EP3782913A1 - Positioning mechanism, uav dock using same, and uav replenishment method - Google Patents

Positioning mechanism, uav dock using same, and uav replenishment method Download PDF

Info

Publication number
EP3782913A1
EP3782913A1 EP20200724.1A EP20200724A EP3782913A1 EP 3782913 A1 EP3782913 A1 EP 3782913A1 EP 20200724 A EP20200724 A EP 20200724A EP 3782913 A1 EP3782913 A1 EP 3782913A1
Authority
EP
European Patent Office
Prior art keywords
guide member
uav
positioning
guide
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20200724.1A
Other languages
German (de)
French (fr)
Inventor
Mingxi WANG
Hanping Chen
Xiangyu Chen
Yuan Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Priority to EP20200724.1A priority Critical patent/EP3782913A1/en
Publication of EP3782913A1 publication Critical patent/EP3782913A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Arresting gear; Liquid barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/97Means for guiding the UAV to a specific location on the platform, e.g. platform structures preventing landing off-centre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/30Launching, take-off or landing arrangements for capturing UAVs in flight by ground or sea-based arresting gear, e.g. by a cable or a net

Definitions

  • the present invention relates to a dock, particularly to a positioning mechanism and a small UAV (Unmanned Aerial Vehicle) dock using the positioning mechanism, and a UAV replenishment method.
  • UAV Unmanned Aerial Vehicle
  • the automatic pinpoint landing and positioning technique of a UAV consists in pinpoint landing of a UAV using techniques such as machine vision in the scenario of an unmanned operation, and fixing the position of the UAV to a desired accurate position after landing.
  • This technique can be used in many applications. For example, after the UAV lands, coordinated ground equipment performs interaction with it as desired, e.g. automatic battery replacement, or automatic load replacement.
  • common positioning solutions include a totally active mode, i.e. after a UAV lands on the ground, moving it to the desired position using an actuator, such as a motor, and fixing the three dimensions thereof in the plane (two linear dimensions, and one angle).
  • a totally passive mode is also possible, e.g. the solution of Skycatch company: the bottom of the UAV is made in a large conical shape, the landing positioning portion is made as a large conical pit, and after landing, the UAV automatically slides into the landing positioning portion, so as to position the two linear dimensions of the plane of the UAV.
  • landing gear of the UAV are made as vertical columns, and conical pits are arranged at the same intervals on the landing pad, so that when the UAV lands on conical projected areas, it automatically slides to the bottoms of the conical pits and is fixed in three dimensions.
  • the disadvantage lies in that a relatively large number of actuators are needed. Since it is necessary to fix three dimensions of the UAV, the device for positioning and guiding the UAV is complicated, and thus the cost and complexity of the equipment are increased.
  • the disadvantage lies in the large volume of the device.
  • a conical structure has a large occupied space, and it is difficult to make the equipment small.
  • the present invention to provide a positioning mechanism that requires a relatively small number of actuators and can reduce the volume of the UAV dock.
  • a positioning mechanism comprising:
  • the above-mentioned positioning mechanism has at least the following advantages:
  • a UAV dock comprising:
  • a positioning mechanism comprising:
  • a UAV dock comprising:
  • a UAV replenishment method comprising the steps of:
  • the embodiments of the present invention provide a positioning mechanism comprising a base and a guide member.
  • Said base is provided with a landing area, with a positioning portion provided on said landing area.
  • Said guide member is movably arranged in said landing area, and the states of movement and transformation of said guide member relative to said base include a non-operating state and an operating state.
  • a UAV can be guided to the positioning portion by said guide member, and is positioned by said positioning portion.
  • the embodiments of the present invention further provide a UAV dock using the above-mentioned positioning mechanism.
  • Said UAV dock comprises the above-mentioned positioning mechanism and an operating device for operating a UAV.
  • Said UAV moves to said positioning portion through the guide surface of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
  • said operating device comprises an auxiliary mechanical structure for assisting the location of said UAV.
  • said auxiliary mechanical structure may be a uniaxial auxiliary mechanical structure, a biaxial auxiliary mechanical structure, or a triaxial auxiliary mechanical structure, etc.
  • said operating device further comprises a raw material replenishment mechanism for replenishing functional raw materials for said UAV.
  • said raw material replenishment mechanism further comprises a liquid raw material conveying port.
  • said raw material replenishment mechanism comprises a fuel oil conveying port.
  • said raw material replenishment mechanism comprises a solid raw material conveying device.
  • said raw material replenishment mechanism comprises a pesticide conveying track or a pesticide box clamping device.
  • said operating device comprises a replacing mechanism for replacing a load of said UAV.
  • said operating device comprises an auxiliary mechanical structure for replacing a gimbal mounted in the UAV.
  • said guide member defines a portion of said positioning portion, and the size of said positioning portion can be adjusted by means of the movement and transformation of said guide member.
  • said guide member can translate in said landing area so as to adjust the size of said positioning portion, or said guide member is a retracting mechanism for adjusting the size of said positioning portion by means of the extension and retraction of said guide member.
  • the embodiments of the present invention further provide a UAV replenishment method.
  • said guide member in the landing area of the UAV dock is transformed into an operating state so as to guide said UAV to a positioning portion inside said landing area, and the height of said guide member in said operating state relative to said landing area is greater than the height thereof in the non-operating state relative to said landing area.
  • a UAV dock 100 of an embodiment of the present invention comprises a positioning mechanism 101 and an operating device 103 for operating a UAV 200 .
  • the positioning mechanism 101 comprises a base 110 and a guide member 120 .
  • the guide member 120 is used to guide the UAV 200 to a specified area in the base 110 , and the guide member 120 can be transformed to reduce the space occupied by the guide member 120 , thereby facilitating the miniaturized design of the positioning mechanism 101 .
  • the states of movement and transformation of said guide member 120 relative to said base 110 include a non-operating state and an operating state.
  • the form of said guide member 120 in said non-operating state is different from the form thereof in said operating state.
  • said form refers to the height of said guide member 120 relative to said base 110 .
  • the base 110 is provided with a landing area 111 , the landing area 111 is provided with a positioning portion 113 , and the positioning portion 113 is used for positioning the UAV 200 .
  • the structure of the base 110 can be designed according to practical requirements.
  • the base 110 is a frame of the UAV dock 100.
  • the positioning portion 113 is a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include a linear dimension and an angle.
  • the positioning portion 113 is a positioning plane, and a bottom edge positioner 114 is provided on one side of the positioning plane.
  • the number of guide members 120 is two.
  • the two guide members 120 are respectively located on two opposite sides of the positioning portion 113 , and guide surfaces 121 of the two guide members 120 are arranged to face each other.
  • the positioning plane and the two guide members 120 and the bottom edge positioner 114 cooperatively position the UAV 200 , so that the UAV 200 may only slide and cannot rotate between the two guide members 120 .
  • the number of guide members 120 may also be one.
  • an edge of the positioning plane is further provided with a side limiter.
  • the side limiter and the guide member 120 are respectively located on two opposite sides of the positioning portion 113 , and the guide surface of the guide member 1 20 and the side limiter are arranged to face each other.
  • the landing area 111 further comprises an operating region 116 adjoined by the positioning portion 113 .
  • the operating device 103 corresponds to the operating region 116 , so as to perform operations relating to the UAV 200 .
  • the bottom edge positioner 114 is arranged on the side of the positioning portion 113 opposite the operating region 116 .
  • the operating region 116 is provided with an operating flap door 117 through which the operating device 103 extends to the outside of the base 110 .
  • the operating flap door 117 is opened; and when the operating device 103 is withdrawn to the interior of the base 110 through the operating flap door 117 , the operating flap door 117 is closed.
  • the positioning portion 113 may be a positioning recess, and has a lengthwise direction and a widthwise direction, the dimension in the widthwise direction being substantially equal to the dimension to be positioned, and the dimension in the lengthwise direction being greater than the dimension to be positioned.
  • the positioning portion 113 is a rectangular recess.
  • the UAV 200 has a square landing gear, and the width of the landing gear of the UAV 200 is equal to an opening dimension of the square recess, so that the landing gear of the UAV 200 can slide in the rectangular recess in its lengthwise direction but cannot rotate.
  • the positioning portion 113 may also be a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include two linear dimensions.
  • the positioning portion 113 is a positioning recess, and the positioning recess is adjoined by the guide surface 121 of the guide member 120 .
  • the dimension of the positioning recess is substantially equal to the dimension to be positioned.
  • the positioning portion 113 is a square recess, the landing gear of the UAV 200 is also in a square shape, and the side length of the landing gear of the UAV 200 is equal to an opening dimension of the square recess.
  • the positioning portion 113 may also be a three-dimensional positioning portion 113 used for three dimensions with respect to a positioning space.
  • the positioning portion 113 is a positioning recess, the positioning recess is adjoined by the guide surface 121 of the guide member 120 , and a side wall of the positioning recess is provided with a positioning pin that can be automatically ejected, so as to completely position the landing gear of the UAV 200 in the positioning recess, so that the positioning recess forms a three-dimensional positioning portion.
  • the guide member 120 is movably arranged in the landing area 111 of the base 110 , and the guide member 120 comprises a guide surface 121 .
  • the moving states of the guide member 120 relative to the base 110 include a non-operating state and an operating state.
  • the height of the guide member 120 in the non-operating state is less than the height thereof in the operating state, and the guide surface 121 in the operating state can be adjoined by the positioning portion 113 .
  • the guide surface 121 may be a planar surface. Of course, the guide surface 121 may also be a curved surface.
  • the guide surface 121 includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
  • the transformation of the guide member 120 can be designed according to different practical requirements, and a description is given below in conjunction with different embodiments.
  • the guide member 120 can be folded in the landing area 111 .
  • the operating state is a state in which guide member 120 is extended, and the non-operating state is a state in which the guide member 120 is folded.
  • the guide member 120 may be a guide plate, the guide plate is rotatably connected to the base 110 .
  • the guide surface 121 is arranged on the surface of the guide plate.
  • the operating state is a state in which the guide plate is inclined to the landing area 111 after the guide plate rotates relative to the base 110
  • the non-operating state is a state in which the guide plate is parallel to the landing area 111 after the guide plate rotates.
  • the guide plate is an inclined plate arranged on the dock and at a predetermined angle (e.g. 45° ) with the horizontal plane, and the distance between the intersection of two inclined plates and the plane is the distance between the landing gear of the UAV 200 .
  • the width of a flat plate is determined in view of the accuracy of the pinpoint landing of the UAV 200 .
  • the outermost edge of the landing gear of the UAV 200 is designed as a rectangle.
  • the UAV 200 When the UAV 200 is landing, it may land in the range covered by the projection of inclined plates in the horizontal plane, and owing to the action of gravity, the UAV 200 will slide down to a position between two inclined plates and stop in the position of the intersection of two inclined plates with the plane, so as to achieve the two-dimensional (a linear dimension and a rotary dimension) positioning.
  • the inclined plates can be easily folded until parallel with the plane, so as to save space and facilitate transport or storage.
  • the operating device 103 is a mechanical arm with a single degree of freedom arranged on the UAV dock 100 , and the UAV 200 can be pushed to the desired position by the mechanical arm with a single degree of freedom so as to accomplish the positioning in the other linear dimension. With this, the accurate positioning of the UAV 200 in the landing area 111 of the UAV dock 100 has been achieved.
  • this is a semi-passive positioning solution, and the advantage lies in a simple structure that needs only one actuator (if a triaxial mechanical arm is used, it can be achieved using one of the degrees of freedom of the mechanical arm without providing an additional actuator). It is also superior in space occupation, i.e. When not in use, it can be folded into a small space.
  • the positioning mechanism 101 further comprises a connecting rod 123 and a positioning guide rail 125.
  • the positioning guide rail 125 is provided with a plurality of limiting portions 125 a arranged at intervals, and one end of the connecting rod 123 is rotatably connected to the guide member 120 , and the other end thereof selectively engages with the plurality of limiting portions 125 a so as to support the guide member 120 .
  • the limiting portion 125 a is a limiting recess.
  • the positioning mechanism 101 further comprises a driving member, and the driving member 223 drives the guide member 120 to rotate relative to the base 110 .
  • the driving member may be a telescopic cylinder 223 , a free end of a telescopic rod 223a of the telescopic cylinder 223 is rotatably connected to the guide plate, and the free end of the telescopic rod 223a of the telescopic cylinder 223 can slide along the guide plate.
  • the free end of the telescopic rod 223a of the telescopic cylinder 223 is provided with two lugs 223b .
  • the back surface of the guide member 120 opposite the guide surface 121 is provided with two sliding grooves arranged to face each other. Said two lugs 223 b are respectively arranged in said two sliding grooves, and said lugs 223 b can both rotate in said sliding grooves and slide along said sliding grooves.
  • the driving member may also be a motor 225 .
  • the positioning mechanism 101 further comprises a screw nut 226 and a screw rod 227 , and the screw rod 227 is coaxially and fixedly connected to a drive shaft of the motor 225 .
  • the screw nut 226 is sheathed on the screw rod 227 , and is slidably connected to the guide plate.
  • the motor 225 drives the screw rod 227 to rotate, and the screw nut 226 is in a threaded fit with the screw rod 227 , so that the screw nut 226 moves along the screw rod 227 , and the screw nut 226 drives the guide plate to rotate.
  • the guide member 120 is provided with a pivot shaft.
  • the guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor 225 is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • the guide member 120 is provided with a pivot shaft.
  • the guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor rotates synchronously with said pivot shaft by a synchronous belt, so as to drive the guide member 120 to rotate in the base 110 .
  • the guide member 120 may also be folded in the base 110 .
  • the operating state is a state in which the guide member 120 extends out of the base 110
  • the non-operating state is a state in which the guide member 120 is folded inside the base 110 .
  • the landing area 111 is provided with a mounting flap door 333
  • the guide member 120 extends from the inside of the base 110 to the landing area 111 through the mounting flap door 333 .
  • a driving member which drives the guide member 120 to extend from the mounting flap door 333 to the landing area 111 .
  • the driving member may be a telescopic cylinder, and a free end of a telescopic rod of the telescopic cylinder is movably connected to the guide member 120 , so as to drive the guide member 120 to rotate in the base 110 .
  • the driving member may also be a motor.
  • the positioning mechanism 101 may further include a screw rod and a screw nut, and the screw rod is coaxially and fixedly connected to the drive shaft of the motor.
  • the screw nut is sheathed on the screw rod, and is slidably hinged with the guide member 120 .
  • the motor drives the screw rod to rotate.
  • the screw nut is in a threaded fit with the screw rod so that the screw nut moves along the screw rod, and the screw nut drives the guide plate to rotate in the base 110 .
  • the guide member 120 is provided with a pivot shaft.
  • the guide member 120 rotates along with the pivot shaft.
  • the drive shaft of the motor is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate in the base 110.
  • the guide member 120 is provided with a pivot shaft.
  • the guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor rotates synchronously with said pivot shaft by a synchronous belt, so as to drive the guide member 120 to rotate in the base 110 .
  • the guide member 120 may also reduce its own volume.
  • the operating state is a state in which the guide member 120 has extended the volume
  • the non-operating state is a state in which the guide member 120 has reduced the volume.
  • the guide member 120 comprises an inflatable airbag 423 and an inflation device 425 connected to the inflatable airbag 423 .
  • the operating state is a state in which the inflatable airbag 423 is inflated
  • the non-operating state 425 is a state in which the inflatable airbag 423 is deflated.
  • the guide member 120 defines a portion of the positioning portion 113 , and the size of the positioning portion 113 can be adjusted by the movement and transformation of the guide member 120 , so as to adapt to different models of UAV.
  • the guide member 120 forms a limiting edge for one side of the positioning portion 113 , and when the guide member 120 is rotated or translated, the size of the positioning portion 113 can be changed.
  • the guide member 120 can extend and retract itself, so as to change the size of the positioning portion 113 .
  • the UAV 200 moves to the positioning portion 113 by the guide surface 121 of the guide member 120 , and the operating device 103 operates on the UAV 200 , which is at the positioning portion 113 .
  • the operating device 103 may comprise an auxiliary mechanical structure for assisting the positioning of the UAV 200 .
  • the auxiliary mechanical structure can extend and retract relative to the positioning portion 113 , so as to push the UAV 200 until the UAV 200 is cooperatively positioned by the positioning portion 113 and the auxiliary mechanical structure.
  • the auxiliary mechanical structure may also clamp the UAV 200 to position the UAV 200 .
  • the auxiliary mechanical structure comprises a battery grabbing mechanism for grabbing a battery, and a clamping mechanism for positioning the UAV 200 .
  • the specific structure of the auxiliary mechanical structure can be designed according to different requirements.
  • the auxiliary mechanical structure may be a manipulator.
  • the operating device 103 further comprises a raw material replenishment mechanism for replenishing functional raw materials for the UAV 200 .
  • the raw material replenishment mechanism comprises at least one of a liquid raw material conveying port or a solid raw material conveying device.
  • the liquid raw material conveying port is used for replenishing a liquid raw material, e.g. gasoline, a detergent, or an insecticide, for the UAV 200 .
  • the solid raw material conveying device is used for replenishing a solid raw material, e.g. a powdered pesticide or fire-extinguishing powder, for the UAV 200 .
  • the operating device 103 comprises a replacing mechanism for replacing a load of the UAV 200 .
  • the replacing mechanism may be an auxiliary mechanical structure for replacing a gimbal of the UAV 200 , or may be an auxiliary mechanical structure for replacing an ultrasonic cleaning device of the UAV 200 .
  • the positioning portion 113 of the base 110 is not limited to a positioning plane or a positioning recess, and may also be a mechanical positioning structure.
  • the mechanical positioning structure may be a structure such as a positioning frame or a positioning convex column.
  • the form of the guide member 120 is not limited to the height of the guide member 120 relative to the landing area 111 , and may be another form.
  • the form may be a projected area of the guide member 120 in the landing area 111 .
  • the guide member 120 is a plate having a rectangular projection in the landing area 111 , and the projected area of the guide member 120 in the non-operating state is greater than the projected area thereof in the operating state.
  • the form may also be a projected length of the guide member 120 in the landing area 111 , or a projected width of the guide member 120 in the landing area 111 .
  • the guide member 120 is a plate having a rectangular projection in the landing area 111 , and the projected width of the guide member 120 in the non-operating state is greater than the projected width thereof in the operating state.
  • the form may be a projected shape of the guide member 120 in the landing area 111 .
  • the guide member 120 is a square plate, the guide member 120 has a square projection in the non-operating state, and has a rectangular projection in the operating state.
  • the form may also be an angle of the guide member 120 relative to the landing area 111 or a position of the guide member 120 relative to the landing area 111 .
  • the guide member 120 is rotatably connected to the base 110 , and can turn to the inside of the base 110 .
  • the guide member 120 is located below the landing area 111 when it is in the non-operating state, and is located above the landing area 111 when it is in the operating state.
  • the form may also be the volume of the guide member 120 itself.
  • the guide member 120 comprises an inflatable airbag, and the guide member 120 has a reduced volume in the non-operating state, and has an increased volume in the operating state.
  • the movable connection between the guide member 120 and the base 110 is not limited to those in the embodiments as shown in the drawings. That is, the guide member 120 and the base 110 may be in a rotatable connection or another connection may be used.
  • the guide member 120 is in a slidable connection with the base 110
  • the guide member 120 is in a telescopic connection with the base 110
  • the guide member 120 can move from the inside of the base 110 to the outside of the base 110 .
  • the movement and transformation of the guide member 120 are not limited to those in the embodiments as shown in the drawings. That is, the guide member 120 rotates relative to the base 110 , or may be another transformation. For example, the guide member 120 translates relative to the landing area 111 , the guide member 120 turns relative to the landing area 111 , the guide member 120 lifts relative to the landing area 111 , the guide member 120 extends or retracts itself, or the guide member 120 changes its own volume.
  • the above-mentioned UAV dock 100 has at least the following advantages:
  • the present invention further provides a UAV replenishment method.
  • the UAV replenishment method of the embodiments of the present invention comprises the steps of:
  • Step S 501 a UAV 200 lands toward a landing area 111 of a UAV dock 100 .
  • the UAV dock 100 is provided with a guide device for guiding the landing of the UAV 200 , so that the UAV 200 can automatically land toward the landing area 111 of the UAV dock 100 .
  • the UAV dock 100 is provided with a GPS transmitter.
  • Said UAV 200 is navigated to land on the landing area 111 of the UAV dock 100 by means of GPS navigation.
  • the landing area 111 of the UAV dock 100 is provided with an identification feature.
  • Said UAV 200 is provided with a binocular visual sensor, and calibration is performed for the identification feature on the landing area 111 by the binocular visual sensor, so as to guide the UAV 200 to automatically land on the landing area 111 of the UAV dock 100 .
  • the UAV 200 may also be manually guided to land on the landing area 111 of the UAV dock 100 .
  • Step S 502 the guide member 120 inside the landing area 111 of the UAV dock 100 is transformed into the operating state, so as to guide the UAV 200 to the positioning portion 113 inside the landing area 111 , and the form of the guide member 120 in the operating state is different from the form thereof in the non-operating state.
  • the height of the guide member 120 in the operating state relative to said landing area 111 is greater than the height thereof in the non-operating state relative to said landing area 111 .
  • the positioning portion 113 is a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include a linear dimension and an angle.
  • the positioning portion 113 is a positioning plane, and a bottom edge positioner 114 is provided on one side of the positioning plane.
  • the number of guide members 120 is two.
  • the two guide members 120 are respectively located on two opposite sides of the positioning portion 113 , and guide surfaces 121 of the two guide member 120 are arranged to face each other.
  • the positioning plane and the two guide members 120 and the bottom edge positioner 114 cooperatively position the UAV 200 , so that the UAV 200 may only slide and cannot rotate between the two guide members 120 .
  • the number of guide members 120 may also be one.
  • an edge of the positioning plane is further provided with a side limiter.
  • the side limiter and the guide member 120 are respectively located on two opposite sides of the positioning portion 113 , and the guide surface of the guide member 120 and the side limiter are arranged to face each other.
  • the landing area 111 further comprises an operating region 116 adjoined by the positioning portion 113 .
  • the operating device 103 corresponds to the operating region 116 , so as to perform operations relating to the UAV 200 .
  • the bottom edge positioner 114 is arranged on the side of the positioning portion 113 opposite the operating region 116 .
  • the operating region 116 is provided with an operating flap door 117 through which the operating device 103 extends to the outside of the base 110 .
  • the operating flap door 117 is opened; and when the operating device 103 is withdrawn to the interior of the base 110 through the operating flap door 117 , the operating flap door 117 is closed.
  • the positioning portion 113 may be a positioning recess, and has a lengthwise direction and a widthwise direction, the dimension in the widthwise direction being substantially equal to the dimension to be positioned, and the dimension in the lengthwise direction being greater than the dimension to be positioned.
  • the positioning portion 113 is a rectangular recess
  • the UAV 200 has a square landing gear
  • the width of the landing gear of the UAV 200 is equal to an opening dimension of the square recess, so that the landing gear of the UAV 200 can slide in the rectangular recess in its lengthwise direction but cannot rotate.
  • the positioning portion 113 may also be a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include two linear dimensions.
  • the positioning portion 113 is a positioning recess, and the positioning recess is adjoined by the guide surface 121 of the guide member 120 .
  • the dimension of the positioning recess is substantially equal to the dimension to be positioned.
  • the positioning portion 113 is a square recess.
  • the landing gear of the UAV 200 is also of a square shape, and the side length of the landing gear of the UAV 200 is equal to an opening dimension of the square recess.
  • the positioning portion 113 may also be a three-dimensional positioning portion 113 used for three dimensions with respect to a positioning space.
  • the positioning portion 113 is a positioning recess.
  • the positioning recess is adjoined by the guide surface 121 of the guide member 120 .
  • a side wall of the positioning recess is provided with a positioning pin that can be automatically ejected, so as to completely position the landing gear of the UAV 200 in the positioning recess, so that the positioning recess forms a three-dimensional positioning portion.
  • the guide member 120 is movably arranged in the landing area 111 of the base 110 , and the guide member 120 comprises a guide surface 121 .
  • the moving states of the guide member 120 relative to the base 110 include a non-operating state and an operating state.
  • the height of the guide member 120 in the non-operating state is less than the height thereof in the operating state, and the guide surface 121 in the operating state can be adjoined by the positioning portion 113 .
  • the guide surface 121 may be a planar surface. Of course, the guide surface 121 may also be a curved surface.
  • the guide surface 121 includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
  • the transformation of the guide member 120 can be designed according to different practical requirements, and a description is given below in conjunction with different embodiments.
  • the guide member 120 can be folded in the landing area 111 .
  • the operating state is a state in which guide member 120 is extended, and the non-operating state is a state in which the guide member 120 is folded.
  • the guide member 120 may be a guide plate.
  • the guide plate is rotatably connected to the base 110 .
  • the guide surface 121 is arranged on the surface of the guide plate.
  • the operating state is a state in which the guide plate is inclined to the landing area 111 after the guide plate rotates relative to the base 110
  • the non-operating state is a state in which the guide plate is parallel to the landing area 111 after the guide plate rotates.
  • the guide plate is an inclined plate arranged on the dock and at a predetermined angle (e.g. 45 °) with the horizontal plane, and the distance between the intersections of two inclined plates with the plane is the distance between the landing gear of the UAV 200 .
  • the width of a flat plate is determined in view of the accuracy of the pinpoint landing of the UAV 200 .
  • the outermost edge of the landing gear of the UAV 200 is designed as a rectangle.
  • the UAV 200 When the UAV 200 is landing, it may land in the range covered by the projection of inclined plates in the horizontal plane, and owing to the action of gravity, the UAV 200 will slide to a position between two inclined plates and stop in a position of the intersection of two inclined plates with the plane, so as to achieve the two-dimensional (a linear dimension and a rotary dimension) positioning.
  • the inclined plates can be easily folded until parallel with the plane, so as to save space and facilitate transport or storage.
  • the operating device 103 is a mechanical arm with a single degree of freedom arranged on the UAV dock 100 , and the UAV 200 can be pushed to the desired position by the mechanical arm with a single degree of freedom so as to accomplish the positioning in the other linear dimension. With this, the accurate positioning of the UAV 200 in the landing area 111 of the UAV dock 100 has been achieved.
  • this is a semi-passive positioning solution, and the advantage lies in a simple structure that needs only one actuator (if a triaxial mechanical arm is used, it can be achieved using one of the degrees of freedom of the mechanical arm without providing an additional actuator). It is also superior in space occupation, i.e. when not in use, it can be folded into a small space.
  • the positioning mechanism 101 further comprises a connecting rod 123 and a positioning guide rail 125 , the positioning guide rail 125 is provided with a plurality of limiting portions 125 a arranged at intervals, and one end of the connecting rod 123 is rotatably connected to the guide member 120 , and the other end thereof selectively engages with the plurality of limiting portions 125 a so as to support the guide member 120 .
  • the limiting portion 125 a is a limiting recess.
  • the positioning mechanism 101 further comprises a driving member, and the driving member 223 drives the guide member 120 to rotate relative to the base 110 .
  • the driving member may be a telescopic cylinder 223 , a free end of a telescopic rod 223 a of the telescopic cylinder 223 is rotatably connected to the guide plate, and the free end of the telescopic rod 223 a of the telescopic cylinder 223 can slide along the guide plate.
  • the free end of the telescopic rod 223 a of the telescopic cylinder 223 is provided with two lugs 223 b.
  • the back surface of the guide member 120 opposite the guide surface 121 is provided with two sliding grooves arranged to face each other. Said two lugs 223 b are respectively arranged in said two sliding grooves, and said lugs 223 b can both rotate in said sliding grooves and slide along said sliding grooves.
  • the driving member may also be a motor 225 .
  • the positioning mechanism 101 further comprises a screw nut 226 and a screw rod 227 , and the screw rod 227 is coaxially and fixedly connected to a drive shaft of the motor 225 .
  • the screw nut 226 is sheathed on the screw rod 227 , and is slidably connected to the guide plate.
  • the motor 225 drives the screw rod 227 to rotate.
  • the screw nut 226 is in a threaded fit with the screw rod 227 , so that the screw nut 226 moves along the screw rod 227 , and the screw nut 226 drives the guide plate to rotate.
  • the guide member 120 is provided with a pivot shaft, and the guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor 225 is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • the guide member 120 may also be folded in the base 110 .
  • the operating state is a state in which the guide member 120 extends out of the base 110
  • the non-operating state is a state in which the guide member 120 is folded inside the base 110 .
  • the landing area 111 is provided with a mounting flap door 333
  • the guide member 120 extends from the inside of the base 110 to the landing area 111 through the mounting flap door 333 .
  • a driving member which drives the guide member 120 to extend from the mounting flap door 333 to the landing area 111 .
  • the driving member may be a telescopic cylinder, and a free end of a telescopic rod of the telescopic cylinder is movably connected to the guide member 120 , so as to drive the guide member 120 to rotate relative to the base 110 .
  • the driving member may also be a motor.
  • the positioning mechanism 101 may further include a screw rod and a screw nut, and the screw rod is coaxially and fixedly connected to the drive shaft of the motor.
  • the screw nut is sheathed on the screw rod, and is slidably hinged with the guide member 120 .
  • the motor drives the screw rod to rotate.
  • the screw nut is in a threaded fit with the screw rod so that the screw nut moves along the screw rod, and the screw nut drives the guide plate to rotate.
  • the guide member 120 is provided with a pivot shaft, and the guide member 120 rotates along with the pivot shaft.
  • the drive shaft of the motor is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • the guide member 120 may also reduce its own volume.
  • the operating state is a state in which the guide member 120 ha s extended the volume
  • the non-operating state is a state in which the guide member 120 has reduced the volume.
  • the guide member 120 comprises an inflatable airbag 423 and an inflation device 425 connected to the inflatable airbag 423 .
  • the operating state is a state in which the inflatable airbag 423 is inflated
  • the non-operating state 425 is a state in which the inflatable airbag 423 is deflated.
  • Step S 503 the UAV dock 100 begins replenishment for the UAV 200 .
  • replenishment is performed for the UAV 200 .
  • the UAV dock 100 may perform power replenishment for the UAV 200 .
  • the UAV dock 100 may replace a load for the UAV 200.
  • the UAV dock 100 may replenish functional raw materials for the UAV 200 .
  • Step S 504 after the UAV 200 leaves the UAV dock 100 , the guide member 120 is transformed into the non-operating state.
  • the UAV takes off again from the landing area of the UAV dock 100 .
  • the guide member 120 is transformed into the non-operating state again, so as to reduce the total space occupied by the UAV dock 100 .

Abstract

Disclosed in the present invention is a positioning mechanism, a UAV dock using the positioning mechanism, and a UAV replenishment method. The positioning mechanism comprises a base provided with a landing area, with a positioning portion provided on said landing area; and a guide member movably arranged on said landing area and comprising a guide surface, wherein the moving states of said guide member relative to said base include a non-operating state and an operating state; the height of said guide member in said non-operating state is less than the height thereof in said operating state; and said guide surface in said operating state can be adjoined by said positioning portion. Compared with a totally active solution, the above-mentioned positioning mechanism reduces the number of actuators for positioning, thus reducing the cost and complexity of equipment and reducing the space occupied by the guide member in the non-operating state, thereby facilitating the miniaturized design of equipment.

Description

    TECHNICAL FIELD
  • The present invention relates to a dock, particularly to a positioning mechanism and a small UAV (Unmanned Aerial Vehicle) dock using the positioning mechanism, and a UAV replenishment method.
  • BACKGROUND
  • The automatic pinpoint landing and positioning technique of a UAV consists in pinpoint landing of a UAV using techniques such as machine vision in the scenario of an unmanned operation, and fixing the position of the UAV to a desired accurate position after landing. This technique can be used in many applications. For example, after the UAV lands, coordinated ground equipment performs interaction with it as desired, e.g. automatic battery replacement, or automatic load replacement.
  • Generally, common positioning solutions include a totally active mode, i.e. after a UAV lands on the ground, moving it to the desired position using an actuator, such as a motor, and fixing the three dimensions thereof in the plane (two linear dimensions, and one angle).
  • A totally passive mode is also possible, e.g. the solution of Skycatch company: the bottom of the UAV is made in a large conical shape, the landing positioning portion is made as a large conical pit, and after landing, the UAV automatically slides into the landing positioning portion, so as to position the two linear dimensions of the plane of the UAV. Alternatively, landing gear of the UAV are made as vertical columns, and conical pits are arranged at the same intervals on the landing pad, so that when the UAV lands on conical projected areas, it automatically slides to the bottoms of the conical pits and is fixed in three dimensions.
  • However, the traditional positioning solutions have defects as follows:
  • For the solution of a totally active mode, the disadvantage lies in that a relatively large number of actuators are needed. Since it is necessary to fix three dimensions of the UAV, the device for positioning and guiding the UAV is complicated, and thus the cost and complexity of the equipment are increased.
  • For the solution of a totally passive mode, the disadvantage lies in the large volume of the device. For example, a conical structure has a large occupied space, and it is difficult to make the equipment small.
  • SUMMARY
  • In view of the above-mentioned defects, it is necessary for the present invention to provide a positioning mechanism that requires a relatively small number of actuators and can reduce the volume of the UAV dock.
  • A positioning mechanism comprising:
    • a base provided with a landing area, with a positioning portion provided on said landing area; and
    • a guide member movably arranged on said landing area and comprising a guide surface;
    • wherein said guide member is movable relative to said base so as to adjust the height of said guide member relative to said landing area; the moving states of said guide member relative to said base include a non-operating state and an operating state; and the height of said guide member in said non-operating state is less than the height thereof in said operating state.
  • Compared with traditional location technology, the above-mentioned positioning mechanism has at least the following advantages:
    1. (1) the above-mentioned positioning mechanism guides a UAV to a positioning area by a guide member in a landing area, and positions the UAV by a positioning portion in the landing area or by means of the cooperation of the positioning portion and the guide member, thereby reducing the number of actuators for positioning compared with the solution of a totally active mode so as to reduce the cost and complexity of equipment.
    2. (2) The above-mentioned guide member of the positioning mechanism is movably arranged in the landing area. The moving states of said guide member relative to said base include a non-operating state and an operating state. The height of said guide member in said non-operating state is less than the height thereof in said operating state, so as to reduce the space occupied by the guide member in the non-operating state, thereby facilitating the miniaturized design of equipment.
    3. (3) The above-mentioned positioning mechanism guides the UAV to the positioning area by the guide member in the landing area, so that the UAV does not need to accurately land on the area where the positioning portion is located, thereby lowering the requirements for positioning and navigating precision of the landing of the UAV.
  • A UAV dock, comprising:
    • the above-mentioned positioning mechanism; and
    • an operating device for operating a UAV;
    • wherein said UAV moves to said positioning portion through the guide surface of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
  • A positioning mechanism, comprising:
    • a base provided with a landing area, with a positioning portion provided on said landing area; and
    • a guide member used for guiding a moving object to said positioning portion and movably arranged in said landing area;
    • wherein the states of movement and transformation of said guide member relative to said base include a non-operating state and an operating state, and the form of said guide member in said non-operating state is different from the form thereof in said operating state.
  • A UAV dock, comprising:
    • the above-mentioned positioning mechanism; and
    • an operating device for operating a UAV;
    • wherein said UAV moves to said positioning portion by means of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
  • A UAV replenishment method, comprising the steps of:
    • landing a UAV toward a landing area of a UAV dock;
    • transforming said guide member in the landing area of the UAV dock into an operating state so as to guide said UAV to a positioning portion inside said landing area, the form of said guide member in said operating state being different from the form thereof in the non-operating state; and
    • initiating replenishment for said UAV by said UAV dock.
    BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a perspective view of a UAV dock of an embodiment of the present invention when the dock is not in use;
    • FIG. 2 is a perspective view of the UAV dock shown in FIG. 1 when the dock is in use;
    • FIG. 3 is a state diagram when the UAV dock as shown in FIG. 1 positions a UAV;
    • FIG. 4 is a structural schematic view of a UAV dock of another embodiment;
    • FIG. 5 is a structural schematic view of a UAV dock of another embodiment;
    • FIG. 6 is a structural schematic view of a UAV dock of another embodiment;
    • FIG. 7 is a structural schematic view of a UAV dock of another embodiment;
    • FIG. 8 is a flow chart of a UAV replenishment method of an embodiment of the present invention; and
    • FIGS. 9-12 are views of the use states of a UAV dock in the UAV replenishment method as shown in FIG. 8 .
    DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Technical solutions of the present disclosure will be described with reference to the drawings. It will be appreciated that embodiments as described in the disclosure are a part rather than all of the embodiments of the present disclosure. Other embodiments, which are conceived by those having ordinary skills in the art on the basis of the disclosed embodiments without inventive efforts, should fall within the scope of the present disclosure.
  • It shall be explained that, when a component is known to be "fixed to" another component, it can be directly on another component, or an intermediate component can be present. When a component is considered to be "connected" to another component, it can be directly connected to another component or an intermediate component can be present at the same time. The terms "vertical," "horizontal," "left," "right," and similar expressions used herein are intended for the purposes of illustration only.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used in the description of the present invention are for the purpose of describing particular embodiments and are not intended to limit the present invention. The term "and/or" used herein includes any and all combinations of one or more of the associated listed items.
  • The embodiments of the present invention provide a positioning mechanism comprising a base and a guide member. Said base is provided with a landing area, with a positioning portion provided on said landing area. Said guide member is movably arranged in said landing area, and the states of movement and transformation of said guide member relative to said base include a non-operating state and an operating state. A UAV can be guided to the positioning portion by said guide member, and is positioned by said positioning portion.
  • Based on the above-mentioned positioning mechanism, the embodiments of the present invention further provide a UAV dock using the above-mentioned positioning mechanism.
  • Said UAV dock comprises the above-mentioned positioning mechanism and an operating device for operating a UAV. Said UAV moves to said positioning portion through the guide surface of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
  • In some of the embodiments, said operating device comprises an auxiliary mechanical structure for assisting the location of said UAV. For example, said auxiliary mechanical structure may be a uniaxial auxiliary mechanical structure, a biaxial auxiliary mechanical structure, or a triaxial auxiliary mechanical structure, etc.
  • In some of the embodiments, said operating device further comprises a raw material replenishment mechanism for replenishing functional raw materials for said UAV.
  • In some of the embodiments, said raw material replenishment mechanism further comprises a liquid raw material conveying port. For example, when said UAV uses a fuel oil power device, said raw material replenishment mechanism comprises a fuel oil conveying port.
  • In some of the embodiments, said raw material replenishment mechanism comprises a solid raw material conveying device. For example, when said UAV carries a spray device for spraying a powdered pesticide, said raw material replenishment mechanism comprises a pesticide conveying track or a pesticide box clamping device.
  • In some of the embodiments, said operating device comprises a replacing mechanism for replacing a load of said UAV. For example, said operating device comprises an auxiliary mechanical structure for replacing a gimbal mounted in the UAV.
  • In some of the embodiments, said guide member defines a portion of said positioning portion, and the size of said positioning portion can be adjusted by means of the movement and transformation of said guide member. For example, said guide member can translate in said landing area so as to adjust the size of said positioning portion, or said guide member is a retracting mechanism for adjusting the size of said positioning portion by means of the extension and retraction of said guide member.
  • Based on the above-mentioned UAV dock, the embodiments of the present invention further provide a UAV replenishment method. In said UAV replenishment method, said guide member in the landing area of the UAV dock is transformed into an operating state so as to guide said UAV to a positioning portion inside said landing area, and the height of said guide member in said operating state relative to said landing area is greater than the height thereof in the non-operating state relative to said landing area.
  • Some of the embodiments of the present invention are described in detail below with reference to the drawings.
  • Referring to FIGS. 1-3 , a UAV dock 100 of an embodiment of the present invention comprises a positioning mechanism 101 and an operating device 103 for operating a UAV 200.
  • The positioning mechanism 101 comprises a base 110 and a guide member 120. The guide member 120 is used to guide the UAV 200 to a specified area in the base 110, and the guide member 120 can be transformed to reduce the space occupied by the guide member 120, thereby facilitating the miniaturized design of the positioning mechanism 101.
  • Specifically in the embodiments as shown in the drawings, the states of movement and transformation of said guide member 120 relative to said base 110 include a non-operating state and an operating state. The form of said guide member 120 in said non-operating state is different from the form thereof in said operating state. Specifically, said form refers to the height of said guide member 120 relative to said base 110.
  • The base 110 is provided with a landing area 111, the landing area 111 is provided with a positioning portion 113, and the positioning portion 113 is used for positioning the UAV 200.
  • The structure of the base 110 can be designed according to practical requirements. For example, in the embodiments as shown in the drawings, the base 110 is a frame of the UAV dock 100.
  • Specifically in the embodiments as shown in the drawings, the positioning portion 113 is a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include a linear dimension and an angle.
  • Specifically, the positioning portion 113 is a positioning plane, and a bottom edge positioner 114 is provided on one side of the positioning plane. The number of guide members 120 is two. The two guide members 120 are respectively located on two opposite sides of the positioning portion 113, and guide surfaces 121 of the two guide members 120 are arranged to face each other. The positioning plane and the two guide members 120 and the bottom edge positioner 114 cooperatively position the UAV 200, so that the UAV 200 may only slide and cannot rotate between the two guide members 120.
  • Of course, the number of guide members 120 may also be one. For example, in other embodiments, an edge of the positioning plane is further provided with a side limiter. The side limiter and the guide member 120 are respectively located on two opposite sides of the positioning portion 113, and the guide surface of the guide member 120 and the side limiter are arranged to face each other.
  • Furthermore, the landing area 111 further comprises an operating region 116 adjoined by the positioning portion 113. The operating device 103 corresponds to the operating region 116, so as to perform operations relating to the UAV 200. The bottom edge positioner 114 is arranged on the side of the positioning portion 113 opposite the operating region 116.
  • Furthermore, the operating region 116 is provided with an operating flap door 117 through which the operating device 103 extends to the outside of the base 110. When the operating device 103 extends to the landing area 111 through the operating flap door 117, the operating flap door 117 is opened; and when the operating device 103 is withdrawn to the interior of the base 110 through the operating flap door 117, the operating flap door 117 is closed.
  • In other embodiments, the positioning portion 113 may be a positioning recess, and has a lengthwise direction and a widthwise direction, the dimension in the widthwise direction being substantially equal to the dimension to be positioned, and the dimension in the lengthwise direction being greater than the dimension to be positioned. For example, in one of the embodiments, the positioning portion 113 is a rectangular recess. The UAV 200 has a square landing gear, and the width of the landing gear of the UAV 200 is equal to an opening dimension of the square recess, so that the landing gear of the UAV 200 can slide in the rectangular recess in its lengthwise direction but cannot rotate.
  • The positioning portion 113 may also be a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include two linear dimensions. In one of the embodiments, the positioning portion 113 is a positioning recess, and the positioning recess is adjoined by the guide surface 121 of the guide member 120. The dimension of the positioning recess is substantially equal to the dimension to be positioned. For example, in one of the embodiments, the positioning portion 113 is a square recess, the landing gear of the UAV 200 is also in a square shape, and the side length of the landing gear of the UAV 200 is equal to an opening dimension of the square recess.
  • The positioning portion 113 may also be a three-dimensional positioning portion 113 used for three dimensions with respect to a positioning space. For example, the positioning portion 113 is a positioning recess, the positioning recess is adjoined by the guide surface 121 of the guide member 120, and a side wall of the positioning recess is provided with a positioning pin that can be automatically ejected, so as to completely position the landing gear of the UAV 200 in the positioning recess, so that the positioning recess forms a three-dimensional positioning portion.
  • The guide member 120 is movably arranged in the landing area 111 of the base 110, and the guide member 120 comprises a guide surface 121. The moving states of the guide member 120 relative to the base 110 include a non-operating state and an operating state. The height of the guide member 120 in the non-operating state is less than the height thereof in the operating state, and the guide surface 121 in the operating state can be adjoined by the positioning portion 113.
  • The guide surface 121 may be a planar surface. Of course, the guide surface 121 may also be a curved surface. For example, the guide surface 121 includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
  • The transformation of the guide member 120 can be designed according to different practical requirements, and a description is given below in conjunction with different embodiments.
  • The guide member 120 can be folded in the landing area 111. The operating state is a state in which guide member 120 is extended, and the non-operating state is a state in which the guide member 120 is folded. For example, in the embodiments as shown in the drawings, the guide member 120 may be a guide plate, the guide plate is rotatably connected to the base 110. The guide surface 121 is arranged on the surface of the guide plate. The operating state is a state in which the guide plate is inclined to the landing area 111 after the guide plate rotates relative to the base 110, and the non-operating state is a state in which the guide plate is parallel to the landing area 111 after the guide plate rotates.
  • Specifically, the guide plate is an inclined plate arranged on the dock and at a predetermined angle (e.g. 45°) with the horizontal plane, and the distance between the intersection of two inclined plates and the plane is the distance between the landing gear of the UAV 200. The width of a flat plate is determined in view of the accuracy of the pinpoint landing of the UAV 200. The outermost edge of the landing gear of the UAV 200 is designed as a rectangle. When the UAV 200 is landing, it may land in the range covered by the projection of inclined plates in the horizontal plane, and owing to the action of gravity, the UAV 200 will slide down to a position between two inclined plates and stop in the position of the intersection of two inclined plates with the plane, so as to achieve the two-dimensional (a linear dimension and a rotary dimension) positioning. When the equipment is not in use, the inclined plates can be easily folded until parallel with the plane, so as to save space and facilitate transport or storage.
  • The operating device 103 is a mechanical arm with a single degree of freedom arranged on the UAV dock 100, and the UAV 200 can be pushed to the desired position by the mechanical arm with a single degree of freedom so as to accomplish the positioning in the other linear dimension. With this, the accurate positioning of the UAV 200 in the landing area 111 of the UAV dock 100 has been achieved.
  • In the above-mentioned embodiments, this is a semi-passive positioning solution, and the advantage lies in a simple structure that needs only one actuator (if a triaxial mechanical arm is used, it can be achieved using one of the degrees of freedom of the mechanical arm without providing an additional actuator). It is also superior in space occupation, i.e. When not in use, it can be folded into a small space.
  • It shall be explained that the guide member 120 can be folded manually as well as automatically. For example, in the embodiments as shown in the drawings, the positioning mechanism 101 further comprises a connecting rod 123 and a positioning guide rail 125. The positioning guide rail 125 is provided with a plurality of limiting portions 125a arranged at intervals, and one end of the connecting rod 123 is rotatably connected to the guide member 120, and the other end thereof selectively engages with the plurality of limiting portions 125a so as to support the guide member 120. Specifically, the limiting portion 125a is a limiting recess.
  • In another embodiment, the positioning mechanism 101 further comprises a driving member, and the driving member 223 drives the guide member 120 to rotate relative to the base 110.
  • As shown in FIG. 4 , the driving member may be a telescopic cylinder 223, a free end of a telescopic rod 223a of the telescopic cylinder 223 is rotatably connected to the guide plate, and the free end of the telescopic rod 223a of the telescopic cylinder 223 can slide along the guide plate. For example, the free end of the telescopic rod 223a of the telescopic cylinder 223 is provided with two lugs 223b. The back surface of the guide member 120 opposite the guide surface 121 is provided with two sliding grooves arranged to face each other. Said two lugs 223b are respectively arranged in said two sliding grooves, and said lugs 223b can both rotate in said sliding grooves and slide along said sliding grooves.
  • As shown in FIG. 5 , the driving member may also be a motor 225. The positioning mechanism 101 further comprises a screw nut 226 and a screw rod 227, and the screw rod 227 is coaxially and fixedly connected to a drive shaft of the motor 225. The screw nut 226 is sheathed on the screw rod 227, and is slidably connected to the guide plate. The motor 225 drives the screw rod 227 to rotate, and the screw nut 226 is in a threaded fit with the screw rod 227, so that the screw nut 226 moves along the screw rod 227, and the screw nut 226 drives the guide plate to rotate.
  • Alternatively, the guide member 120 is provided with a pivot shaft. The guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor 225 is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • Alternatively, the guide member 120 is provided with a pivot shaft. The guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor rotates synchronously with said pivot shaft by a synchronous belt, so as to drive the guide member 120 to rotate in the base 110.
  • The guide member 120 may also be folded in the base 110. The operating state is a state in which the guide member 120 extends out of the base 110, and the non-operating state is a state in which the guide member 120 is folded inside the base 110. For example, as shown in FIG. 6 , in one of the embodiments, the landing area 111 is provided with a mounting flap door 333, and the guide member 120 extends from the inside of the base 110 to the landing area 111 through the mounting flap door 333.
  • Furthermore, also comprised is a driving member which drives the guide member 120 to extend from the mounting flap door 333 to the landing area 111.
  • The driving member may be a telescopic cylinder, and a free end of a telescopic rod of the telescopic cylinder is movably connected to the guide member 120, so as to drive the guide member 120 to rotate in the base 110.
  • The driving member may also be a motor. The positioning mechanism 101 may further include a screw rod and a screw nut, and the screw rod is coaxially and fixedly connected to the drive shaft of the motor. The screw nut is sheathed on the screw rod, and is slidably hinged with the guide member 120. The motor drives the screw rod to rotate. The screw nut is in a threaded fit with the screw rod so that the screw nut moves along the screw rod, and the screw nut drives the guide plate to rotate in the base 110.
  • Alternatively, the guide member 120 is provided with a pivot shaft. The guide member 120 rotates along with the pivot shaft. The drive shaft of the motor is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate in the base 110.
  • Alternatively, the guide member 120 is provided with a pivot shaft. The guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor rotates synchronously with said pivot shaft by a synchronous belt, so as to drive the guide member 120 to rotate in the base 110.
  • The guide member 120 may also reduce its own volume. The operating state is a state in which the guide member 120 has extended the volume, and the non-operating state is a state in which the guide member 120 has reduced the volume. For example, as shown in FIG. 7 , in one of the embodiments, the guide member 120 comprises an inflatable airbag 423 and an inflation device 425 connected to the inflatable airbag 423. The operating state is a state in which the inflatable airbag 423 is inflated, and the non-operating state 425 is a state in which the inflatable airbag 423 is deflated.
  • Furthermore, the guide member 120 defines a portion of the positioning portion 113, and the size of the positioning portion 113 can be adjusted by the movement and transformation of the guide member 120, so as to adapt to different models of UAV. For example, in the embodiments as shown in the drawings, the guide member 120 forms a limiting edge for one side of the positioning portion 113, and when the guide member 120 is rotated or translated, the size of the positioning portion 113 can be changed. Alternatively, the guide member 120 can extend and retract itself, so as to change the size of the positioning portion 113.
  • The UAV 200 moves to the positioning portion 113 by the guide surface 121 of the guide member 120, and the operating device 103 operates on the UAV 200, which is at the positioning portion 113.
  • The operating device 103 may comprise an auxiliary mechanical structure for assisting the positioning of the UAV 200. For example, the auxiliary mechanical structure can extend and retract relative to the positioning portion 113, so as to push the UAV 200 until the UAV 200 is cooperatively positioned by the positioning portion 113 and the auxiliary mechanical structure. Alternatively, the auxiliary mechanical structure may also clamp the UAV 200 to position the UAV 200. Alternatively, the auxiliary mechanical structure comprises a battery grabbing mechanism for grabbing a battery, and a clamping mechanism for positioning the UAV 200. The specific structure of the auxiliary mechanical structure can be designed according to different requirements. For example, the auxiliary mechanical structure may be a manipulator.
  • Furthermore, the operating device 103 further comprises a raw material replenishment mechanism for replenishing functional raw materials for the UAV 200. The raw material replenishment mechanism comprises at least one of a liquid raw material conveying port or a solid raw material conveying device. The liquid raw material conveying port is used for replenishing a liquid raw material, e.g. gasoline, a detergent, or an insecticide, for the UAV 200. The solid raw material conveying device is used for replenishing a solid raw material, e.g. a powdered pesticide or fire-extinguishing powder, for the UAV 200.
  • Furthermore, the operating device 103 comprises a replacing mechanism for replacing a load of the UAV 200. The replacing mechanism may be an auxiliary mechanical structure for replacing a gimbal of the UAV 200, or may be an auxiliary mechanical structure for replacing an ultrasonic cleaning device of the UAV 200.
  • It shall be explained that the positioning portion 113 of the base 110 is not limited to a positioning plane or a positioning recess, and may also be a mechanical positioning structure. The mechanical positioning structure may be a structure such as a positioning frame or a positioning convex column.
  • The form of the guide member 120 is not limited to the height of the guide member 120 relative to the landing area 111, and may be another form. For example, the form may be a projected area of the guide member 120 in the landing area 111. For example, in the embodiments as shown in the drawings, the guide member 120 is a plate having a rectangular projection in the landing area 111, and the projected area of the guide member 120 in the non-operating state is greater than the projected area thereof in the operating state.
  • The form may also be a projected length of the guide member 120 in the landing area 111, or a projected width of the guide member 120 in the landing area 111. For example, in the embodiments as shown in the drawings, the guide member 120 is a plate having a rectangular projection in the landing area 111, and the projected width of the guide member 120 in the non-operating state is greater than the projected width thereof in the operating state.
  • The form may be a projected shape of the guide member 120 in the landing area 111. For example, in the embodiments as shown in the drawings, if the guide member 120 is a square plate, the guide member 120 has a square projection in the non-operating state, and has a rectangular projection in the operating state.
  • The form may also be an angle of the guide member 120 relative to the landing area 111 or a position of the guide member 120 relative to the landing area 111. For example, in one of the embodiments, the guide member 120 is rotatably connected to the base 110, and can turn to the inside of the base 110. The guide member 120 is located below the landing area 111 when it is in the non-operating state, and is located above the landing area 111 when it is in the operating state.
  • The form may also be the volume of the guide member 120 itself. For example, in one of the embodiments, the guide member 120 comprises an inflatable airbag, and the guide member 120 has a reduced volume in the non-operating state, and has an increased volume in the operating state.
  • The movable connection between the guide member 120 and the base 110 is not limited to those in the embodiments as shown in the drawings. That is, the guide member 120 and the base 110 may be in a rotatable connection or another connection may be used. For example, the guide member 120 is in a slidable connection with the base 110, the guide member 120 is in a telescopic connection with the base 110, or the guide member 120 can move from the inside of the base 110 to the outside of the base 110.
  • The movement and transformation of the guide member 120 are not limited to those in the embodiments as shown in the drawings. That is, the guide member 120 rotates relative to the base 110, or may be another transformation. For example, the guide member 120 translates relative to the landing area 111, the guide member 120 turns relative to the landing area 111, the guide member 120 lifts relative to the landing area 111, the guide member 120 extends or retracts itself, or the guide member 120 changes its own volume.
  • Compared with the traditional UAV dock 100, the above-mentioned UAV dock 100 has at least the following advantages:
    • (1) the above-mentioned positioning mechanism 101 guides a UAV 200 to a positioning area by a guide member 120 in a landing area 111, and positions the UAV 200 by a positioning portion 113 in the landing area 111 or by means of the cooperation of the positioning portion 113 and the guide member 120, thereby reducing the number of actuators for positioning compared with the solution of a totally active mode so as to reduce the cost and complexity of equipment.
    • (2) The above-mentioned guide member 120 of the positioning mechanism 101 is movably arranged in the landing area 111. The moving states of said guide member 120 relative to said base 110 include a non-operating state and an operating state, and the height of said guide member 120 in said non-operating state is less than the height thereof in said operating state, so as to reduce the space occupied by the guide member 120 in the non-operating state, thereby facilitating the miniaturized design of equipment.
    • (3) The above-mentioned positioning mechanism 101 guides the UAV 200 to the positioning area by the guide member 120 in the landing area 111, so that the UAV 200 does not need to accurately land on the area where the positioning portion 113 is located, thereby lowering the requirements for positioning and navigating precision of the landing of the UAV 200.
  • Corresponding to the above-mentioned UAV dock 100, the present invention further provides a UAV replenishment method.
  • Referring to FIG. 8 , the UAV replenishment method of the embodiments of the present invention comprises the steps of:
  • Step S501, a UAV 200 lands toward a landing area 111 of a UAV dock 100.
  • The UAV dock 100 is provided with a guide device for guiding the landing of the UAV 200, so that the UAV 200 can automatically land toward the landing area 111 of the UAV dock 100. For example, the UAV dock 100 is provided with a GPS transmitter. Said UAV 200 is navigated to land on the landing area 111 of the UAV dock 100 by means of GPS navigation. Alternatively, the landing area 111 of the UAV dock 100 is provided with an identification feature. Said UAV 200 is provided with a binocular visual sensor, and calibration is performed for the identification feature on the landing area 111 by the binocular visual sensor, so as to guide the UAV 200 to automatically land on the landing area 111 of the UAV dock 100.
  • Of course, the UAV 200 may also be manually guided to land on the landing area 111 of the UAV dock 100.
  • Step S502, the guide member 120 inside the landing area 111 of the UAV dock 100 is transformed into the operating state, so as to guide the UAV 200 to the positioning portion 113 inside the landing area 111, and the form of the guide member 120 in the operating state is different from the form thereof in the non-operating state. Specifically in the embodiments as shown in the drawings, the height of the guide member 120 in the operating state relative to said landing area 111 is greater than the height thereof in the non-operating state relative to said landing area 111.
  • As shown in FIGS. 9-11 , when the UAV 200 lands on the area where the guide member 120 of the landing area 111 is located, the UAV 200 is guided to the positioning portion 113 by the guide member 120, while the UAV 200 does not need to accurately land on the area where the positioning portion 113 is located.
  • Specifically in the embodiments as shown in the drawings, the positioning portion 113 is a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include a linear dimension and an angle.
  • Specifically, the positioning portion 113 is a positioning plane, and a bottom edge positioner 114 is provided on one side of the positioning plane. The number of guide members 120 is two. The two guide members 120 are respectively located on two opposite sides of the positioning portion 113, and guide surfaces 121 of the two guide member 120 are arranged to face each other. The positioning plane and the two guide members 120 and the bottom edge positioner 114 cooperatively position the UAV 200, so that the UAV 200 may only slide and cannot rotate between the two guide members 120.
  • Of course, the number of guide members 120 may also be one. For example, in other embodiments, an edge of the positioning plane is further provided with a side limiter. The side limiter and the guide member 120 are respectively located on two opposite sides of the positioning portion 113, and the guide surface of the guide member 120 and the side limiter are arranged to face each other.
  • Furthermore, the landing area 111 further comprises an operating region 116 adjoined by the positioning portion 113. The operating device 103 corresponds to the operating region 116, so as to perform operations relating to the UAV 200. The bottom edge positioner 114 is arranged on the side of the positioning portion 113 opposite the operating region 116.
  • Furthermore, the operating region 116 is provided with an operating flap door 117 through which the operating device 103 extends to the outside of the base 110. When the operating device 103 extends to the landing area 111 through the operating flap door 117, the operating flap door 117 is opened; and when the operating device 103 is withdrawn to the interior of the base 110 through the operating flap door 117, the operating flap door 117 is closed.
  • In other embodiments, the positioning portion 113 may be a positioning recess, and has a lengthwise direction and a widthwise direction, the dimension in the widthwise direction being substantially equal to the dimension to be positioned, and the dimension in the lengthwise direction being greater than the dimension to be positioned. For example, in one of the embodiments, the positioning portion 113 is a rectangular recess, the UAV 200 has a square landing gear, and the width of the landing gear of the UAV 200 is equal to an opening dimension of the square recess, so that the landing gear of the UAV 200 can slide in the rectangular recess in its lengthwise direction but cannot rotate.
  • The positioning portion 113 may also be a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and the two dimensions include two linear dimensions. In one of the embodiments, the positioning portion 113 is a positioning recess, and the positioning recess is adjoined by the guide surface 121 of the guide member 120. The dimension of the positioning recess is substantially equal to the dimension to be positioned. For example, in one of the embodiments, the positioning portion 113 is a square recess. The landing gear of the UAV 200 is also of a square shape, and the side length of the landing gear of the UAV 200 is equal to an opening dimension of the square recess.
  • The positioning portion 113 may also be a three-dimensional positioning portion 113 used for three dimensions with respect to a positioning space. For example, the positioning portion 113 is a positioning recess. The positioning recess is adjoined by the guide surface 121 of the guide member 120. A side wall of the positioning recess is provided with a positioning pin that can be automatically ejected, so as to completely position the landing gear of the UAV 200 in the positioning recess, so that the positioning recess forms a three-dimensional positioning portion.
  • The guide member 120 is movably arranged in the landing area 111 of the base 110, and the guide member 120 comprises a guide surface 121. The moving states of the guide member 120 relative to the base 110 include a non-operating state and an operating state. The height of the guide member 120 in the non-operating state is less than the height thereof in the operating state, and the guide surface 121 in the operating state can be adjoined by the positioning portion 113.
  • The guide surface 121 may be a planar surface. Of course, the guide surface 121 may also be a curved surface. For example, the guide surface 121 includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
  • The transformation of the guide member 120 can be designed according to different practical requirements, and a description is given below in conjunction with different embodiments.
  • The guide member 120 can be folded in the landing area 111. The operating state is a state in which guide member 120 is extended, and the non-operating state is a state in which the guide member 120 is folded. For example, in the embodiments as shown in the drawings, the guide member 120 may be a guide plate. The guide plate is rotatably connected to the base 110. The guide surface 121 is arranged on the surface of the guide plate. The operating state is a state in which the guide plate is inclined to the landing area 111 after the guide plate rotates relative to the base 110, and the non-operating state is a state in which the guide plate is parallel to the landing area 111 after the guide plate rotates.
  • Specifically, the guide plate is an inclined plate arranged on the dock and at a predetermined angle (e.g. 45°) with the horizontal plane, and the distance between the intersections of two inclined plates with the plane is the distance between the landing gear of the UAV 200. The width of a flat plate is determined in view of the accuracy of the pinpoint landing of the UAV 200. The outermost edge of the landing gear of the UAV 200 is designed as a rectangle. When the UAV 200 is landing, it may land in the range covered by the projection of inclined plates in the horizontal plane, and owing to the action of gravity, the UAV 200 will slide to a position between two inclined plates and stop in a position of the intersection of two inclined plates with the plane, so as to achieve the two-dimensional (a linear dimension and a rotary dimension) positioning. When the equipment is not in use, the inclined plates can be easily folded until parallel with the plane, so as to save space and facilitate transport or storage.
  • The operating device 103 is a mechanical arm with a single degree of freedom arranged on the UAV dock 100, and the UAV 200 can be pushed to the desired position by the mechanical arm with a single degree of freedom so as to accomplish the positioning in the other linear dimension. With this, the accurate positioning of the UAV 200 in the landing area 111 of the UAV dock 100 has been achieved.
  • In the above-mentioned embodiments, this is a semi-passive positioning solution, and the advantage lies in a simple structure that needs only one actuator (if a triaxial mechanical arm is used, it can be achieved using one of the degrees of freedom of the mechanical arm without providing an additional actuator). It is also superior in space occupation, i.e. when not in use, it can be folded into a small space.
  • It shall be explained that the guide member 120 can be folded manually as well as automatically. For example, in the embodiments as shown in the drawings, the positioning mechanism 101 further comprises a connecting rod 123 and a positioning guide rail 125, the positioning guide rail 125 is provided with a plurality of limiting portions 125a arranged at intervals, and one end of the connecting rod 123 is rotatably connected to the guide member 120, and the other end thereof selectively engages with the plurality of limiting portions 125a so as to support the guide member 120. Specifically, the limiting portion 125a is a limiting recess.
  • In another embodiment, the positioning mechanism 101 further comprises a driving member, and the driving member 223 drives the guide member 120 to rotate relative to the base 110.
  • As shown in FIG. 4 , the driving member may be a telescopic cylinder 223, a free end of a telescopic rod 223a of the telescopic cylinder 223 is rotatably connected to the guide plate, and the free end of the telescopic rod 223a of the telescopic cylinder 223 can slide along the guide plate. For example, the free end of the telescopic rod 223a of the telescopic cylinder 223 is provided with two lugs 223b. The back surface of the guide member 120 opposite the guide surface 121 is provided with two sliding grooves arranged to face each other. Said two lugs 223b are respectively arranged in said two sliding grooves, and said lugs 223b can both rotate in said sliding grooves and slide along said sliding grooves.
  • As shown in FIG. 5 , the driving member may also be a motor 225. The positioning mechanism 101 further comprises a screw nut 226 and a screw rod 227, and the screw rod 227 is coaxially and fixedly connected to a drive shaft of the motor 225. The screw nut 226 is sheathed on the screw rod 227, and is slidably connected to the guide plate. The motor 225 drives the screw rod 227 to rotate. The screw nut 226 is in a threaded fit with the screw rod 227, so that the screw nut 226 moves along the screw rod 227, and the screw nut 226 drives the guide plate to rotate.
  • Alternatively, the guide member 120 is provided with a pivot shaft, and the guide member 120 rotates along with the pivot shaft, and the drive shaft of the motor 225 is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • The guide member 120 may also be folded in the base 110. The operating state is a state in which the guide member 120 extends out of the base 110, and the non-operating state is a state in which the guide member 120 is folded inside the base 110. For example, as shown in FIG. 6 , in one of the embodiments, the landing area 111 is provided with a mounting flap door 333, and the guide member 120 extends from the inside of the base 110 to the landing area 111 through the mounting flap door 333.
  • Furthermore, also comprised is a driving member which drives the guide member 120 to extend from the mounting flap door 333 to the landing area 111.
  • The driving member may be a telescopic cylinder, and a free end of a telescopic rod of the telescopic cylinder is movably connected to the guide member 120, so as to drive the guide member 120 to rotate relative to the base 110.
  • The driving member may also be a motor. The positioning mechanism 101 may further include a screw rod and a screw nut, and the screw rod is coaxially and fixedly connected to the drive shaft of the motor. The screw nut is sheathed on the screw rod, and is slidably hinged with the guide member 120. The motor drives the screw rod to rotate. The screw nut is in a threaded fit with the screw rod so that the screw nut moves along the screw rod, and the screw nut drives the guide plate to rotate.
  • Alternatively, the guide member 120 is provided with a pivot shaft, and the guide member 120 rotates along with the pivot shaft. The drive shaft of the motor is coaxially connected to said pivot shaft and drives the pivot shaft to rotate, so as to drive the guide member 120 to rotate.
  • The guide member 120 may also reduce its own volume. The operating state is a state in which the guide member 120 has extended the volume, and the non-operating state is a state in which the guide member 120 has reduced the volume. For example, as shown in FIG. 7 , in one of the embodiments, the guide member 120 comprises an inflatable airbag 423 and an inflation device 425 connected to the inflatable airbag 423. The operating state is a state in which the inflatable airbag 423 is inflated, and the non-operating state 425 is a state in which the inflatable airbag 423 is deflated.
  • Step S503, the UAV dock 100 begins replenishment for the UAV 200.
  • As shown in FIG. 12 , when the positioning portion 113 in the landing area 111 of the UAV dock 100 positions the UAV 200, replenishment is performed for the UAV 200. For example, the UAV dock 100 may perform power replenishment for the UAV 200. Alternatively, the UAV dock 100 may replace a load for the UAV 200. Alternatively, the UAV dock 100 may replenish functional raw materials for the UAV 200.
  • Step S504, after the UAV 200 leaves the UAV dock 100, the guide member 120 is transformed into the non-operating state.
  • Specifically, when the replenishment for the UAV 200 in the landing area of the UAV dock 100 is finished, the UAV takes off again from the landing area of the UAV dock 100. After the UAV 200 takes off, the guide member 120 is transformed into the non-operating state again, so as to reduce the total space occupied by the UAV dock 100.
  • The foregoing disclosure is merely illustrative of the embodiments of the disclosure but not intended to limit the scope of the disclosure. Any equivalent modifications to a structure or process flow, which are made without departing from the specification and the drawings of the disclosure, and a direct or indirect application in other relevant technical fields, shall also fall into the scope of the disclosure.
  • In the following, further aspects of the present invention are described:
    • Aspect 1: A positioning mechanism, comprising: a base provided with a landing area, with a positioning portion provided on said landing area; and a guide member movably arranged on said landing area and comprising a guide surface; wherein said guide member is movable relative to said base so as to adjust the height of said guide member relative to said landing area; the moving states of said guide member relative to said base include a non-operating state and an operating state; the height of said guide member in said non-operating state is less than the height thereof in said operating state; and said guide surface in said operating state can be adjoined by said positioning portion.
    • Aspect 2: The positioning mechanism according to aspect 1, wherein said positioning portion is a two-dimensional positioning portion for two dimensions with respect to a positioning plane.
    • Aspect 3: The positioning mechanism according to aspect 2, wherein said two dimensions include two linear dimensions; or said two dimensions include a linear dimension and an angle.
    • Aspect 4: The positioning mechanism according to aspect 1, wherein said positioning portion is a three-dimensional positioning portion for three dimensions with respect to a positioning space.
    • Aspect 5: The positioning mechanism according to aspect 1, wherein said landing area further comprises an operating region adjoining said positioning portion.
    • Aspect 6: The positioning mechanism according to aspect 5, wherein said operating region is provided with an operating flap door through which an operating device extends out of said base.
    • Aspect 7: The positioning mechanism according to aspect 5, wherein said positioning portion is a positioning plane.
    • Aspect 8: The positioning mechanism according to aspect 7, wherein a bottom edge positioner is arranged on the side of said positioning plane opposite said operating region.
    • Aspect 9: The positioning mechanism according to aspect 8, wherein the number of said guide members is two, said two guide members being respectively located on two opposite sides of said positioning portion, and said guide surfaces of said two guide members being arranged to face each other.
    • Aspect 10: The positioning mechanism according to aspect 8, wherein an edge of said positioning plane is further provided with a side limiter, said side limiter and said guide member being respectively located on two opposite sides of said positioning portion, and said guide surface of said guide member and said side limiter are arranged to face each other.
    • Aspect 11: The positioning mechanism according to aspect 1, wherein said positioning portion is a positioning recess, said positioning recess being adjoined by said guide surface of said guide member.
    • Aspect 12: The positioning mechanism according to aspect 11, wherein the dimension of said positioning recess is substantially equal to the dimension to be positioned.
    • Aspect 13: The positioning mechanism according to aspect 11, wherein said positioning recess has a lengthwise direction and a widthwise direction, the dimension of said positioning recess in said widthwise direction is substantially equal to the dimension to be positioned, and the dimension of said positioning recess in said lengthwise direction is greater than the dimension to be positioned.
    • Aspect 14: The positioning mechanism according to aspect 1, wherein said guide surface is a planar surface.
    • Aspect 15: The positioning mechanism according to aspect 1, wherein said guide surface is a curved surface.
    • Aspect 16: The positioning mechanism according to aspect 15, wherein said guide surface includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
    • Aspect 17: The positioning mechanism according to aspect 1, wherein said guide member can be folded within said landing area, said operating state is a state in which said guide member is extended, and said non-operating state is a state in which said guide member is folded.
    • Aspect 18: The positioning mechanism according to aspect 17, wherein said guide member is a guide plate, said guide plate is rotatably connected to said base, and said guide surface is arranged on the surface of said guide plate; and said operating state is a state in which said guide plate is inclined to said landing area after said guide plate rotates relative to said base, and said non-operating state is a state in which said guide plate is parallel to said landing area after said guide plate rotates.
    • Aspect 19: The positioning mechanism according to aspect 18, further comprising a connecting rod and a positioning guide rail, said positioning guide rail being provided with a plurality of limiting portions arranged at intervals, one end of said connecting rod being rotatably connected to said guide plate, and the other end thereof selectively engaging with one of the plurality of limiting portions so as to support said guide plate.
    • Aspect 20: The positioning mechanism according to aspect 18, further comprising a driving member which drives said guide plate to rotate relative to said base.
    • Aspect 21: The positioning mechanism according to aspect 20, wherein said driving member is a telescopic cylinder, a free end of a telescopic rod of said telescopic cylinder being rotatably connected to said guide plate, and the free end of the telescopic rod of said telescopic cylinder being slidable along said guide plate.
    • Aspect 22: The positioning mechanism according to aspect 1, wherein said guide member can be folded inside said base, said operating state is a state in which said guide member extends out of said base, and said non-operating state is a state in which said guide member is folded inside said base. Aspect 23: The positioning mechanism according to aspect 22, wherein said landing area is provided with a mounting flap door through which said guide member extends out of said base to said landing area.
    • Aspect 24: The positioning mechanism according to aspect 23, characterized by further comprising a driving member which drives said guide member to extend out of said mounting flap door to said landing area.
    • Aspect 25: The positioning mechanism according to aspect 24, wherein said driving member is a telescopic cylinder, and a free end of a telescopic rod of said telescopic cylinder is movably connected to said guide member so as to drive said guide member to rotate inside said base.
    • Aspect 26: The positioning mechanism according to aspect 1, wherein said guide member can reduce its own volume, said operating state is a state in which said guide member has extended the volume, and said non-operating state is a state in which said guide member has reduced the volume. Aspect 27: The positioning mechanism according to aspect 26, wherein said guide member comprises an inflatable airbag, said operating state is a state in which said inflatable airbag is inflated, and said non-operating state is a state in which said inflatable airbag is deflated.
    • Aspect 28: The positioning mechanism according to aspect 1, wherein said guide member defines a portion of said positioning portion, and the size of said positioning portion can be adjusted by means of the movement and transformation of said guide member.
    • Aspect 29: The positioning mechanism according to aspect 28, wherein said guide member can translate or rotate in said landing area so as to adjust the size of said positioning portion; or said guide member is a retracting mechanism for adjusting the size of said positioning portion by means of the extension and retraction of said guide member.
    • Aspect 30: A UAV dock, comprising: a positioning mechanism according to any one of aspects 1-29; and an operating device for operating a UAV; wherein said UAV moves to said positioning portion through the guide surface of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
    • Aspect 31: The UAV dock according to aspect 30, wherein said operating device comprises an auxiliary mechanical structure for assisting positioning of said UAV.
    • Aspect 32: The UAV dock according to aspect 31, wherein said auxiliary mechanical structure is retractable relative to said positioning portion so as to push said UAV until said UAV is positioned by said positioning portion and said auxiliary mechanical structure cooperatively.
    • Aspect 33: The UAV dock according to aspect 31, wherein said auxiliary mechanical structure can clamp said UAV so as to position said UAV.
    • Aspect 34: The UAV dock according to aspect 31, wherein said auxiliary mechanical structure comprises a battery grabbing mechanism for grabbing a battery, and a clamping mechanism for positioning said UAV.
    • Aspect 35: The UAV dock according to aspect 30, wherein said operating device comprises a raw material replenishment mechanism for replenishing functional raw materials for said UAV. Aspect 36: The UAV dock according to aspect 35, wherein said raw material replenishment mechanism comprises at least one of a liquid raw material conveying port or a solid raw material conveying device.
    • Aspect 37: The UAV dock according to aspect 30, wherein said operating device comprises a replacing mechanism for replacing a load of said UAV.
    • Aspect 38: A positioning mechanism, comprising: a base provided with a landing area, with a positioning portion provided on said landing area; and a guide member used for guiding a moving object to said positioning portion and movably arranged in said landing area; wherein the states of movement and transformation of said guide member relative to said base include a non-operating state and an operating state, and the form of said guide member in said non-operating state is different from the form thereof in said operating state.
    • Aspect 39: The positioning mechanism according to aspect 38, wherein said positioning portion comprises at least one of a positioning plane, a positioning recess, or a mechanical positioning structure.
    • Aspect 40: The positioning mechanism according to aspect 38, wherein the form of said guide member includes at least one of: the height of said guide member relative to said landing area, the projected area of said guide member in said landing area, the length of projection of said guide member in said landing area, the width of projection of said guide member in said landing area, the shape of projection of said guide member in said landing area, the angle of said guide member relative to said landing area, the position of said guide member relative to said landing area, or the volume of said guide member itself.
    • Aspect 41: The positioning mechanism according to aspect 38, wherein the movable connection between said guide member and said base includes at least one of: said guide member being rotatably connected to said base, said guide member being slidably connected to said base, said guide member being telescopically connected to said base, or said guide member being capable of moving from the inside of said base to the outside of said base.
    • Aspect 42: The positioning mechanism according to aspect 38, wherein the movement and transformation of said guide member includes at least one of: rotation of said guide member relative to said base, translation of said guide member relative to said landing area, turning of said guide member relative to said landing area, lifting of said guide member relative to said landing area, telescoping of said guide member itself, or change in volume of said guide member itself.
    • Aspect 43: A UAV dock, comprising: a positioning mechanism according to any one of aspects 38-42; and an operating device for operating a UAV; wherein said UAV moves to said positioning portion by means of said guide member, and said operating device operates on said UAV positioned at said positioning portion.
    • Aspect 44: A UAV replenishment method, comprising: landing a UAV toward a landing area of a UAV dock; transforming said guide member in the landing area of said UAV dock into an operating state so as to guide said UAV to a positioning portion inside said landing area, the form of said guide member in said operating state being different from the form thereof in said non-operating state; and initiating replenishment for said UAV by said UAV dock.
    • Aspect 45: The UAV replenishment method according to aspect 44, further comprising: transforming said guide member into said non-operating state after said UAV leaves said UAV dock. Aspect 46: The UAV replenishment method according to aspect 44, wherein said guide member can reduce its own volume, said operating state is a state in which said guide member has extended the volume, and said non-operating state is a state in which said guide member has reduced the volume. Aspect 47: The UAV replenishment method according to aspect 44, wherein said guide member can be folded inside said base, said operating state being a state in which said guide member extends out of said base, and said non-operating state being a state in which said guide member is folded inside said base.
    • Aspect 48: The UAV replenishment method according to aspect 44, wherein said guide member can be folded within said landing area, said operating state being a state in which said guide member is extended, and said non-operating state being a state in which said guide member is folded.
    • Aspect 49: The UAV replenishment method according to aspect 44, wherein the step of transforming said guide member in the landing area of the UAV dock into an operating state so as to guide said UAV to a positioning portion inside said landing area comprises: said positioning portion being a two-dimensional positioning portion used for two dimensions with respect to a positioning plane, and an operating device of said dock and said positioning portion cooperatively positioning said UAV.
    • Aspect 50: The UAV replenishment method according to aspect 44, wherein the step of transforming said guide member in the landing area of the UAV dock into an operating state so as to guide said UAV to a positioning portion inside said landing area comprises: said positioning portion being a three-dimensional positioning portion used for three dimensions with respect to a positioning space, and said UAV being completely passively positioned at said positioning portion.
    • Aspect 51: The UAV replenishment method according to aspect 44, wherein the step of initiating replenishment for said UAV by said UAV dock comprises at least one of performing power replenishment for said UAV by said UAV dock, performing load replacement for said UAV by said UAV dock, or performing functional raw material replenishment for said UAV by said UAV dock.

Claims (15)

  1. A positioning mechanism (101), comprising:
    a base (110) provided with a landing area (111); and
    a guide member (120) movably arranged on said landing area (111) and comprising a guide surface (121);
    wherein said guide member (120) is movable relative to said base (110) so as to adjust the space occupied by said guide member (120) relative to said landing area (111); the moving states of said guide member (120) relative to said base (110) include a non-operating state and an operating state; the space occupied by said guide member (120) in said non-operating state is less than the space occupied by said guide member (120) in said operating state.
  2. The positioning mechanism (101) according to claim 1, wherein said guide surface (121) is a curved surface.
  3. The positioning mechanism (101) according to claim 2, wherein said guide surface (121) includes at least one of a V-shaped convex surface, a V-shaped concave surface, an arc convex surface, an arc concave surface, a spherical convex surface, or a spherical concave surface.
  4. The positioning mechanism (101) according to claim 1, wherein said guide member (120) is a guide plate and the positioning mechanism (101) further comprises a driving member (223) which drives said guide plate to rotate relative to said base (110).
  5. The positioning mechanism (101) according to claim 4, wherein said driving member (223) is a telescopic cylinder (223), a free end of a telescopic rod (223a) of said telescopic cylinder (223) being rotatably connected to said guide plate, and the free end of the telescopic rod (223a) of said telescopic cylinder (223) being slidable along said guide plate.
  6. The positioning mechanism (101) according to claim 1, wherein said landing area (111) is provided with a mounting flap door (333) through which said guide member (120) extends out of said base to said landing area (111), and the positioning mechanism (101) further comprises a driving member (223) which drives said guide member (120) to extend out of said mounting flap door (333) to said landing area (111).
  7. The positioning mechanism (101) according to claim 6, wherein said driving member (223) is a telescopic cylinder (223), and a free end of a telescopic rod (223a) of said telescopic cylinder (223) is movably connected to said guide member (120) so as to drive said guide member (120) to rotate inside said base (110).
  8. The positioning mechanism (101) according to claim 1, wherein said guide member (120) can reduce its own volume, said operating state is a state in which said guide member (120) has extended the volume, and said non-operating state is a state in which said guide member (120) has reduced the volume.
  9. The positioning mechanism (101) according to claim 8, wherein said guide member (120) comprises an inflatable airbag, said operating state is a state in which said inflatable airbag is inflated, and said non-operating state is a state in which said inflatable airbag is deflated.
  10. A UAV dock, comprising:
    a positioning mechanism (101) according to any one of claims 1-9, wherein said landing area (111) is provided with a positioning portion (113); and
    an operating device (103) for operating a UAV;
    wherein said UAV moves to said positioning portion (113) through the guide surface (121) of said guide member (120), and said operating device (103) operates on said UAV positioned at said positioning portion (113).
  11. The UAV dock according to claim 10, wherein said positioning portion (113) is a three-dimensional positioning portion for three dimensions with respect to a positioning space.
  12. The UAV dock according to claim 10, wherein said landing area (111) further comprises an operating region adjoining said positioning portion (113), said positioning portion (113) is a positioning plane and a bottom edge positioner (114) is arranged on the side of said positioning plane opposite said operating region.
  13. The UAV dock according to claim 11, wherein said positioning portion (113) is a positioning recess, said positioning recess being adjoined by said guide surface (121) of said guide member (120) and a side wall of the positioning recess being provided with a positioning pin that can be automatically ejected.
  14. The UAV dock according to claim 12, wherein the number of said guide members (120) is two, said two guide members (120) being respectively located on two opposite sides of said positioning portion (113), and said guide surfaces (121) of said two guide members (120) being arranged to face each other.
  15. The UAV dock according to claim 12, wherein an edge of said positioning plane is further provided with a side limiter, said side limiter and said guide member (120) being respectively located on two opposite sides of said positioning portion (113), and said guide surface (121) of said guide member (120) and said side limiter are arranged to face each other.
EP20200724.1A 2014-11-19 2014-11-19 Positioning mechanism, uav dock using same, and uav replenishment method Pending EP3782913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20200724.1A EP3782913A1 (en) 2014-11-19 2014-11-19 Positioning mechanism, uav dock using same, and uav replenishment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20200724.1A EP3782913A1 (en) 2014-11-19 2014-11-19 Positioning mechanism, uav dock using same, and uav replenishment method
PCT/CN2014/091587 WO2016078025A1 (en) 2014-11-19 2014-11-19 Positioning mechanism, uav base station using the positioning mechanism, and uav replenishment method
EP14906490.9A EP3222530B1 (en) 2014-11-19 2014-11-19 Positioning mechanism and uav base station using the positioning mechanism

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP14906490.9A Division-Into EP3222530B1 (en) 2014-11-19 2014-11-19 Positioning mechanism and uav base station using the positioning mechanism
EP14906490.9A Division EP3222530B1 (en) 2014-11-19 2014-11-19 Positioning mechanism and uav base station using the positioning mechanism

Publications (1)

Publication Number Publication Date
EP3782913A1 true EP3782913A1 (en) 2021-02-24

Family

ID=55724988

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20200724.1A Pending EP3782913A1 (en) 2014-11-19 2014-11-19 Positioning mechanism, uav dock using same, and uav replenishment method
EP14906490.9A Active EP3222530B1 (en) 2014-11-19 2014-11-19 Positioning mechanism and uav base station using the positioning mechanism

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14906490.9A Active EP3222530B1 (en) 2014-11-19 2014-11-19 Positioning mechanism and uav base station using the positioning mechanism

Country Status (5)

Country Link
US (2) US10414517B2 (en)
EP (2) EP3782913A1 (en)
JP (1) JP6483823B2 (en)
CN (2) CN105518488B (en)
WO (1) WO2016078025A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483823B2 (en) 2014-11-19 2019-03-13 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Positioning mechanism, UAV dock using the positioning mechanism, and UAV supply method
IL237130A0 (en) * 2015-02-05 2015-11-30 Ran Krauss Landing and charging system for drones
US10287034B2 (en) * 2015-03-02 2019-05-14 American Robotics, Inc. Drone aircraft landing and docking systems
JP6518472B2 (en) * 2015-03-19 2019-05-22 セコム株式会社 Take-off and landing gear
CN106029505B (en) * 2015-04-27 2017-11-07 深圳市大疆创新科技有限公司 Slip off a component and its ground base station used
EP3337724B8 (en) * 2015-08-17 2021-12-01 H3 Dynamics Holdings Pte. Ltd. Drone box
BR112018004732B1 (en) * 2015-09-11 2023-03-07 Reese Alexander Mozer DOCKING STATION
WO2018000026A1 (en) * 2016-06-28 2018-01-04 Burchat Clinton Graeme Extendible collection apparatus
JP6776068B2 (en) * 2016-09-07 2020-10-28 セコム株式会社 Landing gear
JP2020505268A (en) * 2017-01-19 2020-02-20 ブイトラス,インク. Unmanned aerial vehicle automatic battery maintenance, including charging and replacement, and related systems and methods
EP3615354A4 (en) * 2017-04-27 2020-06-17 Flyon Aerosystems Ltd. Integrated ground-aerial transportation system
WO2018209319A1 (en) 2017-05-12 2018-11-15 Gencore Candeo, Ltd. Systems and methods for response to emergency situations using unmanned airborne vehicles with improved functionalities
GB201812484D0 (en) * 2017-09-13 2018-09-12 Flirtey Holdings Inc Windshield
FR3072655A1 (en) * 2017-10-23 2019-04-26 Sterblue DEVICE FORMING A UNIVERSAL RECEIVING PLATFORM FOR AN AIR VEHICLE WITHOUT PILOT
WO2019084811A1 (en) * 2017-10-31 2019-05-09 深圳市大疆创新科技有限公司 Position setting mechanism, unmanned aerial vehicle base station, and unmanned aerial vehicle system
WO2019160540A1 (en) * 2018-02-14 2019-08-22 Ford Global Technologies, Llc Self-centering landing platform
CN108516080B (en) * 2018-03-29 2024-01-23 南京理工大学 Ground-air cooperative dynamic docking device
US11116145B2 (en) 2018-03-30 2021-09-14 Greensight Argonomics, Inc. Automated optimization of agricultural treatments based on raster image data system
US11205073B2 (en) 2018-03-30 2021-12-21 Greensight Agronomics, Inc. System to automatically detect and report changes over time in a large imaging data set
US11235874B2 (en) 2018-03-30 2022-02-01 Greensight Agronomics, Inc. Automated drone-based spraying system
CN108298104B (en) * 2018-04-11 2023-07-28 天津理工大学 Unmanned aerial vehicle intelligent endurance independently changes battery device
CN108873930B (en) * 2018-05-31 2021-09-10 苏州市启献智能科技有限公司 Unmanned aerial vehicle taking-off and landing method and system based on mobile platform
CN109110479B (en) * 2018-07-04 2020-06-02 深圳市汇智通咨询有限公司 Unmanned aerial vehicle basic station goods and materials package auto-change over device
CN109760839A (en) * 2019-01-04 2019-05-17 上海大学 The medical fluid anti-shake medicine-chest of plant protection drone
CN109760840A (en) * 2019-01-30 2019-05-17 沈阳大学 A kind of unmanned plane independently grabs control system and its control method
USD899345S1 (en) * 2019-02-13 2020-10-20 Atlas Dynamic Limited Aircraft docking station
CN109992001A (en) * 2019-04-22 2019-07-09 西安忠林世纪电子科技有限公司 A kind of unmanned plane safe falling method, apparatus and unmanned plane
JP7397608B2 (en) 2019-09-19 2023-12-13 Ihi運搬機械株式会社 drone port
US20230013275A1 (en) * 2019-12-20 2023-01-19 Aeronext Inc. Takeoff and landing system
WO2021154272A1 (en) * 2020-01-31 2021-08-05 Southeastern Pennsylvania Unmanned Aircraft Systems, Llc Drone delivery system
KR102388243B1 (en) * 2020-02-18 2022-04-19 이동혁 Variable landing field for drones
US11180263B2 (en) 2020-04-06 2021-11-23 Workhorse Group Inc. Flying vehicle systems and methods
CN111679682A (en) * 2020-08-11 2020-09-18 北京云圣智能科技有限责任公司 Unmanned aerial vehicle landing method and device and electronic equipment
KR102392720B1 (en) * 2020-09-24 2022-04-29 공주대학교 산학협력단 drone station for washing
KR102389328B1 (en) * 2020-09-24 2022-04-21 공주대학교 산학협력단 drone base station
US11440679B2 (en) * 2020-10-27 2022-09-13 Cowden Technologies, Inc. Drone docking station and docking module
CN112918698B (en) * 2021-03-18 2023-06-06 湖南华诺星空电子技术有限公司 Automatic centering device and method for unmanned aerial vehicle
CN113320710B (en) * 2021-05-28 2022-09-09 重庆师范大学 Aerial photography cloud platform full-automatic battery replacement base station
WO2023026308A1 (en) 2021-08-24 2023-03-02 Svarmi Ehf. Uav docking system for autonomous landing and docking
CN113968352A (en) * 2021-12-03 2022-01-25 深圳市海通互动科技有限公司 Unmanned aerial vehicle descending auxiliary device
CN114313289B (en) * 2022-02-10 2024-01-23 南方电网电力科技股份有限公司 Accurate landing device of unmanned aerial vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799336A1 (en) * 2013-04-29 2014-11-05 The Boeing Company Device and method for use with unmanned aerial vehicles
WO2016015301A1 (en) * 2014-07-31 2016-02-04 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle base station system and method

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255911A (en) * 1978-07-03 1981-03-17 Beacom John M Helicopter enclosure
US4834321A (en) * 1987-03-09 1989-05-30 Denis Granger Articulated heliport pad
JPH0825518B2 (en) * 1993-12-22 1996-03-13 防衛庁技術研究本部長 Vertical take-off aircraft recovery device
DE19518454C2 (en) * 1995-05-19 1998-01-29 Bundesrep Deutschland Device for maneuvering a landed helicopter
DE19950674C2 (en) * 1999-10-21 2002-01-17 Airbus Gmbh Arrangement with a device for landing aircraft
IL173357A0 (en) * 2006-01-25 2007-03-08 Israel Aerospace Ind Ltd Aircraft landing method and device
EP2421757B1 (en) * 2009-04-24 2013-10-23 Insitu, Inc. Systems and methods for recovering and controlling post-recovery motion of unmanned aircraft
US8297552B2 (en) * 2010-01-21 2012-10-30 I/O Controls Corporation Helicopter landing pad
IT1400013B1 (en) * 2010-04-30 2013-05-09 B Financial Srl ENCLOSED PLATFORM CONTENT FOR LANDING AN AIRCRAFT ON AN ACCESS INFRASTRUCTURE
US9387940B2 (en) * 2010-11-09 2016-07-12 Colorado Seminary Which Owns And Operates The University Of Denver Intelligent self-leveling docking system
CN102156480A (en) * 2010-12-30 2011-08-17 清华大学 Unmanned helicopter independent landing method based on natural landmark and vision navigation
JP5775354B2 (en) * 2011-04-28 2015-09-09 株式会社トプコン Takeoff and landing target device and automatic takeoff and landing system
KR101265784B1 (en) * 2011-07-06 2013-05-20 부산대학교 산학협력단 Helicopter landing apparatus
JP6180765B2 (en) 2012-03-29 2017-08-16 ザ・ボーイング・カンパニーThe Boeing Company Transportation base station
EP2664539B1 (en) * 2012-05-17 2018-07-18 The Boeing Company A method of and apparatus for extending the operation of an unmanned aerial vehicle
CN202922160U (en) * 2012-10-19 2013-05-08 南京信息工程大学 Battery automatic changing system of small sized multi-rotor unmanned aerial vehicle
US8880241B2 (en) * 2013-02-20 2014-11-04 Farrokh Mohamadi Vertical takeoff and landing (VTOL) small unmanned aerial system for monitoring oil and gas pipelines
CN104002981A (en) * 2013-02-22 2014-08-27 上海市南洋模范中学 Carrier plane landing aid system for small aircraft carriers
DE102013004881A1 (en) * 2013-03-07 2014-09-11 Daniel Dirks Landing and (battery) charging station - with contact or contactless - for single or multiple remote controlled or autonomous flying drones with rotary blades (UAVs / flying robots / multicopter)
KR20140115024A (en) * 2013-03-20 2014-09-30 김명호 Unmanned Aerial Vehicle Storage Device
DE102013104447A1 (en) 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automated and flexible self-climbing landing gear with flight characteristics
JP2015042539A (en) * 2013-08-26 2015-03-05 国立大学法人 千葉大学 Helicopter, battery replacement device for helicopter, and helicopter system
US10124908B2 (en) * 2013-10-21 2018-11-13 Kespry Inc. Systems and methods for unmanned aerial vehicle landing
CN103754288A (en) * 2013-12-04 2014-04-30 海丰通航科技有限公司 Movable heliport
CN103645740B (en) * 2013-12-30 2016-02-17 中国科学院自动化研究所 Based on the intelligent cruise robot of wireless charging odd number axle aircraft
WO2015117216A1 (en) * 2014-02-06 2015-08-13 Владимир Александрович ДАВЫДОВ Landing platform for an unmanned aerial vehicle
CN103809598B (en) * 2014-03-12 2016-08-10 北京航空航天大学 A kind of rotor wing unmanned aerial vehicles based on three layers of isosceles triangle polychrome landing ramp autonomous landing system
CN104007766A (en) * 2014-03-24 2014-08-27 深圳市大疆创新科技有限公司 Flight control method and device for unmanned aerial vehicle
CN104085538B (en) * 2014-03-31 2016-06-22 上海师范大学 A kind of sea, common naval vessel unmanned aerial vehicle closely landing gear
US9669947B2 (en) * 2014-04-29 2017-06-06 Aerovironment, Inc. Small unmanned aerial vehicle (SUAV) shipboard recovery system
CN103955227A (en) * 2014-04-29 2014-07-30 上海理工大学 Control method of accurate landing of unmanned aerial vehicle
CN203854854U (en) * 2014-05-29 2014-10-01 金陵科技学院 Rotary wing type unmanned plane with damping landing gear
WO2015196127A1 (en) * 2014-06-20 2015-12-23 Colorado Seminary, Which Owns And Operates The University Of Denver Mobile self-leveling landing platform for uavs
CN104058100A (en) * 2014-06-23 2014-09-24 杨举 Device for launching and landing aircrafts
US9845165B2 (en) * 2014-07-16 2017-12-19 Airogistic, L.L.C. Methods and apparatus for unmanned aerial vehicle landing and launch
US9573701B2 (en) * 2014-08-06 2017-02-21 Disney Enterprises, Inc. Robust and autonomous docking and recharging of quadrotors
JP6483823B2 (en) 2014-11-19 2019-03-13 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Positioning mechanism, UAV dock using the positioning mechanism, and UAV supply method
CN204250382U (en) * 2014-11-19 2015-04-08 深圳市大疆创新科技有限公司 Detent mechanism and adopt the UAV base station of this detent mechanism
US10287034B2 (en) * 2015-03-02 2019-05-14 American Robotics, Inc. Drone aircraft landing and docking systems
US10023057B2 (en) * 2015-04-22 2018-07-17 Cristian A. Sobota Rodriguez Contactless charger and battery management
WO2017147237A1 (en) * 2016-02-24 2017-08-31 Archon Technologies S.R.L. Docking and recharging station for unmanned aerial vehicles capable of ground movement
US10207820B2 (en) * 2016-07-05 2019-02-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems for transporting, deploying, and docking unmanned aerial vehicles mountable on a ground vehicle
US10850838B2 (en) * 2016-09-30 2020-12-01 Sony Interactive Entertainment Inc. UAV battery form factor and insertion/ejection methodologies
WO2018067800A1 (en) * 2016-10-05 2018-04-12 Aai Corporation Articulated support for unmanned aircraft system
TWI652205B (en) * 2016-11-11 2019-03-01 侯宜良 UAV, radar system and landing method thereof with radar guided landing function
US10934019B2 (en) * 2016-11-29 2021-03-02 Easy Aerial Inc. Unmanned aerial vehicle charging station with centering mechanism
TWI628113B (en) * 2017-08-29 2018-07-01 財團法人工業技術研究院 Uav, systems and methods for determining landing status of uav

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799336A1 (en) * 2013-04-29 2014-11-05 The Boeing Company Device and method for use with unmanned aerial vehicles
WO2016015301A1 (en) * 2014-07-31 2016-02-04 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle base station system and method

Also Published As

Publication number Publication date
CN105518488B (en) 2017-03-15
EP3222530A4 (en) 2018-06-20
JP6483823B2 (en) 2019-03-13
CN105518488A (en) 2016-04-20
EP3222530B1 (en) 2020-12-16
JP2017534523A (en) 2017-11-24
WO2016078025A1 (en) 2016-05-26
US20170253349A1 (en) 2017-09-07
US20200010215A1 (en) 2020-01-09
CN106986043B (en) 2020-03-06
US11524796B2 (en) 2022-12-13
US10414517B2 (en) 2019-09-17
CN106986043A (en) 2017-07-28
EP3222530A1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
US11524796B2 (en) Positioning mechanism, UAV dock using same, and UAV replenishment method
US11713136B2 (en) Unmanned aerial vehicle positioning mechanism
CN204250382U (en) Detent mechanism and adopt the UAV base station of this detent mechanism
CN107052587B (en) Laser marking machine
US7963351B2 (en) Robotic vehicle apparatus and method
EP2631041A2 (en) Mobile robot
EP2631042A2 (en) Robot arrangement and method of operation
CN106184815B (en) Gate loading, unloading workbench and its application process after aircraft
CN109153458B (en) Positioning mechanism, unmanned aerial vehicle basic station and unmanned aerial vehicle system
JP2015205330A (en) Welding apparatus
US9739414B2 (en) Multi-axis carrying device
CN214062518U (en) Automatic airport of unmanned aerial vehicle
JP2017100276A (en) Reconfigurable fixing system and method
CN110738876A (en) convenient mobile computer teaching instrument
JP2017116106A (en) Welding device
CN204028354U (en) A kind of radar simulator
CN106006495A (en) Lifting platform car capable of achieving height adjustment based on ball screw
CN110667727A (en) Walking robot
CN106219181A (en) It is arranged at the docking facilities on nuclear equipment object transmission track
CN110625019A (en) Loading and unloading auxiliary device and pipe expander with same
JP2019104491A (en) Positioning mechanism, uav dock using the same and uav supply method
US11345022B2 (en) Collapsible, multiple axis cartesian robot
CN206839414U (en) Laser marking machine
CN110759276A (en) Movable lifting platform for docking with large-scale comprehensive environment test system
CN219126687U (en) Instrument supporting device and surgical robot

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3222530

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210311

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B64F0001020000

Ipc: B64U0070300000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B64U0070300000

Ipc: B64U0070970000

RIC1 Information provided on ipc code assigned before grant

Ipc: B64F 1/02 20060101ALI20230331BHEP

Ipc: B64C 39/02 20060101ALI20230331BHEP

Ipc: B64U 70/30 20230101AFI20230331BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B64U 70/97 20230101AFI20230425BHEP