dem erläuterten Verfahren zumindest zwei sequentielle Messungen für unterschiedliche Anregungsfrequenzen, typischerweise sogar vier sequentielle Messungen für die beiden Anregungsfrequenzen und Ausbreitungsrichtungen, erforderlich sind, können bereits relativ geringfügige Druck- bzw. Durchflussmengenänderungen zwischen den genutzten Messintervallen zu einer relativ starken Störung der Messung führen, womit zumindest in einigen Anwendungsfällen der ermittelte Druck stark rauschbehaftet ist.A method for determining the pressure of a fluid that does not require additional sensors when used in an ultrasonic flow meter is known from the publication DE 10 2017 005 207 A1 known. Here, a transit time of an ultrasonic wave from a transmitting to a receiving ultrasonic transducer is recorded for two different excitation frequencies. Depending on the difference between these transit times, the pressure in the fluid can be determined. Preferably, the transit time difference for waves with different excitation frequencies is determined and taken into account for both directions of propagation. Since at least two sequential measurements for different excitation frequencies, typically even four sequential measurements for the two excitation frequencies and propagation directions, are required in the method explained, relatively small pressure or flow rate changes between the measurement intervals used lead to a relatively strong disturbance of the measurement, which means that the pressure determined is very noisy, at least in some applications.

Weiterer Stand der Technik ist aus WO 2018/219492 A1 und EP 3 492 878 A1 bekannt. Der Erfindung liegt somit die Aufgabe zugrunde, einen demgegenüber verbesserten Ansatz zur Ermittlung eines Drucks anzugeben, der insbesondere weniger störanfällig ist und dennoch mit geringem technischen Aufwand implementiert werden kann.Further state of the art is out WO 2018/219492 A1 and EP 3 492 878 A1 known. The invention is therefore based on the object of specifying an approach for determining a pressure that is improved in comparison thereto, which is in particular less susceptible to faults and can nevertheless be implemented with little technical effort.

Die Aufgabe wird erfindungsgemäß durch eine Messeinrichtung nach Anspruch 1 gelöst.The object is achieved according to the invention by a measuring device according to claim 1 .

Im Rahmen der Erfindung wurde erkannt, dass insbesondere dann, wenn durch den jeweiligen Schwingungswandler die Welle unmittelbar in das Fluid eingekoppelt bzw. aus diesem ausgekoppelt wird, jedoch auch bei einer indirekten Anregung der Welle über eine Anregung der Seitenwand des Messvolumens, ein Druck in dem Fluid den jeweiligen Schwingungswandler verformt bzw. vorspannt. Dies führt dazu, dass bestimmte Teilmuster des durch die Welle verursachten Schwingungsmusters des bzw. des weiteren Schwingungswandlers bzw. die hieraus resultierenden Ausgangssignale des Schwingungswandlers von der entsprechenden Verformung bzw. Verspannung und somit von dem Druck abhängen. Beispielsweise kann das Schwingungsmuster eine zumindest quasi-periodische Schwingung sein, wobei in Abhängigkeit des auftretenden Drucks beispielsweise die Länge der ermittelten Schwingungsperiode bzw. einer bestimmten Teilperiode, erfindungsgemäß die Zeit zwischen zwei aufeinanderfolgenden Nulldurchgängen der Schwingung, variiert. Da beispielsweise in Durchflusszählern häufig ohnehin Zeitpunkte von Nulldurchgängen einer Schwingung oder Ähnliches erfasst werden sollen, um eine Laufzeit einer Welle zwischen zwei Schwingungswandlern zu ermitteln, kann die erfindungsgemäße Messeinrichtung unter Umständen ohne eine Änderung einer Sensorik eines bekannten Durchflusszählers durch eine relativ einfache Anpassung der Messelektronik bzw. Software implementiert werden.In the context of the invention, it was recognized that particularly when the wave is coupled directly into the fluid or decoupled from it by the respective vibration converter, but also in the case of indirect excitation of the wave via excitation of the side wall of the measuring volume, a pressure in the Fluid deforms or biases the respective vibration converter. As a result, certain sub-patterns of the vibration pattern of the or the additional vibration transducer caused by the wave or the resulting output signals of the vibration transducer depend on the corresponding deformation or strain and thus on the pressure. For example, the vibration pattern can be at least a quasi-periodic vibration, with the length of the determined vibration period or a specific partial period, according to the invention the time between two successive zero crossings of the vibration, varying depending on the pressure occurring. Since, for example, in flow meters, times of zero crossings of an oscillation or the like are often to be recorded anyway in order to determine the propagation time of a wave between two oscillation converters, the measuring device according to the invention can, under certain circumstances, be used without changing the sensors of a known flow meter by a relatively simple adjustment of the measuring electronics or .Software to be implemented.

Das Messvolumen kann durch wenigstens eine Seitenwand begrenzt sein, wobei der Schwingungswandler und der weitere Schwingungswandler an der gleichen Seitenwand oder an unterschiedlichen Seitenwänden des Messvolumens angeordnet sind. Die Seitenwand bzw. Seitenwände können insbesondere durch ein Messrohr gebildet werden. Dieses kann beispielsweise das Messrohr eines Durchflusszählers sein, wobei der Durchflusszähler beispielsweise den Durchfluss in Abhängigkeit einer Laufzeit der Welle zwischen dem Schwingungswandler und dem weiteren Schwingungswandler ermitteln kann. In diesem Fall ist keine weitere Sensorik erforderlich, um zusätzlich den Druck zu ermitteln.The measurement volume can be delimited by at least one side wall, with the vibration converter and the further vibration converter being arranged on the same side wall or on different side walls of the measurement volume. The side wall or side walls can be formed in particular by a measuring tube. This can be, for example, the measuring tube of a flow meter, with the flow meter For example, can determine the flow depending on a transit time of the wave between the vibration converter and the other vibration converter. In this case, no further sensors are required to additionally determine the pressure.

Der Schwingungswandler kann die Welle unmittelbar in das Fluid einkoppeln bzw. das Schwingungsmuster kann unmittelbar durch das Fluid auf den Schwingungswandler bzw. den weiteren Schwingungswandler übertragen werden. Alternativ ist es auch möglich, dass der Schwingungswandler zunächst eine Schwingung der Seitenwand des Messvolumens, insbesondere eine geführte Welle, z.B. eine Lamb-Welle, in der Seitenwand anregt, wodurch wiederum die Welle im Fluid angeregt wird. Entsprechend ist es auch möglich, dass die Welle zunächst bei einem Auftreffen auf die Seitenwand eine Schwingung der Seitenwand, insbesondere eine geführte Welle in der Seitenwand, anregt, die dann auf den Schwingungswandler bzw. den weiteren Schwingungswandler übertragen wird, um diesen zu Schwingungen anzuregen.The vibration converter can couple the wave directly into the fluid or the vibration pattern can be transmitted directly through the fluid to the vibration converter or the further vibration converter. Alternatively, it is also possible for the vibration converter to initially excite a vibration of the side wall of the measurement volume, in particular a guided wave, e.g. a Lamb wave, in the side wall, which in turn excites the wave in the fluid. Correspondingly, it is also possible that the wave initially stimulates a vibration of the side wall, in particular a guided wave in the side wall, when it hits the side wall, which vibration is then transmitted to the vibration converter or the further vibration converter in order to stimulate it to oscillate.

Das Schwingungsmuster betreffende Ausgangssignale des oder des weiteren Schwingungswandlers oszillieren um einen Referenzwert, wobei die Zeitdauer als Zeitabstand zwischen zwei Vorzeichenwechseln der Differenz aus Ausgangssignal und Referenzwert ermittelt wird. Das Ausgangssignal kann insbesondere ein Spannungssignal oder Stromsignal sein. Der Referenzwert kann insbesondere Null sein, womit die Zeitdauer als Zeitabstand zwischen zwei Vorzeichenwechseln des Ausgangssignals, also zwischen zwei Nulldurchgängen des Ausgangssignals, ermittelt wird. Erfindungsgemäß wird die Zeitdauer derart ermittelt, dass die Zeitdauer als Zeitabstand zwischen zwei zeitlich aufeinanderfolgenden Vorzeichenwechseln bzw. Nulldurchgängen ermittelt wird.The output signals of the or the further vibration converter, which relate to the vibration pattern, oscillate around a reference value, the time duration being determined as the time interval between two changes of sign of the difference between the output signal and the reference value. The output signal can in particular be a voltage signal or a current signal. In particular, the reference value can be zero, with which the duration is determined as the time interval between two sign changes of the output signal, ie between two zero crossings of the output signal. According to the invention, the time duration is determined in such a way that the time duration is determined as the time interval between two consecutive changes of sign or zero crossings.

Wird das beschriebene Vorgehen beispielsweise auf eine Sinusschwingung oder eine ähnliche Schwingung angewandt, kann hierdurch die Zeitdauer der positiven bzw. negativen Teilperiode zur Ermittlung des Drucks herangezogen werden.If the procedure described is applied to a sinusoidal oscillation or a similar oscillation, for example, the duration of the positive or negative partial period can be used to determine the pressure.

Zur Erkennung von Vorzeichenwechseln bzw. Nulldurchgängen von Ausgangssignalen von Schwingungswandlern bzw. Differenzen zwischen diesen Ausgangssignalen und Referenzwerten sind eine Vielzahl von Ansätzen bekannt. Beispielsweise können entsprechende Nulldurchgänge bzw. Vorzeichenwechsel mithilfe von Komparatoren erkannt werden, die Triggersignale zum Auslesen bzw. zurücksetzen eines Zählers für den Zeitabstand bereitstellen. Entsprechende Komparatoren und/oder Zähler können als separate Bauteile implementiert sein, jedoch auch beispielsweise in einen Mikrocontroller oder Ähnliches integriert sein. Alternativ wäre es beispielsweise auch möglich, das Ausgangssignal durch Analog-Digital-Wandlung abzutasten und die Nulldurchgänge bzw. Vorzeichenwechsel in den resultierenden Digitaldaten aufzufinden.A large number of approaches are known for detecting sign changes or zero crossings of output signals from oscillation converters or differences between these output signals and reference values. For example, corresponding Zero crossings or sign changes are detected using comparators that provide trigger signals for reading or resetting a counter for the time interval. Corresponding comparators and/or counters can be implemented as separate components, but can also be integrated, for example, in a microcontroller or the like. Alternatively, it would also be possible, for example, to sample the output signal by analog-to-digital conversion and to find the zero crossings or sign changes in the resulting digital data.

Der Druck im Messvolumen und eine hieraus resultierende Verspannung bzw. Verformung eines Schwingungswandlers kann je nach konkreter Ausgestaltung des Schwingungswandlers und der Anordnung am Messvolumen sowie in Abhängigkeit des genutzten Anregungsmusters für den Schwingungswandler die Zeitdauer auf vielfältige Weise beeinflussen. Beispielsweise kann eine Verformung oder Verspannung zu einer Nichtlinearität des Schwingungsmusters bzw. des Ausgangssignals bezüglich der durch die Welle im Fluid verursachten Druckschwankungen führen. Insbesondere wenn ein Anregungsmuster mit scharfen Sprüngen, beispielsweise mit einem Phasen- oder Amplitudensprung zur Markierung einer bestimmten Schwingungsperiode, genutzt wird, kann die Übertragung entsprechender Drucktransienten auf den Schwingungswandler bzw. den weiteren Schwingungswandler je nach Verformung bzw. Verspannung des Schwingungswandlers zu etwas unterschiedlichen Schwingungsmustern und somit unterschiedlichen Zeitdauern führen.The pressure in the measurement volume and the resulting strain or deformation of a vibration converter can affect the duration in many ways depending on the specific design of the vibration converter and the arrangement on the measurement volume and depending on the excitation pattern used for the vibration converter. For example, a deformation or strain can lead to a non-linearity of the vibration pattern or the output signal with regard to the pressure fluctuations caused by the wave in the fluid. In particular, if an excitation pattern with sharp jumps, for example with a phase or amplitude jump to mark a specific oscillation period, is used, the transmission of corresponding pressure transients to the oscillation converter or the additional oscillation converter can result in somewhat different oscillation patterns and thus lead to different periods of time.

Zu einem besonders deutlichen und über einen gewissen Druckbereich typischerweise sogar näherungsweise linearen Zusammenhang zwischen Druck und Zeitdauer kann es jedoch führen, dass eine Verformung eines Schwingungswandlers aufgrund eines Drucks, beispielsweise eine Verformung eines piezoelektrischen Schwingungswandlers, zu einem konstanten Offset des Ausgangssignals führen kann. Ein solcher Offset führt jedoch beispielsweise bei einer Sinusschwingung oder auch bei einer Vielzahl anderer Schwingungen dazu, dass die Zeitdauer, für die das Ausgangssignal positiv ist bzw. über einem Referenzwert liegt, verlängert wird, während die Zeitdauer, für die das Ausgangssignal negativ ist bzw. unterhalb eines Referenzwertes liegt, verkürzt wird oder umgekehrt. Da beispielsweise eine Sinuswelle im Bereich des Nulldurchgangs sich näherungsweise linear mit der Zeit ändert, resultiert somit für nicht allzu große Offsets näherungsweise ein linearer Zusammenhang zwischen der Änderung der Zeitdauer der entsprechenden Teilperiode, also des Teilmusters, und dem Offset. Bei entsprechendem Aufbau des Schwingungswandlers kann somit auch ein näherungsweise linearer Zusammenhang zwischen der Änderung der Zeitdauer und dem Druck resultieren.However, a particularly clear and over a certain pressure range typically even approximately linear relationship between pressure and duration can result in a deformation of a vibration converter due to pressure, for example a deformation of a piezoelectric vibration converter, leading to a constant offset of the output signal. However, in the case of a sine wave or a large number of other oscillations, for example, such an offset results in the length of time for which the output signal is positive or above a reference value being lengthened, while the time for which the output signal is negative or below a reference value is shortened or vice versa. Since, for example, a sine wave in the area of the zero crossing changes approximately linearly over time, there is an approximately linear relationship between the change in the duration of the corresponding partial period, ie the partial pattern, and the offset for offsets that are not too large. With the appropriate structure of the vibration converter an approximately linear relationship between the change in duration and the pressure can thus also result.

Es wäre zwar prinzipiell auch möglich, einen entsprechenden Offset unmittelbar, beispielsweise durch Analog-Digital-Wandlung des Ausgangssignals, zu messen, dies würde jedoch eine Erfassung des Ausgangssignals mit hoher Auflösung erfordern, was den Aufwand zur Implementierung der Messeinrichtung erhöhen kann. In vielen Anwendungsfällen, beispielsweise wenn die Messeinrichtung gleichzeitig zur Bestimmung einer Durchflussmenge dienen soll, kann jedoch eine Erfassung von Vorzeichenwechseln bzw. Nulldurchgängen bereits ohnehin mit hoher Zeitauflösung möglich sein, so dass auch bezüglich des Drucks eine gute Erfassungsgenauigkeit ohne zusätzlichen Messaufwand erreicht werden kann.In principle, it would also be possible to measure a corresponding offset directly, for example by analog-to-digital conversion of the output signal, but this would require the output signal to be recorded with high resolution, which can increase the outlay for implementing the measuring device. In many applications, for example if the measuring device is to be used to determine a flow rate at the same time, it may be possible to detect changes in sign or zero crossings with high time resolution anyway, so that good detection accuracy can also be achieved with regard to pressure without additional measuring effort.

Die Steuereinrichtung kann dazu eingerichtet sein, den Schwingungswandler mit einem vorgegebenen Anregungsmuster anzusteuern, dass mehrere Schwingungszyklen einer Schwingung, insbesondere einer Sinusschwingung, umfasst, wobei ein ausgewählter der Schwingungszyklen durch eine Phasenänderung, insbesondere einen Phasensprung, markiert ist. Hierbei kann das Anregungsmuster insbesondere abgesehen von der Phasenänderung und/oder einer einhüllenden bzw. Fensterfunktion zur Begrenzung der Länge des Anregungsmusters eine periodische Schwingung mit insbesondere fester Frequenz sein. Das Schwingungsmuster des bzw. des weiteren Schwingungswandlers kann mit einer gewissen Zeitverzögerung, die insbesondere aus der Laufzeit der Welle in dem Fluid resultieren kann, im Wesentlichen dem Anregungsmuster entsprechen. Abweichungen können insbesondere im Bereich der Phasenänderung aufgrund der Dispersionsrelation des Fluids bzw. aufgrund des Transientenverhaltens des Schwingungswandlers bzw. des weiteren Schwingungswandlers auftreten.The control device can be set up to control the oscillation converter with a predefined excitation pattern that includes several oscillation cycles of an oscillation, in particular a sinusoidal oscillation, with a selected one of the oscillation cycles being marked by a phase change, in particular a phase jump. In this case, the excitation pattern can be a periodic oscillation with, in particular, a fixed frequency, in particular apart from the phase change and/or an enveloping or window function for limiting the length of the excitation pattern. The vibration pattern of the or the additional vibration transducer can essentially correspond to the excitation pattern with a certain time delay, which can result in particular from the propagation time of the wave in the fluid. Deviations can occur in particular in the area of the phase change due to the dispersion relation of the fluid or due to the transient behavior of the vibration converter or the additional vibration converter.

Die Markierung des ausgewählten Schwingungszyklus durch eine Phasenänderung kann insbesondere dazu dienen, eine Laufzeit der Welle von dem Schwingungswandler entlang des Ausbreitungspfades zurück zu dem Schwingungswandler bzw. zu dem weiteren Schwingungswandler zu ermitteln, was beispielsweise dazu dienen kann, einen Durchfluss durch das Messvolumen oder eine Fluideigenschaft, beispielsweise eine Temperatur des Fluids, zu erfassen. Der ausgewählte Schwingungszyklus kann beispielsweise dadurch erkannt werden, dass der Phasensprung bzw. die Phasenänderung dazu führt, dass der ausgewählte Schwingungszyklus länger oder kürzer als die weiteren Schwingungszyklen ist, was beispielsweise wie obig erläutert durch die Ermittlung von Zeitabständen zwischen Nulldurchgängen bzw. Vorzeichenwechseln des Ausgangssignals bzw. der Differenz des Ausgangssignals und eines Referenzwertes erkannt werden kann.The marking of the selected oscillation cycle by a phase change can be used in particular to determine a propagation time of the wave from the oscillation converter along the propagation path back to the oscillation converter or to the further oscillation converter, which can be used, for example, to determine a flow through the measurement volume or a fluid property To detect, for example, a temperature of the fluid. The selected oscillation cycle can be identified, for example, by the fact that the phase jump or phase change means that the selected oscillation cycle is longer or shorter than the other oscillation cycles, which, for example, as explained above, is determined by determining time intervals between zero crossings or sign changes of the output signal or the difference between the output signal and a reference value can be detected.

Das vorgegebene Teilmuster des Schwingungsmusters kann von dem Anregungsmuster in dem ausgewählten Schwingungszyklus abhängen. Anders ausgedrückt kann das Anregungsmuster in dem ausgewählten Schwingungszyklus über Druckschwankungen als Welle über den Ausbreitungspfad zurück zu dem Schwingungswandler oder zu dem weiteren Schwingungswandler übertragen werden, wobei zumindest ein Teil dieser Druckschwankungen zu dem Teilmuster des Schwingungsmusters führt. Insbesondere kann ein Fenster für die Messdatenerfassung so gewählt werden, dass der Zeitpunkt des Empfangs des Ausgewählten der Schwingungszyklen innerhalb dieses Zeitfensters liegt, so dass die Messdaten diesen ausgewählten Schwingungszyklus bzw. zumindest einen Teil dieses ausgewählten Schwingungszyklus betreffen, wobei insbesondere der Phasensprung bzw. die Phasenänderung innerhalb dieses Messfensters liegt bzw. dieses begrenzt. Beispielsweise kann einer der Vorzeichenwechsel, deren Zeitabstand wie obig erläutert die Zeitdauer, aus der der Druck ermittelt wird, vorgeben kann, durch den Phasensprung bzw. die Phasenänderung verursacht sein.The predetermined partial pattern of the oscillation pattern can depend on the excitation pattern in the selected oscillation cycle. In other words, the excitation pattern in the selected oscillation cycle can be transmitted via pressure fluctuations as a wave via the propagation path back to the oscillation converter or to the further oscillation converter, with at least part of these pressure fluctuations leading to the partial pattern of the oscillation pattern. In particular, a window for the acquisition of measurement data can be selected such that the time at which the selected one of the oscillation cycles is received is within this time window, so that the measurement data relate to this selected oscillation cycle or at least part of this selected oscillation cycle, with the phase jump or phase change in particular lies within this measurement window or limits it. For example, one of the sign changes, the time interval between which, as explained above, can specify the time period from which the pressure is determined, can be caused by the phase jump or the phase change.

Die Steuereinrichtung kann dazu eingerichtet sein, einen Erfassungszeitpunkt, zu dem das Teilmuster erfasst wird, zu ermitteln und in Abhängigkeit des Erfassungszeitpunkts eine Durchflussgeschwindigkeit oder ein Durchflussvolumen des Fluids durch das Messvolumen zu ermitteln. Insbesondere kann, wie obig erläutert, das Teilmuster dem ausgewählten Schwingungszyklus oder einem Teilzyklus des ausgewählten Schwingungszyklus entsprechen bzw. insbesondere mit der Phasenänderung bzw. dem Phasensprung beginnen oder enden. Somit kann beispielsweise ein Vorzeichenwechsel bzw. Nulldurchgang des Ausgangssignals bzw. der Differenz zwischen Ausgangssignal und Referenzwert zu Beginn oder Ende des ausgewählten Schwingungszyklus bzw. zum Zeitpunkt der Phasenänderung bzw. des Phasensprungs genutzt werden, um eine Laufzeit der Welle von dem Schwingungswandler zu dem weiteren Schwingungswandler zu ermitteln. Wird dies für beide Ausbreitungsrichtungen durchgeführt, kann aus der Laufzeitdifferenz wie üblich eine Durchflussgeschwindigkeit bzw. anhand der bekannten Messgeometrie des Messvolumens ein Durchflussvolumen ermittelt werden.The control device can be set up to determine a detection time at which the partial pattern is detected and to determine a flow rate or a flow volume of the fluid through the measurement volume as a function of the detection time. In particular, as explained above, the partial pattern can correspond to the selected oscillation cycle or a partial cycle of the selected oscillation cycle or, in particular, can begin or end with the phase change or the phase jump. Thus, for example, a change of sign or zero crossing of the output signal or the difference between the output signal and the reference value at the beginning or end of the selected oscillation cycle or at the time of the phase change or the phase jump can be used to determine a propagation time of the wave from the oscillation converter to the other oscillation converter to determine. If this is done for both directions of propagation, a flow rate can be determined from the transit time difference as usual, or a flow volume can be determined using the known measurement geometry of the measurement volume.

Eine beispielhafte Implementierung hierfür soll im Folgenden erläutert werden. Hierbei wird zur Vermeidung von unnötigen Wiederholungen ein Nulldurchgang bzw. Vorzeichenwechsel des Ausgangssignals bzw. der Differenz aus Ausgangssignal und Referenzwert verkürzend als Nulldurchgang bezeichnet. Zu dem Zeitpunkt, zudem die Phasenänderung bzw. der Phasensprung als Teil des Anregungsmusters an den Schwingungswandler ausgegeben wird bzw. zu einem Zeitpunkt mit definierter zeitlicher Lage bezüglich dieses Zeitpunkts können zwei Zeitzähler zurückgesetzt werden. Bei jedem erfassten Nulldurchgang bzw. jedem erfassten Nulldurchgang mit einer bestimmten Richtung kann ein erster dieser Zeitzähler ausgelesen und zurückgesetzt werden. Der jeweils ausgelesene Wert des Zeitzählers beschreibt dann die Zeitdauer eines Schwingungszyklus bzw. der positiven bzw. negativen Hälfte eines Schwingungszyklus. Aufgrund der Phasenänderung im ausgewählten Schwingungszyklus hat dieser bzw. haben dessen positive bzw. negative Teilschwingungen eine unterschiedliche Länge und können somit erkannt werden. In diesem Fall kann der Wert des zweiten Zeitzählers ausgelesen werden, also jenes Zeitzählers, der nicht bei jedem Nulldurchgang zurückgesetzt wird, um die Laufzeit der Welle zu dem Schwingungswandler bzw. dem weiteren Schwingungswandler zu ermitteln. Dies kann wie obig erläutert beispielsweise dazu dienen, anhand eines Laufzeitunterschieds zwischen Ausbreitungsrichtungen ein Durchflussvolumen zu bestimmen oder Ähnliches. Da der ausgelesene Wert des ersten Zeitzählers, insbesondere wenn er für positive bzw. negative Schwingungshälften erfasst wird, wie obig erläutert auch mit dem Druck zusammenhängt, kann aus diesem Wert der Druck ermittelt werden.An exemplary implementation for this will be explained below. In this case, to avoid unnecessary repetitions, a zero crossing or sign change of the output signal or the difference between the output signal and the reference value is used abbreviated as zero crossing. Two time counters can be reset at the point in time at which the phase change or the phase jump is output as part of the excitation pattern to the oscillation converter or at a point in time with a defined time position with respect to this point in time. A first of these time counters can be read out and reset for each detected zero crossing or each detected zero crossing with a specific direction. The value read from the time counter then describes the duration of an oscillation cycle or the positive or negative half of an oscillation cycle. Due to the phase change in the selected oscillation cycle, this or its positive or negative partial oscillations have a different length and can therefore be recognized. In this case, the value of the second time counter can be read out, ie that time counter which is not reset at each zero crossing, in order to determine the propagation time of the wave to the oscillation converter or the further oscillation converter. As explained above, this can be used, for example, to determine a flow volume or the like based on a transit time difference between propagation directions. Since the value read from the first time counter, in particular when it is recorded for positive or negative halves of oscillation, is also related to the pressure, as explained above, the pressure can be determined from this value.

Der obig erläuterte Ansatz geht davon aus, dass die Zeitdauer des ausgewählten Schwingungszyklus zumindest näherungsweise bekannt ist, so dass anhand der Dauer des erfassten Zyklus bzw. des Werts des ersten Zeitzählers unmittelbar erkannt werden kann, dass gerade der ausgewählte Schwingungszyklus bzw. eine Teilschwingung hiervon erfasst wurde. Alternativ wäre es beispielsweise auch möglich, zeitlich aufeinander folgend erfasste Werte des Zeitzählers miteinander zu vergleichen, um anhand einer deutlichen Abweichung des Zählerwerts das Vorliegen des ausgewählten Schwingungszyklus zu erkennen oder Ähnliches.The approach explained above assumes that the duration of the selected oscillation cycle is at least approximately known, so that the duration of the recorded cycle or the value of the first time counter can be used to immediately recognize that the selected oscillation cycle or a partial oscillation thereof is currently being recorded would. Alternatively, it would also be possible, for example, to compare values of the time counter that were recorded in succession over time, in order to identify the presence of the selected oscillation cycle or the like based on a significant deviation in the counter value.

Wie obig erläutert korreliert der aus dem ersten Zeitzähler ausgelesene Wert mit dem Druck. Ein entsprechender Zusammenhang kann beispielsweise durch eine Kalibriermessung für eine bestimmte Messeinrichtung oder für einen bestimmten Typ von Messeinrichtung ermittelt werden. Beispielsweise kann ein entsprechender Zusammenhang über eine Look-Up-Tabelle beschrieben werden oder es kann, beispielsweise durch eine Regressionsanalyse von mehreren Messungen, ein mathematischer Zusammenhang zwischen Druck und Zählerwert ermittelt werden.As explained above, the value read from the first time counter correlates with the pressure. A corresponding relationship can be determined, for example, by a calibration measurement for a specific measuring device or for a specific type of measuring device. For example, a corresponding relationship can be described using a look-up table, or a mathematical relationship between the pressure and the counter value can be determined, for example by means of a regression analysis of a number of measurements.

Die Messeinrichtung kann ein Durchflusszähler sein, wobei die Steuereinrichtung dazu eingerichtet sein kann, einen Laufzeitunterschied zwischen einer ersten Laufzeit der Welle von dem Schwingungswandler zu dem weiteren Schwingungswandler und einer weiteren Laufzeit einer durch den weiteren Schwingungswandler angeregten weiteren Welle zu dem Schwingungswandler und aus der Laufzeitdifferenz den Durchfluss zu ermitteln. Die obig beschriebene Druckmessung kann in einem Durchflusszähler besonders vorteilhaft genutzt werden, da zumindest bei der oben erläuterten Art der Laufzeitermittlung ohnehin bereits alle zur Druckermittlung benötigten Informationen vorliegen. Ein Durchflusszähler kann somit beispielsweise durch ein reines Softwareupdate und eine entsprechende Kalibrierung zusätzlich zur Druckmessung genutzt werden.The measuring device can be a flow meter, in which case the control device can be set up to determine a transit time difference between a first transit time of the wave from the vibration converter to the further vibration converter and a further transit time of a further wave excited by the further vibration converter to the vibration converter and from the transit time difference the to determine flow. The pressure measurement described above can be used particularly advantageously in a flow meter, since at least in the case of the type of transit time determination explained above, all the information required for determining the pressure is already available anyway. A flow meter can thus be used in addition to pressure measurement, for example, with a pure software update and a corresponding calibration.

Der Druck kann aus genau einer Zeitdauer genau eines vorgegebenen Teilmusters ermittelt werden. Hierdurch kann erreicht werden, dass die Druckermittlung auch in Betriebssituationen, in denen plötzliche Druck- oder Durchflussänderungen zu erwarten sind, aufgrund der kurzen Messzeit nicht oder nur unwesentlich gestört werden kann.The pressure can be determined from precisely one time period of precisely one predetermined sub-pattern. In this way it can be achieved that the pressure determination cannot be disturbed or only insignificantly even in operating situations in which sudden changes in pressure or flow are to be expected due to the short measuring time.

Neben der erfindungsgemäßen Messeinrichtung betrifft die Erfindung ein Verfahren zur Ermittlung eines Drucks in einem ein Fluid aufnehmenden oder von dem Fluid durchströmten Messvolumen nach Anspruch 7.In addition to the measuring device according to the invention, the invention relates to a method for determining a pressure in a measuring volume receiving a fluid or through which the fluid flows.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den folgenden Ausführungsbeispielen sowie den zugehörigen Zeichnungen. Hierbei zeigen schematisch:

Fig. 1
ein Ausführungsbeispiel einer erfindungsgemäßen Messeinrichtung, durch die ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens ausführbar ist,
Fig. 2
ein Anregungsmuster für einen Schwingungswandler und das Ausgangssignal eines weiteren Schwingungswandlers in einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens, und
Fig. 3
beispielhafte Messdaten für ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
Further advantages and details of the invention result from the following exemplary embodiments and the associated drawings. Here show schematically:
1
an exemplary embodiment of a measuring device according to the invention, by means of which an exemplary embodiment of the method according to the invention can be carried out,
2
an excitation pattern for a vibration converter and the output signal of a further vibration converter in an exemplary embodiment of the method according to the invention, and
3
exemplary measurement data for an embodiment of the method according to the invention.

Fig. 1 zeigt eine Messeinrichtung 1 zur Ermittlung eines Drucks in einem von einem Fluid durchströmten Messvolumen 2. Das Fluid kann insbesondere eine Flüssigkeit, beispielsweise Wasser, oder ein Gas sein. In dem gezeigten Beispiel ist die Messeinrichtung 1 ein Durchflusszähler, der dazu dient, eine durch das Messvolumen 2 strömende Flüssigkeitsmenge zu erfassen. Hierzu wird durch eine Steuereinrichtung 10 eine Laufzeit einer Welle 6, die durch den Schwingungswandler 4 angeregt wird, entlang dem Ausbreitungspfad 7 zu dem weiteren Schwingungswandler 5 erfasst. In Abhängigkeit der Laufzeitdifferenz zwischen dieser Laufzeit und der Laufzeit einer in die umgekehrte Richtung geführten Welle wird, wie prinzipiell im Stand der Technik bekannt ist, ein Durchfluss ermittelt. Im gezeigten Beispiel wird die Welle 6 durch die Reflektoren 8, 9 umgelenkt, um sie entlang dem Ausbreitungspfad 7 zu führen. 1 1 shows a measuring device 1 for determining a pressure in a measuring volume 2 through which a fluid flows. The fluid can in particular be a liquid, for example water, or a gas. In the example shown, the measuring device 1 is a flow meter which is used to record a quantity of liquid flowing through the measuring volume 2 . For this purpose, a transit time of a wave 6, which is excited by the vibration converter 4, is detected by a control device 10 along the propagation path 7 to the further vibration converter 5. A flow rate is determined as a function of the transit time difference between this transit time and the transit time of a wave guided in the opposite direction, as is known in principle from the prior art. In the example shown, the wave 6 is deflected by the reflectors 8, 9 in order to guide it along the propagation path 7.

Die Welle 6 regt bei ihrem Auftreffen auf den weiteren Schwingungswandler 5 eine Schwingung des weiteren Schwingungswandlers 5 mit einem bestimmten Schwingungsmuster an. In der Messeinrichtung 1 wird ausgenutzt, dass durch Messung einer Zeitdauer eines vorgegebenen Teilmusters dieses Schwingungsmusters als Messdaten, wie im Folgenden mit Bezug auf Fig. 2 genauer erläutert werden wird, ein Druck in dem Messvolumen 2 ermittelt werden kann. Eine derartige Druckmessung ist in einem Durchflusszähler, also der gezeigten Messeinrichtung 1, besonders vorteilhaft, da ohnehin vorhandene Sensorik mitgenutzt werden kann und die Druckermittlung durch eine reine Anpassung der Datenverarbeitung in der Steuereinrichtung 10 erreicht werden kann. Prinzipiell wäre es auch möglich, die beschriebene Druckmessung unabhängig von einer Durchflussmessung durchzuführen. Hierbei wäre es auch ausreichend, nur einen Schwingungswandler 4 zu nutzen, zu dem die Welle 6 entlang dem Ausbreitungspfad 7 zurückgeführt wird. Beispielsweise könnte die Welle 6 bei Weglassen des Reflektors 8 an der gegenüberliegenden Seitenwand 3 des Messvolumens zurück zu dem Schwingungswandler 4 reflektiert werden. Es könnte hierbei ausschließlich die Zeitdauer des Teilmusters ausgewertet werden, um einen Druck zu messen. Prinzipiell könnte jedoch auch eine Laufzeit ermittelt werden, beispielsweise um eine Fluidtemperatur oder eine andere Fluideigenschaft zu ermitteln.When it strikes the further oscillation converter 5, the wave 6 excites an oscillation of the further oscillation converter 5 with a specific oscillation pattern. The measuring device 1 makes use of the fact that by measuring a time duration of a predetermined partial pattern of this oscillation pattern as measurement data, as described below with reference to FIG 2 will be explained in more detail, a pressure in the measuring volume 2 can be determined. Such a pressure measurement is particularly advantageous in a flow meter, ie the measuring device 1 shown, since existing sensors can be used and the pressure can be determined by simply adapting the data processing in the control device 10 . In principle, it would also be possible to carry out the pressure measurement described independently of a flow measurement. In this case, it would also be sufficient to use only one vibration converter 4, to which the wave 6 is fed back along the propagation path 7. For example, if the reflector 8 is omitted, the wave 6 could be reflected back to the vibration converter 4 on the opposite side wall 3 of the measurement volume will. In this case, only the duration of the partial pattern could be evaluated in order to measure a pressure. In principle, however, a running time could also be determined, for example in order to determine a fluid temperature or another fluid property.

Fig. 2 zeigt den zeitlichen Verlauf eines Anregungsmusters 11, mit dem der Schwingungswandler 4 durch die Steuereinrichtung 10 angesteuert wird. Das Anregungsmuster 11 kann beispielsweise ein Spannungsverlauf sein, der an einem als Schwingungswandler 4 genutzten piezoelektrischen Element anliegt. Hierbei sind in Fig. 2 als beispielhaftes Anregungsmuster 11 drei Schwingungszyklen 12, 13, 14 einer Sinusschwingung dargestellt, wobei ein ausgewählter Schwingungszyklus 13 dadurch markiert wird, dass innerhalb dieses Schwingungszyklus 13 eine Phasenänderung 15, im Beispiel ein Phasensprung, erfolgt. Hierbei ist ein Phasensprung um ca. 180° gezeigt, wobei auch andere Phasenänderungen genutzt werden könnten. In realen Anregungsmustern 11 werden typischerweise mehr als drei Schwingungszyklen genutzt und die Amplitude der Schwingungszyklen wird durch eine Einhüllende bzw. Fensterfunktion moduliert. 2 12 shows the time course of an excitation pattern 11 with which the oscillation converter 4 is controlled by the control device 10. The excitation pattern 11 can be, for example, a voltage profile that is applied to a piezoelectric element used as a vibration converter 4 . Here are in 2 three oscillation cycles 12, 13, 14 of a sinusoidal oscillation are shown as an exemplary excitation pattern 11, a selected oscillation cycle 13 being marked by the fact that a phase change 15, in the example a phase jump, takes place within this oscillation cycle 13. A phase jump of approximately 180° is shown here, although other phase changes could also be used. In real excitation patterns 11, more than three oscillation cycles are typically used and the amplitude of the oscillation cycles is modulated by an envelope or window function.

Fig. 2 zeigt zudem schematisch ein Ausgangssignal 16 des Schwingungswandlers 5, nachdem die entsprechende Welle 6 am Schwingungswandler 5 eingelaufen ist. Das Ausgangssignal 16 wäre tatsächlich um die Laufzeit der Welle 6 entlang dem Ausbreitungspfad 7 zu dem Anregungsmuster 11 versetzt. Zur klareren Darstellung wurde das Ausgangsmuster 16 in Fig. 2 um diese Laufzeit nach links verschoben, so dass das Anregungsmuster 11 und das Ausgangssignal 16 im gleichen Zeitintervall dargestellt sind. In Fig. 2 erfolgt zudem eine vereinfachte Darstellung des Ausgangssignals 16, bei der Verzerrungen und andere Beeinflussungen des Ausgangssignals 16 aufgrund von Nichtlinearität der Schwingungswandler 4, 5, der Dispersion im Fluid und aufgrund einer Vorspannung der Schwingungswandler 4, 5 aufgrund des Drucks im Messvolumen 2 nicht berücksichtigt werden. 2 FIG. 12 also shows schematically an output signal 16 of the vibration converter 5 after the corresponding shaft 6 has entered the vibration converter 5. FIG. The output signal 16 would actually be offset by the travel time of the wave 6 along the propagation path 7 to the excitation pattern 11 . For clarity, the initial pattern was 16 in 2 shifted to the left by this transit time, so that the excitation pattern 11 and the output signal 16 are shown in the same time interval. In 2 there is also a simplified representation of the output signal 16, in which distortions and other influences on the output signal 16 due to non-linearity of the vibration transducers 4, 5, the dispersion in the fluid and due to a bias of the vibration transducers 4, 5 due to the pressure in the measuring volume 2 are not taken into account.

Als einziger Effekt des Drucks im Messvolumen 2 ist in Fig. 2 der Offset 17 des Ausgangssignals 16 gezeigt. Dieser resultiert daraus, dass beispielsweise ein Schwingungswandler 5 auf Basis eines piezoelektrischen Elements letztlich einen Druck bzw. Kraftsensor darstellt, womit dessen Ausgangssignal 16 einen Gleichspannungsanteil, der dem Offset 17 entspricht und der von dem Druck im Messvolumen 2 abhängt, und einen Wechselspannungsanteil, der durch die einlaufende Welle 6 verursacht ist, umfasst. Somit oszilliert das Ausgangssignal 16 weiterhin um einen Referenzwert 18, beispielsweise 0 V, diese Oszillation ist jedoch aufgrund des Offsets 17 asymmetrisch.The only effect of the pressure in the measuring volume 2 is in 2 the offset 17 of the output signal 16 is shown. This results from the fact that, for example, a vibration transducer 5 based on a piezoelectric element ultimately represents a pressure or force sensor, with its output signal 16 having a DC voltage component that corresponds to offset 17 and that depends on the pressure in measuring volume 2, and an AC voltage component that is caused by the incoming wave 6 is caused includes. Consequently the output signal 16 continues to oscillate around a reference value 18, for example 0 V, but this oscillation is asymmetrical due to the offset 17.

Die Steuereinrichtung 10 ist dazu eingerichtet, Nulldurchgänge bzw. Vorzeichenwechsel 19, 20 des Ausgangssignals 16 bzw. der Differenz von Ausgangssignal 16 und Referenzwert 18 zu erkennen, beispielsweise mithilfe eines Komparators, der das Auslesen eines Zeitzählers triggert. Hierdurch können die Zeitdauern 21 bis 24 für verschiedene Teilmuster 25 bis 28 des Ausgangssignals 16 bzw. des durch dieses beschriebenen Schwingungsmusters 29 ermittelt werden. Anhand dieser Zeitdauern 21 bis 24 können einerseits die Teilmuster 25, 26 erkannt werden, die zum ausgewählten Schwingungszyklus 13 gehören, da deren Zeitdauern 21, 22 sich aufgrund des Phasensprungs 15 deutlich von den Zeitdauern 23, 24 der Teilmuster 27, 28 unterscheiden. Hierdurch kann beispielsweise eindeutig der Zeitpunkt ermittelt werden, zu dem der Phasensprung bzw. die Phasenänderung 15 den weiteren Schwingungswandler 5 erreicht, womit die Laufzeit der Welle vom Schwingungswandler 4 zum weiteren Schwingungswandler 5 mit hoher Genauigkeit bestimmt werden kann. Dies kann beispielsweise zur obig erläuterten Ermittlung eines Laufzeitunterschieds dienen.The control device 10 is set up to detect zero crossings or sign changes 19, 20 of the output signal 16 or the difference between the output signal 16 and the reference value 18, for example with the aid of a comparator which triggers the reading of a time counter. In this way, the durations 21 to 24 for different sub-patterns 25 to 28 of the output signal 16 or of the oscillation pattern 29 described by this can be determined. On the one hand, these time durations 21 to 24 can be used to identify the partial patterns 25, 26 that belong to the selected oscillation cycle 13, since their time durations 21, 22 differ significantly from the time durations 23, 24 of the partial patterns 27, 28 due to the phase jump 15. In this way, for example, the point in time at which the phase jump or phase change 15 reaches the further oscillation converter 5 can be clearly determined, with which the propagation time of the wave from the oscillation converter 4 to the further oscillation converter 5 can be determined with high accuracy. This can be used, for example, to determine a transit time difference as explained above.

Zudem führt, wie in Fig. 2 zu erkennen ist, eine Vergrößerung des Offsets 17 dazu, dass die Zeitdauer 21 für das Teilmuster 25 länger wird und die Zeitdauer 22 für das Teilmuster 26 kürzer. Die Zeitdauer 21 oder 22 oder auch eine Kombination dieser Zeitdauern, beispielsweise eine Differenz, kann somit genutzt werden, um auf den Offset 17 und somit auf den Druck im Messvolumen 2 zurückzuschließen. Hierzu kann beispielsweise durch eine vorangehende Kalibrierung der Messeinrichtung 1 bzw. von einer Gruppe von baugleichen Messeinrichtungen 1 eine Look-Up-Tabelle oder ein mathematischer Zusammenhang zwischen der Zeitdauer 21 bzw. 22 und dem Druck definiert werden. Wird, wie im gezeigten Beispiel, eine Sinusschwingung zur Anregung genutzt, ist die Änderung der Zeitdauer 21 bis 24 näherungsweise linear abhängig zum Offset 17 und somit beispielsweise im Falle von Piezowandlern insbesondere auch zum Druck.In addition, as in 2 it can be seen that an increase in the offset 17 results in the time duration 21 for the sub-pattern 25 becoming longer and the time duration 22 for the sub-pattern 26 becoming shorter. The length of time 21 or 22 or a combination of these lengths of time, for example a difference, can thus be used to draw conclusions about the offset 17 and thus about the pressure in the measuring volume 2 . For this purpose, a look-up table or a mathematical relationship between the duration 21 or 22 and the pressure can be defined, for example, by a previous calibration of the measuring device 1 or of a group of identical measuring devices 1 . If, as in the example shown, a sinusoidal oscillation is used for excitation, the change in the duration 21 to 24 is approximately linearly dependent on the offset 17 and thus, for example in the case of piezoelectric transducers, in particular also on the pressure.

Wie vorangehend bereits erläutert kann der Druck im Messvolumen 2 zudem auch zu Verzerrungen des Ausgangssignals 16 bzw. des Schwingungsmusters 29 bzw. zu einer Änderung des Transientenverhaltens, insbesondere im Bereich der Phasenänderung 15, führen. Diese Effekte können einen zusätzlichen Beitrag zur Änderung der Zeitdauern 21, 22 mit dem Druck leisten, so dass das beschriebene Vorgehen unter Umständen eine höhere Genauigkeit bei der Druckerfassung erreichen kann, als sie alleine mit der vorangehend erläuterten Erkennung des Offsets 17 über die Zeitdauern 21, 22 möglich wäre.As already explained above, the pressure in the measuring volume 2 can also lead to distortions in the output signal 16 or the oscillation pattern 29 or to a change in the transient behavior, in particular in the area of the phase change 15 . These effects can make an additional contribution to changing the time durations 21, 22 with the pressure, so that the procedure described may can achieve higher accuracy in the pressure detection than would be possible solely with the previously explained detection of the offset 17 over the time periods 21, 22.

Gegenüber einer direkten Messung des Offsets 17 wird zudem der Vorteil erreicht, dass die Druckmessung als Teil einer normalen Durchflussmessung durchgeführt werden kann und nicht nur in Ruhephasen, während keine Durchflussmessung erfolgt. Zudem ist es bei dem beschriebenen Vorgehen nicht nötig, konkrete Werte für das Ausgangssignal 16 zu erfassen, sondern es ist ausreichend, die Vorzeichenwechsel 19, 20 bzw. Nulldurchgänge zu erkennen. Das Vorgehen kann somit einfach implementiert werden und insbesondere können übliche Durchflusszähler mit geringem Aufwand, beispielsweise durch ein reines Softwareupdate, modifiziert werden, um das beschriebene Verfahren durchzuführen.Compared to a direct measurement of the offset 17, the advantage is also achieved that the pressure measurement can be carried out as part of a normal flow measurement and not only in idle phases when no flow measurement is taking place. In addition, with the procedure described, it is not necessary to detect specific values for the output signal 16, but it is sufficient to recognize the sign changes 19, 20 or zero crossings. The procedure can thus be implemented easily and, in particular, conventional flow meters can be modified with little effort, for example by means of a pure software update, in order to carry out the method described.

Fig. 3 zeigt Messdaten 33 einer Beispielmessung des Drucks anhand einer Zeitdauer eines bestimmten empfangenen Teilmusters bzw. für den Zeitabstand zwischen zwei Vorzeichenwechseln der Differenz des Ausgangssignals 16 und des Referenzwertes 18. Hierbei zeigt die untere X-Achse 30 die Nummer der aktuellen Messung, die Y-Achse 31 den Wert eines Zeitzählers, der zu Beginn des in Fig. 2 gezeigten Teilmusters 26 zurückgesetzt und an dessen Ende ausgelesen wird, und die obere X-Achse 32 zeigt Druckwerte, die während eines jeweiligen Hochdruckintervalls 34 eingestellt werden. Zwischen den Hochdruckintervallen 34 wird der Druck im Messvolumen 2 jeweils während eines Normaldruckintervalls 35 wieder auf normalen Druck abgesenkt. Wie in Fig. 3 klar zu erkenne ist, sind die Messdaten 33, also die jeweiligen Zeitdauern 22 des Teilmusters 26, ein gutes Maß für den Druck, wobei die Zeitdauer 22 näherungsweise linear mit dem Druck variiert. 3 shows measurement data 33 of an example measurement of the pressure based on a time duration of a specific received partial pattern or for the time interval between two sign changes of the difference of the output signal 16 and the reference value 18. The lower X-axis 30 shows the number of the current measurement, the Y-axis 31 the value of a time counter, which is set at the beginning of the in 2 sub-pattern 26 shown is reset and read out at the end of which, and the upper X-axis 32 shows pressure values that are set during a respective high-pressure interval 34 . Between the high-pressure intervals 34, the pressure in the measurement volume 2 is lowered back to normal pressure during a normal-pressure interval 35 in each case. As in 3 As can be clearly seen, the measurement data 33, that is to say the respective durations 22 of the partial pattern 26, are a good measure of the pressure, with the duration 22 varying approximately linearly with the pressure.

BezugszeichenlisteReference List

11
Messeinrichtungmeasuring device
22
Messvolumenmeasurement volume
33
SeitenwandSide wall
44
Schwingungswandlervibration converter
55
Schwingungswandlervibration converter
66
WelleWave
77
Ausbreitungspfadpropagation path
88th
Reflektorreflector
99
Reflektorreflector
1010
Steuereinrichtungcontrol device
1111
Anregungsmusterexcitation pattern
1212
Schwingungszyklusvibration cycle
1313
Schwingungszyklusvibration cycle
1414
Schwingungszyklusvibration cycle
1515
Phasenänderungphase change
1616
Ausgangssignaloutput signal
1717
Offsetoffset
1818
Referenzwertreference value
1919
Vorzeichenwechselchange of sign
2020
Vorzeichenwechselchange of sign
2121
Zeitdauerduration
2222
Zeitdauerduration
2323
Zeitdauerduration
2424
Zeitdauerduration
2525
Teilmusterpart pattern
2626
Teilmusterpart pattern
2727
Teilmusterpart pattern
2828
Teilmusterpart pattern
2929
Schwingungsmustervibration pattern
3030
X-AchseX axis
3131
Y-AchseY axis
3232
X-AchseX axis
3333
Messdatenmeasurement data
3434
Hochdruckintervallhigh pressure interval
3535
Normaldruckintervallnormal pressure interval

Claims (7)

  1. Measuring device for determining a pressure in a measurement volume (2) which receives a fluid or through which the fluid flows, wherein an oscillation transducer (4) of the measuring device (1) is arranged on the measurement volume (2), wherein a control device (10) of the measuring device (1) is set up to activate the oscillation transducer (4) for exciting a wave (6) in the fluid, wherein the oscillation transducer (4) is set up and arranged on the measurement volume (2) in such a way that the wave (6) is returned along a propagation path (7) to the oscillation transducer (4) or to at least one further oscillation transducer (5) of the measuring device (1) arranged on the measurement volume (2), wherein the control device (10) is set up to record measurement data (33) concerning an oscillation pattern (29) of the or the further oscillation transducer (4, 5) that is excited by the wave (6) and to determine the pressure in the measurement volume (2) on the basis of the measurement data (33), characterized in that the control device (10) is set up to determine as measurement data (33) a time period (21-24) of a predetermined sub-pattern (25-28) of the oscillation pattern (29) and, from the time period (21-24), the pressure in the measurement volume (2), wherein output signals (16) of the or the further oscillation transducer (4, 5) concerning the oscillation pattern (29) oscillate about a reference value (18), wherein the time period (21-24) is determined as a time interval between two temporally successive changes in sign (19, 20) of the difference between the output signal (16) and the reference value (18).
  2. Measuring device according to Claim 1, characterized in that the control device (10) is set up to activate the oscillation transducer (4) with a predetermined excitation pattern (11), which comprises multiple oscillation cycles (12-14) of an oscillation, in particular a sinusoidal oscillation, wherein a selected one of the oscillation cycles (13) is marked by a phase change (15), in particular a phase jump.
  3. Measuring device according to Claim 2, characterized in that the predetermined sub-pattern (25, 26) of the oscillation pattern (29) depends on the excitation pattern (11) in the selected oscillation cycle (13).
  4. Measuring device according to Claim 2 or 3, characterized in that the control device (10) is set up to determine a recording time at which the sub-pattern (25, 26, 27, 28) is recorded and to determine a flow rate or a flow volume of the fluid through the measurement volume (2) on the basis of the recording time.
  5. Measuring device according to one of the preceding claims, characterized in that the measuring device (1) is a flowmeter, wherein the control device (10) is set up to determine a difference in transit times between a first transit time of the wave (6) from the oscillation transducer (4) to the further oscillation transducer (5) and a further transit time of a further wave, excited by the further oscillation transducer (6), to the oscillation transducer (5) and to determine the flow from the difference in the transit times.
  6. Measuring device according to one of the preceding claims, characterized in that the pressure is determined from exactly one time period (21-24) of exactly one predetermined sub-pattern (25-28).
  7. Method for determining a pressure in a measurement volume (2) which receives a fluid or through which the fluid flows, wherein an oscillation transducer (4) is arranged on the measurement volume (2), wherein the oscillation transducer (4) is activated for exciting a wave (6) in the fluid, wherein the wave (6) is returned along a propagation path (7) to the oscillation transducer (4) or to a further oscillation transducer (5) arranged on the measurement volume (2), wherein measurement data (33) which concern an oscillation pattern (29) of the or the further oscillation transducer (4, 5) that is excited by the wave (6) are recorded, and wherein the pressure in the measurement volume (2) is determined on the basis of the measurement data (33), characterized in that a time period (21-24) of a predetermined sub-pattern (25-28) of the oscillation pattern (29) and, from the time period (21-24), the pressure in the measurement volume (2) are determined as measurement data (33), wherein output signals (16) of the or the further oscillation transducer (4, 5) concerning the oscillation pattern (29) oscillate about a reference value (18), wherein the time period (21-24) is determined as a time interval between two temporally successive changes in sign (19, 20) of the difference between the output signal (16) and the reference value (18).
EP20194179.6A 2019-09-30 2020-09-02 Measuring device and method for measuring pressure Active EP3798600B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019006807.6A DE102019006807A1 (en) 2019-09-30 2019-09-30 Measuring device and method for determining a pressure

Publications (2)

Publication Number Publication Date
EP3798600A1 EP3798600A1 (en) 2021-03-31
EP3798600B1 true EP3798600B1 (en) 2023-01-18

Family

ID=72355781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20194179.6A Active EP3798600B1 (en) 2019-09-30 2020-09-02 Measuring device and method for measuring pressure

Country Status (4)

Country Link
EP (1) EP3798600B1 (en)
DE (1) DE102019006807A1 (en)
DK (1) DK3798600T3 (en)
PL (1) PL3798600T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129099A1 (en) * 2021-11-09 2023-05-11 Diehl Metering Gmbh Pressure determination using a piezoceramic ultrasonic transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009818A1 (en) * 2005-03-03 2006-09-07 Siemens Ag Pressure measurement method in which a sealed measurement chamber is used to which an external pressure is applied and the external pressure determined from a measurement of an acoustic property of the fluid in the chamber
DE102017005207A1 (en) * 2017-06-01 2018-12-06 Diehl Metering Gmbh Method for determining the pressure of a fluid
DE102017011861B4 (en) * 2017-12-01 2022-09-29 Diehl Metering Gmbh Method for determining the propagation time of an ultrasonic signal in a flowing medium and ultrasonic flow meter

Also Published As

Publication number Publication date
PL3798600T3 (en) 2023-05-22
DE102019006807A1 (en) 2021-04-01
EP3798600A1 (en) 2021-03-31
DK3798600T3 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
EP1926972B1 (en) Method for operating an electromagnetic flowmeter and electomagnetic flowmeter
EP2513612B1 (en) Method for operating a coriolis mass flow rate meter and coriolis mass flow rate meter
DE69623027T2 (en) INDUCTIVE RECEIVER TO MONITOR LIQUID LEVEL AND SHIFT
DE69531026T2 (en) Mass flow meter according to the Coriolis principle
WO2008077574A2 (en) Method for operating a vibratory measuring instrument, and corresponding instrument
EP0980508B1 (en) Method and device for detecting and compensating zero point influences on coriolis-type mass flowmeters
DE3036951C2 (en) Method for acoustic emission testing of containers or pipelines made of steel, in particular for nuclear reactor plants
DE102015109463A1 (en) Method for checking the functionality of a radar-based level gauge
WO2019086188A2 (en) Method for identifiying deposit formation in a measuring tube and measuring device for carrying out said method
DE102015122124A1 (en) Vibronic sensor and measuring arrangement for monitoring a flowable medium
WO2004025227A1 (en) Vortex mass flow meter
WO2007048541A1 (en) Method and apparatus for the ultrasonic measurement of the flow rate of flowable media
EP3798600B1 (en) Measuring device and method for measuring pressure
EP3649442B1 (en) Measuring transducer to determine the mass flow of a liquid
WO2019120783A1 (en) Coriolis mass flowmeter
EP4212829A1 (en) Method and measuring device for determining a measurement variable relating to a flow
EP3327406B1 (en) Method for operating a coriolis mass flow meter and coriolis mass flow meter
DE102017005207A1 (en) Method for determining the pressure of a fluid
EP3899446B1 (en) Method for ascertaining a physical parameter of a gas-charged liquid
EP3899447B1 (en) Coriolis mass flow meter
DE102020002837A1 (en) Method for operating a measuring device and measuring device
EP3657138A1 (en) Method for operating a measuring device and measuring device
DE102005003631A1 (en) Turbulence flow measuring method, involves detecting frequency signals of swirled fluid, evaluating and displaying frequency signals, and detecting amplitude signals between swirling of fluid and evaluation of frequency signals
EP3564631A1 (en) Method and measuring device for detecting measurement information
WO1989004463A1 (en) Process and device for detecting errors in measurements of mass flow of materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210910

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002381

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1544959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230405

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002381

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

26N No opposition filed

Effective date: 20231019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231109

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230902

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230902

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230902

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240923

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240924

Year of fee payment: 5